APPLICATIONS OF WEIGHTED MAPS TO PERIODIC PROBLEMS OF AUTONOMOUS DIFFERENTIAL EQUATIONS

Robert Skiba

Abstract

In this paper we present a new approach for solving the problem of the existence of closed trajectories for autonomous differential equations without the uniqueness property. To this aim, we are using a special class of set-valued maps, called weighted carriers or weighted maps.

Introduction

In this paper we are interested in the existence of solutions of the following problem

$$
\begin{cases}\dot{u}(s)=f(u(s)) & \text { for almost all } s \in[0, T], \tag{P}\\ u(s) \in M \times S^{1} & \text { for all } s \in[0, T] \\ u(0)=u\left(t_{0}\right) & \text { for some } 0<t_{0} \leq T,\end{cases}
$$

where $M \subset \mathbb{R}^{n}$ is closed and contractible, $f: M \times S^{1} \rightarrow \mathbb{R}^{n+2}$ is continuous and $T>0$ (additional assumptions on $M \subset \mathbb{R}^{n}$ and f will be specified later). A solution u of the problem (P) will be called a closed trajectory or a periodic solution $\left({ }^{1}\right)$.

[^0]The above problem for smooth maps f and smooth manifolds M has been treated in the following papers [9], [11]. It should be noted that this problem requires extreme caution because the counterexample has been provided by F.B. Fuller in [17] (see also Figure 8 in this paper). Namely, he constructed a nonvanishing vector field in a solid 4-dimensional torus $D_{3}(0,1) \times S^{1}$ with no closed trajectories $\left(^{2}\right)$.

Recall that the above problem in the case when $M \times S^{1}$ is replaced by any compact set K with $\chi(K) \neq 0$ has been studied by many authors (see for example [5], [31]), where $\chi(K)$ is the Euler characteristic defined by the formula $\chi(K):=\sum_{i \geq 0}(-1)^{i} \operatorname{dim} H_{i}(K ; \mathbb{Q})$ (where $H_{*}(\cdot ; \mathbb{Q})$ denotes the singular homology functor with rational coefficients). Notice that the methods discussed in the mentioned papers cannot be applied in our case since $\chi\left(M \times S^{1}\right)=0$.

The main aim of this paper is to give sufficient conditions under which the problem (P) admits a solution. It turned out that there was a need to apply set-valued weighted carriers introduced by G. Darbo and further developed by several authors as G. Conti, J. Pejsachowicz and R. Skiba ([11], [26], [29], [35], [36]). We should say a few words why set-valued weighted maps play an important role in our considerations. Let X be a metric space and let $\Pi: X \times \mathbb{R} \rightarrow X$ be a flow $\left({ }^{3}\right)$. Consider $Y \subset X$. Let $Y_{0}:=\{y \in Y \mid$ there exists $t>0$ such that $\Pi(y, t) \notin Y\}$. Let $\tau: Y_{0} \rightarrow[0, \infty)$ be defined by $\tau(y):=\sup \{t \geq 0 \mid \Pi(\{y\} \times[0, t]) \subset Y\}$. Recall that the above map, for example, is used to prove the Ważewski principle. In general, the above function is not continuous. Therefore, to solve the problem (P) we replaced the function τ by the following set-valued map $\varphi: Y_{0} \multimap[0, \infty)$ defined as follows $\varphi(y):=\{t \geq 0 \mid \Pi(y, t) \in \operatorname{bd} Y\}$. It turns out that under our assumptions the latter map is well-defined and belongs to the class of set-valued weighted carriers. That is why we use weighted maps in our considerations.

It should be noted that this article is strongly motivated by the papers [9], [11] in which the problem (P) is also considered. But in [9], [11] the authors assumed that the right-hand side of (P) is at least of class C^{1}. In this article we reject this assumption which in turn implies that this problem is more involved.

This article is organized as follows. After this Introduction it consists of seven sections. The first section is devoted to some preliminaries. Whereas the second section contains a slightly modified construction of the intersection index (comp. [16] and [11]) which is much more useful and convenient in our

[^1]studies. In the third section we recall some basic definitions and facts concerning weighted carriers. Furthermore, we prove that set-valued maps which appear in the study of the problem (P) belong to the class of weighed maps. For more information about weighted carriers we refer the reader to [29] and [35]. In the next section we will present the main results of this paper. Namely, we prove that under some assumptions on M and f the problem (P) admits a solution. The fifth section concerns also the problem (P) but on manifolds. We show that this assumption allows us to formulate easily verifiable conditions ensuring the existence of closed trajectories. In the short sixth section we provide some comments about possible extensions and applications of the results obtained in this article. Section 7 contains for the reader's convenience some technical proofs of results from Section 3.

Summing up this Introduction, the main results of this paper are contained in Theorems 4.13, 4.17 and 5.11 . As far as the author knows, this is the first time that periodic results for differential equations without uniqueness property have been obtained by means of a set-valued weighted analysis.

1. Preliminaries

We start with some notations which will be used in this article. Throughout the paper by a space we mean a metric space, by a pair of spaces - a pair (X, A), where X is a space and $A \subset X$; any space X is identified with the pair (X, \emptyset); all single-valued maps between spaces are considered to be continuous. Let (X, d) be a metric space. Given $Y \subset X$ and $A \subset Y$, by $\operatorname{int}_{Y} A, \operatorname{cl}_{Y} A$ and $\operatorname{bd}_{Y} A$ we denote the interior, the closure and the boundary of A in Y, respectively, while $\operatorname{int} A, \operatorname{cl} A$ and $\operatorname{bd} A$ denote the interior, the closure and the boundary of A in X. For any $\varepsilon>0$,

$$
B(A, \varepsilon):=\{x \in X \mid \operatorname{dist}(x, A)<\varepsilon\}, \quad D(A, \varepsilon):=\{x \in X \mid \operatorname{dist}(x, A) \leq \varepsilon\}
$$

where $\operatorname{dist}(x, A):=\inf \{d(x, a) \mid a \in A\}$ is the distance of $x \in X$ from A. In particular, by $D_{n}(x, r)$ (resp. $\left.B_{n}(x, r)\right)$ we will denote the closed (resp. open) ball around $x \in \mathbb{R}^{n}$ of radius $r>0, n \geq 1$. The Euclidean norm and the scalar product in \mathbb{R}^{n} are denoted by $|\cdot|$ and $\langle\cdot, \cdot\rangle$, respectively.

By $d_{H}\left(A_{1}, A_{2}\right)$ we shall denote the Hausdorff separation between two nonempty compact subsets A_{1} and A_{2} of X defined by $d_{H}\left(A_{1}, A_{2}\right):=\sup _{a \in A_{1}} \operatorname{dist}\left(a, A_{2}\right)$. It is well-known that $d_{H}\left(A_{1}, A_{2}\right)<\varepsilon$ if and only if $A_{1} \subset B\left(A_{2}, \varepsilon\right)$.

Now we recall some notions of nonsmooth analysis (see [10]). Let $M \subset \mathbb{R}^{n}$ be a nonempty closed set. A function $d_{M}: \mathbb{R}^{n} \rightarrow[0, \infty)$ defined by $d_{M}(x):=$ $\inf \{|x-y| \mid y \in M\}$ is called the distance function to M. For any $x \in M$ we
put

$$
T_{M}(x):=\left\{\begin{array}{l|l}
v \in \mathbb{R}^{n} & \liminf _{h \rightarrow 0^{+}} \frac{d_{M}(x+h v)}{h}=0 \tag{1.1}
\end{array}\right\}
$$

where $T_{M}(x)$ is called the Bouligand contingent cone to M at x.
We will say that $f: M \rightarrow \mathbb{R}^{n}$ is tangent if $f(x) \in T_{M}(x)$ for all $x \in M$ and in this case we will write $f \in \operatorname{Vect}(M)$. Given a closed subset $M \subset \mathbb{R}^{n}$, the subset

$$
T M=\left\{(x, v) \in M \times \mathbb{R}^{n} \mid v \in T_{M}(x)\right\}
$$

of $\mathbb{R}^{n} \times \mathbb{R}^{n}$ is called the tangent bundle of M. Observe that $f \in \operatorname{Vect}(M)$ induces the following continuous map $T f: M \rightarrow T M$ given by $(T f)(x):=(x, f(x))$.

Recall two properties of the Bouligand cone which will be used in this paper (see [4]):

- If $M=M_{1} \times M_{2}$, then $T_{M_{1} \times M_{2}}\left(x_{1}, x_{2}\right)=T_{M_{1}}\left(x_{1}\right) \times T_{M_{2}}\left(x_{2}\right)$ and $T\left(M_{1} \times M_{2}\right)=T M_{1} \times T M_{2}$.
- If M is a smooth manifold without boundary, then $T_{M}(x)=T_{x} M$, where $T_{x} M$ stands for the tangent space of M at x.
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a locally Lipschitz function. The generalized directional derivative of f at x in the direction $v \in \mathbb{R}^{n}$ in the sense of Clarke is defined as follows

$$
f^{\circ}(x ; v)=\limsup _{\substack{y \rightarrow x \\ h \rightarrow 0^{+}}} \frac{f(y+h v)-f(y)}{h}
$$

The generalized gradient of f at x is defined by

$$
\partial f(x):=\left\{p \in \mathbb{R}^{n} \mid\langle p, u\rangle \leq f^{\circ}(x ; u) \text { for all } u \in \mathbb{R}^{n}\right\} .
$$

Recall that if f is C^{1}, then $\partial f(x)=\{\nabla f(x)\}$. Following [5], [12] we recall the notion of a strictly regular set. Assume that $f: \operatorname{Dom}(f) \rightarrow \mathbb{R}$ is a locally Lipschitz function, where the domain $\operatorname{Dom}(f)$ is open in \mathbb{R}^{n}. We put

$$
\begin{equation*}
M:=\{x \in \operatorname{Dom}(f) \mid f(x) \leq 0\} . \tag{1.2}
\end{equation*}
$$

Notice that M need not be closed in \mathbb{R}^{n}. We will say that M is represented by f.
Definition 1.1 ([5], [12]). We say that the set M given by (1.2) (represented by a locally Lipschitz function $f: \operatorname{Dom}(f) \rightarrow \mathbb{R}$) is said to be strictly regular if
(a) M is closed,
(b) there is a neighbourhood U of M such that $\inf _{y \in U \backslash M}\| \| \partial f(y)\| \|>0$, where

$$
\left\|\left||\partial f(y)| \|:=\inf _{p \in \partial f(y)}\right| p \mid\right.
$$

In what follows, we will need the following property of strictly regular sets.
REmark 1.2 . It is easily seen that if $M \subset \mathbb{R}^{n}$ is strictly regular, then so is $M \times \mathbb{R}$. Indeed, let $f: \operatorname{Dom}(f) \rightarrow \mathbb{R}$ be a locally Lipschitz function and let $M:=\{x \in \operatorname{Dom}(f) \mid f(x) \leq 0\}$. Observe that

$$
M \times \mathbb{R}=\{(x, z) \in \operatorname{Dom}(f) \times \mathbb{R} \mid \tilde{f}(x, z) \leq 0\}
$$

where $\widetilde{f}: \operatorname{Dom}(\widetilde{f}) \rightarrow \mathbb{R}$ is defined by $\widetilde{f}(x, z):=f(x)$ for all $(x, z) \in \operatorname{Dom}(\widetilde{f}):=$ $\operatorname{Dom}(f) \times \mathbb{R}$. Moreover, $\tilde{f}^{\circ}((x, z) ;(u, w))=f^{\circ}(x ; u)$ for all $(x, z) \in \operatorname{Dom}(\widetilde{f})$ and $(u, w) \in \mathbb{R}^{n} \times \mathbb{R}$ and hence

$$
\partial \widetilde{f}(x, z)=\partial f(x) \times\{0\}
$$

From this it follows that

$$
\inf _{y \in U-M}\| \| \partial f(y)\left\|\mid>0 \Leftrightarrow \inf _{(y, z) \in(U-M) \times \mathbb{R}}\right\|\|\partial \widetilde{f}(y, z)\| \|>0
$$

which implies that $M \times \mathbb{R}$ is strictly regular.
Notice that the class of strictly regular sets is quite large. Below we shall provide a few examples of strictly regular sets (see [5] or [12]):

- Any closed convex subset K of \mathbb{R}^{n}, represented by d_{K}, is strictly regular.
- A proximate retract $K \subset \mathbb{R}^{n}$ is strictly regular $\left(^{4}\right)$.
- Any closed manifold $K \subset \mathbb{R}^{n}$ of class C^{2} is strictly regular.
- If a compact subset $M \subset \mathbb{R}^{n}$ is strictly regular, then M is a neighbourhood retract in $\mathbb{R}^{n}([5])$.
The terminology and results from the algebraic topology which are used here are quoted from the books [16] and [22], [39]. In particular, $H_{*}(X, Y ; G)$ (resp. $\left.\check{H}_{*}(X, Y ; G)\right)$ denotes the singular homology group (resp. the Cech homology group) of a pair (X, Y) with coefficients in a group G. A compact space X will be called acyclic (resp. positively acyclic) if $\check{H}_{*}(X ; \mathbb{Q})=\check{H}_{*}(\mathrm{pt} ; \mathbb{Q})$ (resp. $\left.\check{H}_{i}(X ; \mathbb{Q})=\check{H}_{i}(\mathrm{pt} ; \mathbb{Q})\right)$ for all $\left.i \geq 1\right)$, where pt is a one-point space and \mathbb{Q} denotes the set of rational numbers.

Given a metric space (X, d), by $C\left(X, \mathbb{R}^{n}\right)$ we denote the space of all bounded and continuous functions $f: X \rightarrow \mathbb{R}^{n}$ from X to \mathbb{R}^{n} equipped with the norm $\|f\|_{C}:=\sup _{x \in X}|f(x)|$.

Recall that a space X is an absolute neighbourhood retract (or ANR) if for every space Y and a homeomorphic embedding $i: X \rightarrow Y$ of X onto a closed subset $i(X) \subset Y$ there is an open neighbourhood U of $i(X)$ in Y and a function $r: U \rightarrow i(X)$ such that $r(y)=y$ for all $y \in i(X)$. In particular, any compact convex set is an ANR (see [7]).

[^2]We finish this section by recalling some definitions and facts from the theory of set-valued maps. Given two spaces X and Y, by a set-valued map (denoted by the symbol $\multimap) \varphi: X \multimap Y$ we mean a transformation which assigns to any $x \in X$ a nonempty compact set $\varphi(x) \subset Y$. A set-valued map $\varphi: X \multimap Y$ is upper semicontinuous (written usc) if, given an open subset $V \subset Y$, the set $\{x \in X \mid \varphi(x) \subset V\}$ is open. A map φ is compact if $\varphi(X)=\bigcup_{x \in X} \varphi(x)$ is relatively compact. If $\varphi: X \multimap Y$ is usc and $K \subset X$ is compact, then $\varphi(K)$ is compact. If $f: X \rightarrow Y$ (resp. $\varphi: X \multimap Y$) is a map (resp. set-valued map), then $\operatorname{Gr}(f)($ resp. $\operatorname{Gr}(\varphi))$ stands for the graph of f (resp. of φ), i.e.

$$
\operatorname{Gr}(f):=\{(x, f(x)) \mid x \in X\}, \quad \operatorname{Gr}(\varphi):=\{(x, y) \in X \times Y \mid y \in \varphi(x)\}
$$

We refer the reader to the book [21] which is a comprehensive source of set-valued maps.

