ABSOLUTE RETRACTIVITY OF THE COMMON FIXED POINTS SET OF TWO MULTIFUNCTIONS

Hojat Afshari - Shahram Rezapour - Naseer Shahzad

Abstract

In 1970, Schirmer discussed about topological properties of the fixed point set of multifunctions ([4]). Later, some authors continued this study by providing different conditions ([1] and [3]). Recently, Sintamarian proved results on absolute retractivity of the common fixed points set of two multivalued operators ([5] and [6]). We shall present some results on absolute retractivity of the common fixed points set of two multifunctions by using different conditions.

1. Introduction

Let X be a nonempty set, $P(X)$ the set of all nonempty subsets of X, $F_{1}, F_{2}: X \rightarrow P(X)$ two multifunctions, $\mathcal{F}_{F_{1}}$ the fixed point set of $F_{1},(\mathcal{C F})_{F_{1}, F_{2}}$ the common fixed point set of F_{1} and F_{2}, that is $(\mathcal{C F})_{F_{1}, F_{2}}=\{x \in X: x \in$ $\left.F_{1} x \cap F_{2} x\right\}$. Let X and Y be nonempty sets and $F: X \rightarrow P(Y)$ a multifunctions. A mapping $\varphi: X \rightarrow Y$ is called a selection of F whenever $\varphi(x) \in F x$ for all $x \in X$. Throughout the paper, for a topological space X we denote the set of all nonempty closed subsets of X by $P_{\mathrm{cl}}(X)$, the set of all nonempty convex subsets of X by $P_{\mathrm{cv}}(X)$ when X is a vector space, the set of all nonempty closed and bounded subsets of X by $P_{\mathrm{b}, \mathrm{cl}}(X)$ when X is a metric space and $P_{\mathrm{cl}, \mathrm{cv}}(X)=P_{\mathrm{cl}}(X) \cap P_{\mathrm{cv}}(X)$ when X is a normed space.

2010 Mathematics Subject Classification. 47H04, 47H10 54H25.
Key words and phrases. Absolute retract, common fixed point, multifunction.

Let (X, d) be a metric space. For $x \in X$ and $A, B \subseteq X$, set

$$
D(x, A)=\inf _{y \in A} d(x, y) \quad \text { and } \quad H(A, B)=\max \left\{\sup _{x \in A} D(x, B), \sup _{y \in B} D(y, A)\right\} .
$$

It is known that, H is a metric on closed bounded subsets of X which is called the Hausdorff metric.

We say that a topological space X is an absolute retract for metric spaces whenever for each metric space $Y, A \in P_{\mathrm{cl}}(Y)$ and continuous function $\psi: A \rightarrow X$, there exists a continuous function $\varphi: Y \rightarrow X$ such that $\left.\varphi\right|_{A}=\psi$. Let \mathcal{M} be the set of all metric spaces, $X \in \mathcal{M}, \mathcal{D} \in P(\mathcal{M})$ and $F: X \rightarrow P_{\mathrm{b}, \mathrm{cl}}(X)$ a lower semicontinuous multifunction. We say that F has the selection property with respect to \mathcal{D} if for each $Y \in \mathcal{D}$, continuous function $f: Y \rightarrow X$ and continuous functional $g: Y \rightarrow(0, \infty)$ such that $G(y):=\overline{F(f(y)) \cap N_{g(y)}(f(y))} \neq \emptyset$ for all $y \in Y$, $A \in P_{\mathrm{cl}}(Y)$, every continuous selection $\psi: A \rightarrow X$ of $\left.G\right|_{A}$ admits a continuous extension $\varphi: Y \rightarrow X$, which is a selection of G. If $\mathcal{D}=\mathcal{M}$, then we say that F has the selection property and we denote this by $F \in \mathrm{SP}(X)$ ([5]).

