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SYSTEMS OF NONLINEAR HEMIVARIATIONAL
INEQUALITIES AND APPLICATIONS

Nicuşor Costea — Csaba Varga

Abstract. In this paper we prove several existence results for a general

class of systems of nonlinear hemivariational inequalities by using a fixed

point theorem of Lin (Bull. Austral. Math. Soc. 34, (1986), 107–117).
Our analysis includes both the cases of bounded and unbounded closed

convex subsets in real reflexive Banach spaces. In the last section we apply

the abstract results obtained to extend some results concerning nonlinear
hemivariational inequalities, to establish existence results of Nash gener-

alized derivative points and to prove the existence of at least one weak

solution for an electroelastic contact problem.

1. Introduction

In the last decades the theory of hemivariational inequalities captured spe-
cial attention as many papers were dedicated to the study of existence and
multiplicity of solutions for this kind of inequalities (see e.g. [2], [3], [5], [6], [7],
[9]–[11], [17], [23]). The notion of hemivariational inequality was introduced by
Panagiotopoulos at the beginning of the 1980’s (see e.g. [32], [33]) as a variational
formulation for several classes of unilateral mechanical problems with nonsmooth
and nonconvex energy functionals. If the involved functionals are convex, then
hemivariational inequalities reduce to variational inequalities which were studied
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earlier by many authors (see e.g. Fichera [13] or Hartman and Stampacchia [15]).
In almost three decades the theory of hemivariational inequalities has produced
an abundance of important results both in pure and applied mathematics as
well as in other domains such as mechanics and engineering sciences as it al-
lowed mathematical formulations for new classes of interesting problems (see
e.g. the monographs [14], [19], [27]–[29], [34]).

The aim of this paper is to prove the existence of at least one solution for
a general class of systems of nonlinear hemivariational inequalities on bounded
or unbounded closed and convex subsets without using critical point theory. The
proofs strongly rely on a fixed point theorem involving set-valued mappings due
to Lin [21].

The rest of paper the paper is structured as follows. In Section 2 we introduce
some notation and preliminaries. In Section 3 we formulate the problem that
will be studied and the main results are proved. In Section 4 we present three
applications of the abstract results obtained in the previous section.

2. Notation and preliminaries

For the convenience of the reader we present in this section some notations
and preliminary results from nonsmooth analysis that will be used throughout
the paper. For a given Banach space (E, ‖ · ‖E) we denote by E∗ its dual space
and by 〈 · , · 〉E the duality pairing between E∗ and E. The inner product and
the euclidian norm in Rm (m ≥ 1) will be denoted by ” · ” and | · |, respectively.

We recall that a functional φ:E → R is called locally Lipschitz if for every
u ∈ E there exists a neighbourhood U of u and a constant Lu > 0 such that

|φ(w)− φ(v)| ≤ Lu‖w − v‖E , for all v, w ∈ U.

Definition 2.1. Let φ:E → R be a locally Lipschitz functional. The gen-
eralized derivative of φ at u ∈ E in the direction v ∈ E, denoted φ0(u; v), is
defined by

φ0(u; v) = lim sup
w→u
λ↓0

φ(w + λv)− φ(w)
λ

.

For a function ϕ:E1 × . . .×Ek × . . .×En → R which is locally Lipschitz in
the kth variable we denote by ϕ0

,k(u1, . . . , uk, . . . , un; vk) the partial generalized
derivative of ϕ(u1, . . . , uk, . . . , un) at the point uk ∈ Ek in the direction vk ∈ Ek,
that is

ϕ0
,k(u1, . . . , uk, . . . , un; vk)

= lim sup
wk→uk
λ↓0

ϕ(u1, . . . , wk + tvk, . . . , un)− ϕ(u1, . . . , wk, . . . , un)
λ

.
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Lemma 2.2. Let φ:E → R be locally Lipschitz of rank Lu near the point
u ∈ E. Then

(a) the function v  φ0(u; v) is finite, positively homogeneous, subadditive
and satisfies

|φ0(u; v)| ≤ Lu‖v‖E ;

(b) φ0(u; v) is upper semicontinuous as a function of (u, v).

The proof can be found in Clarke [8, Proposition 2.1.1].

Definition 2.3. The generalized gradient of a locally Lipschitz functional
φ:E → R at a point u ∈ E, denoted ∂φ(u), is the subset of E∗ defined by

∂φ(u) = {ζ ∈ E∗ : φ0(u; v) ≥ 〈ζ, v〉E , for all v ∈ E}.

We point out the fact that for each u ∈ E we have ∂φ(u) 6= ∅. In order
to see that it suffices to apply the Hahn–Banach theorem (see e.g. Brezis [4,
Chapter I]).

For a function ϕ:E1 × . . . × Ek × . . . × En → R which is locally Lipschitz
in the kth variable we denote by ∂kϕ(u1, . . . , uk, . . . , un) the partial generalized
gradient of the mapping uk  ϕ(u1, . . . , uk, . . . , un), that is

∂kϕ(u1, . . . , uk, . . . , un)

= {ηk ∈ E∗k : ϕ0
,k(u1, . . . , uk, . . . , un; vk) ≥ 〈ηk, vk〉Ek

, for all vk ∈ Ek}.

The next lemma points out important properties of generalized gradients.

Lemma 2.4. Let φ:E → R be locally Lipschitz of rank Lu near the point
u ∈ E. Then

(a) ∂φ(u) is a convex, weak* compact subset of E∗ and

‖ζ‖E∗ ≤ Lu, for all ζ ∈ ∂φ(u);

(b) For each v ∈ E, one has

φ0(u; v) = max{〈ζ, v〉E : ζ ∈ ∂φ(u)}.

The proof can be found in Clarke [8, Proposition 2.1.2].

Definition 2.5. Let E be a Banach space and let φ:E → R be a locally
Lipschitz functional. We say that φ is regular at u ∈ E, if for all v ∈ E the usual
one-sided directional derivative φ′(u; v) exists and φ′(u; v) = φ0(u; v).

If this is true at every u ∈ E, we say that φ is regular.

It is a fact that in general neither of the sets ∂ϕ(u1, . . . , un), ∂1ϕ(u1, . . . , un)
× . . . × ∂nϕ(u1, . . . , un) need to be contained in the other (see e.g. Clarke [8,
Section 2.5]). For regular functions, however, a general relationship does hold
between these sets.
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Lemma 2.6. Let ϕ:E1 × . . . × En → R be a regular, locally Lipschitz func-
tional. Then the following assertions hold true:

(a) ∂ϕ(u1, . . . , uk, . . . , un) ⊆ ∂1ϕ(u1, . . . , uk, . . . , un) × . . . × ∂kϕ(u1, . . . ,

uk, . . . , un)× . . .× ∂nϕ(u1, . . . , uk, . . . , un);

(b) ϕ0(u1, . . ., uk, . . ., un; v1, . . ., vk, . . ., vn)≤
n∑
k=1

ϕ0
,k(u1, . . ., uk, . . ., un; vk);

(c) ϕ0(u1, . . . , uk, . . . , un; 0, . . . , vk, . . . , 0) ≤ ϕ0
,k(u1, . . . , uk, . . . , un; vk).

The following fixed point theorem for set valued mappings is due to Lin (see
[21, Theorem 1]) and will be one of the key arguments in the sequel.

Theorem 2.7. Let K be a nonempty convex subset of a Hausdorff topological
vector space E. Let A ⊆ K ×K be a subset such that

(a) for each x ∈ K the set N (x) = {y ∈ K : (x, y) ∈ A} is closed in K;
(b) for each y ∈ K the set M(y) = {x ∈ K : (x, y) 6∈ A} is either convex

or empty;
(c) (x, x) ∈ A for each x ∈ K;
(d) K has a nonempty compact convex subset K0 such that the set

B = {y ∈ K : (x, y) ∈ A for all x ∈ K0}

is compact.

Then there exists a point y0 ∈ B such that K × {y0} ⊂ A.