2. Intersection index

In this section we are going to give a construction of an intersection index. But in our approach we also use some ideas from the construction of the fixed point index for single-valued maps due to Dold and Granas (see [16] and [22]). To be brief, we shall present a slightly modified version of the intersection index given in [11], which will turn out to be very useful in our considerations. In this section we will use the singular homology functor with integer coefficients \mathbb{Z}, which will be omitted from the notation.

Now we are going to define a fundamental class O_{K} of $H_{1}(\mathbb{R}, \mathbb{R}-K)$. Let $K \subset \mathbb{R}$ be compact. Since $H_{1}(\mathbb{R}, \mathbb{R}-0)=\mathbb{Z}$, we can choose one of the two possible generators once and for all and call it by O. Since K is compact, there exists $r>0$ such that $K \subset B_{1}(0, r)$.

Consider the following diagram

$$
H_{1}(\mathbb{R}, \mathbb{R}-K) \stackrel{i_{*}}{\leftarrow} H_{1}\left(\mathbb{R}, \mathbb{R}-B_{1}(0, r)\right) \xrightarrow{j_{*}} H_{1}(\mathbb{R}, \mathbb{R}-0)
$$

in which i, j are the respective inclusions. Since j_{*} is an isomorphism (see [2, Lemma 10.2.12]), we can define O_{K} as follows

$$
\begin{equation*}
O_{K}=\left(i_{*} \circ\left(j_{*}\right)^{-1}\right)(O) \tag{2.1}
\end{equation*}
$$

It should be noted that the above definition does not depend on the choice of $r>0$. Indeed, this follows from the fact that the following diagram

is commutative, where the unlabelled arrows are induced by the inclusions and $\tilde{r}>r$.

Observe that if U is an open set with $K \subset U \subset \mathbb{R}$, then the excision property of the singular homology implies that the induced homomorphism $i_{*}: H_{1}(U, U-$ $K) \rightarrow H_{1}(\mathbb{R}, \mathbb{R}-K)$ is an isomorphism. Thus one can put

$$
\begin{equation*}
O_{K}^{U}:=i_{*}^{-1}\left(O_{K}\right) \tag{2.2}
\end{equation*}
$$

The following lemma is easy to prove.
Lemma 2.1 (see [11] or [21, Chapter 1]). Let $K \subset K_{1} \subset V \subset U$, where K, K_{1} are compact and U, V are open subsets of \mathbb{R}. Let $k:\left(V, V-K_{1}\right) \rightarrow(U, U-K)$ be the inclusion. Then $k_{*}\left(O_{K_{1}}^{V}\right)=O_{K}^{U}$.

Let E be a subspace of \mathbb{R}^{n}, let L be a closed subset of E such that $H_{1}(E, E-$ $L) \neq 0$ and let U be an open subset of \mathbb{R}. We put

$$
\begin{equation*}
C(U, E ; L):=\left\{f: U \rightarrow E \mid f^{-1}(L) \text { is compact }\right\} . \tag{2.3}
\end{equation*}
$$

Now we are ready to define the following concept:
Definition 2.2. Under the above assumptions, we define the intersection index $i(f, U)$ of $f \in C(U, E ; L)$ by

$$
i(f, U):=f_{*}\left(O_{K}^{U}\right)
$$

where $f_{*}: H_{1}(U, U-K) \rightarrow H_{1}(E, E-L)$ is the homomorphism induced by f and $K:=f^{-1}(L)$.

Now we shall present two lemmas which will be needed in the proof of the main properties of the intersection index.

Lemma 2.3. Given $f \in C(U, E ; L)$, assume that F is a compact set such that $K:=f^{-1}(L) \subset F$ and $F \subset U$. Then

$$
\widetilde{f}_{*}\left(O_{F}^{U}\right)=f_{*}\left(O_{K}^{U}\right)
$$

where $\widetilde{f}:(U, U-F) \rightarrow(E, E-L)$ is induced by f.
Proof. It follows easily from Lemma 2.1 and the fact that the following diagram

is commutative, where $i:(U, U-F) \rightarrow(U, U-K)$ is the inclusion.

Lemma 2.4 (see [8, Appendix B]). Let U_{1} and U_{2} be two disjoint open subsets of \mathbb{R} and let $F \subset \mathbb{R}$ be closed such that $F \subset U_{1} \cup U_{2}$. Then the following diagram is commutative:

where all the homomorphisms in the above diagram are induced by the inclusions and $F_{i}:=F \cap U_{i}$, for $i=1,2$, and $U:=U_{1} \cup U_{2}$.

The intersection index satisfies the following properties:
Proposition 2.5. Let $f \in C(U, E ; L)$ and let $K:=f^{-1}(L)$.
(a) (Existence) If $i(f, U) \neq 0$, then $K \neq \emptyset$.
(b) (Excision and Additivity) If $K \subset \bigcup_{i=1}^{k} U_{i}$, where $U_{i}, 1 \leq i \leq k$, are disjoint open subsets of U, then

$$
i(f, U)=\sum_{i=1}^{k} i\left(f \mid U_{i}, U_{i}\right)
$$

(c) (Homotopy invariance) Let $h: U \times[0,1] \rightarrow E$ be a continuous function. If

$$
K_{h}:=\{x \in U \mid h(x, t) \in L \text { for some } t \in[0,1]\}
$$

is compact, then $i\left(h_{0}, U\right)=i\left(h_{1}, U\right)$.
Proof. (a) Existence. Suppose on the contrary that $K=\emptyset$. Then we have $H_{1}(U, U-K)=H_{1}(U, U)=0$ and, in view of (2.2), $O_{K}^{U}=0$. Thus, taking into account Definition 2.2, we deduce that $i(f, U)=0$, a contradiction.
(b) Excision and Additivity. The proof will be divided into two steps.

Step 1 (Excision). We assume that $K \subset U_{0}$, where $U_{0} \subset U$. Consider the following commutative diagram:

where the unlabelled arrows are induced by the inclusions. Now from the above diagram it follows immediately that $i(f, U)=i\left(f, U_{0}\right)$, as required.

Step 2 (Additivity). We assume that $K \subset \bigcup_{i=1}^{k} U_{i}$, where $U_{i}, 1 \leq i \leq k$, are disjoint open subsets of U. In addition, without loss of generality we can assume
that $k=2$. Let $K_{i}:=K \cap U_{i}, 1 \leq i \leq 2$. By Step 1 , we may replace U by $U_{1} \cup U_{2}$. Now, it suffices to prove that the following diagram is commutative:

in which, except for f and its restrictions, all the homomorphisms are induced by the inclusions. Indeed, let us observe that the lower square of the above diagram commutes by Lemma 2.4, while the commutativity of the remaining squares and the lower triangle is obvious, which completes the proof of the additivity property.
(c) Homotopy invariance. First, let us observe that $\left(h_{t}\right)^{-1}(L) \subset K_{h}$ for every $t \in[0,1]$. Consider now the following diagram:

$$
H_{1}\left(\mathbb{R}, \mathbb{R}-K_{h}\right) \stackrel{j_{*}}{\leftarrow} H_{1}\left(U, U-K_{h}\right) \xrightarrow{\left(h_{t}\right)_{*}} H_{1}(E, E-L),
$$

for any $t \in[0,1]$. Then, by Definition 2.2 and Lemma 2.3, we obtain

$$
\begin{equation*}
i\left(h_{t}, U\right)=\left(\widetilde{h}_{t}\right)_{*}\left(O_{K_{t}}^{U}\right)=\left(h_{t}\right)_{*}\left(O_{K_{h}}^{U}\right) \tag{2.4}
\end{equation*}
$$

for all $t \in[0,1]$, where

$$
\left(\widetilde{h}_{t}\right)_{*}: H_{1}\left(U, U-K_{t}\right) \rightarrow H_{1}(E, E-L)
$$

is induced by h_{t} and $K_{t}:=h_{t}^{-1}(L)$. From the homotopy invariance of the singular homology functor it follows that

$$
\begin{equation*}
\left(h_{0}\right)_{*}=\left(h_{1}\right)_{*} . \tag{2.5}
\end{equation*}
$$

Consequently, taking into account (2.4) and (2.5), we get $i\left(h_{0}, U\right)=i\left(h_{1}, U\right)$, which completes the proof.

Figure 1. $i(f,(0,1))=1, i(g,(0,1))=0, i(h,(0,1))=-1$
We finish this section by illustrating Definition 2.2 by putting $E=D_{2}(0,1) \times$ \mathbb{R} and $L=D_{2}(0,1) \times\{c\}$ (see Figure 1).

3. Weighted carriers

In this section, we shall survey the most important properties of set-valued weighted carriers which will be used in the sequel. For a complete description of the theory of set-valued weighted carriers we refer the reader to the monograph [35] (see also: [11], [26]-[29], [32], [24], [25]).

In what follows, we shall use the following notation. Given any set-valued $\operatorname{map} \Phi: X \multimap Y$, we put

$$
D(\Phi)=\{(V, x) \mid V \text { is an open subset of } \mathrm{Y} \text { and } \Phi(x) \cap \mathrm{bd} V=\emptyset\}
$$

We begin with the following two definitions.
Definition 3.1. An usc set-valued map $\Phi: X \multimap Y$ with compact values is said to be a weighted carrier if there exists a function $I_{\text {wloc }}: D(\Phi) \rightarrow \mathbb{Q}$ satisfying the following three conditions:
(a) (Existence) If $I_{\text {wloc }}(\Phi, V, x) \neq 0$, then $\Phi(x) \cap V \neq \emptyset$.
(b) (Local invariance) For every $(V, x) \in D(\Phi)$ there exists an open neighbourhood U_{x} of x such that, for all $\widetilde{x} \in U_{x}$,

$$
I_{\mathrm{wloc}}(\Phi, V, x)=I_{\mathrm{wloc}}(\Phi, V, \widetilde{x})
$$

(c) (Additivity) If $\Phi(x) \cap V \subset \bigcup_{i=1}^{k} V_{i}$, where $V_{i}, 1 \leq i \leq k$, are open disjoint subsets of V, then

$$
I_{\mathrm{wloc}}(\Phi, V, x)=\sum_{i=1}^{k} I_{\mathrm{wloc}}\left(\Phi, V_{i}, x\right)
$$

Remark 3.2 . (a) The additivity property in the case of $k=1$ will be called the excision property.
(b) It is easy to see that a function $I_{\text {wloc }}: D(\Phi) \rightarrow \mathbb{Q}$ defined by $I_{\text {wloc }}(\Phi, V, x)$ $=0$ for all $(V, x) \in D(\Phi)$ satisfies all the conditions of Definition 3.1. But this example is trivial and it will not be interesting for us and we will always try to look for a nontrivial function $I_{\text {wloc }}$ for Φ.

Definition 3.3. Let $\Phi: X \multimap Y$ be a weighted carrier and let X be a connected space. Then the number

$$
I_{w}(\Phi):=I_{\mathrm{wloc}}\left(\Phi, Y, x_{0}\right)
$$

is said to be the weighted index of Φ, where $x_{0} \in X$ is a fixed point.
Proposition 3.4 (see [35, Proposition 3.2.4]). Let $\Phi_{2}: Y \multimap Z$ and $\Phi_{1}: X \multimap$ Y be two weighted carriers. If Φ_{1} is a set-valued map with connected values, then $\Phi_{2} \circ \Phi_{1}: X \multimap Z$ is a weighted carrier, where $I_{\text {wloc }}: D\left(\Phi_{2} \circ \Phi_{1}\right) \rightarrow \mathbb{Q}$ is given by

$$
I_{\mathrm{wloc}}\left(\Phi_{2} \circ \Phi_{1}, U, x\right):=I_{\mathrm{wloc}}\left(\Phi_{2}, U, y\right),
$$

where $(U, x) \in D\left(\Phi_{2} \circ \Phi_{1}\right)$ and $y \in \Phi_{1}(x)$ is any fixed point. In particular, if X and Y are connected, then $I_{w}\left(\Phi_{2} \circ \Phi_{1}\right)=I_{w}\left(\Phi_{2}\right)$.

Below we shall present a number of examples of weighted carriers.
Example 3.5. It is easy to see that if a set-valued map $\Phi: X \multimap Y$ is usc with compact and connected values, then Φ is a weighted carrier. Indeed, it suffices to define a function $I_{\text {wloc }}: D(\Phi) \rightarrow \mathbb{Q}$ as follows

$$
I_{\mathrm{wloc}}(\Phi, V, x):= \begin{cases}1 & \text { if } \Phi(x) \cap V \neq \emptyset \\ 0 & \text { if } \Phi(x) \cap V=\emptyset\end{cases}
$$

for any $(V, x) \in D(\Phi)$. In particular, if $\Phi: \mathbb{R} \multimap \mathbb{R}$ is defined by $\Phi(x)=[-x, x]$,

Figure 2. A graph of a set-valued map $\Phi: \mathbb{R} \multimap \mathbb{R}$
then $D(\Phi)=\{(V, x) \mid V \subset \mathbb{R}$ is open and $[-x, x] \subset \mathbb{R}-\operatorname{bd} V\}$ and

$$
I_{\mathrm{wloc}}(\Phi, V, x)= \begin{cases}1 & \text { if } x \in V \\ 0 & \text { if } x \notin V\end{cases}
$$

Example 3.6. Let X be a compact ANR and let $f: X \times[0,1] \rightarrow X$ be a continuous function with the Lefschetz number $\lambda\left(f_{0}\right) \neq 0$ of f_{0}, where $f_{0}(\cdot)=$ $f(\cdot, 0)$. Then an usc set-valued map $\Phi:[0,1] \multimap X$ defined by $\Phi(t)=\{x \in X \mid$ $\left.f_{t}(x):=f(x, t)=x\right\}$, for all $t \in[0,1]$, is a weighted carrier. Indeed, it suffices to define a nontrivial function $I_{\text {wloc }}: D(\Phi) \rightarrow \mathbb{Q}$ by

$$
I_{\mathrm{wloc}}(\Phi, U, t):=\operatorname{ind}\left(f_{t}, U, X\right)
$$

where $\operatorname{ind}\left(f_{t}, U, X\right)$ denotes the fixed point index for single-valued maps (for more information on the fixed point index for single-valued maps see [22]).

