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ON UNIFORM ATTRACTORS
FOR NON-AUTONOMOUS p-LAPLACIAN EQUATION

WITH A DYNAMIC BOUNDARY CONDITION

Lu Yang — Meihua Yang — Jie Wu

Abstract. In this paper, we consider the non-autonomous p-Laplacian
equation with a dynamic boundary condition. The existence and structure

of a compact uniform attractor in W 1,p(Ω)×W 1−1/p,p(Γ) are established

for the case of time-dependent internal force h(t). While the nonlinearity
f and the boundary nonlinearity g are dissipative for large values without

restriction on the growth order of the polynomial.

1. Introduction

In this paper, we study the dynamical behavior of solutions of the following
non-autonomous parabolic equation with nonlinear dynamic boundary condition:

(1.1)


ut − div(|∇u|p−2∇u) + f(u) = h(x, t) in Ω,

ut + |∇u|p−2∂nu + g(u) = 0 on Γ,

u(τ) = uτ in Ω,

where Ω is a bounded domain of Rn with a smooth boundary Γ and p ≥ 2.
h(x, t) ∈ L2

loc(R;L2(Ω)). The functions f and g ∈ C1(R, R), satisfy the following
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conditions:

k′1|s|q1 − k1 ≤ f(s)s ≤ k′2|s|q1 + k2, q1 ≥ p,(1.2)

k′3|s|q2 − k3 ≤ g(s)s ≤ k′4|s|q2 + k4, q2 ≥ 2,(1.3)

(1.4) f ′(s) ≥ −l and g′(s) ≥ −m,

where l,m > 0, ki, k
′
i > 0, i = 1, 2, 3, 4.

The dynamic boundary condition arises in hydrodynamics and the heat trans-
fer theory, it is very natural in many mathematical models, such as heat transfer
in a solid in contact with a moving fluid, thermoelastic distortion, diffusion phe-
nomena, heat transfer in two medium, problems in fluid dynamics etc. (see [7],
[8], [10], [11] and references therein).

Recently, the reaction-diffusion equation with a dynamic boundary condition
has been studied by many authors. For example, in [4], [15] considered the phase-
field systems with coupling dynamic boundary conditions. Some estimates of
convergence rate of the solutions has been obtained in [22], [23].

In this paper, the operator ∆p in (1.1) denotes the p−Laplacian operator. It
is obvious that for the case p = 2, the equation (1.1)1 will become the reaction-
diffusion equation. For the case of Dirichlet boundary condition, recently, Song
et al. [21] obtained the existence of a uniform attractor in H1

0 (Ω), where the
compactness in H1

0 (Ω) was verified by using of the compactness of Lq1(Ω).
As for the reaction-diffusion equation with a dynamic boundary condition,

Fan and Zhong [12] obtained the existence of a global attractor in (H1(Ω) ∩
Lq1(Ω)) × Lq1(Γ) under some additional conditions. For the non-autonomous
case, in [1], the authors proved the existence of a weak solution, and established
the existence of a pullback attractor. [24] proved the existence of a uniform
attractor in Lq1(Ω)× Lq1(Γ). The authors in [26], [25] considered the long-time
behavior of the reaction-diffusion equation with nonlinear boundary condition
and competing nonlinearities.

On the other hand, for the p-Laplacian equation, Carvalho, Cholewa and
Dlotko gave a detailed discussion about Dirichlet boundary condition in [2], and
then they proved the existence of (L2(Ω), L2(Ω))-global attractor, see [6]. In
Carvalho and Gentile [3], the authors obtained that the corresponding semigroup
has a (L2(Ω),W 1, p

0 (Ω))-global attractor.
However, the long time behavior about the p-Laplacian equation with dy-

namic boundary is less discussed, especially for the non-autonomous systems.
In this case of autonomous systems, Gal et al. [13], [14] presented the general
results about the well-posedness and the asymptotic behavior.

Our main goal of this paper is to study the long-time behavior of solutions
of problem (1.1)–(1.4) by the theory of uniform attractors.
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The existence and structure of a uniform attractor for the problem (1.1)–(1.4)
in W 1,p(Ω)×W 1−1/p,p(Γ) has been verified.