3. Formulation of the problem and the main results

Let n be a positive integer, let X1, . . . , Xn be real reflexive Banach spaces
and let Y1, . . . , Yn be real Banach spaces such that there exist linear and compact
operators Tk:Xk → Yk, for k ∈ {1, . . . , n}.

Our aim is to study the following system of nonlinear hemivariational in-
equalities:

(SNHI) Find (u1, . . . , un) ∈ K1 × . . .×Kn such that
ψ1(u1, . . . , un, v1) + J0

,1(û1, . . . , ûn; v̂1 − û1) ≥ 〈F1(u1, . . . , un), v1 − u1〉X1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψn(u1, . . ., un, vn) + J0
,n(û1, . . ., ûn; v̂n − ûn)≥〈Fn(u1, . . ., un), vn − un〉Xn ,

for all (v1, . . . , vn) ∈ K1 × . . .×Kn, where for each k ∈ {1, . . . , n}:
• Kk ⊆ Xk is a nonempty closed and convex subset;
• ψk:X1 × . . .×Xk × . . .×Xn ×Xk → R is a nonlinear functional;
• J :Y1 × . . .× Yn → R is a regular locally Lipschitz functional;
• Fk:X1 × . . .×Xk × . . .×Xn → X∗

k is a nonlinear operator;
• ûk = Tk(uk).
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In order to establish the existence of at least one solution for problem (SNHI)
we shall assume fulfilled the following hypotheses:

(H1) For each k ∈ {1, . . . , n}, the functional ψk:X1 × . . .×Xk × . . .×Xn ×
Xk → R satisfies:
(a) ψk(u1, . . . , uk, . . . , un, uk) = 0 for all uk ∈ Xk;
(b) For each vk ∈ Xk the mapping (u1, . . . , un) ψk(u1, . . . , un, vk) is

weakly upper semicontinuous;
(c) For each (u1, . . . , un) ∈ X1× . . .×Xn the mapping vk  ψk(u1, . . . ,

un, vk) is convex.
(H2) For each k ∈ {1, . . . , n}, Fk:X1×. . .×Xk×. . .×Xn → X∗

k is a nonlinear
operator such that

lim inf
m→∞

〈Fk(um1 , . . . , umn ), vk − umk 〉Xk
≥ 〈Fk(u1, . . . , un), vk − uk〉Xk

whenever (um1 , . . . , u
m
n ) ⇀ (u1, . . . , un) as m→∞ and vk ∈ Xk is fixed.

The first main result of this paper refers to the case when the sets Kk are
bounded, closed and convex and it is given by the following theorem.

Theorem 3.1. For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty,
bounded, closed and convex set and let us assume that conditions (H1)–(H2)
hold true. Then, the system of nonlinear hemivariational inequalities (SNHI)
admits at least one solution.

The existence of solutions for our system will be a direct consequence of the
fact that a vector hemivariational inequality admits solutions. Let us introduce
the following notations:

• X = X1 × . . .×Xn, K = K1 × . . .×Kn and Y = Y1 × . . .× Yn;
• u = (u1, . . . , un) and û = (û1, . . . , ûn);

• Ψ:X ×X → R, Ψ(u, v) =
n∑
k=1

ψk(u1, . . . , uk, . . . , un, vk);

• F :X → X∗, 〈Fu, v〉X =
n∑
k=1

〈Fk(u1, . . . , un), vk〉Xk
.

and formulate the following vector hemivariational inequality:

(VHI) Find u ∈ K such that

Ψ(u, v) + J0(û; v̂ − û) ≥ 〈Fu, v − u〉X , for all v ∈ K.

Remark 3.2. If (H1)(a) holds, then any solution u0 = (u0
1, . . . , u

0
n) ∈ K1 ×

. . .×Kn of the vector hemivariational inequality (VHI) is also a solution of the
system (SNHI).
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Indeed, if for a k ∈ {1, . . . , n} we fix vk ∈ Kk and for j 6= k we consider
vj = u0

j , using Lemma 2.6 and the fact that u0 solves (VHI) we obtain:

〈Fk(u0
1, . . . ,u

0
n), vk − u0

k〉Xk
=

n∑
j=1

〈Fj(u0
1, . . . , u

0
n), vj − u0

j 〉Xj

= 〈Fu0, v − u0〉X ≤ Ψ(u0, v) + J0(û0; v̂ − û0)

≤
n∑
j=1

ψj(u0
1, . . . , u

0
j , . . . , u

0
n, vj) +

n∑
j=1

J0
,j(û

0
1, . . . , û

0
n; v̂j − û0

j )

=ψk(u0
1, . . . , u

0
k, . . . , u

0
n, vk) + J0

,k(û
0
1, . . . , û

0
n; v̂k − û0

k).

As k ∈ {1, . . . , n} and vk ∈ Kk were arbitrarily fixed, we conclude that
(u0

1, . . . , u
0
n) ∈ K1 × . . .×Kn is a solution of our system (SNHI).

Proof of Theorem 3.1. According to Remark 3.2 it suffices to prove that
problem (VHI) admits a solution. With this end in view we consider the set
A ⊂ K ×K as follows:

A = {(v, u) ∈ K ×K : Ψ(u, v) + J0(û; v̂ − û)− 〈Fu, v − u〉X ≥ 0}.

We shall prove next that the set A satisfies the conditions required in Theo-
rem 2.7 for the weak topology of the space X.

Step 1. For each v ∈ K the set N (v) = {u ∈ K : (v, u) ∈ A} is weakly closed
in K.

In order to prove the above assertion, for a fixed v ∈ K we consider the
functional α:K → R defined by

α(u) = Ψ(u, v) + J0(û; v̂ − û)− 〈Fu, v − u〉X

and we shall prove that it is weakly upper semicontinuous. Let us consider
a sequence {um} ⊂ K such that um ⇀ u as m → ∞. Taking into account that
Tk is compact for each k ∈ {1, . . . , n} we deduce that ûm → û as m→∞. Using
(H1)(b) we obtain

lim sup
m→∞

Ψ(um, v) = lim sup
m→∞

n∑
k=1

ψk(um1 , . . . , u
m
n , vk)

≤
n∑
k=1

lim sup
m→∞

ψk(um1 , . . . , u
m
n , vk)

≤
n∑
k=1

ψk(u1, . . . , un, vk) = Ψ(u, v).

On the other hand, using Lemma 2.2 we deduce that

lim sup
m→∞

J0(ûm; v̂ − ûm) ≤ J0(û; v̂ − û)
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Finally, using (H2) we have

lim sup
m→∞

[−〈Fum,v − um〉X ] = − lim inf
m→∞

〈Fum, v − um〉X

= − lim inf
m→∞

n∑
k=1

〈Fk(um1 , . . . , umn ), vk − umk 〉Xk

≤ −
n∑
k=1

〈Fk(u1, . . . , un), vk − uk〉Xk
= −〈Fu, v − u〉X .

It is clear from the above relations that the functional α is weakly upper semi-
continuous, therefore the set

[α ≥ λ] = {u ∈ K : α(u) ≥ λ}

is weakly closed for any λ ∈ R. Taking λ = 0 we obtain that the set N (v) is
weakly closed.

Step 2. For each u ∈ K the set M(u) = {v ∈ K : (v, u) 6∈ A} is either convex
or empty.

Let us fix u ∈ K and assume that M(u) is nonempty. Let v1, v2 be two
elements of M(u), t ∈ (0, 1) and vt = tv1 + (1− t)v2. Using (H1)(c) we obtain:

Ψ(u, vt) =
n∑
k=1

ψk(u1, . . . , un, tv
1
k + (1− t)v2

k)

≤ t
n∑
k=1

ψk(u1, . . . , un, v
1
k) + (1− t)

n∑
k=1

ψk(u1, . . . , un, v
2
k)

= tΨ(u, v1) + (1− t)Ψ(u, v2),

which shows that the mapping v  Ψ(u, v) is convex. On the other hand
Lemma 2.2 ensures that the mapping v  J0(û; v̂ − û) is convex. Using the
fact that the mapping v  〈Fu, v − u〉X is affine we are led to

Ψ(u, vt) + J0(û; v̂t − û)− 〈Fu, vt − u〉X
≤ t[Ψ(u, v1) + J0(û; v̂1 − û)− 〈Fu, v1 − u〉X ]

+ (1− t)[Ψ(u, v2) + J0(û; v̂2 − û)− 〈Fu, v2 − u〉X ] < 0,

which means that vt ∈M(u), therefore M(u) is a convex set.