In what follows, we shall make use of the following space:

$$
\begin{equation*}
C_{V}\left([a, b], \mathbb{R}^{m}\right):=\left\{f \in C\left([a, b], \mathbb{R}^{m}\right) \mid f(a) \in V, f(b) \in \mathbb{R}^{m}-\mathrm{cl} V\right\} \tag{3.1}
\end{equation*}
$$

where $[a, b] \subset \mathbb{R}$ and V is an open subset of \mathbb{R}^{m}. The space $C_{V}\left([a, b], \mathbb{R}^{m}\right)$ is equipped with the following metric $d(f, g):=\max _{t \in[a, b]}|f(t)-g(t)|$. Furthermore, one can prove that $C_{V}\left([a, b], \mathbb{R}^{m}\right)$ is an ANR.

Lemma 3.7. Under the above assumptions, $C_{V}\left([a, b], \mathbb{R}^{m}\right)$ is an ANR.
Proof. Since $C\left([a, b], \mathbb{R}^{m}\right)$ is a linear space, and hence an ANR, it suffices to show that $C_{V}\left([a, b], \mathbb{R}^{m}\right)$ is an open subset of $C\left([a, b], \mathbb{R}^{m}\right)$. To this end, fix $f \in C_{V}\left([a, b], \mathbb{R}^{m}\right)$. Then $f(a) \in V$ and $f(b) \in \mathbb{R}^{m}-\operatorname{cl} V$. Since V and $\mathbb{R}^{m}-\mathrm{cl} V$ are open, it follows that there exists $\varepsilon>0$ such that $B(f(a), \varepsilon) \subset V$ and $B(f(b), \varepsilon) \subset \mathbb{R}^{m}-\mathrm{cl} V$. Thus

$$
B(f, \varepsilon):=\left\{g \in C\left([a, b], \mathbb{R}^{m}\right) \mid\|f-g\|_{C}<\varepsilon\right\} \subset C_{V}\left([a, b], \mathbb{R}^{m}\right)
$$

which completes the proof.
The following two results will be of crucial importance for our further considerations.

Lemma 3.8. Under the above assumptions, a set-valued map $\mathbb{P}: C_{V}\left([a, b], \mathbb{R}^{m}\right)$ $\multimap(a, b)$ defined by

$$
\begin{equation*}
\mathbb{P}(f):=\{t \in[a, b] \mid f(t) \in \operatorname{bd} V\} \tag{3.2}
\end{equation*}
$$

is usc with compact values.
Proof. First, define a set-valued map $\mathbb{P}_{0}: C_{V}\left([a, b], \mathbb{R}^{m}\right) \multimap[a, b]$ by $\mathbb{P}_{0}(f):=$ $\mathbb{P}(f)$ for all $f \in C_{V}\left([a, b], \mathbb{R}^{m}\right)$. It is clear that the upper semicontinuity of \mathbb{P}_{0} implies that \mathbb{P} is usc. Therefore it is enough to prove that \mathbb{P}_{0} is usc. Since
$\mathbb{P}_{0}\left(C_{V}\left([a, b], \mathbb{R}^{m}\right)\right) \subset[a, b]$, it suffices to show that the graph $\operatorname{Gr}\left(\mathbb{P}_{0}\right)$ of \mathbb{P}_{0} is closed (see [21, Proposition 14.5]). For this purpose, take a sequence $\left(f_{n}, t_{n}\right) \in$ $\operatorname{Gr}\left(\mathbb{P}_{0}\right)$ such that

$$
\left(f_{n}, t_{n}\right) \xrightarrow{n \rightarrow \infty}\left(f_{0}, t_{0}\right) \in C_{V}\left([a, b], \mathbb{R}^{m}\right) \times[a, b] .
$$

We have to prove that $f_{0}\left(t_{0}\right) \in \operatorname{bd} V$. Let $\varepsilon>0$. Then there exists $n_{0}>0$ such that for any $n \geq n_{0}$ one has

$$
\begin{equation*}
\left|f_{0}\left(t_{0}\right)-f_{0}\left(t_{n_{0}}\right)\right|<\varepsilon / 2 \quad \text { and } \quad\left|f_{0}(s)-f_{n}(s)\right|<\varepsilon / 2 \tag{3.3}
\end{equation*}
$$

for all $s \in[a, b]$. Consequently, in view of (3.3), we get

$$
\left|f_{0}\left(t_{0}\right)-f_{n_{0}}\left(t_{n_{0}}\right)\right|<\varepsilon .
$$

Thus $f_{0}\left(t_{0}\right) \in B(\operatorname{bd} V, \varepsilon)$. Since ε was arbitrary, this shows (recall that $\operatorname{bd} V$ is closed) that $f_{0}\left(t_{0}\right) \in \operatorname{bd} V$. This completes the proof.

Proposition 3.9. A set-valued map $\mathbb{P}: C_{V}\left([a, b], \mathbb{R}^{m}\right) \multimap(a, b)$ defined in (3.2) is a weighted carrier.

Proof. We have proved in Lemma 3.8 that \mathbb{P} is usc. Now, let $I_{\text {wloc }}: D(\mathbb{P}) \rightarrow$ \mathbb{Z} be defined by the formula:

$$
\begin{equation*}
I_{\mathrm{wloc}}(\mathbb{P}, U, f):=i(f \mid U, U) \tag{3.4}
\end{equation*}
$$

for any $(U, f) \in D(\mathbb{P}):=\left\{(U, f) \mid f \in C_{V}\left([a, b], \mathbb{R}^{m}\right), U \subset(a, b), \mathbb{P}(f) \cap \operatorname{bd} U=\right.$ $\emptyset\}\left({ }^{5}\right)$. First, observe that if $(U, f) \in D(\mathbb{P})$, then $f \mid U \in C\left(U, \mathbb{R}^{m} ;\right.$ bd $\left.V\right)$ (see (2.3)). Now, we shall prove that such a function $I_{\text {wloc }}: D(\mathbb{P}) \rightarrow \mathbb{Z}$ satisfies all the conditions of Definition 3.1.

Existence. If $I_{\text {wloc }}(\mathbb{P}, U, f) \neq 0$, then $i(f \mid U, U) \neq 0$. Consequently, Proposition 2.5 implies that $f^{-1}(\operatorname{bd} V) \cap U \neq \emptyset$, which proves that $\mathbb{P}(f) \cap U \neq \emptyset$.

Local invariance. Let $(U, f) \in D(\mathbb{P})$. We are to prove that there exists $r>0$ such that

$$
\begin{equation*}
I_{\mathrm{wloc}}(\mathbb{P}, U, f)=I_{\mathrm{wloc}}(\mathbb{P}, U, g) \tag{3.5}
\end{equation*}
$$

for all $g \in B(f, r)=\left\{g \in C_{V}\left([a, b], \mathbb{R}^{m}\right) \mid d(f, g)<r\right\}$. Let

$$
\begin{equation*}
\varepsilon_{0}:=\min _{x \in \mathrm{bd} U} \operatorname{dist}(f(x), \operatorname{bd} V)>0 \tag{3.6}
\end{equation*}
$$

Before proceeding further, we need to state the following lemma.

[^3]Lemma 3.10 ([22, Chapter 11]). Let X be a compact ANR and let Y be an ANR. In addition, let $f: X \rightarrow Y$ be a continuous function and let $\varepsilon>0$. Then there exists $\delta_{f}>0$ such that for any continuous map $g: X \rightarrow Y$ with $d(f(x), g(x))<\delta_{f}$, for all $x \in X$, there exists a continuous map $h: X \times[0,1] \rightarrow Y$ such that
(a) $h(x, 0)=f(x), h(x, 1)=g(x)$, for all $x \in X$,
(b) $\operatorname{diam}(h(\{x\} \times[0,1]))<\varepsilon$, for all $x \in X$,
where $\operatorname{diam}(h(\{x\} \times[0,1])):=\sup \left\{d\left(h\left(x, t_{1}\right), h\left(x, t_{2}\right)\right) \mid t_{1}, t_{2} \in[0,1]\right\}$.
Let δ_{f} be as in Lemma 3.10 for $\varepsilon_{0} / 2$ and f (where $X=[a, b]$ and $Y=\mathbb{R}^{m}$). We claim that it is enough to put $r:=\delta_{f}$. To see this, choose any function $g \in B(f, r)$. Then, by Lemma 3.10, there exists a homotopy $h:[a, b] \times[0,1] \rightarrow \mathbb{R}^{m}$ such that $h(x, 0)=f(x), h(x, 1)=g(x)$ and $h(\cdot, t) \in B\left(f, \varepsilon_{0} / 2\right)$, for all $t \in[0,1]$. Let us observe that

$$
\{x \in \operatorname{cl} U \mid h(x, t) \in \operatorname{bd} V \text { for some } t \in[0,1]\} \cap \operatorname{bd} U=\emptyset .
$$

Indeed, otherwise, there exists $x_{0} \in \operatorname{bd} U$ such that $h\left(x_{0}, t_{0}\right) \in \operatorname{bd} V$ for some $t_{0} \in[0,1]$. Moreover, one has

$$
\begin{equation*}
\left|\operatorname{dist}(f(x), \operatorname{bd} V)-\operatorname{dist}\left(h\left(x, t_{0}\right), \operatorname{bd} V\right)\right| \leq\left|f(x)-h\left(x, t_{0}\right)\right| \tag{3.7}
\end{equation*}
$$

for all $x \in[a, b]$. Consequently, taking into account (3.6)-(3.7), one obtains

$$
\varepsilon_{0} \leq \operatorname{dist}\left(f\left(x_{0}\right), \operatorname{bd} V\right) \leq \varepsilon_{0} / 2
$$

a contradiction. Therefore, by the homotopy invariance of the intersection index, one obtains

$$
I_{\mathrm{wloc}}(\mathbb{P}, U, f)=i(f \mid U, U)=i(g \mid U, U)=I_{\mathrm{wloc}}(\mathbb{P}, U, g)
$$

which proves (3.5) as required.
Additivity. This condition follows immediately from the additivity property of the intersection index.

REmark 3.11. Let U_{0} and U_{1} be two disjoint nonempty connected subsets of \mathbb{R}^{m}. Then from the long exact sequence of the pair $\left(\mathbb{R}^{m}, U_{0} \cup U_{1}\right)$ for the singular homology functor it follows that

$$
H_{1}\left(\mathbb{R}^{m}, U_{0} \cup U_{1}\right)=\mathbb{Z}
$$

Furthermore, any continuous function $\sigma:[0,1] \rightarrow \mathbb{R}^{m}$ with $\sigma(0) \in U_{0}$ and $\sigma(1) \in$ U_{1} belongs to the group of relative 1-cycles $\mathbf{Z}_{1}\left(\mathbb{R}^{m}, U_{0} \cup U_{1}\right)$ and the homology class [σ] of σ generates $H_{1}\left(\mathbb{R}^{m}, U_{0} \cup U_{1}\right)$. What is more, if τ is another continuous function with $\tau(0) \in U_{0}$ and $\tau(1) \in U_{1}$, then $[\sigma]=[\tau]$. Therefore we will identify this homology class $[\sigma]$ with the generator $1 \in \mathbb{Z}$.

Now we are able to prove the following important lemma.

Lemma 3.12. Let $\mathbb{P}: C_{V}\left([a, b], \mathbb{R}^{m}\right) \multimap(a, b)$ and $I_{\text {wloc }}: D(\mathbb{P}) \rightarrow \mathbb{Q}$ be given by (3.2) and (3.4), respectively. Let $V \subset \mathbb{R}^{m}$ be open and connected such that $\mathbb{R}^{m}-\mathrm{cl} V$ is connected. Then
(a) $I_{\text {wloc }}(\mathbb{P},(a, b), f)$ is the generator of $H_{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\operatorname{bd} V\right)$, for any $f \in$ $C_{V}\left([a, b], \mathbb{R}^{m}\right) ;$
(b) $I_{\mathrm{wloc}}(\mathbb{P},(a, b), f)=I_{\mathrm{wloc}}(\mathbb{P},(a, b), g)$, for all $f, g \in C_{V}\left([a, b], \mathbb{R}^{m}\right)$, and hence $I_{w}(\mathbb{P})=1$.

Proof. Fix $f \in C_{V}\left([a, b], \mathbb{R}^{m}\right)$. Let $K:=f^{-1}(\operatorname{bd} V) \subset(a, b)$ and let $r: \mathbb{R} \rightarrow$ [$a, b]$ be a retraction such that $r(x)=a$ for $x \leq a$ and $r(x)=b$ for $x \geq b$. Let $\mathbb{R}^{m}-\operatorname{bd} V=U_{0} \cup U_{1}$, where $U_{0}:=V$ and $U_{1}:=\mathbb{R}^{m}-\mathrm{cl} V$ Consider the following commutative diagram:

Let $c:=2 \max \{|a|,|b|\}$. Let $\sigma:[0,1] \rightarrow \mathbb{R}$ be any continuous function such that $\sigma(0)=-c$ and $\sigma(1)=c$. Then $O_{K}=[\sigma] \in H_{1}(\mathbb{R}, \mathbb{R}-K)$ and

$$
I_{\mathrm{wloc}}(\mathbb{P},(a, b), f)=i(f, f \mid(a, b))=(f \mid(a, b))_{*}\left(O_{K}^{(a, b)}\right)
$$

In addition, one has

$$
\begin{equation*}
\left(f_{*} \circ r_{*}\right)\left(O_{K}\right)=[f \circ r \circ \sigma] \tag{3.9}
\end{equation*}
$$

By Remark 3.11, $H_{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\operatorname{bd} V\right)=\mathbb{Z}$ and $[f \circ r \circ \sigma]$ is the generator of $H_{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\operatorname{bd} V\right)$ since $(f \circ r \circ \sigma)(0)=f(r(-c))=f(a) \in U_{0}$ and $(f \circ r \circ \sigma)(1)=$ $f(r(c))=f(b) \in U_{1}$. Hence, taking into account (3.8)-(3.9), we get that

$$
I_{\mathrm{wloc}}(\mathbb{P},(a, b), f)=[f \circ r \circ \sigma]
$$

is the generator of $H_{1}\left(\mathbb{R}^{m}, \mathbb{R}^{m}-\mathrm{bd} V\right)=\mathbb{Z}$, which completes the proof of (a). As concerns (b), if $f, g \in C_{V}\left([a, b], \mathbb{R}^{m}\right)$, then

$$
I_{\mathrm{wloc}}(\mathbb{P},(a, b), f)=[f \circ r \circ \sigma] \xlongequal{\text { Remark 3.11 }}[g \circ r \circ \sigma]=I_{\mathrm{wloc}}(\mathbb{P},(a, b), g)
$$

Now we shall present some very important fact which may not be true in \mathbb{R}^{n} for $n>1$.