An interesting problem in fixed point theory of multivalued operators is to investigate under what conditions some properties of the values of a multifunction are inherited by its fixed point set. For some multifunctions, this problem was studied by Schirmer in 1970 ([4]), by Alicu and Mark in 1980 ([1]) and by Ricceri in 1987 ([3]). For example, Schirmer proved that if the values of a contractive multifunction $F: \mathbb{R} \rightarrow P(\mathbb{R})$ are closed, bounded and convex, then the fixed point set of F is compact and closed. Recently, Sintamarian proved some results on absolute retractivity of the common fixed points set of two multivalued operators under some conditions ([5] and [6]). In 2008, Lazar, O'Regan and Petrusel obtained fixed points of Ciric-type multifunctions on a set with two metrics ([2]). In this paper, we shall present some results on absolute retractivity of the common fixed points set of two multifunctions by using different conditions.

2. Main results

The following result improves [5; Theorem 2.1] which use arguments similar to those in [5].

Theorem 2.1. Let (X, d) be a metric space and absolute retract for metric spaces, $F_{1}, F_{2} \in \mathrm{SP}(X)$ and $f: X \rightarrow X$ a continuous function such that

$$
\alpha d(x, y) \leq d(f(x), f(y))
$$

for some $\alpha>0$ and all $x, y \in X$, and $f\left(F_{1} x\right) \subseteq F_{1} f(x)$ and $f\left(F_{2} x\right) \subseteq F_{2} f(x)$ for all $x \in X$. Suppose that there exist $a_{1}, \ldots, a_{5} \in(0, \infty)$ such that $a_{1}+a_{2}+$ $a_{3}+2 \max \left\{a_{4}, a_{5}\right\}<1$ and
$H\left(F_{1} x, F_{2} y\right) \leq a_{1} d(x, y)+a_{2} D\left(x, F_{1} x\right)+a_{3} D\left(y, F_{2} y\right)+a_{4} D\left(x, F_{2} y\right)+a_{5} D\left(y, F_{1} x\right)$
for all $x, y \in X$. Then the set $B=\left\{x \in X: x \in F_{1} f(x) \cap F_{2} f(x)\right\}$ is an absolute retract for metric spaces.

Proof. Let

$$
q \in\left(1, \frac{1}{a_{1}+a_{2}+a_{3}+2 \max \left\{a_{4}, a_{5}\right\}}\right)
$$

and set

$$
l:=\max \left\{\frac{a_{1}+a_{2}+a_{4}}{1-\left(a_{3}+a_{4}\right)}, \frac{a_{1}+a_{3}+a_{5}}{1-\left(a_{2}+a_{5}\right)}\right\}<1
$$

Then we have $q l<1$. Let $Y \in \mathcal{M}, A \in P_{\mathrm{cl}}(Y)$ and $\psi: A \rightarrow B$ a continuous function. Since X is an absolute retract for metric spaces, there exists a continuous function $\varphi_{0}: Y \rightarrow X$ such that $\left.\varphi_{0}\right|_{A}=\psi$. Define the functional $g_{0}: Y \rightarrow(0, \infty)$ by

$$
g_{0}(y)=\sup \left\{d\left(f\left(\varphi_{0}(y)\right), z\right): z \in F_{1} f\left(\varphi_{0}(y)\right)\right\}+1
$$

for all $y \in Y$. Note that, g_{0} is continuous and

$$
F_{1} f\left(\varphi_{0}(y)\right) \cap N_{g_{0}(y)}\left(f\left(\varphi_{0}(y)\right)\right)=F_{1} f\left(\varphi_{0}(y)\right)
$$

for all $y \in Y$. Also, we observe that the function $\psi: A \rightarrow B$ is a continuous selection of the multifunction $A \ni y \vdash F_{1} f\left(\varphi_{0}(y)\right)$. Since $F_{1} \in \mathrm{SP}(X)$, there exists a continuous function $\varphi_{1}: Y \rightarrow X$ such that $\left.\varphi_{1}\right|_{A}=\psi$ and $\varphi_{1}(y) \in F_{1} f\left(\varphi_{0}(y)\right)$ for all $y \in Y$. Thus, $f\left(\varphi_{1}(y)\right) \in f\left(F_{1} f\left(\varphi_{0}(y)\right)\right) \subseteq F_{1} f\left(\varphi_{0}(y)\right)$ and

