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ABSOLUTE RETRACTIVITY
OF THE COMMON FIXED POINTS SET

OF TWO MULTIFUNCTIONS

Hojat Afshari — Shahram Rezapour — Naseer Shahzad

Abstract. In 1970, Schirmer discussed about topological properties of the
fixed point set of multifunctions ([4]). Later, some authors continued this

study by providing different conditions ([1] and [3]). Recently, Sintamarian

proved results on absolute retractivity of the common fixed points set of
two multivalued operators ([5] and [6]). We shall present some results on

absolute retractivity of the common fixed points set of two multifunctions

by using different conditions.

1. Introduction

Let X be a nonempty set, P (X) the set of all nonempty subsets of X,
F1, F2:X → P (X) two multifunctions, FF1 the fixed point set of F1, (CF)F1,F2

the common fixed point set of F1 and F2, that is (CF)F1,F2 = {x ∈ X : x ∈
F1x ∩ F2x}. Let X and Y be nonempty sets and F :X → P (Y ) a multifunc-
tions. A mapping ϕ:X → Y is called a selection of F whenever ϕ(x) ∈ Fx

for all x ∈ X. Throughout the paper, for a topological space X we denote the
set of all nonempty closed subsets of X by Pcl(X), the set of all nonempty con-
vex subsets of X by Pcv(X) when X is a vector space, the set of all nonempty
closed and bounded subsets of X by Pb,cl(X) when X is a metric space and
Pcl,cv(X) = Pcl(X) ∩ Pcv(X) when X is a normed space.
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Let (X, d) be a metric space. For x ∈ X and A,B ⊆ X, set

D(x,A) = inf
y∈A

d(x, y) and H(A,B) = max
{

sup
x∈A

D(x,B), sup
y∈B

D(y,A)
}
.

It is known that, H is a metric on closed bounded subsets of X which is called
the Hausdorff metric.

We say that a topological space X is an absolute retract for metric spaces
whenever for each metric space Y , A∈Pcl(Y ) and continuous function ψ:A→X,
there exists a continuous function ϕ:Y → X such that ϕ|A = ψ. Let M be the
set of all metric spaces, X ∈M, D ∈ P (M) and F :X → Pb,cl(X) a lower semi-
continuous multifunction. We say that F has the selection property with respect
to D if for each Y ∈ D, continuous function f :Y → X and continuous functional
g:Y → (0,∞) such that G(y) := F (f(y)) ∩Ng(y)(f(y)) 6= ∅ for all y ∈ Y ,
A ∈ Pcl(Y ), every continuous selection ψ:A → X of G|A admits a continuous
extension ϕ:Y → X, which is a selection of G. If D = M, then we say that F
has the selection property and we denote this by F ∈ SP(X) ([5]).

An interesting problem in fixed point theory of multivalued operators is to
investigate under what conditions some properties of the values of a multifunc-
tion are inherited by its fixed point set. For some multifunctions, this problem
was studied by Schirmer in 1970 ([4]), by Alicu and Mark in 1980 ([1]) and by
Ricceri in 1987 ([3]). For example, Schirmer proved that if the values of a con-
tractive multifunction F : R → P (R) are closed, bounded and convex, then the
fixed point set of F is compact and closed. Recently, Sintamarian proved some
results on absolute retractivity of the common fixed points set of two multival-
ued operators under some conditions ([5] and [6]). In 2008, Lazar, O’Regan and
Petrusel obtained fixed points of Ciric-type multifunctions on a set with two met-
rics ([2]). In this paper, we shall present some results on absolute retractivity of
the common fixed points set of two multifunctions by using different conditions.

2. Main results

The following result improves [5; Theorem 2.1] which use arguments similar
to those in [5].