Lemma 3.13. If $A \subset \mathbb{R}$ is compact, then $\check{H}_{k}(A ; \mathbb{Q})=0$ for $k \geq 1$.
Proof. Let $B(A, \varepsilon):=\{x \in \mathbb{R} \mid \operatorname{dist}(x, A)<\varepsilon\}$. Since $B(A, \varepsilon) \subset \mathbb{R}$, we infer that it can be represented as a finite (disjoint) sum of convex sets. Hence we deduce that $D(A, \varepsilon)$ is also a finite (disjoint) sum of convex sets. Consequently,
it follows that $\check{H}_{k}(D(A, \varepsilon) ; \mathbb{Q})=0$, for $k \geq 1$. Now from this we arrive at the conclusion of lemma, since

$$
\check{H}_{*}(A ; \mathbb{Q})=\varliminf_{\rightleftarrows} \check{H}_{*}(D(A, 1 / n) ; \mathbb{Q})
$$

(see [22, Chapter 20]).

4. Main results

In this section we will prove the existence of solutions for the problem (P). To this aim we need some preliminary results. We start with some remarks and lemmas. Before we do it, we will introduce some notations. Let $p: \mathbb{R} \rightarrow S^{1}$ be a covering map defined by $p(t)=(\cos (t), \sin (t))$, for $t \in \mathbb{R}$. Let id $\times p: M \times \mathbb{R} \rightarrow$ $M \times S^{1}$ and $T_{0}: \mathbb{R}^{n+1} \times \mathbb{R} \rightarrow \mathbb{R}^{n+2}$ be given by
$(\mathrm{id} \times p)(x, y):=(x, p(y)) \quad$ and $\quad T_{0}((x, u), y):=(x, u(-\sin (y), \cos (y)))$.
In what follows, we shall make use of the following two projections: $\mathrm{pr}_{1}: X_{1} \times$ $X_{2} \rightarrow X_{1}$ and $\mathrm{pr}_{2}: X_{1} \times X_{2} \rightarrow X_{2}$.

Remark 4.1. From now on we will assume that $M \subset \mathbb{R}^{n}$ (represented by a locally Lipschitz function $f: \operatorname{Dom}(f) \rightarrow \mathbb{R}$) is a contractible and strictly regular ANR.

Now we shall prove a lifting lemma which will be used in our further considerations.

Lemma 4.2 (Lifting lemma). Let $f: M \times S^{1} \rightarrow \mathbb{R}^{n+2}$ be continuous and tangent. Then there exists a continuous and tangent map $\widetilde{f}: M \times \mathbb{R} \rightarrow \mathbb{R}^{n+1}$ such that the following diagram:

commutes.
Proof. Let $f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)$, where $f_{1}(x, y) \in \mathbb{R}^{n}, f_{2}(x, y) \in \mathbb{R}^{2}$, $x \in \mathbb{R}^{n}$ and $y \in S^{1}$. Then it suffices to define \tilde{f} as follows

$$
\widetilde{f}:=\left(f_{1} \circ(\mathrm{id} \times p), \widetilde{f}_{2} \circ(\mathrm{id} \times p)\right)
$$

where $\tilde{f}_{2}(x, y):=\left\langle f_{2}(x, y), y^{\perp}\right\rangle$ and $y^{\perp}=\left(y_{1}, y_{2}\right)^{\perp}=\left(-y_{2}, y_{1}\right)$.
Remark 4.3. A function \tilde{f} satisfying (4.1) will be called a lift of f. Furthermore, it is easily seen that if f is bounded, then \widetilde{f} is also a bounded map.

Let $N \subset \mathbb{R}^{k}$ be a strictly regular set and let $g \in \operatorname{Vect}(N)$ be bounded. Consider the Cauchy problem:

$$
\left\{\begin{array}{l}
\dot{u}(t)=g(u(t)) \\
u(0)=z_{0} \in N
\end{array}\right.
$$

In what follows by

$$
S_{g}(z):=\{u \mid \dot{u}(t)=g(u(t)) \text { a.e. on }[0, \infty), u(0)=z, u([0, \infty)) \subset N\}
$$

we will denote the set of all solutions to the Cauchy problem, for all $z \in N$. The following lemma will be useful in the sequel.

Lemma $4.4([5])$. If $g \in \operatorname{Vect}(N)$ is bounded, then $S_{g}(z)$ is a compact R_{δ}-set in $C_{u}\left([0, \infty), \mathbb{R}^{k}\right)\left({ }^{6}\right)$.

REmark 4.5. (a) It is well-known that the map $S_{g}: N \multimap C_{u}\left([0, \infty), \mathbb{R}^{k}\right)$ is usc (see [4], [15], [18]).
(b) It should be noted that in the paper [5] it was only proved that the set of all solutions restricted to $[0, T]$ (denoted by $S_{g}^{T}(z)$, for any $z \in N$) is a compact R_{δ}-set. However, by using the technique of inverse systems, one can extend this result to the case where all solutions are defined on $[0, \infty$) (see [1], [20]). What is more, Lemma 4.4 is also true for maps $g: N \rightarrow \mathbb{R}^{k}$ having a sublinear growth, i.e. such that there is $c>0$ with $|g(z)| \leq c(1+|z|)$ for all $z \in N$. This follows from the fact that, for any $T>0$, by using the Gronwall inequality ($[15$, p. 52$]$) one can prove that g can be replaced by a bounded map \bar{g} such that $S_{\bar{g}}^{T}(z)=S_{g}^{T}(z)$, for any $z \in N$.
(c) Consider a map $\Pi_{g}: N \times[0, \infty) \multimap N$ given by the formula

$$
\Pi_{g}(x, t):=\left\{u(t) \mid u(\cdot) \in S_{g}(x)\right\}
$$

Then Π_{g} is an usc set-valued map with compact values satisfying the following conditions:

- $\Pi_{g}(x, 0)=\{x\} ;$
- $\Pi_{g}\left(\Pi_{g}(x, s), t\right)=\Pi_{g}(x, s+t)$, for $s, t \in[0, \infty)$.

In what folows, we will call Π_{g} a set-valued semiflow.
Definition 4.6. A compact subset $K \subset N$ is called an attractor for a vector field $g \in \operatorname{Vect}(N)$ if $d_{H}\left(\Pi_{g}(x, t), K\right) \rightarrow 0$ as $t \rightarrow \infty$, for every $x \in N$. A vector field $g \in \operatorname{Vect}(N)$ is said to be of compact attraction (written $g \in \operatorname{Vect}_{c}(N)$) if g has a compact attractor.

[^4]Remark 4.7. Notice that if K is a compact attractor for $g \in \operatorname{Vect}(N)$, then any compact set K^{\prime} containing K is also a compact attractor.

Let $f \in \operatorname{Vect}\left(M \times S^{1}\right)$ and let $\tilde{f} \in \operatorname{Vect}(M \times \mathbb{R})$ be a lift of f. Fix $x_{0} \in M$, $y_{0} \in S^{1}$ and $\widetilde{y}_{0} \in p^{-1}\left(y_{0}\right)$. Then one can consider two Cauchy problems:

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
\dot{u}(t)=f(u(t)), \\
u(0)
\end{array}=\left(x_{0}, y_{0}\right),\right.
\end{array}\right\} \begin{aligned}
& \dot{u}(t)=\widetilde{f}(u(t)), \tag{CP0}\\
& u(0)=\left(x_{0}, \widetilde{y}_{0}\right) .
\end{aligned}
$$

We shall prove that there exists a connection between problem (CP0) and (CP1) which will be used in order to solve problem (P). To be precise, we will prove that $S_{\widetilde{f}}\left(x_{0}, \widetilde{y}_{0}\right) \subset C_{u}\left([0, \infty), \mathbb{R}^{n+1}\right)$ is homeomorphic to $S_{f}\left(x_{0}, y_{0}\right) \subset C_{u}\left([0, \infty), \mathbb{R}^{n+2}\right)$.

Since $p: \mathbb{R} \rightarrow S^{1}$ is a covering map, it follows in view of the lifting theorem that for any map u : $[0, \infty) \rightarrow M \times S^{1}$ there exists a unique map $\widetilde{u}:[0, \infty) \rightarrow M \times \mathbb{R}$ such that the following diagram commutes (see [Span66]):

and $u(0)=\left(x_{0}, y_{0}\right), \widetilde{u}(0)=\left(x_{0}, \widetilde{y}_{0}\right)$. It is clear that the above diagram induces the following:

where $T, T[\widetilde{u}]$ and $T[u]\left({ }^{7}\right)$ are given by

$$
\begin{gathered}
T((x, y),(u, v))=((x,(\cos (y), \sin (y))),(u, v(-\sin (y), \cos (y)))), \\
T[\widetilde{u}](t)=(\widetilde{u}(t), \dot{\tilde{u}}(t)), \quad T[u](t)=(u(t), \dot{u}(t)) .
\end{gathered}
$$

Now we are ready to prove the following proposition.
Proposition 4.8. Under the above assumptions, a function $\mathcal{S}: S_{f}\left(x_{0}, y_{0}\right) \rightarrow$ $S_{\widetilde{f}}\left(x_{0}, \widetilde{y}_{0}\right)$ defined by $\mathcal{S}(u):=\widetilde{u}$ is a bijection.

Proof. First we will prove that

$$
\begin{equation*}
u \in S_{f}\left(x_{0}, y_{0}\right) \Leftrightarrow \widetilde{u} \in S_{\widetilde{f}}\left(x_{0}, \widetilde{y}_{0}\right) \tag{4.4}
\end{equation*}
$$

$\left({ }^{7}\right)$ For simplicity, later in this paper, we will denote $T[\widetilde{u}]$ and $T[u]$ by $\dot{\widetilde{u}}$ and \dot{u}, respectively.
where u and \widetilde{u} satisfy (4.2). To this aim, it suffices to observe that (4.4) follows directly from the following commutative diagram:

and the fact that for any point $(x, y) \in M \times \mathbb{R}$ a function $T_{(x, y)}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{2}$ induced by T, i.e.

$$
T_{(x, y)}(u, v):=(u, v(-\sin (y), \cos (y)),
$$

is an isomorphism. Notice that the commutativity of the left and right triangle in the above diagram follows from (4.2) and (4.3), respectively. Recall that the left triangle is well-defined for almost all $t \in[0, \infty)$. Thus (4.4) implies that $\mathcal{S}: S_{f}\left(x_{0}, y_{0}\right) \rightarrow S_{\widetilde{f}}\left(x_{0}, \widetilde{y}_{0}\right)$ is well-defined. Finally, the surjectivity of \mathcal{S} follows from (4.4), but the injectivity of \mathcal{S} follows easily from (4.2). This completes the proof.

Remark 4.9. It is easy to see that $\mathcal{S}^{-1}: S_{\widetilde{f}}\left(x_{0}, \widetilde{y}_{0}\right) \rightarrow S_{f}\left(x_{0}, y_{0}\right)$ is given by $\mathcal{S}^{-1}(\widetilde{u}):=(\mathrm{id} \times p) \circ \widetilde{u}$ for all $\widetilde{u} \in S_{\widetilde{f}}\left(x_{0}, \widetilde{y}_{0}\right)$. Since $C_{u}\left([0, \infty), \mathbb{R}^{m}\right)$, for any $m \in \mathbb{N}$, is endowed with the topology of almost uniform convergence, it follows that \mathcal{S}^{-1} is continuous, and hence \mathcal{S} is continuous because $S_{\tilde{f}}\left(x_{0}, \widetilde{y}_{0}\right)$ is compact in $C_{u}\left([0, \infty), \mathbb{R}^{n+1}\right)$.

From the above considerations it follows that the following diagram is commutative:

The next lemma explains what properties of f are inherited by a lift \tilde{f} of f.
Lemma 4.10. Let $f \in \operatorname{Vect}\left(M \times S^{1}\right)$. Then:
(a) if f has a sublinear growth (resp. f is bounded), then \tilde{f} has also a sublinear growth (resp. \widetilde{f} is also bounded);
(b) if $f \in \operatorname{Vect}_{c}\left(M \times S^{1}\right)$, then there exists a compact set $\widetilde{K} \subset M$ such that

$$
d_{H}\left(\operatorname{pr}_{1}\left(\Pi_{\tilde{f}}((x, 0), t)\right), \widetilde{K}\right) \xrightarrow{t \rightarrow \infty} 0,
$$

for every $x \in M$.

Proof. The assertion (a) follows from the following calculations:

$$
\begin{aligned}
|\widetilde{f}(x, y)|^{2} & =\left|f_{1}(x, p(y)), \widetilde{f}_{2}(x, p(y))\right|^{2}=\left|f_{1}(x, p(y))\right|^{2}+\left|\widetilde{f}_{2}(x, p(y))\right|^{2} \\
& =\left|f_{1}(x, p(y))\right|^{2}+\left\langle f_{2}(x, p(y)), p(y)^{\perp}\right\rangle^{2} \\
& \leq\left|f_{1}(x, p(y))\right|^{2}+\left|f_{2}(x, p(y))\right|^{2}|p(y)|^{2}=\left|f_{1}(x, p(y))\right|^{2}+\left|f_{2}(x, p(y))\right|^{2} \\
& =|f(x, p(y))|^{2} \leq c^{2}(1+|(x, p(y))|)^{2} \leq c^{2}(1+|x|+|p(y)|)^{2} \\
& \leq c^{2}(1+|x|+1+|y|)^{2} \leq(2 c)^{2}(1+|(x, y)|)^{2},
\end{aligned}
$$

where $(x, y) \in M \times S^{1}$. Since $|\widetilde{f}(x, y)|^{2} \leq|f(x, p(y))|^{2}$, it follows that the boundedness of f implies the boundedness of \widetilde{f}. As for (b), let K be a compact attractor for $f \in \operatorname{Vect}\left(M \times S^{1}\right)$. Without loss of generality we can assume that $K=K^{\prime} \times S^{1}$, where K^{\prime} is a compact subset of M. Let $\widetilde{K}:=\operatorname{pr}_{1}(K)=K^{\prime}$. Then, taking into account the diagram (4.5), one obtains

$$
\begin{gathered}
\Pi_{f}((x,(1,0)), t) \subset B(K, \varepsilon) \Rightarrow \operatorname{pr}_{1}\left(\Pi_{f}((x,(1,0)), t)\right) \subset B\left(\operatorname{pr}_{1}(K), \varepsilon\right) \\
\operatorname{pr}_{1}\left(\Pi_{f}((x,(1,0)), t)\right)=\operatorname{pr}_{1}\left(\Pi_{\tilde{f}}((x, 0), t)\right), \quad B\left(\operatorname{pr}_{1}(K), \varepsilon\right)=B(\widetilde{K}, \varepsilon)
\end{gathered}
$$

which implies that

$$
d_{H}\left(\Pi_{f}((x,(1,0)), t), K\right) \xrightarrow{t \rightarrow \infty} 0 \Rightarrow d_{H}\left(\operatorname{pr}_{1}\left(\Pi_{\tilde{f}}((x, 0), t)\right), \widetilde{K}\right) \xrightarrow{t \rightarrow \infty} 0
$$

Remark 4.11. A set of vector fields $\tilde{f} \in \operatorname{Vect}(M \times \mathbb{R})$ satisfying condition (b) from Lemma 4.10 will be denoted by the $\operatorname{symbol}^{\operatorname{Vect}} \operatorname{Vec}^{(}(M \times \mathbb{R})$, while a set \widetilde{K} from the above lemma will be called a weak attractor for \widetilde{f}.

