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COINCIDENCE OF MAPS
FROM TWO-COMPLEXES INTO GRAPHS

Marcio Colombo Fenille

Abstract. The main theorem of this article provides a necessary and suf-
ficient condition for a pair of maps from a two-complex into a one-complex
(a graph) can be homotoped to be coincidence free. As a consequence of
it, we prove that a pair of maps from a two-complex into the circle can be
homotoped to be coincidence free if and only if the two maps are homo-
topic. We also obtain an alternative proof for the known result that every
pair of maps from a graph into the bouquet of a circle and an interval can
be homotoped to be coincidence free. As applications of the main theorem,
we characterize completely when a pair of maps from the bi-dimensional
torus into the bouquet of a circle and an interval can be homotoped to
be coincidence free, and we prove that every pair of maps from the Klein
bottle into such a bouquet can be homotoped to be coincidence free.

1. Introduction

Let f1, f2: X → Y be continuous maps between topological spaces. The
general coincidence problem for such a pair of maps (f1, f2) is concerned, roughly,
with the study of the minimal cardinality of the coincidence set Coin(f ′

1, f
′
2) =

{x ∈ X : f ′
1(x) = f ′

2(x)}, among all maps f ′
1 and f ′

2 homotopic to f1 and f2,
respectively. Such minimal cardinality is denoted by µ(f1, f2) and it is called
the minimum coincidence number between f1 and f2 (or of the pair (f1, f2)).
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When Coin(f1, f2) = ∅, we say that the pair (f1, f2) is coincidence free. When
Coin(f1, f2) is not necessarily empty but µ(f1, f2) = 0 we say that the pair
(f1, f2) can be homotoped to be coincidence free, what means that there are
maps f ′

1 homotopic to f1 and f ′
2 homotopic to f2 such that the pair (f ′

1, f
′
2) is

coincidence free.

When X and Y are well-behaved topological spaces, the Nielsen coincidence
theory provides a number, called the Nielsen coincidence number, denoted by
N(f1, f2), which is a lower bound for µ(f1, f2), but this number is, in general,
not easy to compute. Moreover, there are examples in which the nullity of the
number N(f1, f2) does not implies the nullity of the number µ(f1, f2). For the
general topological coincidence theory we suggest [4].

The main theorem of this article (Theorem 2.1) presents a necessary and
sufficient condition for a pair (f1, f2) of maps from a finite and connected two-di-
mensional CW complex into a finite and connected one-dimensional CW complex
(a graph) can be homotoped to be coincidence free. Such condition involves the
existence of certain lifting in a classical diagram on fundamental groups. This
approach of the problem is strongly inspired by a similar study of the root
problem developed in [3] for the so-called convenient maps.

As a consequence of the main theorem we obtain, in Section 4, a particular
case of the main result of [5] that states that if f1, f2: X → Y are maps on
(connected) graphs with Y not homeomorphic to the circle, then f1 and f2 can be
changed by homotopy to be coincidence free. Before that, in Section 3, we regain
the well known result that two self-maps of the circle S1 can be homotoped to be
coincidence free if and only if they have the same Brouwer degree; in fact, it is well
known that for maps f1, f2: S1 → S1, the minimum coincidence number µ(f1, f2)
is equal to the Nielsen coincidence number N(f1, f2) = | deg(f1) − deg(f2)|.
More general, we prove that a pair (f1, f2) of maps from a two-dimensional CW
complex into the circle S1 can be homotoped to be coincidence free if and only
if f1 and f2 are homotopic.

For maps into the bouquet S1∨I of a circle and an interval, we prove that this
condition may be more flexibility in a sense. Specifically, we prove in Section 5
that if (f1, f2) is a pair of maps from the bi-dimensional torus T = S1 × S1

into the bouquet S1 ∨ I, then the condition “f1 is homotopic to f2” is sufficient
to µ(f1, f2) = 0, but it is not a necessary condition. In fact, we show that
µ(f1, f2) = 0 if and only if f1 and f2 are algebraically-pseudo-homotopic (see
Definition 5.1 in Section 5).

