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NONLINEAR IMPULSIVE FRACTIONAL
DIFFERENTIAL EQUATIONS IN BANACH SPACES

Tian Liang Guo

Abstract. In this paper, we consider initial value problems for a class
of nonlinear impulsive fractional differential equations involving the Caputo

fractional derivative in a Banach space. We give a natural formula of the

solution and some related existence results by applying Mönch’s fixed point
theorem and the technique of measures of noncompactness.

1. Introduction

The study of impulsive differential equation has seen a rapid development in
the last few years and played a very important role in modern applied mathemat-
ical models of real processes, especially describe dynamics of populations subject
to abrupt changes as well as other phenomena such as harvesting, diseases, and
so on. For the basic theory on impulsive differential equations, the reader can
refer to the monographs of Deo et al. [7], Bainov et al. [4] and Lakshmikan-
tham et al. [14]. It is remark that Wang et al. [32] apply new method, Picard
and weakly Picard operators technique, to restudy impulsive Cauchy problems.
Some interesting existence results are obtained.

On the other hand, fractional differential equations have been proved to be
valuable tools in the modeling of many phenomena in various fields of engineer-
ing, physics and economics. Applications of fractional differential equations to
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different areas were considered by many authors and some basic results on frac-
tional differential equations have been obtained, see for example, Gaul et al. [10],
Glockle and Nonnenmacher [11], Hilfer [12], Mainardi [16], Metzler et al. [17]
and Podlubny [23]. Actually, fractional differential equations are considered
as an alternative model to integer differential equations. For more details on
fractional calculus theory, one can see the monographs of Diethelm [8], Kilbas
et al. [13], Lakshmikantham et al. [15], Miller and Ross [19], Michalski [18] and
Tarasov [25]. Fractional differential equations involving the Riemann–Liouville
fractional derivative or the Caputo fractional derivative have been paid more
and more attentions (see [1]–[3], [6], [22], [26]–[31], [33], [34], [36]–[39]).

To the best of our knowledge, the theory for impulsive fractional differential
equations in Banach spaces has not been sufficiently developed. Recently, Fec̆kan
et al. [9] make a counterexample to show that the formula of solutions in previous
papers are incorrect and reconsider a class of impulsive fractional differential
equations and introduce a correct formula of solutions for a impulsive Cauchy
problem with Caputo fractional derivative. Further, some sufficient conditions
for existence of the solutions are established by applying fixed point methods.

Motivated by [5], [9], [20], [21], we reconsider the following initial value prob-
lem (IVP for short), for fractional differential equations with nonlinear impulsive
conditions

(1.1)



cDq
0,tu(t) := cDq

t u(t) = f(t, u(t)), t ∈ J ′ := J \ {t1, . . . , tm},
J := [0, T ],

∆u(tk) := u(t+k )− u(t−k ) = Ik(u(t−k )), k = 1, . . . , m,

u(0) = u0 ∈ E.

where cDq
t is the Caputo fractional derivative of order q ∈ (0, 1) with the lower

limit zero, f : J × E → E is a given function, Ik:E → E is continuous for
k = 1, . . . , m, where E is a Banach space. Impulsive points tk satisfy 0 = t0 <

t1 < . . . < tm < tm+1 = T . u(t+k ) = lim
ε→0+

u(tk + ε) and u(t−k ) = lim
ε→0−

u(tk + ε)

represent the right and left limits of u(t) at t = tk, k = 1, . . . , m.
In order to investigate the existence of solutions of the problem above, we use

Mönch’s fixed point theorem combined with the technique of measures of non-
compactness, which is an important method for seeking solutions of differential
equations. Compared with the earlier results obtained in [9], there are at least
three differences: (i) the work space is not R but the abstract Banach space E;
(ii) f is not necessary jointly continuous and satisfies some weaker assumptions;
(iii) technique of measures of noncompactness is used to deal such problem.

The rest of this paper is organized as follows. In Section 2, we give some
notations and recall some concepts and preparation results. In addition, we
introduce a suitable definition of solutions for the IVP (1.1) and give a very
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important equivalent result. In Section 3, the existence of solution for the IVP
(1.1) is showed by virtue of fractional calculus, Mönch fixed point theorem and
properties of the measure of noncompactness. In Section 4, we discuss exis-
tence of the solution for the nonlocal impulsive differential equations. At last,
an example is given to demonstrate the application of our main results.