Theorem 2.1. Let (X, d) be a metric space and absolute retract for metric
spaces, F1, F2 ∈ SP(X) and f :X → X a continuous function such that

αd(x, y) ≤ d(f(x), f(y))

for some α > 0 and all x, y ∈ X, and f(F1x) ⊆ F1f(x) and f(F2x) ⊆ F2f(x)
for all x ∈ X. Suppose that there exist a1, . . . , a5 ∈ (0,∞) such that a1 + a2 +
a3 + 2 max{a4, a5} < 1 and

H(F1x, F2y) ≤ a1d(x, y)+a2D(x, F1x)+a3D(y, F2y)+a4D(x, F2y)+a5D(y, F1x)
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for all x, y ∈ X. Then the set B = {x ∈ X : x ∈ F1f(x)∩F2f(x)} is an absolute
retract for metric spaces.

Proof. Let

q ∈
(

1,
1

a1 + a2 + a3 + 2 max{a4, a5}

)
and set

l := max
{
a1 + a2 + a4

1− (a3 + a4)
,
a1 + a3 + a5

1− (a2 + a5)

}
< 1.

Then we have ql < 1. Let Y ∈M, A ∈ Pcl(Y ) and ψ:A→ B a continuous func-
tion. Since X is an absolute retract for metric spaces, there exists a continuous
function ϕ0:Y → X such that ϕ0|A = ψ. Define the functional g0:Y → (0,∞) by

g0(y) = sup{d(f(ϕ0(y)), z) : z ∈ F1f(ϕ0(y))}+ 1

for all y ∈ Y . Note that, g0 is continuous and

F1f(ϕ0(y)) ∩Ng0 (y)(f(ϕ0(y))) = F1f(ϕ0(y))

for all y ∈ Y . Also, we observe that the function ψ:A → B is a continuous se-
lection of the multifunction A 3 y ` F1f(ϕ0(y)). Since F1 ∈ SP(X), there exists
a continuous function ϕ1:Y → X such that ϕ1|A = ψ and ϕ1(y) ∈ F1f(ϕ0(y))
for all y ∈ Y . Thus, f(ϕ1(y)) ∈ f(F1f(ϕ0(y))) ⊆ F1f(ϕ0(y)) and

D(f(ϕ1(y)),F2f(ϕ1(y))) ≤ H(F1f(ϕ0(y)), F2f(ϕ1(y)))

≤ a1d(f(ϕ0(y)), f(ϕ1(y))) + a2D(f(ϕ0(y)), F1f(ϕ0(y)))

+ a3D(f(ϕ1(y)), F2f(ϕ1(y))) + a4D(f(ϕ0(y)), F2f(ϕ1(y)))

+ a5D(f(ϕ1(y)), F1f(ϕ0(y)))

≤ a1d(f(ϕ0(y)), f(ϕ1(y))) + a2d(f(ϕ0(y)), f(ϕ1(y)))

+ a3D(f(ϕ1(y)), F2f(ϕ1(y))) + a4d(f(ϕ0(y)), f(ϕ1(y)))

+ a4D(f(ϕ1(y)), F2f(ϕ1(y))).

This implies that

D(f(ϕ1(y)),F2f(ϕ1(y)))

≤ (a1 + a2 + a4)
(1− a3 − a4)

d(f(ϕ0(y)), f(ϕ1(y))) ≤ ld(f(ϕ0(y)), f(ϕ1(y)))

< ld(f(ϕ0(y)), f(ϕ1(y))) + l < ld(f(ϕ0(y)), f(ϕ1(y))) + q−1.