For maps from the Klein bottle into S1 or S1 ∨ I, we prove in Section 6 that
the situation is similar to that of maps between graphs, that is, there are pairs of
maps from the Klein bottle into S1 that can not be homotoped to be coincidence
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free, but every pair of maps from the Klein bottle into the bouquet S1 ∨ I can
be homotoped to be coincidence free.

Throughout the text, K (respectively L) denotes a finite and connected two-
dimensional (respectively one-dimension) CW complex. We simplify this by
saying K is a two-complex and L is a one-complex (or a graph). We also simplify
f is a continuous map to f is a map. The homomorphism induced by a map f

on fundamental groups is denoted by f#.

2. The main theorem

Throughout this section, K is a two-complex and L is a one-complex, both
finite and connected. Given two maps f1, f2: K → L we define the so-called
pair-map

F = (f1, f2): K → L × L by F (x) = (f1(x), f2(x)).

The maps f1 and f2 induce homomorphisms f1# : π1(K) → π1(L) and f2# :
π1(K) → π1(L) on fundamental groups and the pair-map induces the homomor-
phism

F#: π1(K) → π1(L × L) ≈ π1(L) ⊕ π1(L),

x �→ F#(x) = f1#(x) ⊕ f2#(x).

It is obvious that Coin(f1, f2) = ∅ if and only if the image of F does not meet the
diagonal ∆ = {(y, y) : y ∈ L} of the product L×L. Thus, Coin(f1, f2) = ∅ if and
only if there exists a factorization of F through L × L \ ∆, that is, there exists
a map F̃ : K → L×L \∆ such that F = l ◦ F̃ , where l: L×L \∆ ↪→ L×L is the
natural inclusion. Now, if this occurs, then we have the following commutative
diagram on fundamental groups:

π1(L × L \ ∆)

l#

��

π1(K)
F#

��

�F#

�������������
π1(L × L)

This makes trivial the “only if” part of the main theorem presented below. The
“if” part is not equally trivial; its proof is similar to that of Theorem 2.6 of [3].

Theorem 2.1 (Main Theorem). Let f1, f2: K → L be two maps from a two-
complex into a one-complex, both finite and connected, and let consider the pair-
map F = (f1, f2): K → L × L. The pair (f1, f2) can be homotoped to be coinci-
dence free if and only if there exists a homomorphism Φ: π1(K) → π1(L×L \∆)
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making commutative the diagram:

π1(L × L \ ∆)

l#

��

π1(K)
F#

��

Φ

��������
π1(L × L)

We remark that Theorem 2.1 can not be extended for maps between two-
complexes, even if they are surfaces. In fact, let us consider a self-map f : S2 → S2

of the sphere S2 and let c: S2 → S2 be the constant map c(x) = c ∈ S2 for all
x ∈ S2. Suppose that f has degree deg(f) 	= 0. Then, every map homotopic to
f is surjective and there exists a map ϕ homotopic to f such that the cardinality
of the set ϕ−1(c) = Coin(f, c) is equal to one. Therefore, we have µ(f, c) = 1.
On the other hand, every homomorphism from π1(S2) into π1(S2 × S2) lifts
through the homomorphism l#: π1(S2 × S2 \ ∆) → π1(S2 × S2), since these
homomorphisms are all trivial.

In order to prove Theorem 2.1, we first prove some preliminary results.
For each n ≥ 1, we denote the bouquet

∨n
i=1 S1 of n circles by Σ1

n. To avoid
confusion, we extend this notation for n = 0 by defining Σ1

0 to be the single point
space. Summarizing

Σ1
n =

n∨
i=1

S1 for n ≥ 1 and Σ1
0 = {e0

∗}.

Let L be a connected and finite one-complex (a graph). Then the fundamental
group π1(L) is a free group of rank n for some n ≥ 0 and it is well known
that, in this case, L is homotopy equivalent to the bouquet Σ1

n. Moreover, there
exists a homotopy equivalence ξL: L → Σ1

n that is a cellular map. The inverse
homotopy equivalence of ξL will be denoted by ξ′L: Σ1

n → L. Summarizing, we
write such homotopy equivalences by

ξL: L � Σ1
n and ξ′L: Σ1

n � L.

Let e0∗ be the unique 0-cell of the bouquet Σ1
n and let K be a two-complex.