2. Preliminaries

Throughout this paper, let C(J,E) be the Banach space of all continuous
functions from J into E with the norm ‖u‖C := sup{‖u(t)‖ : t ∈ J} for u ∈
C(J,E). Let L1(J,E) be the Banach space of measurable functions u: J → E

which are Bochner integrable, equipped with the norm

‖u‖L1 =
∫

J

‖u(t)‖ dt.

Denote PC(J,E) = {u: J → E : u ∈ C((tk, tk+1], E), k = 0, . . . , m and there
exist u(t−k ) and u(t+k ), k = 1, . . . , m, with u(t−k ) = u(tk)}, PC(J,E) is a Banach
space with the norm ‖u‖PC := sup{‖u(t)‖ : t ∈ J}.

Let us recall the following known definitions and some fundamental facts of
the notion of Kuratowski measure of noncompactness.

Definition 2.1 ([5]). Let E be a Banach space and ΩE the bounded subsets
of E. The Kuratowski measure of noncompactness is the map α: ΩE → [0,+∞)
defined by

α(B) = inf
{

d > 0 : B ⊆
n⋃

i=1

Bi and diam(Bi) < d

}
, here Bi ∈ ΩE .

Proposition 2.2 ([5]). The Kuratowski measure of noncompactness satis-
fies some properties:

(a) α(B) = 0 ⇔ B is compact (B is relatively compact).
(b) α(B) = α(B).
(c) A ⊂ B ⇒ α(A) ≤ α(B).
(d) α(A + B) ≤ α(A) + α(B).
(e) α(cB) = |c|α(B); c ∈ R.
(f) α(convB) = α(B).

Definition 2.3. The fractional integral of order γ with lower limit zero for
a function f ∈ L1([0,∞)) → R can be written as

Iγ
t f(t) =

1
Γ(γ)

∫ t

0

f(s)
(t− s)1−γ

ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞), where Γ( · ) is the gamma
function.
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Definition 2.4. The Riemann–Liouville derivative of order γ with the lower
limit zero for a function f : [0,∞) → R can be written as

LDγ
t f(t) =

1
Γ(n− γ)

dn

dtn

∫ t

0

f(s)
(t− s)γ+1−n

ds, t > 0, n− 1 < γ < n.

Definition 2.5. The Caputo derivative of order γ for f : [0,∞)→R can be
written as

cDγ
t f(t) = LDγ

t

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n− 1 < γ < n.

Remark 2.6. (a) If f(t) ∈ Cn[0,∞), then

cDγ
t f(t) =

1
Γ(n− γ)

∫ t

0

f (n)(s)
(t− s)γ+1−n

ds = In−γ
t f (n)(t), t > 0, n− 1 < γ < n.

(b) The Caputo derivative of a constant is equal to zero.
(c) If f is an abstract function with values in E, then integrals which appear

in Definitions 2.3 and 2.4 are taken in Bochner’s sense.

Definition 2.7. A map f : J × E → E is said to Carathéodory if

(a) t → f(t, u) is measurable for each u ∈ E;
(b) u → f(t, u) is continuous for almost all t ∈ J .

Theorem 2.8 ([1], [20]). Let D be a bounded, closed and convex subset of
a Banach space such that 0 ∈ D, and let N be a continuous mapping of D into
itself. If the implication

V = conv N(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

hold for every subset V of D, then N has a fixed point.

Lemma 2.9 ([24]). Let D be a bounded, closed and convex subset of the
Banach space C(J,E), G be a continuous function on J × J and f a function
from J × E → E which satisfies the Carathéodory conditions and assume there
exists p ∈ L1(J, R+) such that for each t ∈ J and each bounded set B ∈ E we
have

lim
k→0+

α(f(Jt,k ×B)) ≤ p(t)α(B); here Jt,k = [t− k, t] ∩ J.