$$
\begin{aligned}
D\left(f\left(\varphi_{1}(y)\right),\right. & \left.F_{2} f\left(\varphi_{1}(y)\right)\right) \leq H\left(F_{1} f\left(\varphi_{0}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right) \\
\leq & a_{1} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+a_{2} D\left(f\left(\varphi_{0}(y)\right), F_{1} f\left(\varphi_{0}(y)\right)\right) \\
& +a_{3} D\left(f\left(\varphi_{1}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right)+a_{4} D\left(f\left(\varphi_{0}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right) \\
& +a_{5} D\left(f\left(\varphi_{1}(y)\right), F_{1} f\left(\varphi_{0}(y)\right)\right) \\
\leq & a_{1} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+a_{2} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right) \\
& +a_{3} D\left(f\left(\varphi_{1}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right)+a_{4} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right) \\
& +a_{4} D\left(f\left(\varphi_{1}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
D\left(f\left(\varphi_{1}(y)\right)\right. & \left., F_{2} f\left(\varphi_{1}(y)\right)\right) \\
& \leq \frac{\left(a_{1}+a_{2}+a_{4}\right)}{\left(1-a_{3}-a_{4}\right)} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right) \leq l d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right) \\
& <l d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+l<l d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+q^{-1} .
\end{aligned}
$$

Hence, $G_{2}(y):=F_{2} f\left(\varphi_{1}(y)\right) \cap N_{l d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+q^{-1}}\left(f\left(\varphi_{1}(y)\right)\right) \neq \emptyset$. Since $F_{2} \in \mathrm{SP}(X)$, there exists a continuous function $\varphi_{2}: Y \rightarrow X$ such that $\left.\varphi_{2}\right|_{A}=\psi$ and $\varphi_{2}(y) \in \overline{G_{2}(y)}$ for all $y \in Y$. Thus, $\left.\varphi_{2}\right|_{A}=\psi, \varphi_{2}(y) \in F_{2} f\left(\varphi_{1}(y)\right)$ for all
$y \in Y$. Hence, $f\left(\varphi_{2}(y)\right) \in f\left(F_{2} f\left(\varphi_{1}(y)\right)\right) \subseteq F_{2} f\left(\varphi_{1}(y)\right)$ for all $y \in Y$. It is easy to see that $F_{2} f\left(\varphi_{1}(y)\right) \subseteq N_{l d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+q^{-1}}\left(f\left(\varphi_{1}(y)\right)\right)$. Thus,

$$
d\left(f\left(\varphi_{2}(y)\right), f\left(\varphi_{1}(y)\right)\right) \leq l d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+q^{-1}
$$

and so

$$
\begin{aligned}
D\left(f\left(\varphi_{2}(y)\right),\right. & \left.F_{1} f\left(\varphi_{2}(y)\right)\right) \leq H\left(F_{1} f\left(\varphi_{2}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right) \\
\leq & a_{1} d\left(f\left(\varphi_{1}(y)\right), f\left(\varphi_{2}(y)\right)\right)+a_{2} D\left(f\left(\varphi_{2}(y)\right), F_{1} f\left(\varphi_{2}(y)\right)\right) \\
& +a_{3} D\left(f\left(\varphi_{1}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right)+a_{4} D\left(f\left(\varphi_{2}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right) \\
& +a_{5} D\left(f\left(\varphi_{1}(y)\right), F_{1} f\left(\varphi_{2}(y)\right)\right) \\
\leq & a_{1} d\left(f\left(\varphi_{1}(y)\right), f\left(\varphi_{2}(y)\right)\right)+a_{2} D\left(f\left(\varphi_{2}(y)\right), F_{1} f\left(\varphi_{2}(y)\right)\right) \\
& +a_{3} d\left(f\left(\varphi_{1}(y)\right), f\left(\varphi_{2}(y)\right)\right)+a_{3} D\left(f\left(\varphi_{2}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right) \\
& +a_{4} D\left(f\left(\varphi_{2}(y)\right), F_{2} f\left(\varphi_{1}(y)\right)\right)+a_{5} d\left(f\left(\varphi_{1}(y)\right), f\left(\varphi_{2}(y)\right)\right) \\
& +a_{5} D\left(f\left(\varphi_{2}(y)\right), F_{1} f\left(\varphi_{2}(y)\right)\right) .
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
D\left(f\left(\varphi_{2}(y)\right)\right. & \left., F_{1} f\left(\varphi_{2}(y)\right)\right) \leq \frac{\left(a_{1}+a_{3}+a_{5}\right)}{\left(1-a_{2}-a_{5}\right)} d\left(f\left(\varphi_{1}(y)\right), f\left(\varphi_{2}(y)\right)\right) \\
& \leq l d\left(f\left(\varphi_{1}(y)\right), f\left(\varphi_{2}(y)\right)\right)<l d\left(f\left(\varphi_{1}(y)\right), f\left(\varphi_{2}(y)\right)\right)+l \\
& <l d\left(f\left(\varphi_{1}(y)\right), f\left(\varphi_{2}(y)\right)\right)+q^{-1}<l^{2} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+q^{-2}
\end{aligned}
$$