Given a map f : K → Σ1
n, it is well known that f has a cellular approximation,

that is, there exists a map f ′: K → Σ1
n such that f ′ � f and f ′(K1) = {e0

∗},
where K1 is the 1-skeleton of K. In particular, every 0-cell of K is mapped
onto e0∗. Choose a 0-cell of K to be the base-point and denote it by e0

K . Consider
e0
∗ as the base-point of Σ1

n.

Lemma 2.2. Let f, g: K → Σ1
n be based maps. Then f is based homotopic

to g if and only if the homomorphisms f# and g# induced by f and g on funda-
mental groups are equal.



Coincidence of Maps from Two-Complexes into Graphs 197

Proof. It follows from Theorem 2.1 of [3] (see also Corollary 4.13 on page 95
of [1]), since the second homotopy group π2(Σ1

n) of the bouquet Σ1
n is trivial. �

Lemma 2.3. Let f, g: K → L be two cellular maps and define f ′, g′: K → Σ1
n

to be the compositions f ′ = ξL ◦ f and g′ = ξL ◦ g, where ξL: L � Σ1
n. Then f ′

and g′ are based maps. Moreover, if f ′ � g′, then f � g.

Proof. That f ′ and g′ are based maps follows from the fact that f , g and ξL

are cellular maps. In order to prove the second part, suppose that f ′ is homotopic
to g′ and that H ′: K × I → Σ1

n is a homotopy starting at f ′ and ending at g′.
Define H : K×I → L by H(x, t) = (ξ′L ◦H ′)(x, t), where ξ′L: Σ1

n � L is as before.
Then H is a homotopy starting at ξ′L ◦ ξL ◦ f and ending at ξ′L ◦ ξL ◦ g. Since ξL

and ξ′L are inverse homotopy equivalences, ξ′L ◦ ξL is homotopic to the identity
map of L. Therefore, we have f � ξ′L ◦ ξL ◦ f � ξ′L ◦ ξL ◦ g � g. �

Proposition 2.4. Let f, g: K → L be maps. Then f � g if and only if
f# = g#.

Proof. Let take cellular approximation fc and gc for f and g, respectively,
so that f � g if and only if fc � gc. Let f ′ = ξL ◦ fc and g′ = ξL ◦ gc where
ξL: L � Σ1

n. By Lemma 2.3, fc � gc if and only f ′ � g′. By Lemma 2.2,
f ′ � g′ if and only if f ′

# = g′# : π1(K) → π1(Σ1
n). Since f ′

# = (ξL)# ◦ f# and
g′# = (ξL)# ◦ g# and (ξL)# is an isomorphism, it follows that f ′

# = g′# if and
only if f# = g#. Therefore f � g if and only if f# = g#. �

The next result is a version of Lemma 2.5 of [3].

Lemma 2.5. Let Π = π1(K) and Ξ = π1(L). Every homomorphism β: Π → Ξ
can be obtained as an induced homomorphism on fundamental groups by a cellular
map f : K → L.

Henceforward, we consider L × L with its natural cellular structure. For
a well-defined subdivision of L × L, the space L × L \ ∆ retracts by strong
deformation to a (well-characterized smaller) subcomplex L∆. This retraction
(that is a cellular map) will be denoted by R∆

L and the inclusion of L∆ into
L × L \ ∆ will be denoted by i∆L . Thus, we have inverse homotopy equivalences

R∆
L : L × L \ ∆ � L∆ and i∆L : L∆ � L × L \ ∆.

Proof of the Main Theorem. As we have seen, the “only if” part follows
from the explanation made before the statement of the theorem.

In order to prove the “if” part, let suppose that Φ:π1(K) → π1(L × L \ ∆)
is a homomorphism verifying F# = l# ◦ Φ. Let consider the strong deformation
retract R∆

L : L×L \∆ � L∆ and the inclusion i∆L : L∆ � L×L \∆ as described
above. Then (R∆

L )# and (i∆L )# provide inverse isomorphisms between the groups
π1(L × L \ ∆) and π1(L∆). Let consider the composition (R∆

L )# ◦ Φ: π1(K) →
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π1(L∆). By Lemma 2.5, there exists a cellular map ϕ: K → L∆ such that
ϕ# = (R∆

L )# ◦ Φ. Let F ′: K → L × L be the composition F ′ = l ◦ i∆L ◦ ϕ. Then

F ′
# = l# ◦ (i∆L )# ◦ ϕ# = l# ◦ (i∆L )# ◦ (R∆

L )# ◦ Φ = l# ◦ Φ = F#.