Hence, G2(y) := F2f(ϕ1(y)) ∩ Nld(f(ϕ0(y)),f(ϕ1(y)))+q−1(f(ϕ1(y))) 6= ∅. Since
F2 ∈ SP(X), there exists a continuous function ϕ2:Y → X such that ϕ2|A = ψ

and ϕ2(y) ∈ G2(y) for all y ∈ Y . Thus, ϕ2|A = ψ, ϕ2(y) ∈ F2f(ϕ1(y)) for all
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y ∈ Y . Hence, f(ϕ2(y)) ∈ f(F2f(ϕ1(y))) ⊆ F2f(ϕ1(y)) for all y ∈ Y . It is easy
to see that F2f(ϕ1(y)) ⊆ Nld(f(ϕ0(y)),f(ϕ1(y)))+q−1(f(ϕ1(y))). Thus,

d(f(ϕ2(y)), f(ϕ1(y))) ≤ ld(f(ϕ0(y)), f(ϕ1(y))) + q−1

and so

D(f(ϕ2(y)),F1f(ϕ2(y))) ≤ H(F1f(ϕ2(y)), F2f(ϕ1(y)))

≤ a1d(f(ϕ1(y)), f(ϕ2(y))) + a2D(f(ϕ2(y)), F1f(ϕ2(y)))

+ a3D(f(ϕ1(y)), F2f(ϕ1(y))) + a4D(f(ϕ2(y)), F2f(ϕ1(y)))

+ a5D(f(ϕ1(y)), F1f(ϕ2(y)))

≤ a1d(f(ϕ1(y)), f(ϕ2(y))) + a2D(f(ϕ2(y)), F1f(ϕ2(y)))

+ a3d(f(ϕ1(y)), f(ϕ2(y))) + a3D(f(ϕ2(y)), F2f(ϕ1(y)))

+ a4D(f(ϕ2(y)), F2f(ϕ1(y))) + a5d(f(ϕ1(y)), f(ϕ2(y)))

+ a5D(f(ϕ2(y)), F1f(ϕ2(y))).

Hence, we obtain

D(f(ϕ2(y)),F1f(ϕ2(y))) ≤
(a1 + a3 + a5)
(1− a2 − a5)

d(f(ϕ1(y)), f(ϕ2(y)))

≤ ld(f(ϕ1(y)), f(ϕ2(y))) < ld(f(ϕ1(y)), f(ϕ2(y))) + l

< ld(f(ϕ1(y)), f(ϕ2(y))) + q−1 < l2d(f(ϕ0(y)), f(ϕ1(y))) + q−2.

Thus, G3(y) := F1f(ϕ2(y)) ∩ Nl2d(f(ϕ0(y)),f(ϕ1(y)))+q−2(f(ϕ2(y))) 6= ∅. Since
F1 ∈ SP(X), there exists a continuous function ϕ3:Y → X such that ϕ3|A = ψ

and ϕ3(y) ∈ F1f(ϕ2(y)) for all y ∈ Y . Therefore, ϕ3|A = ψ, f(ϕ3(y)) ∈
F1f(ϕ2(y)) and d(f(ϕ2(y)), f(ϕ3(y))) ≤ l2d(f(ϕ0(y)), f(ϕ1(y))) + q−2 for all
y ∈ Y . By continuing this process, we obtain a sequence {ϕn}n≥0, where
ϕn:Y → X is a continuous function for all n ≥ 0, such that ϕn|A = ψ,
ϕ2n−1(y), f(ϕ2n−1(y))∈F1f(ϕ2n−2(y)) and ϕ2n(y), f(ϕ2n(y))∈F2f(ϕ2n−1(y)),
and

d(f(ϕn−1(y)), f(ϕn(y))) ≤ ln−1d(f(ϕ0(y)), f(ϕ1(y))) + q−(n−1)

for all n ≥ 1 and y ∈ Y . Now, for each λ > 0, we put

Yλ := {y ∈ Y : d(f(ϕ0(y)), f(ϕ1(y))) < λ}.