 $F_{1} \in \operatorname{SP}(X)$, there exists a continuous function $\varphi_{3}: Y \rightarrow X$ such that $\left.\varphi_{3}\right|_{A}=\psi$ and $\varphi_{3}(y) \in F_{1} f\left(\varphi_{2}(y)\right)$ for all $y \in Y$. Therefore, $\left.\varphi_{3}\right|_{A}=\psi, f\left(\varphi_{3}(y)\right) \in$ $F_{1} f\left(\varphi_{2}(y)\right)$ and $d\left(f\left(\varphi_{2}(y)\right), f\left(\varphi_{3}(y)\right)\right) \leq l^{2} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+q^{-2}$ for all $y \in Y$. By continuing this process, we obtain a sequence $\left\{\varphi_{n}\right\}_{n \geq 0}$, where $\varphi_{n}: Y \rightarrow X$ is a continuous function for all $n \geq 0$, such that $\left.\varphi_{n}\right|_{A}=\psi$, $\varphi_{2 n-1}(y), f\left(\varphi_{2 n-1}(y)\right) \in F_{1} f\left(\varphi_{2 n-2}(y)\right)$ and $\varphi_{2 n}(y), f\left(\varphi_{2 n}(y)\right) \in F_{2} f\left(\varphi_{2 n-1}(y)\right)$, and

$$
d\left(f\left(\varphi_{n-1}(y)\right), f\left(\varphi_{n}(y)\right)\right) \leq l^{n-1} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+q^{-(n-1)}
$$

for all $n \geq 1$ and $y \in Y$. Now, for each $\lambda>0$, we put

$$
Y_{\lambda}:=\left\{y \in Y: d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)<\lambda\right\}
$$

Since $f\left(\varphi_{1}(y)\right) \in F_{1} f\left(\varphi_{0}(y)\right)$ and

$$
F_{1} f\left(\varphi_{0}(y)\right) \cap N_{g_{0}(y)}\left(f\left(\varphi_{0}(y)\right)\right)=F_{1} f\left(\varphi_{0}(y)\right)
$$

$f\left(\varphi_{1}(y)\right) \in N_{g_{0}(y)}\left(f\left(\varphi_{0}(y)\right)\right)$. Hence, $d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)<\lambda_{y}:=g_{0}(y)$. Thus, $y \in Y_{\lambda_{y}}$. Since Y_{λ} is open for each $\lambda>0$, the family of sets $\left\{Y_{\lambda} \mid \lambda>0\right\}$ is
an open covering of Y and we have

$$
\begin{aligned}
\alpha d\left(\varphi_{n-1}(y), \varphi_{n}(y)\right) & \leq d\left(f\left(\varphi_{n-1}(y)\right), f\left(\varphi_{n}(y)\right)\right) \\
& \leq l^{n-1} d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)+q^{-(n-1)}
\end{aligned}
$$