It follows from Proposition 2.4 that F ′ is homotopic to F .
Let consider f ′

i : K → L given by f ′
i = pi ◦ F ′, where pi: L × L → L is the

i-th projection, for i = 1, 2. Then, the map F ′ can be considered as the pair-
map F ′ = (f ′

1, f
′
2). Since F ′ lifts to i∆L ◦ ϕ through l, we have Coin(f ′

1, f
′
2) = ∅.

Moreover, we have f ′
i � fi for i = 1, 2, since fi = pi ◦ F for i = 1, 2 and

F ′ � F . Therefore, the pair (f1, f2) can be homotoped (to the pair (f ′
1, f

′
2)) to

be coincidence free. �

In the next sections, we will study consequences of Theorem 2.1 for particular
choices of L. We start with the more simple case L = S1 and after we consider L

as the bouquet of a circles and a closed interval. For this study, it is essential to
determine the complex L∆ and the homomorphism l#: π1(L∆) ≈ π1(L×L\∆) →
π1(L×L). Henceforward, we use the letter l indistinctly to denote the inclusion
L × L \ ∆ ↪→ L × L and L∆ ↪→ L × L.

3. Maps into the circle S1

The product of the circle S1 with itself is the two-dimensional torus S1×S1.
If we consider S1 as the quotient space obtained from the closed interval [0, 1] by
identifying the points 0 and 1, the space S1×S1\∆ can be considered as the space
obtained from the square [0, 1] × [0, 1] with the vertices and a diagonal deleted,
by identifying the opposite edges. As it is illustrated in Figure 1, it is easy to
see that this space retracts by strong deformation to a circle S1. Therefore, for
L = S1, we have L∆ = S1.

�

a

b

a

b
�

a

b

a

b

1
�

2
�

retraction

1
�

2
�

a b

tionidentificaretraction

Figure 1. The retraction of S1 × S1 \ ∆ onto (S1)∆ = S1
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According to the notation of Figure 1, the class [σ] = [σ1σ2] is a generator of
π1((S1)∆) and the inclusion l: (S1)∆ ↪→ S1 × S1 maps σ to a loop that describe
a longitudinal and a meridional rounds on the torus S1 × S1. Thus, l(σ) is
homotopic to the loop ab. Therefore, the homomorphism

Z ≈ π1((S1)∆) ≈ π1(S1 × S1 \ ∆)
l#−→ π1(S1 × S1) ≈ Z ⊕ Z

induced by the natural inclusion l: S1×S1\∆ ↪→ S1×S1 is given by l#[σ] = [ab],
where [ab] is the class of the word ab in the quotient group F (a, b)/〈[a, b]〉 ≈
π1(S1 × S1) ≈ Z ⊕ Z, where F (a, b) is the free group (of rank two) generated
by the letters a and b. By considering the identification [σ] ≡ 1 ∈ Z and
[a] ≡ (1, 0) ∈ Z ⊕ Z and [b] ≡ (0, 1) ∈ Z ⊕ Z, we come to l#: Z → Z ⊕ Z

given by l#(1) = (1, 1).

Theorem 3.1. Let f1, f2: K → S1 be maps from a two-complex into the
circle. The pair (f1, f2) can be homotoped to be coincidence free if and only if f1

and f2 are homotopic.

Proof. Let F be the pair-map F = (f1, f2): K → S1 × S1. Then the
homomorphism F#: π1(K) → π1(S1 × S1) ≈ π1(S1) ⊕ π1(S1) is given by F# =
f1#⊕f2# . We need to know when exists a homomorphism Φ: π1(K) → Z making
commutative the diagram:

Z

l#

��

π1(K)
f1#⊕f2#

��

Φ

���������
Z ⊕ Z

Since l#(1) = (1, 1), it is clear that such a homomorphism Φ exists if and only if
f1# = f2# . But by Proposition 2.4, f1# = f2# if and only if f1 � f2. Therefore,
Theorem 2.1 implies that (f1, f2) can be homotoped to be coincidence free if and
only if f1 � f2. �

As a consequence of this theorem, we obtain the following well known result:

Corollary 3.2. A pair (f1, f2) of self-maps of the circle S1 can be homo-
toped to be coincidence free if and only if deg(f1) = deg(f2).