Since f(ϕ1(y)) ∈ F1f(ϕ0(y)) and

F1f(ϕ0(y)) ∩Ng0 (y)(f(ϕ0(y))) = F1f(ϕ0(y)),

f(ϕ1(y)) ∈ Ng0(y)(f(ϕ0(y))). Hence, d(f(ϕ0(y)), f(ϕ1(y))) < λy := g0(y).
Thus, y ∈ Yλy . Since Yλ is open for each λ > 0, the family of sets {Yλ|λ > 0} is
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an open covering of Y and we have

αd(ϕn−1(y), ϕn(y)) ≤ d(f(ϕn−1(y)), f(ϕn(y)))

≤ ln−1d(f(ϕ0(y)), f(ϕ1(y))) + q−(n−1)

for all n ≥ 1 and y ∈ Y . Since l < 1, q > 1, α > 0 and X is complete, the
sequence {ϕn}n≥0 converges uniformly on Yλ for all λ > 0. Let ϕ:Y → X be the
pointwise limit of {ϕn}n≥0 and note that ϕ is continuous and ϕ|A = ψ because
ϕn|A = ψ for all n ≥ 0. Since f is continuous, ϕ2n−1(y) ∈ F1f(ϕ2n−2(y)) and
ϕ2n(y) ∈ F2f(ϕ2n−1(y)) for all n ≥ 1 and y ∈ Y , we get ϕ(y) ∈ F1f(ϕ(y)) ∩
F2f(ϕ(y)) for all y ∈ Y . Therefore, ϕ:Y → B is a continuous extension of ψ,
that is, B = {x ∈ X : x ∈ F1f(x) ∩ F2f(x)} is an absolute retract for metric
spaces. �

Theorem 2.2. Let (X, d) be a metric space and absolute retract for metric
spaces, F1, F2 ∈ SP(X) and f :X → X a continuous function such that

αd(x, y) ≤ d(f(x), f(y))

for some α > 0 and all x, y ∈ X, and f(F1x) ⊆ F1f(x) and f(F2fx) ⊆ F2f(x)
for all x ∈ X. Suppose that there exist a1, . . . , a5 ∈ (0,∞) such that a1 + a2 +
a3 + 2 max{a4, a5} < 1 and

H(F1x, F2y) ≤ a1d(x, y)+a2D(x, F1x)+a3D(y, F2y)+a4D(x, F2y)+a5D(y, F1x)

for all x, y ∈ X. Then the set Bm = {x ∈ X : x ∈ F1f
m(x) ∩ F2f

m(x)} is an
absolute retract for metric spaces for all m ≥ 1.

Proof. We note that αmd(x, y) ≤ d(fm(x), fm(y)), fm(F1x) ⊆ F1f
m(x)

and fm(F2x) ⊆ F2f
m(x) for all x, y ∈ X and m ≥ 1. Now, as before, we can

obtain the result. �

If X = R and f(x) = 2x for x > 0 and f(x) = 3x for x ≤ 0, then αd(x, y) ≤
d(f(x), f(y)) for some α = 2. Note that, f is not linear. Also, define F1x = [0, x]
if x > 0, F1x = [x,−x] if x ≤ 0, F2x = [x, 2x] if x > 0 and F2x = [x, 0] if x ≤ 0.
Then, fF1x = F1f(x) and fF2x = F2f(x) for all x ∈ X.

Theorem 2.3. Let (X, d) be a metric space and absolute retract for metric
spaces, F ∈ SP(X) and f :X → X a continuous function such that f(Fx) ⊆
Ff(x) for all x ∈ X. Suppose that there exist a1, . . . , a5 ∈ (0,∞) such that
a1 + a2 + a3 + 2a4 < 1 and

H(Fx, Fy) ≤ a1d(x, y) + a2D(x, Fx) + a3D(y, Fy) + a4D(x, Fy) + a5D(y, Fx)

for all x, y ∈ X. Then the set B = {f(x) : f(x) ∈ Ff(x)} is an absolute retract
for metric spaces.
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Proof. Let q ∈ (1, 1/(a1 + a2 + a3 + 2a4)) and set l := (a1 + a2 + a4)/
(1− a3 − a4). Then we have ql < 1. Let Y ∈ M, A ∈ Pcl(Y ) and ψ:A → B

a continuous function. Since X is an absolute retract for metric spaces, there
exists a continuous function ϕ0:Y → X such that ϕ0|A = ψ.