Step 3. (u, u) ∈ A for each u ∈ K.
Let u ∈ K be fixed. Using (H1)(a) we obtain

Ψ(u, u) + J0(û; û− û)− 〈Fu, u− u〉X =
n∑
k=1

ψk(u1, . . . , uk, . . . , un, uk) = 0,

and this shows that (u, u) ∈ A.
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Step 4. The set B = {u ∈ K : (v, u) ∈ A for all v ∈ K} is compact.
First we observe that K is a weakly compact subset of the reflexive space X

as it is bounded, closed and convex. Then, we observe that the set B can be
rewritten in the following way

B =
⋂
v∈K

N (v).

This shows that B is also a weakly compact set as it is an intersection of weakly
closed subsets of K.

We are now able to apply Lin’s theorem and conclude that there exists u0 ∈
B ⊆ K such that K × {u0} ⊂ A. This means that

Ψ(u0, v) + J0(û0; v̂ − û0) ≥ 〈Fu0, v − u0〉X , for all v ∈ K,

therefore u0 solves problem (VHI) and, accordingly to Remark 3.2, it is a so-
lution of our system of nonlinear hemivariational inequalities (SNHI), the proof
of Theorem 3.1 being now complete. �

We will show next that if we change the hypotheses on the nonlinear func-
tionals ψk we are still able to prove the existence of at least one solution for our
system. Let us consider that instead of (H1) we have the following set of hy-
potheses

(H3) For each k ∈ {1, . . . , n}, the functional ψk:X1 × . . .×Xk × . . .×Xn ×
Xk → R satisfies:
(a) ψk(u1, . . . , uk, . . . , un, uk) = 0 for all uk ∈ Xk;
(b) For each k ∈ {1, . . . , n} and any pair (u1, . . . , uk, . . . , un), (v1, . . . ,

vk, . . . , vn) ∈ X1 × . . .×Xk × . . .×Xn we have:

ψk(u1, . . . , uk, . . . , un, vk) + ψk(v1, . . . , vk, . . . , vn, uk) ≥ 0;

(c) For each (u1, . . . , un) ∈ X1× . . .×Xn the mapping vk  ψk(u1, . . . ,

un, vk) is weakly lower semicontinuous;
(d) For each vk ∈ Xk the mapping (u1, . . . , un) ψk(u1, . . . , un, vk) is

concave.

We are now in position to state our second main result of the paper, which
concerns the case when the sets Kk are bounded, closed and convex for each
k ∈ {1, . . . , n}.

Theorem 3.3. For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty,
bounded, closed and convex set and let us assume that conditions (H2)–(H3)
hold true. Then, the system of nonlinear hemivariational inequalities (SNHI)
admits at least one solution.
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In order to prove Theorem 3.3 we will need the following lemma.

Lemma 3.4. Assume that (H3) holds. Then

(a) Ψ(u, v) + Ψ(v, u) ≥ 0 for all u, v ∈ X;
(b) For each v ∈ X the mapping u  −Ψ(v, u) is weakly upper semiconti-

nuous;
(c) For each u ∈ X the mapping v  −Ψ(v, u) is convex.

Proof. (a) Taking into account (H3)(b) and the way the functional Ψ:X ×
X → R was defined, we find

Ψ(u, v) + Ψ(v, u)

=
n∑
k=1

[ψk(u1, . . . , uk, . . . , un, vk) + ψk(v1, . . . , vk, . . . , vn, uk)] ≥ 0.

(b) Let v ∈ X be fixed and let {um} ⊂ X be a sequence which converges
weakly to some u ∈ X. Using (H3)(c) and the fact that um → u we obtain

lim sup
m→∞

[−Ψ(v, um)] = − lim inf
m→∞

Ψ(v, um) = − lim inf
m→∞

n∑
k=1

ψk(v1, . . . , vn, umk )

≤ −
n∑
k=1

lim inf
m→∞

ψk(v1, . . . , vn, umk ) ≤ −
n∑
k=1

ψk(v1, . . . , vn, uk) = −Ψ(v, u).

(c) Let u, v1, v2 ∈ X and t ∈ (0, 1). Keeping (H3)(d) in mind we deduce that

Ψ(tv1 + (1− t)v2, u) =
n∑
k=1

ψk(tv1
1 + (1− t)v2

1 , . . . , tv
1
n + (1− t)v2

n, uk)

≥
n∑
k=1

tψk(v1
1 , . . . , v

1
n, uk) + (1− t)ψk(v2

1 , . . . , v
2
n, uk)

= tΨ(v1, u) + (1− t)Ψ(v2, u).

We have prove that the mapping v  Ψ(v, u) is concave, hence the application
v  −Ψ(v, u) must be convex. �

Proof of Theorem 3.3. Let us consider the set A ⊂ K ×K defined by

A = {(v, u) ∈ K ×K : −Ψ(v, u) + J0(û; v̂ − û)− 〈Fu, v − u〉X ≥ 0}.

Lemma 3.4 ensures that we can follow the same steps as in the proof of Theo-
rem 3.1 to conclude that the conditions required in Lin’s theorem are fulfilled.
Thus we get the existence of an element u0 ∈ K such that K × {u0} ⊂ A which
is equivalent to

(3.1) −Ψ(v, u0) + J0(û0; v̂ − û0) ≥ 〈Fu0, v − u0〉X for all v ∈ K.
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On the other hand Lemma 3.4 tells us that

(3.2) Ψ(u0, v) + Ψ(v, u0) ≥ 0, for all v ∈ K.

Combining relations (3.1) and (3.2) we deduce that u0 solves problem (VHI),
therefore it is a solution of problem (SNHI). �

Let us consider now the case when at least one of the subsetsKk is unbounded
and either conditions (H1)–(H2) or (H2)–(H3) hold. We shall denote next by
BE(0;R) the closed ball of the space E centered in the origin and of radius R,
that is

BE(0;R) = {v ∈ E : ‖v‖E ≤ R}.

Let R > 0 be such that the set Kk,R = Kk ∩ BXk
(0;R) is nonempty for

every k ∈ {1, . . . , n}. Then, for each k ∈ {1, . . . , n} the set Kk,R is nonempty,
bounded, closed and convex and according to Theorem 3.1 or Theorem 3.3 the
following problem

(SR) Find (u1, . . . , un) ∈ K1,R × . . . ×Kn,R such that for all (v1, . . . , vn) ∈
K1,R × . . .×Kn,R

ψ1(u1, . . . , un, v1) + J0
,1(û1, . . . , ûn; v̂1 − û1) ≥ 〈F1(u1, . . . , un), v1 − u1〉X1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψn(u1, . . ., un, vn) + J0
,n(û1, . . ., ûn; v̂n − ûn) ≥ 〈Fn(u1, . . ., un), vn − un〉Xn

,

admits at least one solution.

We have the following existence result concerning the case of at least one
unbounded subset.

Theorem 3.5. For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty, closed
and convex set and assume that there exists at least one index k0 ∈ {1, . . . , n}
such that Kk0 is unbounded. Assume in addition that either (H1)–(H2) or (H2)-
(H3) hold. Then, the system of nonlinear hemivariational inequalities (SNHI)
admits at least one solution if and only if the following condition holds true:

(H4) there exists R > 0 such that Kk,R is nonempty for every k ∈ {1, . . . , n}
and at least one solution (u0

1, . . . , u
0
n) of problem (SR) satisfies

u0
k ∈ intBXk

(0;R), for all k ∈ {1, . . . , n}.

Proof. The necessity is obvious. In order to prove the sufficiency for each
k ∈ {1, . . . , n} let us fix vk ∈ Kk and define the scalar

λk =


1
2

if u0
k = vk,

min
{

1
2
;
R− ‖u0

k‖Xk

‖vk − u0
k‖Xk

}
otherwise.
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Condition (H4) ensures that λk ∈ (0, 1), therefore wλk
= u0

k + λk(vk − u0
k) is

an element of Kk,R due to the convexity of the set Kk.