By following the classical terminology, we say that a map f : X → Y is self-
coincidence free if it can be homotoped to a map f ′ such that the pair (f, f ′) is
coincidence free. As a trivial consequence of Theorem 3.1 we have:

Corollary 3.3. Every map from a two-complex into S1 is self-coincidence
free.
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4. Maps from graphs into the bouquet S1 ∨ I

In this section, we illustrate the applicability of the main theorem (Theo-
rem 2.1) presenting an alternative proof for the main result of [5] for the partic-
ular case of maps from a (connected) graph into the bouquet S1 ∨ I, where I is
the closed interval [0, 1]. To simplify the notation, we will write often

W = S1 ∨ I.

Since W has the homotopy type of the circle S1, the product W × W has
the homotopy type of the torus S1 × S1. In fact, W × W retracts by strong
deformation to S1 ×S1. However, W×W \∆ does not have the homotopy type
of S1 × S1 \ ∆. In fact, we have seen in the previous section that S1 × S1 \ ∆
retracts to the circle S1. On the other hand, by Figure 2 we see that W×W \∆
retracts to a space homotopy equivalent to the bouquet of three circles. In this
figure, we consider W = S1 ∨ I as the space obtained by identifying the points 0
and 1 in the closed interval [0, 2]. Thus, W×W can be considered has the space
obtained from the square [0, 2]× [0, 2] by identifying the vertical edge {0}× [0, 2]
with {1}× [0, 2] and the horizontal edge [0, 2]× {0} with [0, 2]× {1}. When the
diagonal ∆ is deleted, we can realize a retraction of W × W \ ∆ onto a space
W∆ homotopy equivalent the the bouquet ∨3S1 of three circles as showed in
Figure 2.

b
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retraction
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Figure 2. The retraction of W ×W \ ∆ onto W∆ � ∨3S1
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As we have seen, the group π1(W ×W) can be naturally identified with the
fundamental group of the torus S1×S1 obtained by restricting the identifications
on the square [0, 2] × [0, 2] to the square [0, 1] × [0, 1]. Thus, π1(W ×W) is the
abelian group Z ⊕ Z with its natural presentation P = 〈a, b | [a, b]〉. Remember
that the natural quotient homomorphism

F (a, b) → F (a, b)
〈[a, b]〉 ≈ Z ⊕ Z

maps a to (1, 0) and b to (0, 1). More general, it maps the generic word aδ1bε1

aδ2bδ2 . . . aδnbεn to the pair (δ, ε) ∈ Z ⊕ Z, where δ = δ1 + δ2 + . . . + δn and
ε = ε1 + ε2 + . . . + εn.

Now, if we consider y = y1y2, z = z1z2 and w = w1w2, with the notations
of Figure 2, then we see that π1(W∆) ≈ π1(W × W \ ∆) is the free group
F (y, z, w) generated by the letters y, z and w. Moreover, it is easy to see that
the homomorphism

l#: F (y, z, w) ≈ π1(W∆) → π1(W ×W) ≡ 〈a, b | [a, b]〉 ≡ Z ⊕ Z

induced by the natural inclusion l:W∆ ↪→ W × W on fundamental groups is
given by

l#(y) = [a] ≡ (1, 0), l#(z) = [b] ≡ (0, 1), l#(w) = [ab] ≡ (1, 1).

The reader needs to understand our recurring abuse of notation.
The following result is a particular case of the main theorem of [5].

Proposition 4.1. Every pair of maps from a one-complex into the bouquet
S1 ∨ I can be homotoped to be coincidence free.