For the existence of a uniform attractor, as in the autonomous case, some kind
of compactness of the family of processes is a key ingredient. In our paper, the
growth orders of nonlinear terms f(u) and g(u) have no further restrictions and
the solutions have not higher regularities, one can not obtain the compactness
of the process in W 1,p(Ω)×W 1−1/p,p(Γ) by embedding theorem. Furthermore,
due to the dynamic boundary conditions, the compactness of the process in
Lq1(Ω)×Lq2(Γ) apparently can not be obtained, namely, it seems to be difficult
to obtain the asymptotic compactness in W 1,p(Ω) × W 1−1/p,p(Γ) through the
compactness of Lq1(Ω)×Lq2(Γ) (as that in [21]). Therefore, some new ideas and
methods seem to be needed.

In this paper, we testify the uniform asymptotic compactness in W 1,p(Ω)×
W 1−1/p,p(Γ) only based on the compactness in L2(Ω)× L2(Γ) and without any
compactness in Lq1(Ω)× Lq2(Γ), q1, q2 > 2.

At the same time, we use the closed process to obtain the structure of the
uniform attractor, see more details in [24] (see Pata and Zelik [20] for autonomous
case).

For convenience, in what follows, we use the notation ‖ · ‖ and ‖ · ‖Γ stand
for the norm in L2(Ω) and L2(Γ), 〈 · , · 〉 and 〈 · , · 〉Γ stand for the inner product
in L2(Ω) and L2(Γ), respectively. |e| denotes the Lebesgue measure of e, while
C, Ci denote general positive constants, i = 1, 2, . . . , which will be different
in different estimates.

Hereafter, we also assume 2 ≤ p < N .
For the case p ≥ N , the embeddings W 1,p(Ω) ↪→ Ls1(Ω) and W 1,p(Ω) ↪→

W 1−1/p,p(Γ) ↪→ Ls2(Γ) hold for any s1, s2 ∈ [1,∞), which make the nonlinear
terms f( · ) and g( · ) to be trivial terms.

This paper is organized as follows: in Section 2, we give some preparations
for our consideration; in Section 3, the existence and structure of a uniform
attractor in W 1,p(Ω)×W 1−1/p,p(Γ) is obtained.

2. Preliminaries

In this section, we first recall some basic concepts about non-autonomous
systems, we refer to [5] for more details.

Let X be a Banach space, and Σ be a parameter set.
The operators {Uσ(t, τ), σ ∈ Σ} are said to be a family of processes in X

with symbol space Σ if for any σ ∈ Σ

Uσ(t, s) ◦ Uσ(s, τ) = Uσ(t, τ), for all t ≥ s ≥ τ, τ ∈ R,

Uσ(τ, τ) = Id, for all τ ∈ R.
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Let {T (s)}s≥0 be the translation semigroup on Σ, we say that a family of pro-
cesses {Uσ(t, τ), σ ∈ Σ} satisfies the translation identity if

Uσ(t + s, τ + s) = UT (s)σ(t, τ), for all σ ∈ Σ, t ≥ τ, τ ∈ R, s ≥ 0,

T (s)Σ = Σ, for all s ≥ 0.

By B(X) we denote the collection of all bounded sets of X and Rτ = {t ∈ R,
t ≥ τ}.

Definition 2.1 ([5]). A bounded set B0 ∈ B(X) is said to be a bounded
uniformly (w.r.t. σ ∈ Σ) absorbing set for {Uσ(t, τ), σ ∈ Σ} if for any τ ∈ R
and B ∈ B(X) there exists T0 = T0(B, τ) such that

⋃
σ∈Σ

Uσ(t; τ)B ⊂ B0 for all

t ≥ T0.

Definition 2.2 ([5]). A set A ⊂ X is said to be uniformly (w.r.t. σ ∈ Σ)
attracting for the family of processes {Uσ(t, τ), σ ∈ Σ} if for any fixed τ ∈ R
and any B ∈ B(X)

lim
t→+∞

(
sup
σ∈Σ

dist (Uσ(t; τ)B;A)
)

= 0,

here dist ( · , · ) is the usual Hausdorff semidistance in X between two sets.

