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GUIDING FUNCTIONS
AND GLOBAL BIFURCATION OF PERIODIC SOLUTIONS

OF FUNCTIONAL DIFFERENTIAL INCLUSIONS
WITH INFINITE DELAY

Nguyen Van Loi

Abstract. In this paper, by using the topological degree theory for mul-

tivalued maps, we develop the method of guiding functions to deal with the

problem of global structure of periodic solutions for functional differential
inclusions with infinite delay. As example we consider the global structure

of periodic solutions of feedback control systems with infinite delay.

1. Introduction

The bifurcation problem for inclusions with convex-valued multimaps was
studied by J.C. Alexander and P.M. Fitzpatrick [2]. The authors of this work
presented the sufficient conditions under which the set of all non-trivial solutions
near the point (0, 0) admits a bifurcation to infinity, either bifurcation to the
border of the considered domain, or bifurcation to some trivial solution of the
inclusion. Some results on the bifurcation theory for inclusions and differential
inclusions of various types are presented, e.g. in [7], [8], [9], [11], [18], [20], [21].

In the present paper, applying the topological degree theory for compact mul-
tivalued operators and the method of guiding functions we consider the global
bifurcation problem of periodic solutions for functional differential inclusions
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with infinite delay. Let us mention that the method of guiding functions, devel-
oped by M.A. Krasnosel’skĭı, A.I. Perov and others, is one of the most efficient
tools for solving problems on periodic oscillations (see, e.g. [15]–[17]). Various
modifications of this method were developed in [1], [5], [11], [19], [22].

The paper is organized in the following way. In the next section we recall
some basic facts from the theory of Fredholm operators and from the theory of
multivalued maps. In Section 3 the method of guiding functions is used to obtain
the global structure of periodic solutions of functional differential inclusions with
infinite delay. In the last section it is show how the abstract result can be apply
to control systems with infinite delay.

2. Preliminaries

2.1. Multimaps. Let X and Y be Banach spaces. Denote by P (Y ) \
[Cv(Y ),Kv(Y )] the collection of all nonempty (respectively: nonempty convex
closed, nonempty convex compact) subsets of Y . By BX(0, r) (∂BX(0, r)) we
denote a ball (a sphere) of radius r in X.

Definition 2.1 (see, e.g. [5], [11], [14]). A multimap F :X → P (Y ) is said
to be:

(a) upper semicontinuous (u.s.c.), if for every open subset V ⊂ Y the set

F−1
+ (V ) = {x ∈ X : F(x) ⊂ V }

is open in X;
(b) closed if its graph {(x, y) : x ∈ X, y ∈ F(x)} is a closed subset of X×Y ;
(c) compact, if the set

F(X ′) =
⋃

x∈X′

F(x)

is relatively compact for every bounded subset X ′ ⊂ X.

Let U ⊂ X be an open bounded subset and F :U → Kv(X) be an u.s.c.
compact multimap. Denote by i the inclusion map and by ∂U the boundary
of U . If F has no fixed points (x /∈ F(x)) on ∂U , then the topological degree
deg(i−F , U) is well defined and has all usual properties (see e.g. [5], [11], [14]).

2.2. Fredholm operators.

Definition 2.2 (see e.g. [10]). A linear operator L: domL ⊆ X → Y is
called Fredholm of index zero if

(a) ImL is closed in Y ;
(b) KerL and CokerL have the finite dimension and

dim KerL = dim CokerL.



Guiding Functions and Global Bifurcation of Periodic Solutions 361

Let L: domL ⊆ X → Y be a Fredholm operator of index zero, then there exist
projectors P :X → X and Q:Y → Y such that ImP = KerL and KerQ = ImL.
If the operator LP : domL ∩ KerP → ImL is defined as the restriction of L on
domL ∩ KerP then it’s clear that LP is an algeraic isomorphism and we may
define KP : ImL→ domL as KP = L−1

P .
Now if we let CokerL = Y/ImL and Π:Y → CokerL be the canonical

surjection Π(z) = z + ImL and Λ: CokerL → KerL be a one-to-one linear
mapping, then equation Lx = y for y ∈ Y is equivalent to equation

(i− P )x = (ΛΠ +KP,Q)y,

where KP,Q:Y → X be defined as KP,Q = KP (i−Q).