If V is an equicontinuous subset of D, then

α

({ ∫
J

G(s, t)f(s, u(s)) ds : u ∈ V

})
≤

∫
J

‖G(s, t)‖p(s)α(V (s)) ds,

where V (s) = {v(s) : v ∈ V }, s ∈ J .

Now, let us define what we mean by a solution of the IVP (1.1).
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Definition 2.10. A function u ∈ PC(J,E) is said to be a solution of
IVP (1.1) if u satisfies the equation cDqu(t) = f(t, u(t)) on J ′, and conditions
∆u(tk) = Ik(u(t−k )), k = 1, . . . , m, and u(0) = u0.

Motivated by Fec̆kan et al. [9], one can obtain the following important lemma.

Lemma 2.11. Let h: J → E be continuous. A function u is a solution of the
fractional integral equation

(2.1) u(t) =



u0 +
1

Γ(q)

∫ t

0

(t− s)q−1h(s) ds, for t ∈ [0, t1],

u0 + I1(u(t−1 )) +
1

Γ(q)

∫ t

0

(t− s)q−1h(s) ds, for t ∈ (t1, t2],

u0 + I1(u(t−1 )) + I2(u(t−2 )) +
1

Γ(q)

∫ t

0

(t− s)q−1h(s) ds,

for t ∈ (t2, t3],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u0 +
m∑

k=1

Ik(u(t−k )) +
1

Γ(q)

∫ t

0

(t− s)q−1h(s) ds,

for t ∈ (tm, T ],

if and only if u is a solution of the following impulsive problem

(2.2)


cDq

t u(t) = h(t), t ∈ J ′,

∆u(tk) = Ik(u(t−k )), k = 1, . . . , m,

u(0) = u0.

To end this section, we collect the following PC-type Ascoli–Arzelà theorem.

Theorem 2.12 (Theorem 2.1, [35]). Let E be a Banach space and W ⊂
PC(J,E). If the following conditions are satisfied:

(a) W is uniformly bounded subset of PC(J,E);
(b) W is equicontinuous in (tk, tk+1), k = 0, . . . , m, where t0 = 0, tm+1 = T ;
(c) W(t) = {u(t) | u ∈ W, t ∈ J \ {t1, . . . , tm}}, W(t+k ) = {u(t+k ) | u ∈ W}

and W(t−k ) = {u(t−k ) | u ∈ W} are relatively compact subsets of E.

Then W is a relatively compact subset of PC(J,E).

3. Existence of solutions for IVP

This section deals with the existence of solutions for IVP (1.1). Before stating
and proving the main results, we introduce the following hypotheses:

(H1) f : J × E → E satisfies the Carathéodory conditions.
(H2) There exists p ∈ L1(J, R+) ∩ C(J, R+), such that,

‖f(t, u)‖ ≤ p(t)‖u‖, for t ∈ J and each u ∈ E.
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(H3) There exists c > 0 such that

‖Ik(u)‖ ≤ c‖u‖, for each u ∈ E.

(H4) For each bounded set B ⊂ E, we have

α(Ik(B)) ≤ cα(B), k = 1, . . . , m.

(H5) For each t ∈ J and each bounded set B ⊂ E we have

lim
h→0+

α(f(Jt,h ×B)) ≤ p(t)α(B); here Jt,h = [t− h, t] ∩ J.

Theorem 3.1. Assume that (H1)–(H5) hold. Let p∗ = sup
t∈J

p(t). If

(3.1)
p∗T q

Γ(q + 1)
+ mc < 1,

then the IVP (1.1) has at least one solution.

Proof. We shall reduce the existence of solutions of IVP (1.1) to a fixed
point problem. To this end we consider the operator N : PC(J,E) → PC(J,E)
defined by

(Nu)(t) =



u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds, for t ∈ [0, t1],

u0 + I1(u(t−1 )) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds, for t ∈ (t1, t2],

u0 + I1(u(t−1 )) + I2(u(t−2 )) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds,

for t ∈ (t2, t3],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u0 +
m∑

k=1

Ik(u(t−k )) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds,

for t ∈ (tm, T ].