for all $n \geq 1$ and $y \in Y$. Since $l<1, q>1, \alpha>0$ and X is complete, the sequence $\left\{\varphi_{n}\right\}_{n \geq 0}$ converges uniformly on Y_{λ} for all $\lambda>0$. Let $\varphi: Y \rightarrow X$ be the pointwise limit of $\left\{\varphi_{n}\right\}_{n \geq 0}$ and note that φ is continuous and $\left.\varphi\right|_{A}=\psi$ because $\left.\varphi_{n}\right|_{A}=\psi$ for all $n \geq 0$. Since f is continuous, $\varphi_{2 n-1}(y) \in F_{1} f\left(\varphi_{2 n-2}(y)\right)$ and $\varphi_{2 n}(y) \in F_{2} f\left(\varphi_{2 n-1}(y)\right)$ for all $n \geq 1$ and $y \in Y$, we get $\varphi(y) \in F_{1} f(\varphi(y)) \cap$ $F_{2} f(\varphi(y))$ for all $y \in Y$. Therefore, $\varphi: Y \rightarrow B$ is a continuous extension of ψ, that is, $B=\left\{x \in X: x \in F_{1} f(x) \cap F_{2} f(x)\right\}$ is an absolute retract for metric spaces.

Theorem 2.2. Let (X, d) be a metric space and absolute retract for metric spaces, $F_{1}, F_{2} \in \mathrm{SP}(X)$ and $f: X \rightarrow X$ a continuous function such that

$$
\alpha d(x, y) \leq d(f(x), f(y))
$$

for some $\alpha>0$ and all $x, y \in X$, and $f\left(F_{1} x\right) \subseteq F_{1} f(x)$ and $f\left(F_{2} f x\right) \subseteq F_{2} f(x)$ for all $x \in X$. Suppose that there exist $a_{1}, \ldots, a_{5} \in(0, \infty)$ such that $a_{1}+a_{2}+$ $a_{3}+2 \max \left\{a_{4}, a_{5}\right\}<1$ and
$H\left(F_{1} x, F_{2} y\right) \leq a_{1} d(x, y)+a_{2} D\left(x, F_{1} x\right)+a_{3} D\left(y, F_{2} y\right)+a_{4} D\left(x, F_{2} y\right)+a_{5} D\left(y, F_{1} x\right)$
for all $x, y \in X$. Then the set $B_{m}=\left\{x \in X: x \in F_{1} f^{m}(x) \cap F_{2} f^{m}(x)\right\}$ is an absolute retract for metric spaces for all $m \geq 1$.

Proof. We note that $\alpha^{m} d(x, y) \leq d\left(f^{m}(x), f^{m}(y)\right), f^{m}\left(F_{1} x\right) \subseteq F_{1} f^{m}(x)$ and $f^{m}\left(F_{2} x\right) \subseteq F_{2} f^{m}(x)$ for all $x, y \in X$ and $m \geq 1$. Now, as before, we can obtain the result.

If $X=\mathbb{R}$ and $f(x)=2 x$ for $x>0$ and $f(x)=3 x$ for $x \leq 0$, then $\alpha d(x, y) \leq$ $d(f(x), f(y))$ for some $\alpha=2$. Note that, f is not linear. Also, define $F_{1} x=[0, x]$ if $x>0, F_{1} x=[x,-x]$ if $x \leq 0, F_{2} x=[x, 2 x]$ if $x>0$ and $F_{2} x=[x, 0]$ if $x \leq 0$. Then, $f F_{1} x=F_{1} f(x)$ and $f F_{2} x=F_{2} f(x)$ for all $x \in X$.

Theorem 2.3. Let (X, d) be a metric space and absolute retract for metric spaces, $F \in \operatorname{SP}(X)$ and $f: X \rightarrow X$ a continuous function such that $f(F x) \subseteq$ $F f(x)$ for all $x \in X$. Suppose that there exist $a_{1}, \ldots, a_{5} \in(0, \infty)$ such that $a_{1}+a_{2}+a_{3}+2 a_{4}<1$ and
$H(F x, F y) \leq a_{1} d(x, y)+a_{2} D(x, F x)+a_{3} D(y, F y)+a_{4} D(x, F y)+a_{5} D(y, F x)$
for all $x, y \in X$. Then the set $B=\{f(x): f(x) \in F f(x)\}$ is an absolute retract for metric spaces.