Definition 2.3 ([5]). A closed set AΣ ⊂ X is said to be the uniform
(w.r.t. σ ∈ Σ) attractor of the family of processes {Uσ(t, τ), σ ∈ Σ} if it is
uniformly (w.r.t. σ ∈ Σ) attracting (attracting property) and contained in any
closed uniformly (w.r.t. σ ∈ Σ) attracting set A′ of the family of processes
{Uσ(t, τ), σ ∈ Σ}: AΣ ⊆ A′ (minimality property).

Definition 2.4 ([5]). A function ϕ is said to be translation bounded in
L2

loc(R;X), if

‖ϕ‖2
b = sup

t∈R

∫ t+1

t

‖ϕ‖2
X ds < +∞.

Denote by L2
b(R;X) the set of all translation bounded functions in L2

loc(R;X).

The next is an estimate of the p-Laplacian operator, e.g. see [9] for the proof.

Lemma 2.5. Let p ≥ 2. Then there exists constant K > 0 such that for any
a, b ∈ Rn,

〈|a|p−2a− |b|p−2b, a− b〉 ≥ K|a− b|p,

where K depends only on p and n; 〈 · , · 〉 denotes the inner product of Rn.
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3. Uniform attractor in W 1,p(Ω) × W 1−1/p,p(Γ)

Since Ω ⊂ Rn is a bounded domain with smooth boundary Γ, we define
the Sobolev spaces W k,p(Ω) and W k,p(Γ) to be, respectively, the completion of
Ck(Ω) and Ck(Γ), with respect to the norm

‖u‖W k,p(Ω) :=
∑

0≤|α|≤k

( ∫
Ω

|∇αu|p dx

)1/p

and

‖u‖W k,p(Γ) :=
k∑

j=0

( ∫
Γ

|∇j
Γu|p dS

)1/p

.

Here, dx denotes the Lebesgue measure on Ω and dS denotes the natural surface
measure on Γ. For p ∈ (1,∞), we define the fractional order Sobolev space

W 1−1/p,p(Γ) :=
{

u ∈ Lp(Γ) :
∫

Γ

∫
Γ

(
|u(x)− u(y)|
|x− y|1−1/p

)p 1
|x− y|N−1

dSx dSy <∞
}

.

Moreover, since W 1,p(Ω) ↪→ W 1−1/p,p(Γ), one has that the norms on W 1,p(Ω)×
W 1−1/p,p(Γ) and W 1,p(Ω) are equivalent.

Next, as in [14], we introduce the following rigorous notion of weak solution
to our problem.

Definition 3.1 ([1], [14]). The pair of functions (u(t), v(t)) is said to be
a weak solution of (1.1), if v(t) = u(t)|Γ in the trace sense, for almost every
t ∈ (τ, T ), for any τ, T ∈ R, T > τ , it satisfying:{

u(t) ∈ C([τ,∞); L2(Ω)) ∩ Lp
loc(τ, T ;W 1,p(Ω)),

v(t) ∈ C([τ,∞); L2(Γ)) ∩ Lp
loc(τ, T ;W 1−1/p,p(Γ)),

and for all σ ∈ W 1,p(Ω) (hence, σ|Γ ∈ W 1−1/p,p(Γ)) and for almost every t ∈
(τ, T ), the following relation holds:

(3.1) 〈∂tu(t), σ〉+ 〈∂tv(t), σ|Γ〉Γ + 〈|∇u|p−2∇u(t),∇σ〉
+ 〈f(u(t)), σ〉+ 〈g(v(t)), σ|Γ〉Γ = 〈h(t), σ〉.

Moreover, in the space L2(Ω)× L2(Γ), we have u(τ) = uτ , v(τ) = vτ .

Follows the well posedness result in [1], [14], we have the following result and
the time-dependent terms make no essential complications.

Theorem 3.2 ([1], [14]). Let Ω be a bounded domain of Rn with smooth
boundary Γ, h(t) is translation bounded in L2

loc(R;L2(Ω)), f and g satisfy (1.2)–
(1.4). Then for any initial data (uτ , vτ ) ∈ L2(Ω)× L2(Γ), the problem (1.1) has
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a unique solution (u(t), v(t)). Moreover, (uτ , vτ ) 7→ (u(t), v(t)) is continuous
on L2(Ω)× L2(Γ).

We now define the symbol space Σ for (1.1). Taking a fixed symbol σ0 =
h0, h0 ∈ L2

b(R;L2(Ω)). We denote by L2,w
loc (R;L2(Ω)) the space L2

loc(R;L2(Ω))
endowed with local weak convergence topology.