Proof. Let f1, f2: K1 → W be two maps from a (finite and connected) one-
complex into W = S1∨ I and let consider the pair-map F = (f1, f2): K1 → W×
W . Certainly, K1 is homotopy equivalent to a bouquet of circles, we say n ≥ 0
circles, and so its fundamental group π1(K1) is the free group F (x1, . . . , xn)
of rank n. By Theorem 2.1, we need to prove that exists a homomorphism
Φ: F (x1, . . . , xn) → F (y, z, w) making commutative the diagram below, where
l# : F (y, z, w) → Z ⊕ Z is the homomorphism described above.

F (y, z, w)

l#

��

F (x1, . . . , xn)
F#

��

Φ

��������
Z ⊕ Z
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For each 1 ≤ i ≤ n, F#(xi) is of the form F#(xi) = (ci, di) for some integers ci

and di. We define Φ: F (x1, . . . , xn) → F (y, z, w) to be the (unique) homomor-
phism such that Φ(xi) = ycizdi . Then Φ satisfies l# ◦Φ = F#, which proves the
proposition. �

Theorem 3.1 and Proposition 4.1 together show that there are pairs of maps
from one-complexes into S1 that can not be homotoped to be coincidence free,
but if we attach a “tail” on the circle S1 and so we consider maps from one-
complexes into the bouquet S1 ∨ I, then every pair of maps can be homotoped
to be coincidence free. In Section 5, we show that this is not true for maps
from a two-complex into S1 ∨ I. Specifically, we prove that for maps from the
bi-dimensional torus into S1 it is not sufficient, in general, to attach a “tail”
on S1 for that every pair of maps can be homotoped to be coincidence free. In
Section 6 we show that for the Klein bottle instead of the torus the situation is
similar to that of maps between graphs, that is, there are pairs of maps from the
Klein bottle into S1 that can not be homotoped to be coincidence free, but every
pair of maps from the Klein bottle into the bouquet S1 ∨ I can be homotoped
to be coincidencefree.

5. Maps from the torus into the bouquet S1 ∨ I

As application of the main theorem (Theorem 2.1) we answer in this section
when a pair of maps from the bi-dimensional torus T = S1×S1 into the bouquet
W = S1 ∨ I (we keep the notation of the previous section) can be homotoped
to be coincidence free. If we consider maps from T into the circle S1, then this
problem is completely solved by Theorem 3.1. In fact, by that theorem, a pair
(f1, f2) of maps from the torus T into S1 can be homotoped to be coincidence
free if and only if f1 and f2 are homotopic. We prove that for maps from T into
W we have more flexibility, that is, if (f1, f2) is a pair of maps from T into W ,
then the condition “f1 is homotopic to f2” is sufficient to µ(f1, f2) = 0, but this
condition is not necessary. In fact, we prove that µ(f1, f2) = 0 if and only if f1

and f2 are algebraically-pseudo-homotopic (see Definition 5.1). Let f : T → W be
a map from the torus T into W = S1 ∨ I. Then the homomorphism

f#: Z ⊕ Z ≈ π1(T) → π1(W) ≈ Z

is completely defined by its values on the canonical generators (1, 0) and (0, 1)
of the abelian free group Z⊕ Z. If this values are f#(1, 0) = c and f#(0, 1) = d,
the pair (c, d) ∈ Z ⊕ Z is called the bi-degree of f and it is denoted be bideg(f).

If f1 and f2 are two maps from T into S1 ∨ I, then we have

f1 � f2 ⇔ f1# = f2# ⇔ bideg(f1) = bideg(f2).
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It is interesting for us the case in which bideg(f1) and bideg(f2) are not necessar-
ily equal, but they satisfy a specific relation which we describe in the following
definition.

Definition 5.1. We say that two maps f1 and f2 from the torus T into
S1 ∨ I are algebraically-pseudo-homotopic if there are integers n1 and n2 and
a pair (p, q) ∈ Z ⊕ Z such that

bideg(f1) = n1(p, q) and bideg(f2) = n2(p, q).

It is obvious that if f1 and f2 are homotopic then f1 and f2 are also alge-
braically-pseudo-homotopic, but the reciprocal is not true.

Theorem 5.2. A pair (f1, f2) of maps from the torus T = S1 × S1 into the
bouquet S1 ∨ I can be homotoped to be coincidence free if and only f1 and f2 are
algebraically-pseudo-homotopic.