It should be noted that without additional assumptions on M nothing can be said about the structure of solutions to (P).

EXAMPLE 4.12 (see [5]). Let $M=M_{-1} \cup M_{1} \subset \mathbb{R}^{2}$, where

$$
M_{i}:=\left\{(x, y) \in \mathbb{R}^{2} \mid(x-i)^{2}+y^{2}=1\right\} .
$$

Let $f: M \times S^{1} \rightarrow \mathbb{R}^{4}$ be defined by

$$
f((x, y), z)= \begin{cases}((y, 1-x), 0) & \text { if }(x, y) \in M_{1} \\ ((-y, 1+x), 0) & \text { if }(x, y) \in M_{-1}\end{cases}
$$

It is easy to see that for all $((x, y), z) \in M \times S^{1}, f((x, y), z) \in T_{M \times S^{1}}((x, y), z)$ and that the set $S_{f}^{T}((0,0), 0)$ (for any $\left.T>0\right)$ is disconnected, and hence it is not an R_{δ}-set.

Now we are going to prove the result which is closely related (by Proposition 4.8) to problem (P) - see also Theorem 4.17.

Theorem 4.13. Assume that $M \subset \mathbb{R}^{n}$ is a contractible and strictly regular ANR. Let $\widetilde{f} \in \operatorname{Vect}_{w c}(M \times \mathbb{R})$ be a lift of a bounded and continuous (or a continuous map with a sublinear growth) vector field $f \in \operatorname{Vect}_{c}\left(M \times S^{1}\right)$. If
(4.6) there exists $T>0$ such that $\gamma(T) \in M \times(2 \pi, \infty)$

$$
\text { for all } \gamma \in S_{\widetilde{f}}(M \times\{0\})\left(^{8}\right) \text {, }
$$

then there exists $x_{0} \in M$ and $\gamma \in S_{\widetilde{f}}\left(x_{0}, 0\right)$ such that $\gamma\left(t_{0}\right)=\left(x_{0}, 2 \pi\right)$, for some $t_{0} \in(0, T)$ (see Figure 3).

Figure 3. A trajectory γ_{1} satisfies the assertion of Theorem 4.13

Proof. Consider the following diagram:

$$
M \xrightarrow{\mathbb{S}} C_{0} \xrightarrow{\Delta} C_{0} \times C_{0} \xrightarrow{\mathbb{P} \times \mathrm{id}}(0, T) \times C_{0} \xrightarrow{\lambda} M \times \mathbb{R} \xrightarrow{\mathrm{pr}_{1}} M,
$$

where \mathbb{P} is given by $(3.2), C_{0}:=C_{V}\left([0, T], \mathbb{R}^{n+1}\right)$ (see (3.1) for $V:=\mathbb{R}^{n} \times$ $(-\infty, 2 \pi))$ and $\mathbb{S}, \Delta, \mathbb{P} \times$ id and λ are defined as follows

$$
\begin{align*}
\mathbb{S}(x): & =S_{\tilde{f}}(x, 0), & \Delta(x) & =(x, x), \tag{4.7}\\
(\mathbb{P} \times \mathrm{id})(x, y) & =(\mathbb{P}(x), y), & \lambda(t, h) & =h(t)
\end{align*}
$$

Let us define $\Phi: M \multimap M$ by

$$
\begin{equation*}
\Phi:=\left(\operatorname{pr}_{1} \circ \lambda\right) \circ((\mathbb{P} \times \mathrm{id}) \circ(\Delta \circ \mathbb{S})) \tag{4.8}
\end{equation*}
$$

Now, let us observe that if $\operatorname{Fix}(\Phi) \neq \emptyset$, then there exist $x_{0} \in M$ and a trajectory $\gamma \in \mathbb{S}\left(x_{0}\right)$ such that

$$
\gamma\left(t_{0}\right)=\left(x_{0}, 2 \pi\right), \quad \text { for some } t_{0} \in(0, T)
$$

Consequently, it suffices to show that $\operatorname{Fix}(\Phi) \neq \emptyset$. For this purpose, we shall make use of Theorem 7.8 from Appendix. First observe that Lemma 4.4, Remark 4.5 and Example 3.5 imply that \mathbb{S} is a weighted carrier with acyclic values
${ }^{(8)}$ If $Z \subset M \times S^{1}($ resp. $Z \subset M \times \mathbb{R})$, then we put $S_{f}(Z):=\bigcup_{z \in Z} S_{f}(z)\left(\right.$ resp. $S_{\widetilde{f}}(Z):=$ $\left.\bigcup_{z \in Z} S_{\widetilde{f}}(z)\right)$.
and $I_{w}(\mathbb{S})=1$. Of course, $\Delta, \operatorname{pr}_{1}$ and λ are weighted carriers with $I_{w}(\Delta)=1$, $I_{w}\left(\operatorname{pr}_{1}\right)=1$ and $I_{w}(\lambda)=1$, respectively. Furthermore, Propositions 3.9 and 7.3 and Lemmas 3.12 and 3.13 imply that $\mathbb{P} \times \mathrm{id}$ is a weighted carrier with positively acyclic values (recall from algebraic topology that the Cartesian product of two positively acyclic sets is also positively acyclic) and $I_{w}(\mathbb{P} \times \mathrm{id})=1$. Consequently, we deduce from Proposition 3.4 and Lemma 3.13 that $(\mathbb{P} \times \mathrm{id}) \circ(\Delta \circ \mathbb{S})$ is a weighted carrier with positively acyclic values and $I_{w}((\mathbb{P} \times \mathrm{id}) \circ(\Delta \circ \mathbb{S}))=1$. Thus we have proved that Φ has the following decomposition:

$$
\Phi=f \circ \Psi \in \mathrm{CA}_{\mathrm{W}}(M)
$$

(see Appendix), where $f:=\operatorname{pr}_{1} \circ \lambda$ and $\Psi:=(\mathbb{P} \times \mathrm{id}) \circ(\Delta \circ \mathbb{S})$. What is more, taking into account Lemma 3.7, and since the Cartesian product of ANRs is an ANR, we infer that $C_{0} \times C_{0},(0, T) \times C_{0}$ and $M \times \mathbb{R}$ are ANRs.

Now we have to prove that the set-valued map $\Phi: M \multimap M$ defined as in (4.8) has a compact attractor. To this aim, we are going to prove it in a few steps.

Claim 1. If $C \subset M$ is a compact subset of M, then there exists $0<\varepsilon<T$ such that $\mathbb{P}(\mathbb{S}(C)) \subset[\varepsilon, T)$.

Indeed, assume on the contrary that $\mathbb{P}(\mathbb{S}(C)) \cap[0, \varepsilon] \neq \emptyset$, for any $0<\varepsilon<T$. Then there exists a sequence $\varepsilon_{m} \rightarrow 0$ and a sequence $\gamma_{m} \in \mathbb{S}(C)$ such that $\mathbb{P}\left(\gamma_{m}\right) \cap\left[0, \varepsilon_{m}\right] \neq \emptyset$. Since $\mathbb{S}(C)$ is compact, we can assume without loss of generality that a sequence γ_{m} converges to some point $\gamma \in \mathbb{S}(C)$. In particular, γ_{m} converges uniformly to γ on $[0, T]$. Furthermore, for any γ_{m} there exists $0<t_{m} \leq \varepsilon_{m}$ such that $\gamma_{m}\left(t_{m}\right) \in \operatorname{bd} V$. It is easily seen that $\gamma_{m}\left(t_{m}\right) \rightarrow \gamma(0)$ as $m \rightarrow \infty$, which implies that $\gamma(0) \in \mathrm{bd} V=\mathbb{R}^{n} \times\{2 \pi\}$. This contradicts the fact that $\gamma(0) \in \mathbb{R}^{n} \times\{0\}$.

Claim 2. For any $x \in M$ there exists $\varepsilon>0$ such that for all $\gamma \in \mathbb{S}(x)$ and for all $m \in \mathbb{N}$:

$$
t_{m}(\gamma):=\inf \left\{t \in[0, \infty) \mid \gamma(t) \in \operatorname{bd} V_{m}\right\} \geq m \varepsilon
$$

where $V_{m}:=\mathbb{R}^{n} \times(-\infty, 2 m \pi)$.
Indeed, fix $x \in M$. Let us put

$$
C:=\operatorname{cl}\left(\operatorname{pr}_{1}\left(\Pi_{\tilde{f}}(\{(x, 0)\} \times[0, \infty))\right)\right) \subset M
$$

We will show that C is compact. To this aim, let $\widetilde{K} \subset M$ be a weak global attractor for \widetilde{f} and take $D(\widetilde{K}, \delta) \subset M$, where $\delta>0$. Then Lemma 4.10 implies that there exists $t_{0}>0$ such that $\operatorname{pr}_{1}\left(\Pi_{\tilde{f}}\left(\{(x, 0)\} \times\left[t_{0}, \infty\right)\right)\right) \subset B(\widetilde{K}, \delta)$. Hence, one has

$$
C \subset \operatorname{pr}_{1}\left(\Pi_{\tilde{f}}\left(\{(x, 0)\} \times\left[0, t_{0}\right]\right)\right) \cup D(\widetilde{K}, \delta)=: K_{0}
$$

Since C is closed and K_{0} is compact, we infer that C is compact. Now observe that, in view of Claim 1, there exists $\varepsilon>0$ such that $t_{1}(\gamma) \geq \varepsilon$ for any $\gamma \in \mathbb{S}(C)$.

Fix $\gamma \in \mathbb{S}(C)$ and assume by the induction hypothesis that $t_{m}(\gamma) \geq m \varepsilon$. We are to prove that

$$
t_{m+1}(\gamma) \geq(m+1) \varepsilon
$$

For this purpose, define $\widetilde{\gamma}:[0, \infty) \rightarrow M \times \mathbb{R}$ by

$$
\widetilde{\gamma}(t):=\left(\operatorname{pr}_{1}\left(\gamma\left(t+t_{m}(\gamma)\right)\right), \operatorname{pr}_{2}\left(\gamma\left(t+t_{m}(\gamma)\right)\right)-2 m \pi\right) .
$$

Then $\widetilde{\gamma}(0) \in C \times\{0\}$. Consequently, since

$$
\widetilde{f}(x, y)=\widetilde{f}(x, y+2 k \pi)
$$

for all $k \in \mathbb{Z}$ and $(x, y) \in M \times \mathbb{R}$, we deduce that $\widetilde{\gamma} \in \mathbb{S}(C)$. Furthermore,

$$
\begin{equation*}
\widetilde{\gamma}(t) \in \operatorname{bd} V_{1} \Leftrightarrow \gamma\left(t+t_{m}(\gamma)\right) \in \operatorname{bd} V_{m+1} . \tag{4.9}
\end{equation*}
$$

Hence,

$$
t_{m+1}(\gamma)=t_{m}(\gamma)+t_{1}(\widetilde{\gamma}) \geq m \varepsilon+\varepsilon=(m+1) \varepsilon,
$$

which completes the proof of Claim 2.
Claim 3. For all $x \in M$ there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\Phi^{m}(x) \subset \operatorname{pr}_{1}\left(\Pi_{\tilde{f}}(\{(x, 0)\} \times[m \varepsilon, \infty))\right) \tag{4.10}
\end{equation*}
$$

for all $m \in \mathbb{N}$, where Φ^{m} denotes the m-th iterate of Φ. Indeed, this assertion follows from the fact that for any $x \in M$ there exists $\varepsilon>0$ such that

$$
\begin{aligned}
& \Phi^{m}(x)= \\
& \stackrel{\text { Claim } 1}{ }\left(\Phi^{m-1}(x)\right) \\
& \quad \text { such that } \gamma(t)=M \mid \exists \gamma \in S_{\widetilde{f}}\left(\Phi^{m-1}(x) \times\{0\}\right) \\
& \xlongequal{\text { Claim 2 }}\left\{y \in M \mid \exists \gamma \in S_{\widetilde{f}}(x, 0)\right. \\
& \quad \text { such that } \gamma(t)=(y, 2 m \pi) \text { for some } t \in[\varepsilon, \infty)\} \\
& \\
& \quad \text { some } t \in[m \varepsilon, \infty)\},
\end{aligned}
$$

for all $m \in \mathbb{N}$.
Claim 4. $\Phi: M \multimap M$ has a compact attractor. Indeed, let $\widetilde{K} \subset M$ be a weak attractor for \tilde{f}. Fix $x \in M$ and $\delta>0$. Then

$$
d_{H}\left(\operatorname{pr}_{1}\left(\Pi_{\widetilde{f}}((x, 0), t)\right), \widetilde{K}\right) \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

Thus there exists $\tilde{t}>0$ such that

$$
d_{H}\left(\operatorname{pr}_{1}\left(\Pi_{\tilde{f}}((x, 0), t)\right), \widetilde{K}\right)<\delta
$$

for all $t \geq \widetilde{t}$, which implies that

$$
\begin{equation*}
\operatorname{pr}_{1}\left(\Pi_{\widetilde{f}}(\{(x, 0)\} \times[\widetilde{t}, \infty))\right) \subset B(\widetilde{K}, \delta) . \tag{4.11}
\end{equation*}
$$

Now, taking into account (4.10) and (4.11), we deduce that there exists m_{0} such that

$$
\Phi^{m}(x) \subset B(\widetilde{K}, \delta)
$$

for all $m \geq m_{0}$, which proves that \widetilde{K} is an attractor for Φ.
Finally, Theorem 7.8 implies the assertion of Theorem 4.13.

Figure 4. A trajectory β is transversal to $M \times\{c\}$ but α is not transversal to $M \times\{c\}$

Remark 4.14. The main difficulty in the proof of Theorem 4.13 is that a given trajectory starting from $M \times\{0\}$ and passing through $M \times\{c\}$ need not be transversal to $M \times\{c\}$ (see Figures 4 and 5), which implies that the so-called exit function $\tau: S_{\widetilde{f}}(M \times\{0\}) \rightarrow[0, \infty)$ given by $\tau(\gamma)=\sup \{t \geq 0 \mid$ $\gamma(t) \in M \times(-\infty, c]\}$ is only upper semicontinuous, i.e. for any $r \in \mathbb{R}$, the set $\left\{\gamma \in S_{\widetilde{f}}(M \times\{0\}) \mid \tau(\gamma)<r\right\}$ is open in $S_{\widetilde{f}}(M \times\{0\})$ (see [3]). Therefore we had to modify the definition of the exit function in order to prove Theorem 4.13.

Moreover, in our situation it may happen that a given trajectory can stay in the section $M \times\{c\}$ for some time.