Set Σ0 = {h0(s+h) | h ∈ R}, and let Σ be the closure of Σ0 in L2,w
loc (R;L2(Ω)).

Thus, from Theorem 3.2, we know that the problem (1.1)–(1.4) is well posed for
all σ(s) ∈ Σ and generates a family of processes {Uσ(t, τ), σ ∈ Σ} given by the
formula:

Uσ(t, τ)(uτ , vτ ) = (u(t), v(t)),

where (u(t), v(t)) is the solution of (1.1)–(1.4) and {Uσ(t, τ), σ ∈ Σ} satisfies
(2.1)–(2.2). At the same time, due to the unique solvability, we know {Uσ(t, τ),
σ ∈ Σ} satisfies the translation identity (2.3)–(2.4).

Then, we prove the existence of an uniformly (w.r.t. σ ∈ Σ) bounded absorb-
ing set in W 1,p(Ω)×W 1−1/p,p(Γ). The proof is basically same as in [24], and for
the sake of completeness, we replicate it here.

Theorem 3.3. Assume that h(t) is translation bounded in L2
loc(R;L2(Ω)),

f and g satisfy (1.2)–(1.3). Then the family of processes {Uσ(t, τ), σ ∈ Σ}
corresponding to (1.1) has a bounded uniformly (w.r.t. σ ∈ Σ) absorbing set B0

in W 1,p(Ω)×W 1−1/p,p(Γ).

Proof. The following estimates can be deduced by a formal argument, this
can be justified by means of the approximation procedure devised in the [14,
Theorem 2.6]. Taking σ = u(t) and σ|Γ = v(t) in (3.1), we obtain that

(3.2)
1
2

d

dt

∫
Ω

|u|2 dx +
1
2

d

dt

∫
Γ

|v|2 dS +
1
2

∫
Ω

|∇u|p dx

+ k′1

∫
Ω

|u|p dx + k′3

∫
Γ

|v|q dS ≤ C +
1
4δ

∫
Ω

|h0(t, x)|2 dx,

this implies that

1
2

d

dt

∫
Ω

|u|2 dx +
1
2

d

dt

∫
Γ

|v|2 dS +
1
2

∫
Ω

|∇u|p dx + C

( ∫
Ω

|u|2 dx +
∫

Γ

|v|2 dS

)
≤ C +

1
4δ

∫
Ω

|h0(t, x)|2 dx.

Using the Gronwall lemma, we know that there exist positive constants T0 > τ

and α > 0, such that

(3.3) ‖u(t)‖2 + ‖u(t)‖2
Γ ≤ α, for any t ≥ T0, σ ∈ Σ.
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Then let F (s) =
∫ s

0
f(τ) dτ , G(s) =

∫ s

0
g(τ)dτ . Using (1.2)–(1.3) again, from

(3.2) we deduce that

d

dt

( ∫
Ω

|u|2 dx +
∫

Γ

|v|2 dS

)
+

∫
Ω

|∇u|p dx + C ′
f

∫
Ω

F (u) dx + C ′
g

∫
Γ

G(v) dS

≤ C +
1
2δ

∫
Ω

|h0(t, x)|2 dx.

Integrating the inequality above from t to t + 1, and combining (3.3), it follows
that for any t ≥ T0, we have

(3.4)
∫ t+1

t

( ∫
Ω

|∇u|p dx + C ′
f

∫
Ω

F (u) dx + C ′
g

∫
Γ

G(v) dS

)
ds

≤ C +
1
2δ

∫ t+1

t

‖h0(s)‖2 ds ≤ M1,

where the constant M1 depends on |Ω|, S(Γ), α, ‖h(t)‖2
b .

On the other hand, taking σ = ∂tu(t) and σ|Γ = ∂tv(t) in (3.1), we obtain

(3.5)
∫

Ω

|ut|2 dx +
∫

Γ

|vt|2 dS +
1
p

d

dt
‖∇u‖p +

d

dt

( ∫
Ω

F (u) dx +
∫

Γ

G(v) dS

)
=

∫
Ω

h0(t)ut dx ≤ 1
2
‖h0(t)‖2 +

1
2
‖ut‖2,

so we obtain

(3.6)
d

dt

(
‖∇u‖p + p

∫
Ω

F (u) dx + p

∫
Γ

G(v) dS

)
≤ p

2
‖h0(t)‖2.