Proof. Let f1 and f2 be maps from the torus T into W = S1 ∨ I with
bi-degree

bideg(f1) = (δ11, δ12) and bideg(f2) = (δ21, δ22).

Then the homomorphisms f1# and f2# from π1(T) ≈ Z⊕Z into π1(W) ≈ Z are
given by

f1#(1, 0) = δ11, f1#(0, 1) = δ12 and f2#(1, 0) = δ21, f2#(0, 1) = δ22.

Let us consider the pair-map F = (f1, f2): T → W × W . Then the induced
homomorphism

F#: Z ⊕ Z ≈ π1(T) → π1(W ×W) ≈ π1(W) ⊕ π1(W) ≈ Z ⊕ Z

is given by F# = f1#⊕f2# , and so it is completely defined by its values

F#(1, 0) = (δ11, δ21) and F#(0, 1) = (δ12, δ22).

By Theorem 2.1, the pair (f1, f2) can be homotoped to be coincidence free if and
only if there exists a homomorphism Φ: Z⊕Z → F (y, z, w) making commutative
the diagram below, where l# is as in Section 4, that is, l#(y) = (1, 0), l#(z) =
(0, 1) and l#(w) = (1, 1).

F (y, z, w)

l#

��

Z ⊕ Z
F#

��

Φ
���

�
�

�
�

Z ⊕ Z
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In order to prove the “if” part of the theorem, suppose that f1 and f2 are
algebraically-pseudo-homotopic, so that there are integers n1 and n2 and a pair
(p, q) ∈ Z ⊕ Z such that

(δ11, δ12) = n1(p, q) and (δ21, δ22) = n2(p, q).

It follows that

F#(1, 0) = p(n1, n2) and F#(0, 1) = q(n1, n2).

Let us consider the homomorphism Φ: Z ⊕ Z → F (y, z, w) defined by Φ(a, b) =
(yn1zn2)ap+bq for every (a, b) ∈ Z⊕Z. In fact Φ is a well-defined homomorphism
and we have

Φ(1, 0) = (yn1zn2)p and Φ(0, 1) = (yn1zn2)q.

Since l#(y) = (1, 0) and l#(z) = (0, 1), it follows that l# ◦ Φ(1, 0) = p(n1, n2) =
F#(1, 0) and l# ◦ Φ(0, 1) = q(n1, n2) = F#(0, 1), what proves that Φ is a homo-
morphism making commutative the diagram above and so, by Theorem 2.1, the
pair (f1, f2) can be homotoped to be coincidence free.

In order to prove the “only if” part of the theorem, suppose that Φ: Z⊕Z →
F (y, z, w) is a homomorphism making commutative the diagram above, that is,
l# ◦ Φ = F#. Let denote φ1 = Φ(1, 0) and φ2 = Φ(0, 1). Since Z ⊕ Z is abelian,
the image of Φ is an abelian subgroup of the free group F (y, z, w). Hence, φ1

and φ2 commute. By the results of Section 3 of Chapter III of [2], φ1 and φ2 are
power of a same element, that is, there are φ ∈ F (y, z, w) and integers p and q

such that φ1 = φp and φ2 = φq . Let (n1, n2) = l#(φ). Since Z⊕Z is abelian, we
have

l#(φ1) = p(n1, n2) and l#(φ2) = q(n1, n2).

It follows from the commutativity of the diagram above that F#(1, 0) = p(n1, n2)
and F#(0, 1) = q(n1, n2), what implies that

bideg(f1) = n1(p, q) and bideg(f2) = n2(p, q).

Therefore, f1 and f2 are algebraically-pseudo-homotopic. �

6. Maps from the Klein bottle into the bouquet S1 ∨ I

As we have said in the end of Section 4, we show in this section that pairs
of maps from the Klein bottle into S1 or S1 ∨ I behave, in a sense, like pairs of
maps from a graph into S1 or S1 ∨ I, that is, there are pairs of maps from the
Klein bottle into S1 that can not be homotoped to be coincidence free, but every
pair of maps from the Klein bottle into the bouquet S1 ∨ I can be homotoped
to be coincidence free.