Clearly, the fixed points of the operator N are solution of IVP (1.1).
Choose

(3.3) r0 ≥
‖u0‖

1−mc− p∗T q/Γ(q + 1)
,

and consider the set Dr0 = {u ∈ PC(J,E) : ‖u‖PC ≤ r0}.
Clearly, the subset Dr0 is closed, bounded and convex. We shall show that

N satisfies the assumptions of Theorem 2.8. The proof will be given in three
steps.

Step 1. N is continuous.
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Let {un} be a sequence such that un → u in C([0, t1], E). Then for each
t ∈ [0, t1],

‖(Nun)(t)− (Nu)(t)‖ ≤ 1
Γ(q)

∫ t

0

(t− s)q−1‖f(s, un(s))− f(s, u(s))‖ ds.

Note that f is Carathéodory type function, then by the Lebesgue dominated
convergence theorem we have

(3.4) ‖Nun −Nu‖C([0,t1],E) → 0 as n →∞.

For each t ∈ (tk, tk+1], k = 1, . . . , m,

‖(Nun)(t)− (Nu)(t)‖ ≤
k∑

i=1

‖Ik(un(t−k ))− Ik(u(t−k ))‖

+
1

Γ(q)

∫ t

0

(t− s)q−1‖f(s, un(s))− f(s, u(s))‖ ds.

Note that Ik is continuous and f is Carathéodory type fucntion, then again by
the Lebesgue dominated convergence theorem we have

(3.5) ‖Nun −Nu‖C((tk,tk+1],E) → 0 as n →∞.

Combining (3.4) and (3.5), we have ‖Nun −Nu‖PC → 0 as n →∞.

Step 2. N maps Dr0 into itself.

It is obvious that N maps Dr0 into PC(J,E). For each u ∈ Dr0 , by (H2),
(H3) and the condition (3.1), we have for each t ∈ J

‖(Nu)(t)‖ ≤‖u0‖+
m∑

k=1

‖Ik(u(t−k ))‖+
1

Γ(q)

∫ t

0

(t− s)q−1‖f(s, u(s))‖ ds

≤‖u0‖+ mc‖u‖PC +
1

Γ(q)

∫ t

0

(t− s)q−1p(s)‖u‖PC ds

≤‖u0‖+ mcr0 +
p∗r0

Γ(q)

∫ t

0

(t− s)q−1 ds

≤‖u0‖+ r0

[
(p∗T q)

Γ(q + 1)
+ mc

]
≤ r0,

which implies that ‖Nu‖PC ≤ r0.

Step 3. N(Dr0) is bounded and equicontinuous.
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By Step 2, it is obvious that N(Dr0) ⊂ PC(J,E) is bounded. For arbitrary
s1, s2 ∈ [0, t1], s1 < s2, and let u ∈ Dr0 , then

‖(Nu)(s2) − (Nu)(s1)‖

=
1

Γ(q)

∥∥∥∥∫ s1

0

[(s2 − s)q−1 − (s1 − s)q−1]f(s, u(s)) ds

+
∫ s2

s1

(s2 − s)q−1f(s, u(s)) ds

∥∥∥∥
≤ 1

Γ(q)

∫ s1

0

‖[(s2 − s)q−1 − (s1 − s)q−1]f(s, u(s))‖ ds

+
1

Γ(q)

∫ s2

s1

‖(s2 − s)q−1f(s, u(s))‖ ds

≤ 1
Γ(q)

∫ s1

0

[(s1 − s)q−1 − (s2 − s)q−1]p(s)‖u‖PC ds

+
1

Γ(q)

∫ s2

s1

(s2 − s)q−1p(s)‖u‖PC ds

≤ p∗r0

Γ(q)

∫ s1

0

[(s1 − s)q−1 − (s2 − s)q−1] ds +
p∗r0

Γ(q)

∫ s2

s1

(s2 − s)q−1 ds

≤ p∗r0

Γ(q + 1)
[sq

1 + (s2 − s1)q − sq
2] +

p∗r0

Γ(q + 1)
(s2 − s1)q

≤ 2p∗r0

Γ(q + 1)
(s2 − s1)q.

As s2 → s1, the right-hand side of the above inequality tends to zero. Then Nu

is equicontinuous on interval [0, t1].
In general, for the time interval (tk, tk+1], one can repeat the above process,

we obtain the following inequality

‖(Nu)(s2)− (Nu)(s1)‖ ≤
2p∗r0

Γ(q + 1)
(s2 − s1)q.