Case 1. (H1)–(H2) hold.
Using the fact (u0

1, . . . , u
0
n) is a solution of (SR) for each k ∈ {1, . . . , n} we

have:

(3.3) ψk(u0
1, . . . , u

0
n, wλk

) + J0
,k(û

0
1, . . . , û

0
n; ŵλk

− û0
k)

≥ 〈Fk(u0
1, . . . , u

0
n), wλk

− u0
k〉Xk

In this case relation (3.3) leads to

λk〈Fk(u0
1, . . . ,u

0
n), vk − u0

k〉Xk
= 〈Fk(u0

1, . . . , u
0
n), wλk

− u0
k〉Xk

≤λkψk(u0
1, . . . , u

0
n, vk) + (1− λk)ψk(u0

1, . . . , u
0
n, u

0
k)

+ λkJ
0
,k(û

0
1, . . . , û

0
n; v̂k − û0

k)

=λk[ψk(u0
1, . . . , u

0
n, vk) + J0

,k(û
0
1, . . . , û

0
n; v̂k − û0

k)].

Dividing by λk the above inequality and taking into account that vk ∈ Kk was
arbitrary fixed we conclude that (u0

1, . . . , u
0
n) is a solution of (SNHI).

Case 2. (H2)–(H3) hold.
Theorem 3.3 ensures that (see (3.1)):

−Ψ(w, u0)+J0(û0; ŵ−u0) ≥ 〈Fu0, w−u0〉, for all w ∈ KR = K1,R×. . .×Kn,R.

Choosing wk = wλk
and wj = u0

j for j 6= k in the above relation we obtain

λk〈Fk(u0
1, . . . , u

0
n), vk − u0

k〉Xk

= 〈Fk(u0
1, . . . , u

0
n), wλk

− u0
k〉Xk

=
n∑
j=1

〈Fk(u0
1, . . . , u

0
n), wj − u0

j 〉Xk

= 〈Fu0, w − u0〉X ≤ −Ψ(w, u0) + J0(û0; ŵ − û0)

= −
n∑
j=1

ψj(w1, . . . , wj , . . . , wn, u
0
j ) +

n∑
j=1

J0
,j(û

0
1, . . . , û

0
n; ŵj − û0

j )

= − ψk(u0
1, . . . , wλk

, . . . , u0
n, u

0
k) + J0

,k(û
0
1, . . . , û

0
n; ŵλk

− û0
k)

≤ − λkψk(u0
1, . . . , vk, . . . , u

0
n, u

0
k)− (1− λk)ψk(u0

1, . . . , u
0
k, . . . , u

0
n, u

0
k)

+ λkJ
0
,k(û

0
1, . . . , û

0
n; v̂k − û0

k)

≤λk[−ψk(u0
1, . . . , vk, . . . , u

0
n, u

0
k) + J0

,k(û
0
1, . . . , û

0
n; v̂k − û0

k)].

Dividing by λk we obtain that

− ψk(u0
1, . . . , vk, . . . , u

0
n, u

0
k) + J0

,k(û
0
1, . . . , û

0
n; v̂k − û0

k)

≥ 〈Fk(u0
1, . . . , u

0
n), vk − u0

k〉Xk
.
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Combining the above inequality and (H3)(b) we deduce the for each k∈{1, . . ., n}
the following inequality takes place:

ψk(u0
1, . . . , u

0
k, . . . , u

0
n, vk) + J0

,k(û
0
1, . . . , û

0
n; v̂k − û0

k)

≥ 〈Fk(u0
1, . . . , u

0
n), vk − u0

k〉Xk
,

which means that (u0
1, . . . , u

0
n) is a solution of (SNHI), since vk ∈ Kk was arbi-

trary fixed. �

Corollary 3.6. For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty,
closed and convex set and assume that there exists at least one index k0 ∈
{1, . . . , n} such that Kk0 is unbounded. Assume in addition that either (H1)–
(H2) or (H2)–(H3) hold. Then, a sufficient condition for (SNHI) to admit at
least one solution is

(H5) there exists R0>0 such that Kk,R0 is nonempty for every k ∈ {1, . . . , n}
and for each (u1, . . . , un) ∈ K1 × . . .×Kn \K1,R0 × . . .×Kn,R0 there
exists (v0

1 , . . . , v
0
n) ∈ K1,R0 × . . .×Kn,R0 such that

(3.4) ψk(u1, . . . , un, v
0
k)+J

0
,k(û1, . . . , ûn; v̂0

k−ûk) < 〈Fk(u1, . . . , un), v0
k−uk〉Xk

,

for all k ∈ {1, . . . , n}.

Proof. Let us fix R > R0. According to Theorem 3.1 or Theorem 3.3
problem (SR) admits at least one solution. Let (u1, . . . , un) ∈ K1,R× . . .×Kn,R

be a solution of (SR). We shall prove that (u1, . . . , un) also solves (SNHI).

Case 1. uk ∈ intBXk
(0, R) for all k ∈ {1, . . . , n}.

In this case we have nothing to prove as Theorem 3.5 ensures that (u1, . . ., un)
is a solution of (SNHI).

Case 2. There exists at least one index j0 ∈ {1, . . . , n} such that uj0 6∈
intBXj0

(0, R).
In this case ‖uj0‖Xj0

= R > R0, therefore (u1, . . . , un) 6∈ K1,R0× . . .×Kn,R0

and according to (H5) there exist (v0
1 , . . . , v

0
n) ∈ K1,R0 × . . . ×Kn,R0 such that

(3.4) holds.
For each k ∈ {1, . . . , n} let us fix vk ∈ Kk and define the scalar

λk =


1
2

if vk = v0
k,

min
{

1
2
,

R−R0

‖vk − v0
k‖Xk

}
otherwise.

Obviously λk ∈ (0, 1) and wλk
= v0

k + λk(vk − v0
k) ∈ Kk,R. Furthermore, we

observe that

wλk
−uk = v0

k−uk+λkvk−λkv0
k+λkuk−λkuk = λk(vk−uk)+(1−λk)(v0

k−uk).
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Case 2.1. (H1)–(H2) hold.
Using the fact that (u1, . . . , un) solves (SR) we obtain the following esti-

mates:

〈Fk(u1, . . . , un), wλk
− uk〉 = λk〈Fk(u1, . . . , un), vk − uk〉Xk

+ (1− λk)〈Fk(u1, . . . , un), v0
k − uk〉Xk

≤ψk(u1, . . . , un, wλk
) + J0

,k(û1, . . . , ûn; ŵλk
− ûk)

≤λk[ψk(u1, . . . , un, vk) + J0
,k(û1, . . . , ûn; v̂k − ûk)]

+ (1− λk)[ψk(u1, . . . , un, v
0
k) + J0

,k(û1, . . . , ûn; v̂0
k − ûk)]

Combining the above relation and (3.4) we obtain that

Fk(u1, . . . , un), vk − uk〉Xk
≤ ψk(u1, . . . , un, vk) + J0

,k(û1, . . . , ûn; vk − uk)

for all k ∈ {1, . . . , n}, which means that (u1, . . . , un) is a solution of (SNHI).

Case 2.2. (H2)–(H3) hold.
The fact that (u1, . . . , un) solves (SR) and relation (3.1) allow us to conclude

that

−Ψ(w, u)+J0(û, ŵ− û) ≥ 〈Fu,w−u〉X , for all w ∈ KR = K1,R× . . .×Kn,R.