Coincidence of Maps from Two-Complexes into Graphs 205

The Klein bottle is usually meant as the square with identification of recipro-
cal sides one of them twisted, therefore given by the relation x1tx

−1
1 t. However,

by performing a cut on the diagonal of the square, which we indexed with the
letter x2, and pasting properly two of the sides of the square (exactly the sides
corresponding to the letter t), we see that the Klein bottle can be given by the
relation x2

1x
2
2. Therefore, if we denote the Klein bottle by K, then K is the

model two-complex (see [1]) of the presentation P = 〈x1, x2 | x2
1x

2
2〉 and the

fundamental group π1(K) of K is the group presented by P , that is,

π1(K) ≈ F (x1, x2)
〈x2

1x
2
2〉

.

Let Ω: F (x1, x2) → π1(K) be the corresponding quotient homomorphism. Then,
given an arbitrary group G, every homomorphism β: π1(K) → G corresponds to
a homomorphism α: F (x1, x2) → G such that β ◦ Ω = α and α(x2

1x
2
2) = eG, the

identity element of G.
We show that there exists a pair (f1, f2) of maps from the Klein bottle

K into the circle S1 that can not be homotoped to be coincidence free: Let
α1, α2: F (x1, x2) → Z be the homomorphism given by α1(x1) = 1, α1(x2) = −1,
α2(x1) = 2 and α2(x2) = −2. Since α1(x2

1x
2
2) = 0 and α2(x2

1x
2
2) = 0, there

are homomorphisms β1, β2: π1(K) → Z such that β1 ◦ Ω = α1 and β2 ◦ Ω = α2.
By Lemma 2.5, there are maps f1, f2: K → S1 such that βi = fi# : π1(K) →
π1(S1) ≈ Z for i = 1, 2. Since α1 	= α2, also f1# 	= f2# , what implies that f1 and
f2 are not homotopic. By Theorem 3.1, the pair (f1, f2) can not be homotoped
to be coincidence free.

Now, for maps from the Klein bottle into the bouquet S1 ∨ I we have the
following one:

Theorem 6.1. Every pair of maps from the Klein bottle K into the bouquet
S1 ∨ I can be homotoped to be coincidence free.

Proof. By Theorem 2.1, it is sufficient to prove that every homomorphism
β: π1(K) → Z ⊕ Z lifts to a homomorphism Φ: π1(K) → F (y, z, w) through
l#: F (y, z, w) → Z ⊕ Z, where l# is as in Section 4, that is, l#(y) = (1, 0),
l#(z) = (0, 1) and l#(w) = (1, 1).

Given such a homomorphism β: π1(K) → Z ⊕ Z, let consider the homomor-
phism α = β ◦ Ω: F (x1, x2) → Z ⊕ Z, where Ω: F (x1, x2) → π1(K) is as above.
Let denote α(x1) = (a1, b1) and α(x2) = (a2, b2). Since Ω is the homomorphism
corresponding to the quotient of F (x1, x2) by its normal subgroup generated by
the word x2

1x
2
2, we have

(0, 0) = α(x2
1x

2
2) = 2(a1 + a2, b1 + b2) ⇒ (a2, b2) = −(a1, b1).

Therefore, we can consider simply α(x1) = (a, b) and α(x2) = −(a, b).
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Let φ: F (x1, x2) → F (y, z, w) be the (unique) homomorphism defined by
φ(x1) = yazb and φ(x2) = z−by−a. Then l# ◦ φ(x1) = α(x1) and l# ◦ φ(x2) =
α(x2), what proves that l# ◦ φ = α. Now, since φ(x2

1x
2
2) is the empty word in

F (y, z, w), it follows that there exists a homomorphism Φ:π1(K) → F (y, z, w)
verifying Φ ◦ Ω = φ. Obviously, π1(K) is generated by Ω(x1) and Ω(x2). More-
over, it follows by the relationships l# ◦ φ = α and Φ ◦ Ω = φ that

l# ◦ Φ(Ω(xi)) = l# ◦ φ(xi) = α(xi) = β(Ω(xi)) for i = 1, 2.

This proves that l# ◦ Φ = β, that is, the homomorphism Φ is a lifting of β

through l#, as we wanted to prove. �
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