2.3. Phase space. We will use an axiomatical definition of the phase spa-
ce B, introduced by J.K. Hale and J. Kato (see [12], [13]) for treating of functional
differential equations and inclusions with infinite delay. The space B will be
considered as a linear topological space of functions mapping (−∞, 0] into Rn

endowed with a seminorm ‖ · ‖B.
For any function y: (−∞;T ] → Rn and for every t ∈ [0, T ], yt represents the

function from (−∞, 0] into Rn defined by

yt(θ) = y(t+ θ), θ ∈ (−∞; 0].

We will assume that B satisfies the following axioms.

(B1) If y: (−∞;T ] → Rn is such that y|[0,T ]
∈ C([0, T ]; Rn) and y0 ∈ B, then

we have:
(a) yt ∈ B for t ∈ [0, T ];
(b) function t ∈ [0, T ] 7→ yt ∈ B is continuous;
(c) ‖yt‖B ≤ K(t) sup0≤τ≤t ‖y(τ)‖+N(t)‖y0‖B for t ∈ [0, T ],

where K( · ), N( · ): [0;∞) → [0;∞) are independent of y, K( · ) is
strictly positive and continuous, and N( · ) is bounded.

(B2) There exists l > 0 such that ‖ψ(0)‖Rn ≤ l ‖ψ‖B for all ψ ∈ B.

Let us mention that under above hypotheses the space C00 of all continuous
functions from (−∞, 0] into Rn with compact support is a subset of each phase
space B ([13, Proposition 1.2.1]). We will assume, additionally, that the following
hypothesis holds true.

(B3) If a uniformly bounded sequence {ψn}+∞n=1 ⊂ C00 converges to a function
ψ compactly (i.e. uniformly on each compact subset of (−∞, 0]), then
ψ ∈ B and lim

n→+∞
‖ψn − ψ‖B = 0.

The hypothesis (B3) yields that the Banach space BC((−∞, 0]; Rn) of boun-
ded continuous functions is continuously embedded into B.
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We may consider the following examples of phase spaces satisfying all above
properties.

Example 2.3. For ν > 0, let B = Cν be the space of functions ψ: (−∞; 0] →
Rn such that:

(a) ψ|[−r,0] ∈ C([−r, 0]; Rn) for each r > 0;
(b) the limit lim

θ→−∞
eνθ‖ψ(θ)‖ is finite.

Then we set
‖ψ‖B = sup

−∞<θ≤0
eνθ‖ψ(θ)‖.

Example 2.4 (Spaces of “fading memory”). Let B = Cρ be the space of
functions ψ: (−∞; 0] → Rn such that

(a) ψ ∈ C([−r; 0]; Rn) for some r > 0;
(b) ψ is Lebesgue measurable on (−∞;−r) and there exists a positive

Lebesgue integrable function ρ: (−∞;−r) → R+ such that ρψ is Le-
besgue integrable on (−∞;−r); moreover, there exists a locally bounded
function P : (−∞; 0] → R+ such that, for all ξ ≤ 0, ρ(ξ + θ) ≤ P (ξ)ρ(θ)
almost every θ ∈ (−∞;−r). Then,

‖ψ‖B = sup
−r≤θ≤0

‖ψ(θ)‖+
∫ −r

−∞
ρ(θ)‖ψ(θ)‖dθ.

A simple example of such a space can be obtained by taking the function

ρ(θ) = eµθ, for µ ∈ R.

2.4. A global bifurcation theorem. Consider the following one-parame-
ter family of inclusions

(2.1) x ∈ F(x, µ),

where F :X × R → Kv(Y ) is a multimap.
Assume that:

(F1) F is an u.s.c. and compact multimap and 0 ∈ F(0, µ) for all µ ∈ R;
(F2) for each µ, 0 < |µ − µ0| < r0, there is δµ > 0 such that x /∈ F(x, µ)

when 0 < ‖x‖ ≤ δµ, where µ0, r0 are given numbers;

A point (0, µ∗) is said to be a bifurcation point of inclusion (2.1) if for every
open subset U ⊂ X × R with (0, µ∗) ∈ U there exists a point (x, µ) ∈ U such
that x 6= 0 and x ∈ F(x, µ).

From (F1)–(F2) it follows that for each µ, 0 < |µ− µ0| < r0 the topological
degree

deg(i−F( · , µ), BX(0, δµ))
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is well defined. Then the bifurcation index of the multimap F at (0, µ0) may be
defined as

Bi(F(0, µ0)) = lim
µ→µ+

0

deg(i−F( · , µ), BX(0, δµ))

− lim
µ→µ−0

deg(i−F( · , µ), BX(0, δµ)).