Figure 5. The trajectory γ is not transversal to $M \times\{c\}$
From the proof of Theorem 4.13 we obtain the following corollary.
Corollary 4.15. Let $M \subset \mathbb{R}^{n}$ be a contractible compact and strictly regular set and let $g \in \operatorname{Vect}(M \times \mathbb{R})$ be a bounded continuous map (or a continuous map with a sublinear growth), $c>0$. If
there exists $T>0$ such that $\gamma(T) \in M \times(c, \infty)$ for all $\gamma \in S_{g}(M \times\{0\})$,
then there exists $x_{0} \in M$ and $\gamma \in S_{g}\left(x_{0}, 0\right)$ such that $\gamma\left(t_{0}\right)=\left(x_{0}, c\right)$ for some $t_{0} \in(0, T)$.

REmark 4.16. It should be noted that if in Theorem 4.13 we replace 2π by -2π, then one can prove the following assertion: if there exists $T>0$ such that $\gamma(T) \in M \times(-\infty,-2 \pi)$ for all $\gamma \in S_{\tilde{f}}(M \times\{0\})$, then there exists $x_{0} \in M$ and $\gamma \in S_{\widetilde{f}}\left(x_{0}, 0\right)$ such that $\gamma\left(t_{0}\right)=\left(x_{0},-2 \pi\right)$ for some $t_{0} \in(0, T)$. The proof of this fact goes without any essential changes.

Now we prove the next of the main results of the paper.
Theorem 4.17. Let $M \subset \mathbb{R}^{n}$ be a contractible strictly regular ANR and let $f \in \operatorname{Vect}_{c}\left(M \times S^{1}\right)$ be a continuous and bounded map. If a lift \tilde{f} of f satisfies (4.6) in Theorem 4.13, then Problem (P) admits a solution $u \in S_{f}(M \times\{(1,0)\})$ which generates $\pi_{1}\left(M \times S^{1}\right)$.

Proof. From Theorem 4.13 it follows that there exist $x_{0} \in M, t_{0} \in(0, T)$ and $\widetilde{u} \in S_{\widetilde{f}}\left(x_{0}, 0\right)$ such that

$$
\begin{equation*}
\widetilde{u}(0)=\left(x_{0}, 0\right) \quad \text { and } \quad \widetilde{u}\left(t_{0}\right)=\left(x_{0}, 2 \pi\right) . \tag{4.12}
\end{equation*}
$$

Then, by Proposition 4.8, $u:=S^{-1}(\widetilde{u}) \in S_{f}\left(x_{0},(1,0)\right)$ and $u(0)=u\left(t_{0}\right)$. Let $\widetilde{t}:=\inf \left\{t>0 \mid \widetilde{u}(t)=\left(x_{0}, 2 \pi\right)\right\}>0$. For simplicity one can assume that $\tilde{t}=1$. We will show that the homotopy class $[u]$ of $u:[0,1] \rightarrow M \times S^{1}$ generates $\pi_{1}\left(M \times S^{1}\right)$. Since $\pi_{1}\left(M \times S^{1}\right)=\pi_{1}(M) \times \pi_{1}\left(S^{1}\right) \simeq \pi_{1}\left(S^{1}\right)$, we infer that it suffices to prove that $\left[u_{2}:=\operatorname{pr}_{2} \circ u\right]$ is a generator of $\pi_{1}\left(S^{1}\right)$. To this end, recall that a homomorphism $h: \pi_{1}\left(S^{1}\right) \rightarrow \mathbb{Z}$ given by $h([w])=\widetilde{w}(1)$ is an isomorphism (see [39]), where \widetilde{w} is a lift of w, i.e. the following diagram

is commutative with $w(0)=(1,0)$ and $\widetilde{w}(0)=0$. Since h is an isomorphism, it follows that a loop $[w] \in \pi_{1}\left(S^{1}\right)$ is a generator of $\pi_{1}\left(S^{1}\right)$ if and only if $\widetilde{w}(1)=2 \pi$. Thus in view of (4.12) one gets that $h\left(\left[u_{2}\right]\right)=2 \pi$. This completes the proof.

5. Differential equations on manifolds

Now we are going to show that in the case when N is a manifold, we are able to express the assumptions of Theorem 4.16 in the language of differential forms. For this purpose, we need to introduce the following concepts.

Recall that if N is an m-dimensional manifold of class C^{2}, then a one-form $\omega: N \rightarrow T N^{*}$ has the following form $\omega(x)=\sum_{i=1}^{m} a_{i}(x) d x^{i}$, where $a_{i}: N \rightarrow \mathbb{R}$ are functions of class C^{2}. Furthermore, in this paper we will assume that a one-form
ω is at least closed, i.e. $d \omega=0$. Moreover, recall that if a path $\gamma:[a, b] \rightarrow N$ is of class C^{1}, then

$$
\oint_{\gamma} \omega=\int_{a}^{b}\langle\omega(\gamma(s)), \dot{\gamma}(s)\rangle d s=\int_{a}^{b}\left(\sum_{i=1}^{m} a_{i}(\gamma(s)) \dot{\gamma}_{i}(s)\right) d s
$$

where the γ_{i} are the coordinates of γ in N. Let notice that the right-hand side of the above formula makes sense even if γ is absolute continuous. Therefore in our paper we will integrate one-forms ω on absolute continuous paths γ.

In this section by $M \subset \mathbb{R}^{n}$ we shall denote a k-dimensional closed and contractible manifold of class C^{2}. By $\omega_{S^{1}}: M \times S^{1} \rightarrow T\left(M \times S^{1}\right)^{*}$ we shall understand a one-form defined by

$$
\begin{equation*}
\omega_{S^{1}}=d x^{k+1} \tag{5.1}
\end{equation*}
$$

REmARK 5.1. Notice that $\omega_{S^{1}}$ is a generator of $H_{d}^{1}\left(M \times S^{1} ; \mathbb{R}\right) \simeq \mathbb{R}$, where H_{d}^{1} denotes de Rham cohomology group with coefficients in \mathbb{R}. Moreover, if $h: N \rightarrow M \times S^{1}$ is a diffeomorphism, then the pullback $h^{*} \omega_{S^{1}}$ of $\omega_{S^{1}}$ is a generator of $H_{d}^{1}(N ; \mathbb{R})$ (see also Remark 5.14).

REMARK 5.2. Let $\gamma:[0, t] \rightarrow M \times S^{1}$ be a path with $\gamma(0)=\left(x_{0},(1,0)\right)$ and let $\widetilde{\gamma}:[0, t] \rightarrow M \times \mathbb{R}$ be a path such that $\gamma=(\mathrm{id} \times p) \circ \widetilde{\gamma}$ and $\widetilde{\gamma}(0)=\left(x_{0}, 0\right)$. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}, \gamma_{k+1}\right)$. Then $\gamma_{k+1}=p \circ \widetilde{\gamma}_{k+1}$. Since the derivative $\dot{p}: T_{s} \mathbb{R} \rightarrow$ $T_{p(s)} S^{1}$ of p at $s \in \mathbb{R}$ is the identity map, we infer that $\dot{\gamma}_{k+1}(s)=\dot{\tilde{\gamma}}_{k+1}(s)$ for all $s \in \mathbb{R}$. Now we are ready to make the following calculations:

$$
\begin{align*}
\oint_{\gamma} \omega_{S^{1}} & =\int_{0}^{t}\left\langle\omega_{S^{1}}(\gamma(s)), \dot{\gamma}(s)\right\rangle d s=\int_{0}^{t} \dot{\gamma}_{k+1}(s) d s \tag{5.2}\\
& =\int_{0}^{t} \dot{\tilde{\gamma}}_{k+1}(s) d s=\widetilde{\gamma}_{k+1}(t)-\widetilde{\gamma}_{k+1}(0)=\widetilde{\gamma}_{k+1}(t)
\end{align*}
$$

REMARK 5.3. In what follows by $\omega_{l}: M \times S^{1} \rightarrow T\left(M \times S^{1}\right)^{*}$ we will denote a one-form which has the following decomposition:

$$
\begin{equation*}
\omega_{l}=\omega_{e}+l \cdot \omega_{S^{1}} \tag{5.3}
\end{equation*}
$$

where $\omega_{e}: M \times S^{1} \rightarrow T\left(M \times S^{1}\right)^{*}$ is an exact one-form and $\omega_{S^{1}}$ is as in (5.1), $l \in \mathbb{R}$. Since ω_{e} is exact, it follows that there exists a differentiable function $g: M \times S^{1} \rightarrow \mathbb{R}^{n+2}$ such that $\omega_{e}=d g$. We will say that ω_{e} is a bounded one-form provided g is bounded, i.e. there exists a constant M_{ω} such that $|g(z)| \leq M_{\omega}$ for all $z \in M \times S^{1}$. It is clear that if M is compact, then ω_{e} is bounded. Furthermore, we will say that ω_{l} is bounded provided ω_{e} is bounded.

Definition 5.4 (see also [9]). Let $f \in \operatorname{Vect}(N)$. A one-form $\omega: N \rightarrow T N^{*}$ is said to be a Lyapunov form with respect to f if there exists $c>0$ such that

$$
\begin{equation*}
\langle\omega(x), f(x)\rangle>c, \quad \text { for all } x \in N \tag{5.4}
\end{equation*}
$$

REMARK 5.5. Observe that if N is compact, then (5.4) one can replace by $\langle\omega(x), f(x)\rangle>0$ for all $x \in N$.

Let us observe that Condition (5.4) can be checked pointwise without knowing the trajectories of f just like in the Lyapunov theory. The following example illustrates the concept of a Lyapunov form.

Example 5.6 (see [9]). Let $0<\beta<1<\alpha$ and $\varepsilon>0$. Consider the following system on N :

$$
\left\{\begin{array}{l}
\dot{x}=x(1-x-\alpha y-\beta z)+\varepsilon, \\
\dot{y}=y(1-\beta x-y-\alpha z)+\varepsilon, \\
\dot{z}=z(1-\alpha x-\beta y-z)+\varepsilon .
\end{array}\right.
$$

Figure 6. $N:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0<x, y, z<1\right\}-\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=\right.$ $y=z>0\}$

It is not hard to see that N is diffeomorphic to $\mathbb{R}^{2} \times S^{1}$. Then the following closed one-form

$$
\omega(x, y, z):=\frac{(z-y) d x+(x-z) d y+(y-x) d z}{(z-y)^{2}+(x-z)^{2}+(y-x)^{2}}
$$

satisfies the condition: $\langle\omega(x, y, z), f(x, y, z)\rangle>0$, for all $(x, y, z) \in N$, where
$f(x, y, z)=(x(1-x-\alpha y-\beta z)+\varepsilon, y(1-\beta x-y-\alpha z)+\varepsilon, z(1-\alpha x-\beta y-z)+\varepsilon)$.
Indeed, it follows from the following calculations:

$$
\begin{aligned}
\left\langle\left((z-y)^{2}+\right.\right. & \left.\left.(x-z)^{2}+(y-x)^{2}\right) \omega(x, y, z), f(x, y, z)\right\rangle \\
= & x(y(1-\beta x-y-\alpha z)+\varepsilon)-y(x(1-x-\alpha y-\beta z)+\varepsilon) \\
& +y(z(1-\alpha x-\beta y-z)+\varepsilon)-z(y(1-\beta x-y-\alpha z)+\varepsilon) \\
& +z(x(1-x-\alpha y-\beta z)+\varepsilon)-x(z(1-\alpha x-\beta y-z)+\varepsilon) \\
= & (1-\beta)\left(x^{2} y+y^{2} z+z^{2} x\right)+(\alpha-1)\left(x^{2} z+y^{2} x+z^{2} y\right)+3 x y z(\beta-\alpha) \\
= & (1-\beta)\left(x^{2} y+y^{2} z+z^{2} x-3 x y z\right)+(\alpha-1)\left(x^{2} z+y^{2} x+z^{2} y-3 x y z\right) .
\end{aligned}
$$

But the inequality of arithmetic and geometric means implies that $x^{2} y+y^{2} z+$ $z^{2} x-3 x y z>0$ and $x^{2} z+y^{2} x+z^{2} y-3 x y z>0$ for $(x, y, z) \in N$. Thus we deduce the desired inequality.

The following result explains the relationship between a periodic orbit and a Lyapunov form.

Proposition 5.7 ([9]). If γ is an asymptotically stable $\left({ }^{9}\right)$ orbit of a smooth vector field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then there exists a smooth positively invariant n dimensional submanifold $\gamma \subset M \subset \mathbb{R}^{n}$, homeomorphic to $D_{n}(0,1) \times S^{1}$, and a Lyapunov form ω (with respect to f).

Now we are going to establish the most important properties of Lyapunov forms.

Lemma 5.8. Let $f \in \operatorname{Vect}\left(M \times S^{1}\right)$. If ω_{l} is a bounded Lyapunov form with respect to f, then $l \neq 0$ and there exists $c>0$ such that

$$
\oint_{\gamma_{t}} \omega_{l}>t c
$$

for all $\gamma \in S_{f}\left(M \times S^{1}\right)$ and $t>0\left({ }^{10}\right)$. In particular, there exists $T>0$ such that

$$
\oint_{\gamma_{T}} \omega_{l}>2\left(\pi|l|+M_{\omega}\right)
$$

for all $\gamma \in S_{f}\left(M \times S^{1}\right)$.
Proof. Let $c>0$ be such that $\left\langle\omega_{l}(x), f(x)\right\rangle>c$ for all $x \in M \times S^{1}$. Fix $\gamma \in S_{f}\left(M \times S^{1}\right)$. Then

$$
\oint_{\gamma_{t}} \omega_{l}=\int_{0}^{t}\left\langle\omega_{l}\left(\gamma_{t}(s)\right), \dot{\gamma}_{t}(s)\right\rangle d s=\int_{0}^{t}\left\langle\omega_{l}\left(\gamma_{t}(s)\right), f\left(\gamma_{t}(s)\right)\right\rangle d s>\int_{0}^{t} c d s=t c
$$

for any $t>0$. Now we are going to show that $l \neq 0$. To this aim, assume on the contrary that $l=0$. Then

$$
\omega_{l}(x)=\omega_{e}(x)=\sum_{i=1}^{k+1} a_{i}(x) d x^{i}
$$

where $a_{i}: M \times S^{1} \rightarrow \mathbb{R}$ are functions of class C^{2}. Since ω_{l} is an exact form, there exists a differentiable function $g: M \times S^{1} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial g(x)}{\partial x_{i}}=a_{i}(x)
$$

[^5]for $i=1, \ldots, k+1$ and there exists $M_{\omega}>0$ such that $|g(x)|<M_{\omega}$ for all $x \in M \times S^{1}$. Finally, one has
\[

$$
\begin{align*}
t c & <\oint_{\gamma_{t}} \omega_{l}=\int_{0}^{t}\left\langle\omega_{l}\left(\gamma_{t}(s)\right), \dot{\gamma}_{t}(s)\right\rangle d s=\int_{0}^{t}\left\langle\omega_{e}\left(\gamma_{t}(s)\right), \dot{\gamma}_{t}(s)\right\rangle d s \tag{5.5}\\
& =\int_{0}^{t}\left(\sum_{i=1}^{k+1} a_{i}\left(\gamma_{t}(s)\right) \dot{\gamma}_{t i}(s)\right) d s=\int_{0}^{t}\left(\sum_{i=1}^{k+1} \frac{\partial g}{\partial x_{i}}\left(\gamma_{t}(s)\right) \dot{\gamma}_{t i}(s)\right) d s \\
& =\int_{0}^{t} \frac{d\left(g \circ \gamma_{t}\right)(s)}{d s} d s=g\left(\gamma_{t}(t)\right)-g\left(\gamma_{t}(0)\right)<2 M_{\omega} .
\end{align*}
$$
\]

Hence we get that $t c<2 M_{\omega}$ for all $t>0$, which implies that $c \leq 0$. This contradicts the fact that $c>0$. Finally, it is easy to that there exists $T>0$ such that $T c>2\left(\pi|l|+M_{\omega}\right)$. This completes the proof.