Proof. Let $q \in\left(1,1 /\left(a_{1}+a_{2}+a_{3}+2 a_{4}\right)\right)$ and set $l:=\left(a_{1}+a_{2}+a_{4}\right) /$ $\left(1-a_{3}-a_{4}\right)$. Then we have $q l<1$. Let $Y \in \mathcal{M}, A \in P_{\mathrm{cl}}(Y)$ and $\psi: A \rightarrow B$ a continuous function. Since X is an absolute retract for metric spaces, there exists a continuous function $\varphi_{0}: Y \rightarrow X$ such that $\left.\varphi_{0}\right|_{A}=\psi$.

Define the functional $g_{0}: Y \rightarrow(0, \infty)$ by

$$
g_{0}(y)=\sup \left\{d\left(\varphi_{0}(y), z\right): z \in F \varphi_{0}(y)\right\}+1
$$

for all $y \in Y$. Note that, g_{0} is continuous and

$$
F \varphi_{0}(y) \cap N_{g_{0}(y)}\left(\varphi_{0}(y)\right)=F \varphi_{0}(y)
$$

for all $y \in Y$. Also, we observe that the function $\psi: A \rightarrow B$ is a continuous selection of the multifunction $A \ni y \vdash F \varphi_{0}(y)$. Since $F \in \mathrm{SP}(X)$, there exists a continuous function $\varphi_{1}: Y \rightarrow X$ such that $\left.\varphi_{1}\right|_{A}=\psi$ and $\varphi_{1}(y) \in F \varphi_{0}(y)$ for all $y \in Y$. Thus, $f\left(\varphi_{1}(y)\right) \in f\left(F \varphi_{0}(y)\right) \subseteq F f\left(\varphi_{0}(y)\right)$ and

$$
\begin{aligned}
D\left(\varphi_{1}(y),\right. & \left.F \varphi_{1}(y)\right) \leq H\left(F \varphi_{0}(y), F \varphi_{1}(y)\right) \\
\leq & a_{1} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+a_{2} D\left(\varphi_{0}(y), F \varphi_{0}(y)\right) \\
& +a_{3} D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)+a_{4} D\left(\varphi_{0}(y), F \varphi_{1}(y)\right)+a_{5} D\left(\varphi_{1}(y), F \varphi_{0}(y)\right) \\
\leq & a_{1} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+a_{2} d\left(\varphi_{0}(y), \varphi_{1}(y)\right) \\
& +a_{3} D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)+a_{4} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+a_{4} D\left(\varphi_{1}(y), F \varphi_{1}(y)\right)
\end{aligned}
$$

Now, we obtain

$$
\begin{aligned}
D\left(\varphi_{1}(y), F \varphi_{1}(y)\right) & \leq \frac{\left(a_{1}+a_{2}+a_{4}\right)}{\left(1-a_{3}-a_{4}\right)} d\left(\varphi_{0}(y), \varphi_{1}(y)\right) \leq l d\left(\varphi_{0}(y), \varphi_{1}(y)\right) \\
& <l d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+l<l d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+q^{-1}
\end{aligned}
$$

Hence, $G_{2}(y):=F \varphi_{1}(y) \cap N_{l d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+q^{-1}}\left(\varphi_{1}(y)\right) \neq \emptyset$. Since $F \in \operatorname{SP}(X)$, there exists a continuous function $\varphi_{2}: Y \rightarrow X$ such that $\left.\varphi_{2}\right|_{A}=\psi$ and $\varphi_{2}(y) \in$ $\overline{G_{2}(y)}$ for all $y \in Y$. Thus, $\left.\varphi_{2}\right|_{A}=\psi, \varphi_{2}(y) \in F \varphi_{1}(y)$ for all $y \in Y$. Hence, $f\left(\varphi_{2}(y)\right) \in f\left(F \varphi_{1}(y)\right) \subseteq F f\left(\varphi_{1}(y)\right)$ for all $y \in Y$. It is easy to see that $F \varphi_{1}(y) \subseteq$
 so by using an argument similar to that in the proof Theorem 2.1, we obtain

$$
D\left(\varphi_{2}(y), F \varphi_{2}(y)\right) \leq l^{2} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+q^{-2} .
$$