Choosing wk = wλk
and wj = uj for j 6= k in the above relation and using

(H3)(d) we obtain:

〈Fk(u1, . . . , un), wλk
− uk〉Xk

=λk〈Fk(u1, . . . , un), vk − uk〉Xk
+ (1− λk)〈Fk(u1, . . . , un), v0

k − uk〉Xk

=
n∑
j=1

〈Fk(u1, . . . , un), wj − uj〉Xk
= 〈Fu,w − u〉 ≤ −Ψ(w, u) + J0(û; ŵ − û)

= −
n∑
j=1

ψj(w1, . . . , wj , . . . , wn, uj) +
n∑
j=1

J0
,j(û1, . . . , ûn; ŵj − ûj)

= − ψk(u1, . . . , wλk
, . . . , un, uk)) + J0

,k(û1, . . . , ûn; ŵλk
− ûk)

≤ − λkψk(u1, . . . , vk, . . . , un, uk)− (1− λk)ψk(u1, . . . , v
0
k, . . . , un, uk)

+ λkJ
0
,k(û1, . . . , ûn; v̂k − ûk) + (1− λk)J0(û1, . . . , ûn; v̂0

k − ûk).

Using (H3)(b) and (3.4) we deduce that

Fk(u1, . . . , un), vk − uk〉Xk
≤ ψk(u1, . . . , un, vk) + J0

,k(û1, . . . , ûn; vk − uk)

for all k ∈ {1, . . . , n}, which means that (u1, . . . , un) is a solution of (SNHI). �

In order to simplify some computations let us assume next that 0 ∈ Kk for
each k ∈ {1, . . . , n}. In this case Kk,R 6= ∅ for every k ∈ {1, . . . , n} and every
R > 0.
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Corollary 3.7. For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty,
closed and convex set and assume that there exists at least one index k0 ∈
{1, . . . , n} such that Kk0 is unbounded and either (H1)–(H2) or (H2)–(H3) hold.
Assume in addition that for each k ∈ {1, . . . , n} the following conditions hold:

(H6) There exists a function c : R+ → R+ with the property that lim
t→∞

c(t) =
+∞ such that

−
n∑
k=1

ψk(u1, . . . , uk, . . . , un, 0) ≥ c(‖u‖X)‖u‖X ,

for all (u1, . . . , un) ∈ X1 × . . . × Xn, where u = (u1, . . . , uk, . . . , un)
and

‖u‖X =
( n∑
k=1

‖uk‖2Xk

)1/2

;

(H7) There exists Mk > 0 such that

J0
,k(w1, . . . , wk, . . . , wn;−wk) ≤Mk‖wk‖Yk

,

for all (w1, . . . , wn) ∈ Y1 × . . .× Yn;
(H8) There exists mk > 0 such that

‖Fk(u1, . . . , uk, . . . , un)‖X∗
k
≤ mk, for all (u1, . . . , un) ∈ X1 × . . .×Xn.

Then the system (SNHI) admits at least one solution.

Proof. For each R > 0 Theorem 3.1 (or Theorem 3.3) enables us to con-
clude that there exists a solution (u1R, . . . , unR) ∈ K1,R× . . .×Kn,R of problem
(SR). We shall prove that there exists R0 > 0 such that

ukR0 ∈ intBXk
(0;R0), for all k ∈ {1, . . . , n},

which, according to Theorem 3.5, means that (u1R0 , . . . , unR0) is a solution of
the system (SNHI).

Arguing by contradiction let us assume that for each R > 0 there exists
at least one index j0 ∈ {1, . . . , n} such that uj0R 6∈ intBXj0

(0, R), therefore
‖uj0R‖Xj0

= R. Using the fact that (u1R, . . . , unR) solves (SR) we conclude
that for each k ∈ {1, . . . , n} the following inequality holds

(3.5) ψk(u1R, . . . , unR, vk) + J0
,k(û1R, . . . , ûnR; v̂k − ûkR)

≥ 〈Fk(u1R, . . . , unR), vk − ukR〉Xk
,

for all vk ∈ Kk,R.
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Taking vk = 0 in (3.5), summing and using (H6)–(H8) we have

c(‖u‖X)‖u‖X ≤ −
n∑
k=1

ψk(u1R, . . . , uj0R, . . . , unR, 0)

≤
n∑
k=1

[〈Fk(u1R, . . . , unR), ukR〉Xk
+J0

,k(û1R, . . . , ûk, . . . , ûnR;−ûk)]

≤
n∑
k=1

(‖Fk(u1R, . . . , unR)‖X∗
k
‖uk‖Xk

+Mk‖ûkR‖Yk
)

≤
n∑
k=1

[(mk +Mk‖Tk‖)‖ukR‖Xk
] ≤ C‖u‖X .

Dividing by ‖u‖X and letting R→ +∞ we obtain a contradiction since the left-
hand term of the inequality is unbounded while the the right-hand term remains
bounded. �

4. Applications

4.1. Nonlinear hemivariational inequalities. Let us considerX, Y to be
real reflexive Banach spaces such that there exists a linear and compact operator
T :X → Y . If K is a nonempty closed subset of X and n = 1, then the system
(SNHI) reduces to the following nonlinear hemivariational inequality:

(Pψ) Find u ∈ K such that

ψ(u, v) + J0(û; v̂ − û) ≥ 〈Fu, v − u〉X , for all v ∈ K.

4.1.1. Let us consider Ω ⊆ Rk (k ≥ 1) to be open, bounded with smooth
boundary and assume that X is compactly embedded in Lq(Ω; Rk) for some
q ∈ (1,+∞). Let us assume in addition that the following conditions hold

H1(j) j: Ω× Rk → R is a functional which satisfies:
(a) x j(x, y) is measurable, for every y ∈ Rk;
(b) either there exists α ∈ Lq/(q−1)(Ω; Rk) such that

|j(x, v1)− j(x, v2)| ≤ α(x)|v1 − v2|,

for almost every x ∈ Ω and every v1, v2 ∈ Rk;
or y  j(x, y) is locally Lipschitz for almost every x ∈ Ω and there
exists c > 0 such that

|∂2j(x, y)| ≤ c(1 + |y|q−1),

for almost every x ∈ Ω and every y ∈ Rk;
(c) y  j(x, y) is regular for almost every x ∈ Ω.
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Choosing Y = Lq(Ω; Rk), T = i (here i is the embedding operator between X

and Lq(Ω; Rk)), Fu = f (f ∈ X∗) for all u ∈ X and J :Lq(Ω; Rk) → R defined
by

J(w) =
∫

Ω

j(x,w(x)) dx,

our inequality (Pψ) becomes

(P1
ψ) Find u ∈ K such that

ψ(u, v) +
∫

Ω

j0,2(x, û(x); v̂(x)− û(x)) dx ≥ 〈f, v − u〉X for all v ∈ K.

This kind of hemivariational inequalities being studied by Costea and Rădulescu
in [12]. Comparing our results with the ones obtained by Costea and Rădulescu
we observe that Corollary 3.6 extends Theorem 3 from [12] while Theorem 3.3
extends Theorem 4 from [12].

Remark 4.1. It can be proved that problem (P1
ψ) admits solutions even in

the case when Ω ⊆ Rk is unbounded. In this case we need to replace H1(j)
with an appropriate condition which ensures the existence of the integral term∫
Ω
j0,2(x, û(x); v̂(x) − û(x)) dx (see e.g. the work of Kristály and Varga [20] or

Lisei et al. [22]).

4.1.2. Let us consider (T, µ) to be a measure space of finite and positive
measure and assume that X is compactly embedded in Lq(T ) for some q ∈
(1,+∞). Assume in addition that the following conditions hold true:

H2(j) j:T × R → R is a functional which satisfies:
(a) x j(x, y) is measurable, for every y ∈ R;
(b) either there exists β ∈ Lq/(q−1)(T ; Rk) such that

|j(x, v1)− j(x, v2)| ≤ β(x)|v1 − v2|,

for almost every x ∈ T and every v1, v2 ∈ R, or y  j(x, y) is locally
Lipschitz for almost every x ∈ T and there exists c > 0 such that

|∂2j(x, y)| ≤ c(1 + |y|q−1),

for almost every x ∈ T and every y ∈ R;
(c) y  j(x, y) is regular for almost every x ∈ T .