Combining (3.4) and (3.6), by the uniformly Gronwall lemma, we have

(3.7) ‖∇u‖p + p

∫
Ω

F (u) dx + p

∫
Γ

G(v) dS ≤ ρ0, for any t ≥ T0 + 1, σ ∈ Σ,

where ρ0 depends on |Ω|, S(Γ), M1, ‖h(t)‖2
b . From (3.7), we obtain that for any

t ≥ T0 +1, σ ∈ Σ, there exists a positive constant ρ depending on |Ω|, S(Γ), M1,
‖h(t)‖2

b , such that

‖∇u(t)‖p + ‖u(t)‖Lq1 (Ω) + ‖v(t)‖Lq2 (Γ) ≤ ρ, for any t ≥ T0 + 1, σ ∈ Σ.

As mentioned in [14], since W 1,p(Ω) ↪→ W 1−1/p,p(Γ), one has that the norms on
W 1,p(Ω)×W 1−1/p,p(Γ) and W 1,p(Ω) are equivalent. The proof is complete. �

Note that, W 1,p(Ω)×W 1−1/p,p(Γ) is compactly embedded into L2(Ω)×L2(Γ).
From Theorem 3.3, the existence of a uniform attractor in L2(Ω)×L2(Γ) can be
obtained immediately.
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Corollary 3.4. Under the assumption of Theorem 3.3, the family of pro-
cesses {Uσ(t, τ)}, σ ∈ Σ corresponding to (1.1) has a compact uniform (w.r.t.
σ ∈ Σ) attractor AΣ0 in L2(Ω)× L2(Γ).

Then, we will give some a priori estimates about ut. In what follows, we
always denote the weak differential of h(t) with respect to t by h′(t).

Lemma 3.5. Let h(t) and h′(t) be translation bounded in L2
loc(R;L2(Ω)),

f and g satisfy (1.2)–(1.4), then for any τ ∈ R and any bounded subset B ⊂
L2(Ω)×L2(Γ), there exist two positive constants T = T (B, τ) > τ and M2, such
that∫

Ω

|ut(s)|2 dx +
∫

Γ

|vt(s)|2 dS ≤ M2 for all s ≥ T, (uτ , vτ ) ∈ B, σ ∈ Σ,

where

ut(s) =
d

dt
(Uσ(t, τ)uτ )

∣∣∣∣
t=s

and vt(s) =
d

dt
(Uσ(t, τ)vτ )

∣∣∣∣
t=s

,

M2 is a positive constant which depends on |Ω|, S(Γ), ρ, ‖h(t)‖2
b , ‖h′(t)‖2

b .

Proof. Our estimates can be justified by means of the approximation pro-
cedure, where we proceed formally. By differentiating (1.1) with external force
h0(t) in the time and denoting θ = ut, % = vt, we have

〈∂tθ, σ〉 + 〈∂t%, σ|Γ〉Γ + 〈|∇u|p−2∇θ,∇σ〉(3.8)

+ (p− 2)〈|∇u|p−4(∇u · ∇θ)∇u,∇σ〉
+ 〈f ′(u)θ, σ〉+ 〈g′(v)%, σ|Γ〉Γ = 〈h(t), σ〉,

for all σ ∈ W 1,p(Ω) and σ|Γ ∈ W 1−1/p,p(Γ), almost everywhere in (τ,∞), where
“ · ” denotes the dot product in Rn, %(t) := θ(t)|Γ.

Taking σ = θ and σ|Γ = % in (3.8), we obtain that

1
2

d

dt

∫
Ω

|θ|2dx +
1
2

d

dt

∫
Γ

|%|2 dS +
∫

Ω

|∇u|p−2|∇θ|2 dx

+ (p− 2)
∫

Ω

|∇u|p−4(∇u · ∇θ)2 dx +
∫

Ω

f ′(u)θ2 dx +
∫

Γ

g′(v)%2 dS

=
∫

Ω

h′0(t, x)θ(x) dx.