Again, by continuing this process, we obtain a sequence $\left\{\varphi_{n}\right\}_{n \geq 0}$, where $\varphi_{n}: Y \rightarrow X$ is a continuous function for all $n \geq 0$, such that $\left.\varphi_{n}\right|_{A}=\psi, \varphi_{n}(y) \in$ $\left.F \varphi_{n-1}(y)\right), f\left(\varphi_{n}(y)\right) \in F f\left(\varphi_{n-1}(y)\right)$ and

$$
d\left(\varphi_{n-1}(y), \varphi_{n}(y)\right) \leq l^{n-1} d\left(\varphi_{0}(y), \varphi_{1}(y)\right)+q^{-(n-1)}
$$

for all $n \geq 1$ and $y \in Y$. Now, for each $\lambda>0$ we put

$$
Y_{\lambda}:=\left\{y \in Y: d\left(f\left(\varphi_{0}(y)\right), f\left(\varphi_{1}(y)\right)\right)<\lambda\right\} .
$$

The family of sets $\left\{Y_{\lambda} \mid \lambda>0\right\}$ is an open covering of Y. Since $l<1, q>1$ and X is complete, the sequence $\left\{\varphi_{n}\right\}_{n \geq 0}$ converges uniformly on Y_{λ} for all $\lambda>0$. Let $\varphi: Y \rightarrow X$ be the pointwise limit of $\left\{\varphi_{n}\right\}_{n \geq 0}$. Note that φ is continuous and $\left.\varphi\right|_{A}=\psi$ because $\left.\varphi_{n}\right|_{A}=\psi$ for all $n \geq 0$. Since f is continuous and $f\left(\varphi_{n}(y)\right) \in F f\left(\varphi_{n-1}(y)\right)$ for all $n \geq 1$ and $y \in Y$, we get $f(\varphi(y)) \in F f(\varphi(y))$ for all $y \in Y$. Therefore, $\varphi: Y \rightarrow B$ is a continuous extension of ψ, that is, $B=\{f(x): f(x) \in F f(x)\}$ is an absolute retract for metric spaces.

By using similar proofs we can conclude the following results.
Corollary 2.4. Let (X, d) be a metric space and absolute retract for metric spaces, $F \in \mathrm{SP}(X)$ and $f: X \rightarrow X$ a continuous function such that $f(F x) \subseteq$ $F f(x)$ for all $x \in X$. Suppose that there exist $a_{1}, \ldots, a_{5} \in(0, \infty)$ such that $a_{1}+a_{2}+a_{3}+2 a_{4}<1$ and
$H(F x, F y) \leq a_{1} d(x, y)+a_{2} D(x, F x)+a_{3} D(y, F y)+a_{4} D(x, F y)+a_{5} D(y, F x)$
for all $x, y \in X$. Then the set $B_{m}=\left\{f^{m}(x): f^{m}(x) \in F f^{m}(x)\right\}$ is an absolute retract for metric spaces for all $m \geq 1$.

Corollary 2.5. Let (X, d) be a metric space and absolute retract for metric spaces, $F_{1}, F_{2} \in \mathrm{SP}(X)$ and $f: X \rightarrow X$ a continuous function such that $f\left(F_{1} x\right) \subseteq$ $F_{1} f(x)$ and $f\left(F_{2} x\right) \subseteq F_{2} f(x)$ for all $x \in X$. Suppose that there exist $a_{1}, \ldots, a_{5} \in$ $(0, \infty)$ such that $a_{1}+a_{2}+a_{3}+2 \max \left\{a_{4}, a_{5}\right\}<1$ and
$H\left(F_{1} x, F_{2} y\right) \leq a_{1} d(x, y)+a_{2} D\left(x, F_{1} x\right)+a_{3} D\left(y, F_{2} y\right)+a_{4} D\left(x, F_{2} y\right)+a_{5} D\left(y, F_{1} x\right)$
for all $x, y \in X$. Then the set $B_{m}=\left\{f^{m}(x) \in X: f^{m}(x) \in F_{1} f^{m}(x) \cap F_{2} f^{m}(x)\right\}$ is an absolute retract for metric spaces for all $m \geq 1$.