Let us denote by S the set of all non-trivial solutions to inclusion (2.1), i.e.

S = {(x, µ) ∈ X × R : x 6= 0 and x ∈ F(x, µ)}.

The following assertion can be easily followed from the global bifurcation theo-
rems presented in [9], [18].

Theorem 2.5. Under conditions (F1)–(F2), assume that Bi(F(0, µ0)) 6= 0.
Then there exists a connected subset R ⊂ S such that (0, µ0) ∈ R and one of the
following occurs:

(a) R is unbounded;
(b) (0, µ∗) ∈ R for some µ∗ 6= µ0.

3. Main result

3.1. The statement of the problem. Let us denote by I the interval [0, T ];
by C(I,Rn) (L2(I,Rn)) we denote the spaces of all continuous (respectively,
square summable) functions u: I → Rn with usual norms:

‖u‖C = max
t∈I

‖u(t)‖Rn and ‖u‖2 =
( ∫ T

0

‖u(t)‖2Rn dt

)1/2

.

Consider the space of all absolutely continuous functions u: I → Rn whose
derivatives belong to L2(I,Rn). It is known (see e.g. [3]) that this space can be
identified with the Sobolev space W 1,2(I,Rn) with the norm

‖u‖W = ‖u‖2 + ‖u′‖2,

and the embedding W 1,2(I,Rn) ↪→ C(I,Rn) is compact for every n ≥ 1. By
W 1,2

T (I,Rn) (CT (I,Rn)) we denote the spaces of all functions x ∈ W 1,2(I,Rn)
(respectively, C(I,Rn))satisfying the boundary condition x(0) = x(T ). The
symbols BCT

(0, r) (BRn(0, r)) denote the ball of radius r in the space CT (I,Rn)
(respectively, Rn). The Banach space BC((−∞, 0]; Rn) of bounded continuous
functions will be denoted by BC(Rn).

Consider a functional differential inclusion of the following form:

(3.1) x′(t) ∈ F (t, xt, µ) for a.e. t ∈ [0, T ],

where the parameter µ ∈ R and F : R× BC(Rn)× R → Kv(Rn) is a multimap.
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Assuming that the multimap F satisfies the next conditions:

(FT ) multimap F is T -periodic with respect to the first argument, i.e.

F (t, ϕ, µ) = F (t+ T, ϕ, µ) for all (ϕ, µ) ∈ BC(Rn)× R and a.e. t ∈ R;

(F1) for every (ϕ, µ) ∈ BC(Rn)×R multifunction F ( · , ϕ, µ): [0, T ]→Kv(Rn)
admits a measurable selection;

(F2) for almost every t ∈ [0, T ] multimap F (t, · , · ):BC(Rn)×R → Kv(Rn)
is u.s.c.;

(F3) for every bounded subset Ω ⊂ CT (I,Rn) × R there exists a positive
function νΩ ∈ L2[0, T ] such that for each (ϕ, µ) ∈ Ω

‖F (t, ϕ̃t, µ)‖Rn = max
y∈F (t,eϕt,µ)

‖y‖Rn ≤ νΩ(t), for a.e. t ∈ [0, T ],

where x̃ denotes the T -periodic extension of x on (−∞, T ];
(F4) 0 ∈ F (t, 0, µ) for all µ ∈ R and almost every t ∈ [0, T ].

It is well know (see e.g. [5], [11], [14]) that under conditions (F1)–(F3) the
superposition multioperator

PF :CT (I,Rn)× R → Cv(L2(I,Rn)),

PF (x, µ) = {f ∈ L2(I; Rn) : f(s) ∈ F (s, x̃s, µ) for a.e. t ∈ I},

is well-defined and closed.
Let

`:W 1,2
T (I,Rn) → L2(I,Rn), `(x) = x′.

Then we will treat the global bifurcation problem of T -periodic solutions of
inclusion (3.1) as the global bifurcation problem of solutions of the following
operator inclusion

(3.2) `(x) ∈ PF (x, µ).

From (F4) it follows that problem (3.2) has trivial solutions (0, µ) for all µ ∈ R.
Let us denote by S the set of all nontrivial T−periodic solutions of (3.2).