From (1.4), this yields

1
2

d

dt

∫
Ω

|θ|2 dx +
1
2

d

dt

∫
Γ

|%|2 dS

+
∫

Ω

|∇u|p−2|∇θ|2 dx + (p− 2)
∫

Ω

|∇u|p−4(∇u · ∇θ)2 dx

≤ l

∫
Ω

|θ|2 dx + m

∫
Γ

|%|2dS +
1
2

∫
Ω

|θ|2 dx +
1
2
‖h′0(t)‖2,
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so we have

(3.9)
d

dt

∫
Ω

|θ|2 dx +
d

dt

∫
Γ

|%|2 dS ≤ C

( ∫
Ω

|θ|2dx +
∫

Γ

|%|2 dS

)
+ ‖h′0(t)‖2.

On the other hand, integrating (3.5) from t to t + 1, and using (3.7), we have

(3.10)
∫ t+1

t

( ∫
Ω

|θ|2dx +
∫

Γ

|%|2dS

)
≤ C̃,

where C̃ depends on |Ω|, S(Γ), M , ‖h(t)‖2
b . Combining (3.9)–(3.10), and using

the uniform Gronwall lemma, we get∫
Ω

|ut(s)|2 dx +
∫

Γ

|vt(s)|2 dS ≤ M2 for all s ≥ T, (uτ , vτ ) ∈ B, σ ∈ Σ,

where M2 depends on |Ω|, S(Γ), M , ‖h(t)‖2
b , ‖h′(t)‖2

b . �

Finally, the following theorem gives the existence and structure of an uniform
attractor in W 1,p(Ω)×W 1−1/p,p(Γ):

Theorem 3.6. Assume that h(t) ∈ L∞(R;L2(Ω)) and h′(t) is translation
bounded in L2

loc(R;L2(Ω)), f and g satisfy (1.2)–(1.4). Then the family of pro-
cesses {Uσ(t, τ)}, σ ∈ Σ corresponding to (1.1) has a compact uniform (w.r.t.
σ ∈ Σ) attractor AΣ1 in W 1,p(Ω)×W 1−1/p,p(Γ) and AΣ1 satisfies:

AΣ1 = ω0,Σ(B0) =
⋃

σ∈Σ

Kσ(s), for all s ∈ R,

where Kσ(s) is the section at t = s of the kernel Kσ of the process {Uσ(t, τ)}
with symbol σ.

Proof. Let B0 be a (W 1,p(Ω) ∩ Lq1(Ω) × W 1−1/p,p(Γ) ∩ Lq2(Γ))-bounded
uniformly (w.r.t. σ ∈ Σ) absorbing set obtained in Theorem 3.3, then we need
only to show that:

(3.11) for any {(uτn
, vτn

)} ⊂ B0, {σn} ⊂ Σ and tn →∞,

{(Uσn
(tn, τn)uτn

, Uσn
(tn, τn)vτn

)}∞n=1

is precompact in W 1,p(Ω)×W 1−1/p,p(Γ).

Thanks to Corollary 3.4, we know that {(Uσn
(tn, τn)uτn

, Uσn
(tn, τn)vτn

)}∞n=1

is precompact in L2(Ω) × L2(Γ). Without loss of generality, we assume that
{(Uσn

(tn, τn)uτn
, Uσn

(tn, τn)vτn
)}∞n=1 is a Cauchy sequence in L2(Ω)× L2(Γ).

Next, we prove that {(Uσn(tn, τn)uτn , Uσn(tn, τn)vτn)}∞n=1 is a Cauchy se-
quence in W 1,p(Ω)×W 1−1/p,p(Γ).
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Denote by uσn
n (tn) := Uσn

(tn, τn)uτn
, vσn

n (tn) := Uσn
(tn, τn)vτn

, from Lem-
ma 2.5, which is the property of p-Laplacian operator when p ≥ 2, and using
(1.4) again, we know that there exists a constant c > 0, such that

c(‖uσn
n (tn) − uσm

m (tm)‖p
W 1,p(Ω) + ‖vσn

n (tn)− vσm
m (tm)‖p

W 1−1/p,p(Γ)
)