H(f) f :T × R → R is a functional such that:
(a) x f(x, y) is measurable for every y ∈ R;
(b) y  f(x, y) is continuous for almost every x ∈ T ;
(c) there exists γ1 ∈ Lq/(q−1)(T ) and γ2 ∈ L∞(T ) such that:

|f(x, y)| ≤ γ1(x) + γ2(x)|y|q−1,

for almost every x ∈ T and every y ∈ R.
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Choosing Y = Lq(T ), T = i (where i:X → Lq(T ) is the embedding opera-
tor), F :X → X∗ defined by

〈Fu, v〉X =
∫
T

f(x, u(x))v(x) dµ

and J :Lq(T ) → R defined by

J(w) =
∫
T

j(x,w(x)) dµ

our inequality (Pψ) becomes:

(P2
ψ) Find u ∈ K such that

ψ(u, v) +
∫
T

j0,2(x, u(x); v(x)− u(x)) dµ ≥
∫
T

f(x, u(x))(v(x)− u(x)) dµ.

The above inequality is similar to the one studied by Andrei and Costea
in [1] in the case h(x, y) = 1 for all x ∈ T and y ∈ R. Comparing the results we
observe that Theorem 3.1 extends Theorem 2.1 from [1], Theorem 3.4 extends
Theorem 2.2 from [1] while Corollary 3.7 extends Theorem 2.3 from [1].

4.2. Existence of Nash generalized derivative points. Let E1, . . . , En

be Banach spaces and for each k ∈ {1, . . . , n} let Kk be a nonempty subset of
Ek. We also assume that gk:K1× . . .×Kk× . . .×Kn → R are given functionals.
We recall below the notion of Nash equilibrium point (see [30], [31]).

Definition 4.2. An element (u1, . . . , uk, . . . , un) ∈ K1×. . .×Kk×. . .×Kn

is a Nash equilibrium point for the functionals g1, . . . , gk, . . . , gn, if for every
k ∈ {1, . . . , n} and every (v1, . . . , vk, . . . , vn) ∈ K1 × . . . × Kk × . . . × Kn we
have

gk(u1, . . . , vk, . . . , un) ≥ gk(u1, . . . , uk, . . . , un).

Let Dk ⊂ Ek be an open set such that Kk ⊂ Dk for all k ∈ {1, . . . , n}. For
each k ∈ {1, . . . , n} we consider the functional gk:K1× . . .×Dk× . . .×Kn → R
such that uk  gk(u1, . . . , uk, . . . , un) is locally Lipschitz. The following notion
was introduced by Kristály in [18].

Definition 4.3. An element (u1, . . . , uk, . . . , un) ∈ K1×. . .×Kk×. . .×Kn

is a Nash generalized derivative point for the functionals g1, . . . , gk, . . . , gn if for
every k ∈ {1, . . . , n} and every (v1, . . . , vk, . . . , vn) ∈ K1 × . . .×Kk × . . .×Kn

we have
g0
k,k(u1, . . . , uk, . . . , un; vk − uk) ≥ 0.

We point out the fact that the above definition coincides with the notion of
Nash stationary point introduced by Kassay, Kolumbán and Páles in [16] if every
functional gk is differentiable with respect to the kth variable. Moreover, every
Nash equilibrium point a Nash generalized derivative point.



56 N. Costea — C. Varga

4.2.1. For each k ∈ {1, . . . , n} let Dk ⊆ Xk be an open and consider
the functional gk:K1 × . . . × Dk × . . . × Kn → R such that gk is locally Lip-
schitz with respect to the kth variable and for each vk ∈ Xk the mapping
(u1, . . . , uk, . . . , un)  g0

k,k(u1, . . . , uk, . . . , un; vk) is weakly upper semicontin-
uous. Let us choose next ψk(u1, . . . , uk, . . . , un, vk) = g0

k,k(u1, . . . , uk, . . . , un;
vk − uk), J ≡ 0, Fk ≡ 0.

(a) If for each k ∈ {1, . . . , n} the set Kk ⊂ Xk is nonempty, bounded,
closed and convex, then Theorem 3.1 implies that there exists at least one point
(u0

1, . . . , u
0
k, . . . , u

0
n)∈K1×. . .×Kk×. . .×Kn such that for all (v1, . . . , vk, . . . , vn)

∈ K1 × . . .×Kk × . . .×Kn we have

g0
k,k(u

0
1, . . . , u

0
k, . . . , u

0
n; vk − u0

k) ≥ 0, for all k ∈ {1, . . . , n},

that is, (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1 × . . . ×Kk × . . . ×Kn is a Nash generalized

derivative point for the functionals g1, . . . , gk, . . . gn.
(b) Let us assume now that the sets Kk are nonempty, closed and convex

and at least one of them is unbounded. Assume in addition that there exists
R0 > 0 such that Kk,R0 is nonempty for every k ∈ {1, . . . , n} and for each
(u1, . . . , uk, . . . , un) ∈ K1× . . .×Kk× . . .×Kn\K1,R0× . . .×Kk,R0× . . .×Kn,R0

there exists (v0
1 , . . . , v

0
k, . . . , v

0
n) ∈ K1,R0 × . . .×Kk,R0 × . . .×Kn,R0 such that

g0
k,k(u1, . . . , uk, . . . , un; v0

k − ûk) < 0, for all k ∈ {1, . . . , n}.

Then, according to Corollary 3.6, there exists at least one point (u0
1, . . . , u

0
k, . . . ,

u0
n) ∈ K1 × . . . × Kk × . . . × Kn such that for all (v1, . . . , vk, . . . , vn) ∈ K1 ×
. . .×Kk × . . .×Kn we have

g0
k,k(u

0
1, . . . , u

0
k, . . . , u

0
n; vk − u0

k) ≥ 0, for all k ∈ {1, . . . , n},

which means that (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1 × . . . × Kk × . . . × Kn is a Nash

generalized derivative point for the functionals g1, . . . , gk, . . . , gn.
(c) Let us assume now that the sets Kk are nonempty, closed and convex

and at least one of them is unbounded. Assume in addition that there exists
a function c: R+ → R+ with the property that lim

t→∞
c(t) = +∞ such that

−
n∑
k=1

g0
k,k(u1, . . . , uk, . . . , un;−uk) ≥ c(‖u‖X)‖u‖X ,

for all (u1, . . . , un) ∈ K1 × . . . × Kn. Then, according to Corollary 3.7, there
exists at least one point (u0

1, . . . , u
0
k, . . . , u

0
n) ∈ K1 × . . . ×Kk × . . . ×Kn such

that for all (v1, . . . , vk, . . . , vn) ∈ K1 × . . .×Kk × . . .×Kn we have

g0
k,k(u

0
1, . . . , u

0
k, . . . , u

0
n; vk − u0

k) ≥ 0, for all k ∈ {1, . . . , n},
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which means that (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1 × . . . × Kk × . . . × Kn is a Nash

generalized derivative point for the functionals g1, . . . , gk, . . . gn.

4.2.2. Let us consider that for each k ∈ {1, . . . , n} we have ψk ≡ 0, J ≡ 0
and Fk:X1 × . . . × Xk × . . . × Xn → X∗

k a nonlinear operator such that (H2)
holds.

(a) For each k ∈ {1, . . . , n} we assume that the set Kk ⊂ Xk is nonempty,
bounded, closed and convex. Then Theorem 3.1 implies that there exists at least
one point (u0

1, . . . , u
0
k, . . . , u

0
n) ∈ K1 × . . . × Kk × . . . × Kn such that for all

(v1, . . . , vk, . . . , vn) ∈ K1 × . . .×Kk × . . .×Kn we have

−〈Fk(u0
1, . . . , u

0
k, . . . , u

0
n), vk − u0

k〉Xk
≥ 0, for all k ∈ {1, . . . , n},

which means that (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1 × . . . × Kk × . . . × Kn is a Nash

stationary point for the functionals g1, . . . , gk, . . . , gn, where gk:K1× . . .×Xk×
. . . ×Kn → R is differentiable with respect to the kth variable and g′k,k = −F̃k
(here F̃k is the restriction of Fk to K1 × . . .×Xk × . . .×Kn).