A continuous differentiable function V : Rn → R is said to be a non-degenerate
potential if there exists r0 > 0 such that

∇V (x) =
(
∂V (x)
∂x1

, . . . ,
∂V (x)
∂xn

)
6= 0

for all x = (x1, . . . , xn) ∈ Rn : 0 < ‖x‖Rn ≤ r0.
It is clear that the topological degree deg(∇V,BRn(0, r′)), where 0 < r′ ≤ r0,

is defined and does not depend on r′. This degree is called index of the non-
degenerate potential V and denoted by indV .
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Definition 3.1. For a given µ ∈ R, a continuous differentiable function
Vµ: Rn → R is said to be an integral guiding function to problem (3.1) if there
exists δµ > 0 such that for every x ∈W 1,2

T (I,Rn), from 0 < ‖x‖2 < δµ it follows
that ∫ T

0

〈∇Vµ(x(s)), f(s)〉 ds > 0

for all f ∈ PF (x, µ), where 〈 · , · 〉 denotes the inner product in Rn.

Notice that guiding function Vµ is non-degenerate. In fact, for every y ∈ Rn,
0 < ‖y‖Rn < δµ/

√
T , assuming that y is a constant function we obtain 0 <

‖y‖2 < δµ. Hence∫ T

0

〈∇Vµ(y), f(s)〉 ds =
〈
∇Vµ(y),

∫ T

0

f(s) ds
〉

= T 〈∇Vµ(y),Πf〉 > 0

for all f ∈ PF (y, µ). Therefore, ∇Vµ(y) 6= 0, and so there exists its index indVµ.

3.2. Global structure of S.

Theorem 3.2. Let conditions (F1)–(F4) and (FT ) hold. Assume that for
each µ, 0 < |µ − µ0| < ε0, where µ0, ε0 are given constants, there exists an
integral guiding function Vµ to problem (3.1) such that

lim
µ→µ+

0

indVµ − lim
µ→µ−0

indVµ 6= 0.

Then there is a connected subset R ⊂ S such that (0, µ0) ∈ R and either R is
unbounded or R 3 (0, µ∗) for some µ∗ 6= µ0.

Proof. At first, from the definition of operator ` it follows that ` is a linear
Fredholm operator of index zero and

Ker ` ∼= Rn ∼= Coker `.

So the spaces W 1,2
T (I,Rn) and L2(I,Rn) may be decomposed as

W 1,2
T (I,Rn) = W(0) ⊕W(1) and L2(I,Rn) = L(0) ⊕ L(1),

where W(0)
∼= Rn ∼= L(0), W(1) = W⊥

(0), L(1) = L⊥(0). The corresponding de-

compositions of elements u ∈W 1,2
T (I,Rn) and f ∈ L2(I,Rn) will be denoted by

u = u0 + u1 and f = f0 + f1.
Recall also that the projection Π:L2(I,Rn) → Rn given as

Πf =
1
T

∫ T

0

f(s) ds.

The inclusion (3.2) is equivalent to x ∈ G(x, µ), where

G:CT (I,Rn)× R → Kv(CT (I,Rn)),

G(x, µ) = Px+ (ΛΠ +KP,Q) ◦ PF (x, µ).
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We will show that the multimap G satisfies conditions in Theorem 2.5.
Step 1. From (F4) it follows that 0 ∈ G(0, µ) for all µ ∈ R. We will show

that G is u.s.c. and compact. Indeed, from the fact that the multioperator PF

is closed and the operator ΛΠ+KP,Q is linear and continuous it follows that the
multimap (ΛΠ +KP,Q) ◦ PF is closed (see e.g. Theorem 1.5.30 in [5]). Further,
from (F3) it follows that for every bounded subset U ⊂ CT (I,Rn) × R the set
(ΛΠ+KP,Q)◦PF (U) is bounded in W 1,2

T (I,Rn), and by the Sobolev embedding
theorem [6] it is relatively compact subset of CT (I,Rn). Closed and compact
multimap (ΛΠ + KP,Q) ◦ PF is u.s.c. (see e.g. [5], [14]) and now the assertion
follows from the fact that P is continuous and has a finite-dimensional range.
So condition (F1) holds true.

Step 2. For each µ such that 0 < |µ−µ0| < ε0, choose an arbitrary 0 < πµ <

min{δµ, δµ/
√
T}. Let us show that x /∈ G(x, µ) provided 0 < ‖x‖C ≤ πµ.