Lemma 5.9. If $\omega: M \times S^{1} \rightarrow T\left(M \times S^{1}\right)^{*}$ is a closed one-form, then there exists $l \in \mathbb{R}$ such that $\omega=\omega_{l}$. If additionally ω_{l} is a bounded Lyapunov form with respect to $f \in \operatorname{Vect}\left(M \times S^{1}\right)$, then $l \neq 0$.

Proof. This follows from the fact that $H_{d}^{1}\left(M \times S^{1} ; \mathbb{R}\right) \simeq \mathbb{R}$, where $H_{d}^{1}(M \times$ $S^{1} ; \mathbb{R}$) denotes de Rham cohomology group with coefficients in $\mathbb{R}\left({ }^{11}\right)$. Finally, Lemma 5.8 implies that $l \neq 0$, which completes the proof.

Remark 5.10. From now on we will say that a closed one-form $\omega: M \times S^{1} \rightarrow$ $T\left(M \times S^{1}\right)^{*}$ is bounded if the corresponding one-form ω_{l} is bounded.

Theorem 5.11. Assume that $f \in \operatorname{Vect}_{c}\left(M \times S^{1}\right)$ is bounded. If there exists a bounded Lyapunov form $\omega: M \times S^{1} \rightarrow T\left(M \times S^{1}\right)^{*}$ for f, then problem (P) admits a solution which generates $\pi_{1}\left(M \times S^{1}\right)$.

Proof. Let $\tilde{f}: M \times \mathbb{R} \rightarrow \mathbb{R}^{n+1}$ be a lift of f. Lemma 5.9 implies that there exists a closed one-form ω_{l} such that $\omega=\omega_{l}$ and $l \neq 0$. Without loss of generality we can assume that $l>0$ (see Remark 4.16). From Lemma 5.8 it follows that there exists $T>0$ such that

$$
\oint_{\gamma_{T}} \omega_{l}>2\left(\pi l+M_{\omega}\right)
$$

for all $\gamma \in S_{f}(M \times\{(1,0)\})$, where γ_{T} denotes the restriction of γ to $[0, T]$. Fix $\gamma \in S_{f}(M \times\{(1,0)\})$. Let $\widetilde{\gamma} \in S_{\widetilde{f}}(M \times\{0\})$ be a lift of γ, i.e. satisfying the condition $\gamma=(\mathrm{id} \times p) \circ \widetilde{\gamma}$. Now, reasoning as in (5.2) and (5.5), we obtain

$$
\begin{aligned}
2\left(\pi l+M_{\omega}\right) & <\oint_{\gamma_{T}} \omega_{l}=\oint_{\gamma_{T}} \omega_{e}+l \oint_{\gamma_{T}} \omega_{S^{1}} \\
& =g\left(\gamma_{T}(T)\right)-g\left(\gamma_{T}(0)\right)+l \widetilde{\gamma}_{k+1}(T)<2 M_{\omega}+l \widetilde{\gamma}_{k+1}(T) .
\end{aligned}
$$

$\left({ }^{11}\right)$ A different proof can be found in [9].

Thus $2 \pi<\widetilde{\gamma}_{k+1}(T)$ and, consequently, we get that $\widetilde{\gamma}(T) \in M \times(2 \pi, \infty)$. Therefore \widetilde{f} satisfies the condition (4.6). Consequently, our conclusion follows directly from Theorem 4.16, which completes the proof.

In particular, we get following corollary which has been proved in [9] and [11].
Corollary 5.12. If $f \in \operatorname{Vect}\left(D_{n}(0,1) \times S^{1}\right)$ and there exists a Lyapunov form $\omega: D_{n}(0,1) \times S^{1} \rightarrow T\left(D_{n}(0,1) \times S^{1}\right)^{*}$ for f, then there exists a nontrivial and noncontractible periodic orbit in $D_{n}(0,1) \times S^{1}$, where $n \geq 1$.

However, if $n=1$, then we have the following stronger result:
Theorem 5.13 (Poincaré-Bendixson). Assume that $N \subset \mathbb{R}^{2}$ is diffeomorphic to $D_{1}(0,1) \times S^{1}$. Let $f: N \rightarrow \mathbb{R}^{2}$ be of class C^{1} pointing inward on $\operatorname{bd} N$. If f has no equilibria, then f has a periodic orbit which is not contractible in N.

Figure 7. An illustration of Poincaré-Bendixson theorem

Unfortunately the above result is not true in higher dimensions without additional assumptions. Namely, F.B. Fuller [17] has constructed a nonvanishing vector field $f \in \operatorname{Vect}\left(D_{2}(0,1) \times S^{1}\right)$ which has no periodic and noncontractible trajectory in the torus $D_{2}(0,1) \times S^{1}$ (see [17]). Briefly speaking, his construction (see Figure 8) has the property that any trajectory starting from the section \mathbf{S}_{1} is attracting by the section \mathbf{S}_{2} which in turn implies that such a trajectory does not reach the area between two sections \mathbf{S}_{1} and \mathbf{S}_{2}, and therefore there exists no closed trajectory generating $\pi_{1}\left(D_{2}(0,1) \times S^{1}\right)$. It is a main reason why we have to assume the existence of a Lyapunov form on $M \times S^{1}$. However, it should be noted that in this case there are closed and contractible trajectories. Namely, they appear only in Section \mathbf{S}_{2}.

It should be noted that the problem (P) defined on $M \times S^{1}$ (where M is assumed to be a manifold of class C^{2}) can be considered on any manifold N which is diffeomorphic to $M \times S^{1}$. For example $M \times S^{1}$ can be diffeomorphic to the space drawn on Figures 6,8 and 9 .

Figure 8. Fuller's construction
REmark 5.14. Consider $f: N \rightarrow T N$ and a closed one-form $\omega: N \rightarrow T N^{*}$. Assume additionally that $h: M \times S^{1} \rightarrow N$ is a diffeomorphism (${ }^{12}$) between two manifolds N and $M \times S^{1}$. Then the following two diagrams:

induce \widetilde{f} and $\widetilde{\omega}$, where $D h$ (resp. $D\left(h^{-1}\right)$) stands for the derivative map of h (resp. h^{-1}). Another words, $\widetilde{\omega}$ is the pull-back of a differential form ω, i.e. $\widetilde{\omega}=h^{*} \omega$. Moreover, one has

$$
\begin{aligned}
\langle\widetilde{\omega}(x), \widetilde{f}(x)\rangle & =\left\langle(D h)^{*}(\omega(h(x))), D\left(h^{-1}\right)(f(h(x)))\right\rangle \\
& =\left\langle\omega(h(x)), D h\left(D\left(h^{-1}\right)(f(h(x)))\right)\right\rangle \\
& =\langle\omega(h(x)), f(h(x))\rangle=\langle\omega(y), f(y)\rangle
\end{aligned}
$$

for $x \in M \times S^{1}$ and $y=h(x) \in N$. Hence we infer that ω is a Lyapunov form if and only if $\widetilde{\omega}$ is a Lyapunov form. Furthermore, it is not hard to see that $\gamma \in S_{\tilde{f}}\left(M \times S^{1}\right)$ if and only if $h \circ \gamma \in S_{f}(N)$ and $\tilde{f} \in \operatorname{Vect}_{c}\left(M \times S^{1}\right)$ if and only if $f \in \operatorname{Vect}_{c}(N)$. Finally, we will say that $\omega: N \rightarrow T N^{*}$ is a bounded one-form if the pull-back $h^{*} \omega$ is a bounded one-form.

Thus, from Remark 5.14 and Theorem 5.11 we get the following corollary.
Corollary 5.15. Let $h: M \times S^{1} \rightarrow N$ be a diffeomorphism and let $f \in$ $\operatorname{Vect}_{c}(N)$ be bounded. If there exists a bounded Lyapunov form $\omega: N \rightarrow T N^{*}$ for f, then there exists a nontrivial and noncontractible periodic orbit in N.

Now we would like to provide some examples illustrating our results presented in this article. In addition, the first example shows how one can follow in other cases in order to find a closed trajectory.

[^6]Example 5.16. Consider the following system of differential equations on N (see Figure 9):

$$
\left\{\begin{array}{l}
\dot{x}=-y g_{1}(x, y, z)+x g_{2}(x, y, z) \tag{5.6}\\
\dot{y}=x g_{1}(x, y, z)+y g_{2}(x, y, z) \\
\dot{z}=\alpha(x, y, z)
\end{array}\right.
$$

where $g_{1}: N \rightarrow \mathbb{R}, g_{2}: N \rightarrow \mathbb{R}$ and $\alpha: N \rightarrow \mathbb{R}$ are continuous and bounded and satisfy the following conditions:

- there exists $c_{1}>0$ such that $\alpha(x, y, z)<0$ for $(x, y, z) \in N$ with $z \geq c_{1}$ and there exists $c_{2}<0$ such that $\alpha(x, y, z)>0$ for $(x, y, z) \in N$ with $z \leq c_{2}$;
- $g_{2}(x, y, z)>0$ for $(x, y, z) \in N$ with $x^{2}+y^{2}=r^{2}$ and $g_{2}(x, y, z)<0$ for $(x, y, z) \in N$ with $x^{2}+y^{2}=R^{2}$;
- there exists $m>0$ such that $g_{1}(x, y, z) \geq m$ for all $(x, y, z) \in N$.

Figure 9. $N:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid r^{2} \leq x^{2}+y^{2} \leq R^{2}, z \in \mathbb{R}\right\}$
Let $f: N \rightarrow \mathbb{R}^{3}$ be given by

$$
f(x, y, z)=\left(-y g_{1}(x, y, z)+x g_{2}(x, y, z), x g_{1}(x, y, z)+y g_{2}(x, y, z), \alpha(x, y, z)\right)
$$

where N is defined as follows: let $\omega: N \rightarrow T N^{*}$ be a closed one-form defined by

$$
\omega(x, y, z)=\frac{-y d x+x d y}{x^{2}+y^{2}}-0 d z
$$

Then

$$
\langle\omega(x, y, z), f(x, y, z)\rangle=g_{1}(x, y, z) \geq m>0, \quad \text { for all }(x, y, z) \in N
$$

It is easy to see that if $h: M \times S^{1} \rightarrow N$ is a diffeomorphism given by

$$
h(x, z, \alpha)=(x \cos (\alpha), x \sin (\alpha), z)
$$

where $M=[r, R] \times \mathbb{R}$ and $S^{1}=[0,2 \pi] /\{0,2 \pi\}$ (we identify 0 with 2π), then

$$
h^{*}\left(\frac{-y d x+x d y}{x^{2}+y^{2}}\right)=d \alpha=\omega_{S^{1}}
$$

Thus ω is a bounded Lyapunov form. Now we will show that $f \in \operatorname{Vect}(N)$. For this purpose it suffices to show that f points inward on the boundary of N. But this holds if and only if the following two inequalities are satisfied:

$$
\begin{array}{ll}
\left\langle\left(f_{1}(x, y, z), f_{2}(x, y, z)\right),(x, y)\right\rangle \geq 0 & (\text { resp. } \leq 0) \\
& \text { if } x^{2}+y^{2}=r^{2} \quad\left(\text { resp. } x^{2}+y^{2}=R^{2}\right)
\end{array}
$$

Since

$$
\begin{aligned}
& \left\langle\left(f_{1}(x, y, z), f_{2}(x, y, z)\right),(x, y)\right\rangle \\
& =\left\langle\left(-y g_{1}(x, y, z)+x g_{2}(x, y, z), x g_{1}(x, y, z)+y g_{2}(x, y, z)\right),(x, y)\right\rangle \\
& =\left(x^{2}+y^{2}\right) g_{2}(x, y, z),
\end{aligned}
$$

it follows that the above inequalities hold true. Now we will show that

$$
N_{0}:=\left\{(x, y, z) \in N \mid c_{2} \leq z \leq c_{1}\right\}
$$

is a compact attractor for f (see Figure 9). First of all, since the vector field f is tangent on the set N_{0}, i.e. $f(x, y, z) \in T_{N_{0}}(x, y, z)$, it follows that N_{0} is positively invariant with respect to a set-valued semiflow generated by (5.6). Furthermore, for any trajectory $[0, \infty) \ni t \mapsto(x(t), y(t), z(t))$ starting from a point $\left(x_{0}, y_{0}, z_{0}\right) \in N-N_{0}$ there exists $t_{0}>0$ such that $\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right) \in$ N_{0}. To this aim, suppose on the contrary, that $(x(t), y(t), z(t)) \notin N_{0}$ for all $t \geq 0$. Let $L: N \rightarrow \mathbb{R}$ be given by $L(x, y, z)=z^{2}$. Then a function $[0, \infty) \ni t \stackrel{\gamma}{\longmapsto}$ $L(x(t), y(t), z(t))$ is absolute continuous and hence the derivative of γ exists for almost all $t \geq 0$. It is easy to see that if $\dot{\gamma}(t)$ exists, then

$$
\begin{equation*}
\dot{\gamma}(t)=2 z(t) \alpha(x(t), y(t), z(t))<0 \tag{5.7}
\end{equation*}
$$

Consequently, the function L is nonincreasing along the trajectory γ. Hence if $t>s$, then

$$
\begin{equation*}
z(t)^{2}=L(x(t), y(t), z(t)) \leq L(x(s), y(s), z(s))=z(s)^{2} \tag{5.8}
\end{equation*}
$$

which implies that $|z(t)| \xrightarrow{t \rightarrow \infty} c$. There are two possibilities:
(i) $z(t)>c_{1}$ for all $t \geq 0$, or
(ii) $z(t)<c_{2}$ for all $t \geq 0$.