(b) Let us assume now that the sets Kk are nonempty, closed and convex
and at least one of them is unbounded. Assume in addition that there exists
R0 > 0 such that Kk,R0 is nonempty for every k ∈ {1, . . . , n} and for each
(u1, . . . , uk, . . . , un) ∈ K1× . . .×Kk× . . .×Kn\K1,R0× . . .×Kk,R0× . . .×Kn,R0

there exists (v0
1 , . . . , v

0
k, . . . , v

0
n) ∈ K1,R0 × . . .×Kk,R0 × . . .×Kn,R0 such that

〈Fk(u1, . . . , uk, . . . , un), v0
k − uk〉Xk

> 0, for all k ∈ {1, . . . , n}.

Then, according to Corollary 3.6, there exists at least one point (u0
1, . . . , u

0
k, . . . ,

u0
n) ∈ K1 × . . . × Kk × . . . × Kn such that for all (v1, . . . , vk, . . . , vn) ∈ K1 ×
. . .×Kk × . . .×Kn we have

−〈Fk(u0
1, . . . , u

0
k, . . . , u

0
n), vk − u0

k〉Xk
≥ 0, for all k ∈ {1, . . . , n},

which means that (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1 × . . . × Kk × . . . × Kn is a Nash

stationary point for the functionals g1, . . . , gn, where gk:K1 × . . . ×Xk × . . . ×
Kn → R is differentiable with respect to the kth variable and g′k,k = −F̃k.

4.3. Weak solvability of frictional problems for piezoelectric bodies
in contact with a conductive foundation. This subsection focuses on the
weak solvability of a mechanical model describing the contact between a piezo-
electric body and a conductive foundation. The piezoelectric effect is charac-
terized by the coupling between the mechanical and the electrical properties of
the materials. This coupling leads to the appearance of electric potential when
mechanical stress is present and, conversely, mechanical stress is generated when
electric potential is applied. For more details on this topic the reader can consult
the recent papers of Migórski, Ochal and Sofonea [24]–[26].
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Before describing the problem let us first present some notations and preli-
minary material which will be used throughout this subsection.

Let m be a positive integer and denote by Sm the linear space of second order
symmetric tensors on Rm (Sm = Rm×ms ). We recall that the inner product and
the corresponding norm on Sm are given by

τ : σ = τijσij , ‖τ‖Sm
=
√
τ : τ , for all τ, σ ∈ Sm.

Here, and hereafter the summation over repeated indices is used, all indices
running from 1 to m.

Let Ω ⊂ Rm be an open bounded subset with a Lipschitz boundary Γ and
let ν denote the outward unit normal vector to Γ. We introduce the spaces:

H = L2(Ω; Rm),

H = {τ = (τij) : τij = τji ∈ L2(Ω)} = L2(Ω;Sm),

H1 = {u ∈ H : ε(u) ∈ H} = H1(Ω; Rm),

H1 = {τ ∈ H : Div τ ∈ H},

where ε:H1 → H and Div:H1 → H denote the deformation and the divergence
operators, defined by

ε(u) = (εij(u)), εij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Div τ =

(
∂τij
∂xj

)
,

The spaces H, H, H1 and H1 are Hilbert spaces endowed with the following
inner products:

(u, v)H =
∫

Ω

uivi dx, (σ, τ)H =
∫

Ω

σ : τ dx,

(u, v)H1 = (u, v)H + (ε(u), ε(v))H, (σ, τ)H1 = (σ, τ)H + (Divσ,Div τ)H .

The associated norms in H, H, H1, H1 will be denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1

and ‖ · ‖H1 , respectively.
Given v ∈ H1 we denote by v its trace γv on Γ, where γ:H1(Ω; Rm) →

H1/2(Γ; Rm) ⊂ L2(Γ; Rm) is the Sobolev trace operator. Given v ∈ H1/2(Γ; Rm)
we denote by vν and vτ the normal and the tangential components of v on the
boundary Γ, that is vν = v·ν and vτ = v−vνν. Similarly, for a regular tensor field
σ : Ω → Sm, we define its normal and tangential components to be the normal
and the tangential components of the Cauchy vector σν, that is σν = (σν) · ν
and στ = σν − σνν. Recall that the following Green formula holds:

(4.1) (σ, ε(v))H + (Divσ, v)H =
∫

Γ

σν · v dΓ, for all v ∈ H1.

We shall describe next the model for which we shall derive a variational
formulation. Let us consider body B made of a piezoelectric material which
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initially occupies an open bounded subset Ω ⊂ Rm (m = 2, 3) with smooth
a boundary ∂Ω = Γ. The body is subjected to volume forces of density f0
and has volume electric charges of density q0, while on the boundary we impose
mechanical and electrical constraints. In order to describe these constraints we
consider two partitions of Γ: the first partition is given by three mutually disjoint
open parts Γ1, Γ2 and Γ3 such that meas(Γ1 > 0) and the second partition
consists of three disjoint open parts Γa, Γb and Γc such that meas(Γa) > 0,
Γc = Γ3 and Γa ∪ Γb = Γ1 ∪ Γ2. The body is clamped on Γ1 and a surface
traction of density f2 acts on Γ2. Moreover, the electric potential vanishes on Γa
and a surface electric charge of density qb is applied on Γb. On Γ3 = Γc the body
comes in frictional contact with a conductive obstacle, called foundation which
has the electric potential ϕF .

Denoting by u: Ω → Rm the displacement field, by ε(u) = (εij(u)) the strain
tensor, by σ: Ω → Sm the stress tensor, by D: Ω → Rm, D = (Di) the electric
displacement field and by ϕ: Ω → R the electric potential we can now write the
strong formulation of the problem which describes the above process:

(PM ) Find a displacement field u: Ω → Rm and an electric potential ϕ : Ω → R
such that:

Divσ + f0 = 0 in Ω,(4.2)

divD = q0 in Ω,(4.3)

σ = Eε(u) + Pᵀ∇ϕ in Ω,(4.4)

D = Pε(u)− B∇ϕ in Ω,(4.5)

u = 0 on Γ1,(4.6)

ϕ = 0 on Γa,(4.7)

σν = f2 on Γ2,(4.8)

D · ν = qb on Γb,(4.9)

−σν = S on Γ3,(4.10)

−στ ∈ ∂2j(x, uτ ) on Γ3,(4.11)

D · ν ∈ ∂2φ(x, ϕ− ϕF ) on Γ3.(4.12)

We point out the fact that once the displacement field u and the electric
potential ϕ are determined, the stress tensor σ and the electric displacement
field D can be obtained via relations (4.4) and (4.5), respectively.

Let us now provide explanation of the equations and the conditions (4.2)–
(4.12) in which, for simplicity, we have omitted the dependence of the functions
on the spatial variable x.
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First, equations (4.2)–(4.3) are the governing equations consisting of the
equilibrium conditions, while equations (4.4)–(4.5) represent the electro-elastic
constitutive law.

We assume that E : Ω × Sm → Sm is a nonlinear elasticity operator, P: Ω ×
Sm → Rm and Pᵀ: Ω × Rm → Sm are the piezoelectric operator (third order
tensor field) and its transpose, respectively and B: Ω × Rm → Rm denotes the
electric permittivity operator (second order tensor field) which is considered to be
linear. The tensors P and Pᵀ satisfy the equality:

Pτ · ζ = τ : Pᵀζ, for all τ ∈ Sm and all ζ ∈ Rm,

and the components of the tensor Pᵀ are given by pᵀ
ijk = pkij .

When τ  E(x, τ) is linear, E(x, τ) = C(x)τ with the elasticity coefficients
C = (cijkl) which may be functions indicating the position in a nonhomogeneous
material. The decoupled state can be obtained by taking pijk = 0, in this case
we have purely elastic and purely electric deformations.

Conditions (4.6) and (4.7) model the fact that the displacement field and the
electrical potential vanish on Γ1 and Γa, respectively, while conditions (4.8) and
(4.9) represent the traction and the electric boundary conditions showing that
the forces and the electric charges are prescribed on Γ2 and Γb, respectively.

Conditions (4.10)–(4.12) describe the contact, the frictional and the electrical
conductivity conditions on the contact surface Γ3, respectively. Here, S is the
normal load imposed on Γ3, the functions j: Γ3 ×Rm → Rm and φ: Γ3 ×R → R
are prescribed and ϕF is the electric potential of the foundation.