In contrary assume that there is x ∈ CT (I,Rn), 0 < ‖x‖C ≤ πµ, such that
(x, µ) is a nontrivial solution of inclusion (3.2). Then there exists f ∈ PF (x, µ)
such that x′(t) = f(t) for a.e. t ∈ [0, T ]. From 0 < ‖x‖2 ≤ ‖x‖C

√
T < δµ it

follows that

0 <
∫ T

0

〈∇Vµ(x(s)), f(s)〉 ds =
∫ T

0

〈∇Vµ(x(s)), x′(s)〉 ds

=Vµ(x(T ))− Vµ(x(0)) = 0,

that is a contradiction. So condition (F2) holds true.

Step 3. In this step we will evaluate the bifurcation index Bi(G(0, µ0)). For
this purpose, we fix µ, 0 < |µ− µ0| < ε0, and choose πµ as in Step 2. Consider
the following family of inclusions

(3.3) x ∈ Σµ(x, λ)

where Σµ:CT (I,Rn)× [0, 1] → Kv(CT (I,Rn)) is defined by

Σµ(x, λ) = Px+ (ΛΠ +KP,Q) ◦ α(PF (x, µ), λ),

and α:L2(I,Rn)× [0, 1] → L2(I,Rn) is defined by

α(f, λ) = f0 + λf1, f0 ∈ L(0), f1 ∈ L(1), f = f0 + f1.

Following Step 1 we can easily prove that the multimap Σµ is u.s.c. and compact.
Assume (x∗, λ∗) ∈ ∂BCT

(0, πµ) × [0, 1] be a solution of (3.3), then there is
a function f∗ ∈ PF (x∗, µ) such that

x∗ = Px∗ + (ΛΠ +KP,Q) ◦ α(f∗, λ∗)

or, equivalently, {
`x∗ = λ∗f∗1 ,

0 = f∗0 ,
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where f∗0 + f∗1 = f∗, f∗0 ∈ L(0) and f∗1 ∈ L(1).
From the choice of πµ it follows that 0 < ‖x∗‖2 < δµ, and hence∫ T

0

〈∇Vµ(x∗(s)), f(s)〉 ds > 0 for all f ∈ PF (x∗, µ).

If λ∗ 6= 0 then∫ T

0

〈∇Vµ(x∗(s)), f∗(s)〉 ds =
∫ T

0

〈
∇Vµ(x∗(s)),

1
λ∗
x∗′(s)

〉
ds

=
1
λ∗

(Vµ

(
x∗(T ))− Vµ(x∗(0))) = 0,

giving a contradiction.
If λ∗ = 0 then `x∗ = 0. Therefore x∗ ≡ a for some a ∈ Rn, ‖a‖Rn = πµ. For

every f ∈ PF (a, µ) we have

(3.4)
∫ T

0

〈∇Vµ(a), f(s)〉 ds =
〈
∇Vµ(a),

∫ T

0

f(s) ds
〉

= T 〈∇Vµ(a),Πf〉 > 0.

Consequently, Πf 6= 0 for all f ∈ PF (a, µ), in particular, Πf∗ 6= 0. But Πf∗ =
Πf∗0 = 0. That is a contradiction.

Thus multimap Σµ is a homotopy connecting the multimaps Σµ( · , 1) =
G( · , µ) and Σµ( · , 0) = P + ΠPF ( · , µ). By virtue of the homotopy invariance
of the topological degree we obtain that

deg(i−G( · , µ), BCT
(0, πµ)) = deg(i− P −ΠPF ( · , µ), BCT

(0, πµ)).

The multimap P + ΠPF ( · , µ) has its range in Rn so

deg(i− P −ΠPF ( · , µ), BCT
(0, πµ)) = deg(i− P −ΠPF (·, µ),

BRn(0, πµ)) = deg(−ΠPF (·, µ), BRn(0, πµ)),

where BRn(0, πµ) = BCT
(0, πµ) ∩ Rn.

From (3.4) it follows that the vector fields ΠPF ( · , µ) and ∇Vµ are homotopic
on BRn(0, πµ). So we obtain

deg(−ΠPF ( · , µ), BRn(0, πµ)) = deg(−∇Vµ, BRn(0, πµ)) = (−1)nindVµ.