≤
∫

Ω

∣∣∣∣ d

dt
uσn

n (tn)− d

dt
uσm

m (tm)
∣∣∣∣ |uσn

n (tn)− uσm
m (tm)|

+
∫

Γ

∣∣∣∣ d

dt
vσn

n (tn)− d

dt
vσm

m (tm)
∣∣∣∣ |vσn

n (tn)− vσm
m (tm)|

+
∫

Ω

|σn − σm| |uσn
n (tn)− uσm

m (tm)|

+ l‖uσn
n (tn)− uσm

m (tm)‖2 + m‖vσn
n (tn)− vσm

m (tm)‖2
Γ,

which implies that

c(‖uσn
n (tn) − uσm

m (tm)‖p
W 1,p(Ω) + ‖vσn

n (tn)− vσm
m (tm)‖p

W 1−1/p,p(Γ)
)

≤‖ d

dt
uσn

n (tn)− d

dt
uσm

m (tm)‖ ‖uσn
n (tn)− uσm

m (tm)‖

+
∥∥∥∥ d

dt
vσn

n (tn)− d

dt
vσm

m (tm)
∥∥∥∥

Γ

‖vσn
n (tn)− vσm

m (tm)‖Γ

+ ‖σn − σm‖ ‖uσn
n (tn)− uσm

m (tm)‖
+ l‖uσn

n (tn)− uσm
m (tm)‖2 + m‖vσn

n (tn)− vσm
m (tm)‖2

Γ,

which, combining with Theorem 3.3 and Lemma 3.5, and since the norms on
W 1,p(Ω)×W 1−1/p,p(Γ) and W 1,p(Ω) are equivalent, we have (3.11) immediately.
Then, we use the closed process to obtain the structure of AΣ1 in W 1,p(Ω) ×
W 1−1/p,p(Γ), see more details in [24] (see Pata and Zelik [20] for autonomous
case). �

Remark 3.7. Note that, the growth orders of nonlinear terms f(u) and
g(u) have no further restrictions and the solutions have not higher regularities,
one can not obtain the compactness in W 1,p(Ω)×W 1−1/p,p(Γ) by an embedding
theorem. Furthermore, it seems difficult to obtain the compactness in W 1,p(Ω)×
W 1−1/p,p(Γ) through the compactness of Lq1(Ω)×Lq2(Γ) (as that in [12], [21]).

Remark 3.8. In this paper, the compactness in W 1,p(Ω)×W 1−1/p,p(Γ) was
verified only by using of the compactness in L2(Ω) × L2(Γ) and without any
compactness in Lq1(Ω) × Lq2(Γ), q1, q2 > 2. This implies that the compactness
of the process in W 1,p(Ω)×W 1−1/p,p(Γ) did not depend on the compactness of
the process in Lq1(Ω) × Lq2(Γ), q1, q2 > 2, i.e. did not depend on the growth
orders of nonlinear terms f and g only if the nonlinear terms f and g satisfy
a very weak condition that f ′ ≥ −l, g′ ≥ −m.
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Remark 3.9. Using the argument of the closed process (see more details in
Pata and Zelik [20]), we can easily obtain the structure of the uniform attractors.

Remark 3.10. In Theorem 3.6, the assumption h(x, t) ∈ L∞(R;L2(Ω)) is
only needed to guarantee the uniform asymptotic compactness in W 1,p(Ω) ×
W 1−1/p,p(Γ). In fact, if we are only concerned with the existence of the uniform
attractor in Lq1(Ω) × Lq1(Γ), then we only assume that h(x, t) ∈ L2

n(R;L2(Ω))
(i.e. normal, see [24] for more details).

Remark 3.11. As for the autonomous case of (1.1), that is h(x, t) = h(x),
under the assumption that h(x) ∈ L2(Ω), the method in Section 3 also is valid,
and the main result – Theorem 3.6 also holds.

Remark 3.12. In this paper, we study the asymptotic behavior of the so-
lutions of problem (1.1) by the concept of uniform attractors. For the non-
autonomous dynamical systems, the theory of pullback attractors is also a good
tool to describe the long time behavior of the solutions, see more detail in [16],
etc. When considered for pullback attractors, the external forces h(x, t) usu-
ally only satisfy some weaker condition than h(x, t) of this paper (see, e.g. [19]),
and it seems difficult to directly apply the method of this paper for obtaining
the W 1,p(Ω)×W 1−1/p,p(Γ)-compactness, especially, we can not perform as that
in Lemma 3.5 to derive the estimates of ut and vt.

Acknowledgments. The authors wish to thank the referee for his/her valu-
able comments and suggestions.
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