Corollary 2.6. Let (X, d) be a metric space and absolute retract for metric spaces, $F \in \mathrm{SP}(X)$ and $f: X \rightarrow X$ a continuous function such that $\alpha d(x, y) \leq$ $d(f(x), f(y))$ for some $\alpha>0$ and all $x, y \in X$, and $f(F x) \subseteq F f(x)$ for all $x \in X$. Suppose that there exist $a_{1}, \ldots, a_{5} \in(0, \infty)$ such that $a_{1}+a_{2}+a_{3}+2 a_{4}<1$ and $H(F x, F y) \leq a_{1} d(x, y)+a_{2} D(x, F x)+a_{3} D(y, F y)+a_{4} D(x, F y)+a_{5} D(y, F x)$
for all $x, y \in X$. Then the set $B_{m}=\left\{x \in X: x \in F f^{m}(x)\right\}$ is an absolute retract for metric spaces for all $m \geq 1$.

Remark 2.7. Let (X, d) be metric space and F_{1} and F_{2} two multifunctions on X. We say that F_{1} and F_{2} are Sintamarian-type multifunctions if there exist $a_{1}, \ldots, a_{5} \in(0, \infty)$ such that $a_{1}+a_{2}+a_{3}+2 \max \left\{a_{4}, a_{5}\right\}<1$ and
$H\left(F_{1} x, F_{2} y\right) \leq a_{1} d(x, y)+a_{2} D\left(x, F_{1} x\right)+a_{3} D\left(y, F_{2} y\right)+a_{4} D\left(x, F_{2} y\right)+a_{5} D\left(y, F_{1} x\right)$
for all $x, y \in X$. Also, we say that F_{1} and F_{2} are Ciric-type multifunctions if there exists $\alpha \in[0,1)$ such that
$H\left(F_{1} x, F_{2} y\right) \leq \alpha \max \left\{d(x, y), D\left(x, F_{1} x\right), D\left(y, F_{2} y\right), \frac{1}{2}\left[D\left(x, F_{2} y\right)+D\left(y, F_{1} x\right)\right]\right\}$
for all $x, y \in X$. Note that, F_{1} and F_{2} are Sintamarian-type multifunctions if and only if F_{1} and F_{2} are Ciric-type multifunctions. Thus, the results of Sintamarian (and our results) hold for Ciric-type multifunctions.

References

[1] M.C. Alicu and O. Mark, Some properties of the fixed points set for multifunctions, Studia Univ. Babes-Bolyai Math. 25 (1980), 77-79.
[2] T. Lazar, D. O'Regan and A. Petrusel, Fixed points and homotopy results for Ciric-type multivalued operators on a set with two metrics, Bull. Korean Math. Soc. 45 (2008), 67-73.
[3] B. Ricceri, Une propriete topologique de l'ensemble des points fixes d'une contraction multivoque a valeurs convexes, Atti. Acc. Lincei Rend. 81 (1987), 283-286.
[4] H. Schirmer, Properties of the fixed point set of contractive multifunctions, Canad. Math. Bull. 13 (1970), 169-173.
[5] A. Sintamarian, A topological property of the common fixed points set of two multivalued operators, Nonlinear Anal. 70 (2009), 452-456.
[6] , A topological property of the common fixed points set of two multivalued operators satisfying a Latif-Beg type condition, Fixed Point Theory 9 (2008), 561-573.

Hojat Afshari and Shahram Rezapour
Department of Mathematics
Azarbaijan Shahid Madani University
Azarshahr, Tabriz, IRAN

Naseer Shahzad
Department of Mathematics
King AbdulAziz University
P.O. Box 80203

Jeddah 21859, SAUDI ARABIA