Now we can evaluate the bifurcation index by following

Bi(G(0, µ0))

= lim
µ→µ+

0

deg(i−G( · , µ), BCT
(0, πµ))− lim

µ→µ−0

deg(i−G( · , µ), BCT
(0, πµ))

= lim
µ→µ+

0

deg(−ΠPF ( · , µ), BRn(0, πµ))− lim
µ→µ−0

deg(−ΠPF ( · , µ), BRn(0, πµ))

= (−1)n

(
lim

µ→µ+
0

ind Vµ − lim
µ→µ−0

indVµ

)
6= 0.

To complete the proof we need only to apply Theorem 2.5. �
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4. Application to a feedback control system

Consider the following control system with infinite delay

(4.1)


x′(t) = µax(t) + f(xt, u(t), µ) for a.e. t ∈ [0, T ],

u(t) ∈ U(x(t)) for a.e. t ∈ [0, T ],

x(0) = x(T ),

where a > 0, µ ∈ R, a multimap U : Rn → Kv(Rm) is u.s.c. and a map
f :BC(Rn)× Rm × R → Rn is continuous, n,m ∈ N and n is an odd number.

We shall assume the following conditions:

(f1) there exist β > 1, γ ≥ 1 and b > 0 such that

‖f(ϕ̃t, y, µ)‖Rn ≤ b |µ|β ‖ϕ‖γ
2(1 + ‖y‖Rm)

for all (ϕ, y, µ) ∈ CT (I,Rn)× Rm × R and almost every t ∈ [0, T ];
(U1) for every (ϕ, µ) ∈ BC(Rn)× R the set f(ϕ,U(ϕ(0)), µ) is convex;
(U2) there exists c > 0 such that

‖U(y)‖Rm ≤ c (1 + ‖y‖Rn) for all y ∈ Rn.

Define a multimap F :BC(Rn)× R → Kv(Rn) by

F (ϕ, µ) = µaϕ(0) + f(ϕ,U(ϕ(0)), µ).

Then we will treat the problem of global bifurcation of T -periodic solutions of
inclusion (4.1) by the problem of global bifurcation of T -periodic solutions of the
following: {

x′(t) ∈ F (xt, µ) for a.e. t ∈ I,
x(0) = x(T ).

Let us denote by S the set of all nontrivial T -periodic solutions of (4.1).

Theorem 4.1. Let conditions (f1) and (U1)–(U2) hold. Then there is an un-
bounded connected subset R ⊂ S such that (0, 0) ∈ R.

Proof. It is easy to see that multimap F satisfies all conditions (FT ) and
(F1)–(F4) in Theorem 3.2. For each µ 6= 0 we will show that the function

Vµ: Rn → R, Vµ(y) =
1
2
µ 〈y, y〉

is an integral guiding function for problem (4.1).
In fact, letting x ∈W 1,2

T (I,Rn) and choosing an arbitrary g ∈ PF (x, µ), then
there exists u ∈ L2(I,Rm) such that u(s) ∈ U(x(s)) for almost every s ∈ I and

g(s) = µax(s) + f(x̃s, u(s), µ) for a.e. s ∈ I.
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We have that∫ T

0

〈∇Vµ(x(t)), g(t)〉 dt

=
∫ T

0

〈µx(t), µax(t) + f(x̃t, u(t), µ)〉 dt

≥ aµ2 ‖x‖22 − |µ|
∫ T

0

‖x(t)‖Rn‖f(x̃t, u(t), µ)‖Rn dt

≥ aµ2‖x‖22 − b |µ|1+β‖x‖γ
2

∫ T

0

‖x(t)‖Rn(1 + ‖u(t)‖Rm) dt

≥ aµ2‖x‖22 − b |µ|1+β‖x‖γ
2

∫ T

0

‖x(t)‖Rn(1 + c+ c‖x(t)‖Rn) dt

≥ aµ2‖x‖22 − b (1 + c)
√
T |µ|1+β‖x‖1+γ

2 − bc|µ|1+β‖x‖2+γ
2

=µ2‖x‖22(a− b(1 + c)
√
T |µ|β−1‖x‖γ−1

2 − bc|µ|β−1‖x‖γ
2) > 0

for µ 6= 0 and sufficiently small ‖x‖2 6= 0. Thus, for every µ 6= 0, Vµ is an integral
guiding function of problem (4.1). Since

lim
µ→0+

indVµ − lim
µ→0−

indVµ = 1− (−1)n = 2

and the last inequality it follows that (0, 0) is the unique bifurcation point of
problem (4.1). Now, to complete the proof we need only apply Theorem 3.2. �
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