The strong formulation of problem (PM ) consists in finding u: Ω → Rm

and ϕ: Ω → R such that (4.2)–(4.12) hold. However, it is well known that, in
general, the strong formulation of a contact problem does not admit any solution.
Therefore, we reformulate problem (PM ) in a weaker sense, i.e. we shall derive
its variational formulation. With this end in view, we introduce the functional
spaces for the displacement field and the electrical potential

V = {v ∈ H1(Ω; Rm) : v = 0 on Γ1}, W = {ϕ ∈ H1(Ω) : ϕ = 0 on Γa}

which are closed subspaces of H1 and H1(Ω). We endow V and W with the
following inner products and the corresponding norms

(u, v)V = (ε(u), ε(v))H, ‖v‖V = ‖ε(v)‖H,
(ϕ, χ)W = (∇ϕ,∇χ)H , ‖χ‖W = ‖∇χ‖H

and conclude that (V, ‖ · ‖V ), (W, ‖ · ‖W ) are Hilbert spaces.
Assuming sufficient regularity of the functions involved in the problem, using

the Green formula (4.1), the relations (4.2)–(4.12), the definition of the Clarke
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generalized gradient and the equality∫
Γ3

(σν) · v dΓ =
∫

Γ3

σνvν dΓ +
∫

Γ3

στ · vτ dΓ

we obtain the following variational formulation of problem (PM ) in terms of the
displacement field and the electric potential:

(PV ) Find (u, ϕ) ∈ V ×W such that for all (v, χ) ∈ V ×W

(Eε(u), ε(v)− ε(u))H + (Pᵀ∇ϕ, ε(v)− ε(u))H +
∫

Γ3

j0,2(x, uτ ; vτ − uτ ) dΓ

≥ (f, v − u)V ,

(B∇ϕ,∇χ−∇ϕ)H − (Pε(u),∇χ−∇ϕ)H +
∫

Γ3

φ0
,2(x, ϕ− ϕF ;χ− ϕ) dΓ

≥ (q, χ− ϕ)W ,

where f ∈ V and q ∈W are the elements given by the Riesz’s represen-
tation theorem as follows

(f, v − u)V =
∫

Ω

f0 · v dx+
∫

Γ2

f2 · v dΓ−
∫

Γ3

Svν dΓ,

(q, χ)W =
∫

Ω

q0χdx−
∫

Γb

q2χdΓ.

In the study of problem (PV ) we shall assume fulfilled the following hypothe-
ses:

(HE) The elasticity operator E : Ω× Sm → Sm such that
(a) x E(x, τ) is measurable for all τ ∈ Sm;
(b) τ  E(x, τ) is continuous for almost every x ∈ Ω;
(c) there exist c1 > 0 and α ∈ L2(Ω) such that

‖E(x, τ)‖Sm
≤ c(α(x) + ‖τ‖Sm

)

for all τ ∈ Sm and almost every x ∈ Ω;
(d) τ  E(x, τ) : (σ− τ) is weakly upper semicontinuous for all σ ∈ Sm

and almost every x ∈ Ω;
(e) there exists c2 > 0 such that E(x, τ) : τ ≥ c‖τ‖2Sm

for all τ ∈ Sm
and almost every x ∈ Ω.

(HP) The piezoelectric operator P: Ω× Sm → Rm is such that
(a) P(x, τ) = p(x)τ for all τ ∈ Sm and almost every x ∈ Ω;
(b) p(x) = (pijk(x)) with pijk = pikj ∈ L∞(Ω).

(HB) B: Ω× Rm → Rm is such that
(a) B(x, ζ) = β(x)ζ for all ζ ∈ Rm and almost x ∈ Ω;
(b) β(x) = (βij(x)) with βij = βji ∈ L∞(Ω);
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(c) there exists m > 0 such that (β(x)ζ) · ζ ≥ m|ζ|2 for all ζ ∈ Rm and
almost every x ∈ Ω.

(Hj) j: Γ3 × Rm → R is such that
(a) x j(x, ζ) is measurable for all ζ ∈ Rm;
(b) ζ  j(x, ζ) is locally Lipschitz for almost every x ∈ Γ3;
(c) there exist c3 > 0 such that |∂2j(x, ζ)| ≤ c3(1 + |ζ|) for all ζ ∈ Rm

and almost every x ∈ Γ3;
(d) there exists c4 > 0 such that j0,2(x, ζ;−ζ) ≤ c4|ζ| for all ζ ∈ Rm and

almost every x ∈ Γ3;
(e) ζ  j(x, ζ) is regular for almost every x ∈ Γ3.

(Hφ) φ: Γ3 × R → R is such that:
(a) x φ(x, t) is measurable for all t ∈ R;
(b) ζ  φ(x, ζ) is locally Lipschitz for almost every x ∈ Γ3;
(c) there exist c5 > 0 such that |∂2φ(x, t)| ≤ c5|t| for all t ∈ R and

almost every x ∈ Γ3;
(d) t φ(x, t) is regular for almost every x ∈ Γ3.

(Hf,q) f0 ∈ H, f2 ∈ L2(Γ2; Rm), q0 ∈ L2(Ω), qb ∈ L2(Γ2), S ∈ L∞(Γ3), S ≥ 0,
ϕF ∈ L2(Γ3).

The main result of this subsection is given by the following theorem.

Theorem 4.4. Assume fulfilled conditions (HE), (HP), (HB), (Hj), (Hφ)
and (Hf,q). Then problem (PV ) admits at least one solution.

Proof. We observe that problem (PV ) is in fact a system of two coupled
hemivariational inequalities. The idea is to apply one of the existence results
obtained in Section 2. with suitable choice of ψk, J , and Fk (k ∈ {1, 2}).

First, let us take n = 2 and define X1 = V , X2 = W , Y1 = L2(Γ3; Rm),
Y2 = L2(Γ3), K1 = X1 and K2 = X2.

Next we introduce T1:X1 → Y1 and T2:X2 → Y2 defined by

T1 = iτ ◦ γm ◦ im|Γ3 , T2 = γ ◦ i|Γ3 ,

where im:V→H1 =H1(Ω; Rm) is the embedding operator, γm:H1→H1/2(Γ; Rm)
is the Sobolev trace operator, iτ :H1/2(Γ; Rm) → L2(Γ3; Rm) is the operator
defined by iτ (v) = vτ , i:W → H1(Ω) is the embedding operator and γ:H1(Ω) →
H1/2(Γ) is the Sobolev trace operator. Clearly T1 and T2 are linear and compact
operators.

We consider next ψ1:X1×X2×X1 → R and ψ2:X1×X2×X2 → R defined by

ψ1(u, ϕ, v) = (Eε(u), ε(v)− ε(u))H + (Pᵀ∇ϕ, ε(v)− ε(u))H,

ψ2(u, ϕ, χ) = (B∇ϕ,∇χ−∇ϕ)H − (Pε(u),∇χ−∇ϕ)H ,
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J :Y1 × Y2 → R defined by

J(w, η) =
∫

Γ3

j(x,w(x)) dΓ +
∫

Γ3

φ(x, η(x)− ϕ(x)) dΓ,

and F1:X1 ×X2 → X∗
1 and F2:X1 ×X2 → X∗

2 defined by

F1(u, ϕ) = f, F2(u, ϕ) = q.

It is easy to check from the above definitions that if (HE), (HP), (HB), hold,
then the functionals ψ1, ψ2 satisfy conditions (H1) and (H6). Taking (Hj) and
(Hφ) into account we conclude that J is a regular locally Lipschitz functional
which satisfies

J0
,1(w, η; z) =

∫
Γ3

j0,2(x,w(x); z(x)) dΓ,

J0
,2(w, η; ζ) =

∫
Γ3

φ0
,2(x, η(x)− ϕ(x); ζ(x)) dΓ.

Obviously conditions (H2), (H7), (H8) are fulfilled, therefore we can apply Corol-
lary 3.7 to conclude that problem (PV ) admits at least one solution. �
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