Define the functional g0:Y → (0,∞) by

g0(y) = sup{d(ϕ0(y), z) : z ∈ Fϕ0(y)}+ 1

for all y ∈ Y . Note that, g0 is continuous and

Fϕ0(y) ∩Ng0 (y)(ϕ0(y)) = Fϕ0(y)

for all y ∈ Y . Also, we observe that the function ψ:A → B is a continuous
selection of the multifunction A 3 y ` Fϕ0(y). Since F ∈ SP(X), there exists a
continuous function ϕ1:Y → X such that ϕ1|A = ψ and ϕ1(y) ∈ Fϕ0(y) for all
y ∈ Y . Thus, f(ϕ1(y)) ∈ f(Fϕ0(y)) ⊆ Ff(ϕ0(y)) and

D(ϕ1(y),Fϕ1(y)) ≤ H(Fϕ0(y), Fϕ1(y))

≤ a1d(ϕ0(y), ϕ1(y)) + a2D(ϕ0(y), Fϕ0(y))

+ a3D(ϕ1(y), Fϕ1(y)) + a4D(ϕ0(y), Fϕ1(y)) + a5D(ϕ1(y), Fϕ0(y))

≤ a1d(ϕ0(y), ϕ1(y)) + a2d(ϕ0(y), ϕ1(y))

+ a3D(ϕ1(y), Fϕ1(y)) + a4d(ϕ0(y), ϕ1(y)) + a4D(ϕ1(y), Fϕ1(y)).

Now, we obtain

D(ϕ1(y), Fϕ1(y)) ≤
(a1 + a2 + a4)
(1− a3 − a4)

d(ϕ0(y), ϕ1(y)) ≤ ld(ϕ0(y), ϕ1(y))

< ld(ϕ0(y), ϕ1(y)) + l < ld(ϕ0(y), ϕ1(y)) + q−1.

Hence, G2(y) := Fϕ1(y) ∩ Nld(ϕ0(y),ϕ1(y))+q−1(ϕ1(y)) 6= ∅. Since F ∈ SP(X),
there exists a continuous function ϕ2:Y → X such that ϕ2|A = ψ and ϕ2(y) ∈
G2(y) for all y ∈ Y . Thus, ϕ2|A = ψ, ϕ2(y) ∈ Fϕ1(y) for all y ∈ Y . Hence,
f(ϕ2(y)) ∈ f(Fϕ1(y)) ⊆ Ff(ϕ1(y)) for all y ∈ Y . It is easy to see that Fϕ1(y) ⊆
Nld(ϕ0(y),ϕ1(y))+q−1(ϕ1(y)). Thus, d(ϕ2(y), ϕ1(y)) ≤ ld(ϕ0(y), ϕ1(y)) + q−1 and
so by using an argument similar to that in the proof Theorem 2.1, we obtain

D(ϕ2(y), Fϕ2(y)) ≤ l2d(ϕ0(y), ϕ1(y)) + q−2.

Again, by continuing this process, we obtain a sequence {ϕn}n≥0, where
ϕn:Y →X is a continuous function for all n ≥ 0, such that ϕn|A = ψ, ϕn(y) ∈
Fϕn−1(y)), f(ϕn(y)) ∈ Ff(ϕn−1(y)) and

d(ϕn−1(y), ϕn(y)) ≤ ln−1d(ϕ0(y), ϕ1(y)) + q−(n−1)

for all n ≥ 1 and y ∈ Y . Now, for each λ > 0 we put

Yλ := {y ∈ Y : d(f(ϕ0(y)), f(ϕ1(y))) < λ}.
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The family of sets {Yλ | λ > 0} is an open covering of Y . Since l < 1, q > 1 and
X is complete, the sequence {ϕn}n≥0 converges uniformly on Yλ for all λ > 0.
Let ϕ:Y → X be the pointwise limit of {ϕn}n≥0. Note that ϕ is continuous
and ϕ|A = ψ because ϕn|A = ψ for all n ≥ 0. Since f is continuous and
f(ϕn(y)) ∈ Ff(ϕn−1(y)) for all n ≥ 1 and y ∈ Y , we get f(ϕ(y)) ∈ Ff(ϕ(y))
for all y ∈ Y . Therefore, ϕ:Y → B is a continuous extension of ψ, that is,
B = {f(x) : f(x) ∈ Ff(x)} is an absolute retract for metric spaces. �

By using similar proofs we can conclude the following results.

Corollary 2.4. Let (X, d) be a metric space and absolute retract for metric
spaces, F ∈ SP(X) and f :X → X a continuous function such that f(Fx) ⊆
Ff(x) for all x ∈ X. Suppose that there exist a1, . . . , a5 ∈ (0,∞) such that
a1 + a2 + a3 + 2a4 < 1 and

H(Fx, Fy) ≤ a1d(x, y) + a2D(x, Fx) + a3D(y, Fy) + a4D(x, Fy) + a5D(y, Fx)

for all x, y ∈ X. Then the set Bm = {fm(x) : fm(x) ∈ Ffm(x)} is an absolute
retract for metric spaces for all m ≥ 1.

Corollary 2.5. Let (X, d) be a metric space and absolute retract for metric
spaces, F1, F2 ∈ SP(X) and f :X → X a continuous function such that f(F1x) ⊆
F1f(x) and f(F2x) ⊆ F2f(x) for all x ∈ X. Suppose that there exist a1, . . . , a5 ∈
(0,∞) such that a1 + a2 + a3 + 2 max{a4, a5} < 1 and

H(F1x, F2y) ≤ a1d(x, y)+a2D(x, F1x)+a3D(y, F2y)+a4D(x, F2y)+a5D(y, F1x)

for all x, y ∈ X. Then the set Bm = {fm(x) ∈ X : fm(x) ∈ F1f
m(x)∩F2f

m(x)}
is an absolute retract for metric spaces for all m ≥ 1.

Corollary 2.6. Let (X, d) be a metric space and absolute retract for metric
spaces, F ∈ SP(X) and f :X → X a continuous function such that αd(x, y) ≤
d(f(x), f(y)) for some α > 0 and all x, y ∈ X, and f(Fx) ⊆ Ff(x) for all x ∈ X.
Suppose that there exist a1, . . . , a5 ∈ (0,∞) such that a1 + a2 + a3 + 2a4 < 1 and

H(Fx, Fy) ≤ a1d(x, y) + a2D(x, Fx) + a3D(y, Fy) + a4D(x, Fy) + a5D(y, Fx)

for all x, y ∈ X. Then the set Bm = {x ∈ X : x ∈ Ffm(x)} is an absolute
retract for metric spaces for all m ≥ 1.

Remark 2.7. Let (X, d) be metric space and F1 and F2 two multifunctions
on X. We say that F1 and F2 are Sintamarian-type multifunctions if there exist
a1, . . . , a5 ∈ (0,∞) such that a1 + a2 + a3 + 2 max{a4, a5} < 1 and

H(F1x, F2y) ≤ a1d(x, y)+a2D(x, F1x)+a3D(y, F2y)+a4D(x, F2y)+a5D(y, F1x)
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for all x, y ∈ X. Also, we say that F1 and F2 are Ciric-type multifunctions if
there exists α ∈ [0, 1) such that

H(F1x, F2y) ≤ αmax
{
d(x, y), D(x, F1x), D(y, F2y),

1
2
[D(x, F2y) +D(y, F1x)]

}
for all x, y ∈ X. Note that, F1 and F2 are Sintamarian-type multifunctions if and
only if F1 and F2 are Ciric-type multifunctions. Thus, the results of Sintamarian
(and our results) hold for Ciric-type multifunctions.
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