This yields that Nu is equicontinuous on (tk, tk+1] for k = 1, . . . , m.
Now let V be a subset of Dr0 such that V ⊂ conv(N(V ) ∪ 0). V is bounded

and equicontinuous and therefore the function t → v(t) = α(V (t)) is continuous
on J . By (H4), (H5), Lemma 2.9 and the properties of the measure α we have
for each t ∈ J

v(t) ≤α(N(V )(t) ∪ {0}) ≤ α(N(V )(t))

≤ 1
Γ(q)

∫ t

0

(t− s)q−1p(s)α((V (s))) ds +
m∑

k=1

α(Ik(V (s)))

≤ 1
Γ(q)

∫ t

0

(t− s)q−1p(s)v(s) ds +
m∑

k=1

cv(s) ≤ ‖v‖C

[
p∗T q

Γ(q + 1)
+ mc

]
.
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This means that

‖v‖C

(
1−

[
p∗T q

Γ(q + 1)
+ mc

])
≤ 0.

By (3.1) it follows that ‖v‖C = 0, that is, v(t) = 0 for each t ∈ J , and then
V (t) is relatively compact in E. In view of the PC-type Ascoli–Arzelà theorem
(Theorem 2.12), V is relatively compact in Dr0 . Applying Theorem 2.8, we
conclude that N has a fixed point which is a solution of IVP (1.1). �

4. Nonlocal impulsive differential equations

This section is concerned with a generalization of the results presented in the
previous section to nonlocal impulsive fractional differential equations. More pre-
cisely we shall present some existence results for the following nonlocal problem

(4.1)


cDq

t u(t) = f(t, u(t)), t ∈ J ′,

∆u(tk) = Ik(u(t−k )), k = 1, . . . , m,

u(0) + g(u) = u0,

where f , Ik are as in Section 3 and g: PC(J,E) → E is a continuous function.
Let us introduce the following set of conditions:

(H6) There exists a constant M∗ > 0 such that

|g(u)| ≤ M∗ for each u ∈ PC(J,E).

(H7) For each bounded set B ∈ PC(J,E) we have α(g(B)) ≤ M∗α(B).

Theorem 4.1. Assume that (H1)–(H7) hold. If

p∗T q

Γ(q + 1)
+ mc + M∗ < 1,

then the nonlocal problem (4.1) has at least one solution on J .

Proof. Transform the problem (4.1) into a fixed point problem. Consider
the operator F : PC(J,E) → PC(J,E) defined by

(Fu)(t) = u0 − g(u) +
∑

0<tk<t

Ik(u(t−k )) +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds.

Clearly, the fixed points of the operator F are solution of the problem (4.1). By
repeating the same process of Theorem 3.1, we can easily show all the conditions
of Theorem 3.1 are satisfied by F . Since the proof is standard, we omit it here.�
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5. Examples

In this section we give an example to illustrate the usefulness of our main
results.

Let us consider the following fractional impulsive problem:

(5.1)


cD

1/2
t u(t) =

e−tu(t)
9 + et

, t ∈ J ′ = [0, 1] \ {t1},

∆u

(
1
2

)
=

1
2
u

(
1
2

−)
, t1 =

1
2
,

u(0) = 0,

where u: J → E := Rn. Set

f(t, u) =
e−tu

9 + et
, (t, u) ∈ J × E, Ik(u) =

1
2
u.

Obviously, for all u ∈ E and each t ∈ [0, 1],

‖f(t, u)‖ =
e−t‖u‖
9 + et

≤ 1
10
‖u‖.

conditions (H2) and (H3) hold with p(t) = 1/10, c = 1/2.
We shall check that condition (3.1) is satisfied with q = 1/2, T = 1, m = 1

and p∗ = 1/10. Indeed,

p∗T q

Γ(q + 1)
+ mc =

1/10
Γ(1/2 + 1)

+
1
2
∼= 0.61 < 1.

Then by Theorem 3.1, the problem (5.1) has at least one solution on [0, 1].
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