It suffices to consider the first case (in the second case the reasoning is similar).
In the case (i) we have $z(t) \xrightarrow{t \rightarrow \infty} c \geq c_{1}$. Then

$$
(x(t), y(t), z(t)) \in N_{c_{1}}:=\left\{(x, y, z) \in N\left|c_{1} \leq|z| \leq z_{0}\right\}\right.
$$

for all $t \geq 0$. Let $M_{z_{0}}:=\max _{(x, y, z) \in N_{c_{1}}} \alpha(x, y, z)<0$. Hence $\dot{\gamma}(t) \leq 2 z_{0} M_{z_{0}}<0$, for almost all $t \geq 0$. Now taking into account the Fundamental Theorem of Calculus for absolute continuous functions we obtain

$$
\begin{aligned}
& L(x(t), y(t), z(t))-L\left(x_{0}, y_{0}, z_{0}\right)=\int_{0}^{t} \frac{d}{d s} L(x(s), y(s), z(s)) d s \\
& =\int_{0}^{t} \dot{\gamma}(s) d s \leq \int_{0}^{t} 2 z_{0} M_{z_{0}} d s \leq 2 t z_{0} M_{z_{0}}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
L(x(t), y(t), z(t)) \leq L\left(x_{0}, y_{0}, z_{0}\right)+2 t z_{0} M_{z_{0}} \tag{5.9}
\end{equation*}
$$

This follows that there exists $t_{0}>0$ such that $L\left(x_{0}, y_{0}, z_{0}\right)+2 t_{0} z_{0} M_{z_{0}}<0$ and hence we deduce that $L\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right)<0$, which contradicts the fact that the function L is nonnegative. Now we are to prove that for every $\left(x_{0}, y_{0}, z_{0}\right) \in N$ one has

$$
\begin{equation*}
d_{H}\left(\Pi_{f}\left(\left(x_{0}, y_{0}, z_{0}\right), t\right), N_{0}\right) \xrightarrow{t \rightarrow \infty} 0 \tag{5.10}
\end{equation*}
$$

First, observe that if $\left(x_{0}, y_{0}, z_{0}\right) \in N_{0}$, then any $\gamma \in S_{f}\left(x_{0}, y_{0}, z_{0}\right)$ satisfies the following condition: $\gamma(t) \in N_{0}$ for all $t \geq 0$. Consequently, we deduce that $d_{H}\left(\Pi_{f}\left(\left(x_{0}, y_{0}, z_{0}\right), t\right), N_{0}\right)=0$ for all $t \geq 0$. On the other hand, since L is always nonincreasing along each part of the trajectory of (5.6) included in $N-N_{0}$, we infer that if $\left(x_{0}, y_{0}, z_{0}\right) \in N-N_{0}$, then there exists $t_{0}>0$ (depending on $\left.\left(x_{0}, y_{0}, z_{0}\right) \in N-N_{0}\right)$ such that $\gamma(t) \in N_{0}$ for all $\gamma \in S_{f}\left(x_{0}, y_{0}, z_{0}\right)$ and $t \geq t_{0}$ (for instance, if $z_{0}>c_{1}$, then, in view of (5.9), it suffices to put $t_{0}:=\left(z_{0}^{2}-c_{1}^{2}\right) /\left(2 z_{0}\left|M_{z_{0}}\right|\right)$, which implies that $d_{H}\left(\Pi_{f}\left(\left(x_{0}, y_{0}, z_{0}\right), t\right), N_{0}\right)=0$ for all $t \geq t_{0}$. This proves (5.10).

Consequently, we have proved that N_{0} is an attractor for f. Finally, Corollary 5.15 implies that there exists a nontrivial periodic orbit. Since the space N_{0} is an attractor for f, it follows that a periodic orbit is contained in N_{0}.

Example 5.17. In particular one can consider the following system of differential equations:

$$
\left\{\begin{array}{l}
\dot{x}=-y+x\left(1-x^{2}-2 y^{2}\right) \\
\dot{y}=x+y\left(1-x^{2}-2 y^{2}\right) \\
\dot{z}=-2 \operatorname{sign}(z) \sqrt{|z|}+x^{2}-y^{4}
\end{array}\right.
$$

where $N:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 4^{-1} \leq x^{2}+y^{2} \leq 4, z \in \mathbb{R}\right\}$ and $\omega: N \rightarrow T N^{*}$ is defined by

$$
\begin{equation*}
\omega(x, y, z)=\frac{-y d x+x d y}{x^{2}+y^{2}}-0 d z \tag{5.11}
\end{equation*}
$$

Thus, reasoning as in the previous example, we deduce that there exists a nontrivial periodic orbit in N.

Example 5.18. Consider the following system of differential equations on N :

$$
\left\{\begin{array}{l}
\dot{x}=-y g_{1}(x, y, z)+x g_{2}(x, y, z) \\
\dot{y}=x g_{1}(x, y, z)+y g_{2}(x, y, z) \\
\dot{z}=\left(g_{1}(x, y, z)-d\right)\left(z^{2}+1\right)
\end{array}\right.
$$

where $N:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid r^{2} \leq x^{2}+y^{2} \leq R^{2}\right\}, 0<r<R, g_{1}: N \rightarrow \mathbb{R}$ and $g_{2}: N \rightarrow \mathbb{R}$ are continuous and bounded and satisfy the following conditions:

- $g_{1}(x, y, z)<d$ if $z>c_{1}$ and $g_{1}(x, y, z)>d$ if $z<-c_{2}$, where $c_{1}, c_{2}, d>0$;
- $g_{2}(x, y, z)>0$ for $(x, y, z) \in N$ with $x^{2}+y^{2}=r^{2}$;
- $g_{2}(x, y, z)<0$ for $(x, y, z) \in N$ with $x^{2}+y^{2}=R^{2}$.

In this example we define $\omega: N \rightarrow T N^{*}$ as follows:

$$
\omega(x, y, z)=\frac{-y d x+x d y}{x^{2}+y^{2}}-\frac{1}{1+z^{2}} d z
$$

Then $\langle\omega(x, y, z), f(x, y, z)\rangle=d>0$, where
$f(x, y, z)=\left(-y g_{1}(x, y, z)+x g_{2}(x, y, z), x g_{1}(x, y, z)+y g_{2}(x, y, z), g_{1}(x, y, z)-d\right)$.
Notice that a one-form $\omega_{0}: N \rightarrow T N^{*}$ given by

$$
\omega_{0}(x, y, z)=\frac{-y d x+x d y}{x^{2}+y^{2}}-0 d z
$$

does not work in this case because

$$
\left\langle\omega_{0}(x, y, z), f(x, y, z)\right\rangle=g_{1}(x, y, z)
$$

and $g_{1}(x, y, z)$ can take the value zero for some $(x, y, z) \in N$. Let $h: M \times S^{1} \rightarrow N$ be a diffeomorphism as in Example 5.16. Then

$$
h^{*} \omega=d \alpha-\frac{1}{1+z^{2}} d z=\omega_{S^{1}}+\omega_{e}
$$

where $\omega_{S^{1}}(x, z, \alpha)=d \alpha$ and $\omega_{e}(x, z, \alpha)=(-1) /\left(1+z^{2}\right) d z$. Since

$$
\frac{1}{1+z^{2}}=\frac{d(\arctan (z))}{d z}
$$

and $\arctan (z)$ is bounded, it follows that ω is a bounded one-form (see Remark 5.14). Now following Example 5.16 one can prove that $f \in \operatorname{Vect}_{c}(N)$. Thus from Corollary 5.15 we deduce that there exists a nontrivial periodic orbit in N which generates $\pi_{1}(N)$.

6. Comments

In this section we will make some comments about possible extensions and applications of the results obtained in this paper.

- The methods presented in Section 2 suggests that one can obtain an extension of the well-known Ważewski principle to some cases in which not all egress points are strict egress points (see a survey paper on the Ważewski retract method [19] and Introduction in this paper).
- By using the standard methods from the theory of set-valued maps one can extend all results obtained in this paper to the case of differential inclusions (see [21]).
- Example 5.6 suggests that the technique of Lyapunov forms can be applied in the mathematical theory of persistence (see [38]).

7. Appendix

In the last section we have collected some definitions and facts from the theory of weighted maps which are used in this article. For more information about this class of set-valued maps we refer the reader to the textbook [35] and the papers [11], [26]-[29], [32], [24], [25].

From now on we will assume the all considered spaces are connected ANRs. Given a map $\Phi:\left(X, X_{0}\right) \multimap\left(Y, Y_{0}\right)$ we denote by $\Phi_{X}: X \multimap Y$ and $\Phi_{X_{0}}: X_{0} \multimap Y_{0}$ the evident maps defined by Φ (if $X_{0}=\emptyset$, then we will identify Φ_{X} with Φ).

We put $\left({ }^{13}\right)$:

$$
\begin{aligned}
\mathrm{W}\left(\left(X, X_{0}\right),\left(Y, Y_{0}\right)\right):= & \left\{\Psi:\left(X, X_{0}\right) \multimap\left(Y, Y_{0}\right) \mid \Psi\right. \text { is a weighted carrier } \\
& \text { with } \left.I_{w}(\Psi) \neq 0\right\} \\
\mathrm{A}_{\mathrm{W}}\left(\left(X, X_{0}\right),\left(Y, Y_{0}\right)\right):= & \left\{\Psi \in \mathrm{W}\left(\left(X, X_{0}\right),\left(Y, Y_{0}\right)\right) \mid \check{H}_{k}(\Psi(x) ; \mathbb{Q})=0\right. \\
& \text { for all } k \geq 1 \text { for all } x \in X\} \\
\mathrm{C}\left(\left(X, X_{0}\right),\left(Y, Y_{0}\right)\right):= & \left\{f:\left(X, X_{0}\right) \rightarrow\left(Y, Y_{0}\right) \mid f\right. \text { is continuous } \\
& \text { with } \left.I_{w}(f)=1\right\} \\
\mathrm{CA}_{W}\left(X, X_{0}\right):= & \left\{\Phi \mid \Phi=f \circ \Psi, f \in \mathrm{C}\left(\left(Y, Y_{0}\right),\left(X, X_{0}\right)\right)\right. \\
& \left.\Psi \in \mathrm{A}_{W}\left(\left(X, X_{0}\right),\left(Y, Y_{0}\right)\right)\right\} .
\end{aligned}
$$

Definition 7.1. Let $\Psi: X \multimap Y$ and id: $Z \rightarrow Z$ be two weighted carriers. Let $(x, z) \in X \times Z$ be an arbitrary point and let U be an open subset of $Y \times Z$ such that $(\Psi(x) \times \operatorname{id}(z)) \cap \operatorname{bd} U=\emptyset$. Then $I_{\text {wloc }}: D(\Psi \times \mathrm{id}) \rightarrow \mathbb{Q}$ is defined as follows

$$
\begin{equation*}
I_{\mathrm{wloc}}(\Psi \times \mathrm{id}, U,(x, z)):=I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{z}\right), x\right)\left({ }^{14}\right), \tag{7.1}
\end{equation*}
$$

$\left.{ }^{(13}\right)$ If $X_{0}=\emptyset$, then we will write $\mathrm{CA}_{W}(X)$ instead of $\mathrm{CA}_{W}\left(X, X_{0}\right)$ and so on.
where $U_{z}:=U \cap(Y \times\{z\})$.
Remark 7.2. Let us observe that $\operatorname{pr}\left(U_{z}\right)$ is an open subset of a space Y. Moreover, since

$$
(\Psi(x) \times\{z\}) \cap \operatorname{bd}\left(\operatorname{pr}\left(U_{z}\right)\right)=\emptyset \quad \text { and } \quad \operatorname{bd}_{Y \times\{z\}} U_{z} \subset \operatorname{bd} U,
$$

we conclude that $(\Psi(x) \times\{z\}) \cap \operatorname{bd}_{Y \times\{z\}} U_{z}=\emptyset$. Hence,

$$
\begin{aligned}
\Psi(x) \cap \operatorname{bd}\left(\operatorname{pr}\left(U_{z}\right)\right) & =\operatorname{pr}(\Psi(x) \times\{z\}) \cap \operatorname{pr}\left(\operatorname{bd}_{Y \times\{z\}} U_{z}\right) \\
& =\operatorname{pr}\left((\Psi(x) \times\{z\}) \cap \operatorname{bd}_{Y \times\{z\}} U_{z}\right)=\emptyset .
\end{aligned}
$$

Consequently, the right-hand side of (7.1) is well-defined.
Proposition 7.3. Let $\Psi: X \multimap Y$ and id: $Z \rightarrow Z$ be two weighted carriers. Then a function $I_{\mathrm{wloc}}: D(\Psi \times \mathrm{id}) \rightarrow \mathbb{Q}$ defined as in (7.1) satisfies all the conditions of Definition 3.1. In particular, if X is connected, then $I_{w}(\Psi \times \mathrm{id})=I_{w}(\Psi)$.

Proof. Let $(x, z) \in X \times Z$ and let U be an open subset of $Y \times Z$ with $(\Psi(x) \times \operatorname{id}(z)) \cap \operatorname{bd} U=\emptyset$.

Existence. Assume that $I_{\text {wloc }}(\Psi \times \mathrm{id}, U,(x, z)) \neq 0$. Then, by (7.1), we obtain

$$
I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{z}\right), x\right) \neq 0
$$

Consequently, $\Psi(x) \cap \operatorname{pr}\left(U_{z}\right) \neq \emptyset$ and
$\emptyset \neq(\Psi(x) \times \operatorname{id}(z)) \cap\left(\operatorname{pr}\left(U_{z}\right) \times \operatorname{id}(z)\right)=(\Psi(x) \times \operatorname{id}(z)) \cap U_{z} \subset(\Psi(x) \times \operatorname{id}(z)) \cap U$, as required.

Local invariance. Let

$$
(\Psi(x) \times \operatorname{id}(z)) \cap U=F_{x} \times\{z\}, \quad(\Psi(x) \times \operatorname{id}(z)) \cap((X \times Y) \backslash \bar{U})=F_{x}^{\prime} \times\{z\} .
$$

Then $F_{x} \cup F_{x}^{\prime}=\Psi(x)$ and $F_{x} \cap F_{x}^{\prime}=\emptyset$. Moreover, the compactness of F_{x} and F_{x}^{\prime} implies that there exist open subsets $V_{x}, V_{x}^{\prime} \subset Y$ and $V_{z} \subset Z$ such that

$$
\begin{align*}
& F_{x} \times\{z\} \subset V_{x} \times V_{z} \subset U \tag{7.2}\\
& F_{x}^{\prime} \times\{z\} \subset V_{x}^{\prime} \times V_{z} \subset(Y \times Z) \backslash \bar{U} \tag{7.3}
\end{align*}
$$

Since $\Psi \times$ id is usc, it follows that there exist open sets W_{x} and W_{z} such that

$$
\begin{equation*}
x \in W_{x}, z \in W_{z}, \quad \Psi(\widetilde{x}) \times \operatorname{id}(\widetilde{z}) \subset V_{x} \times V_{z} \cup V_{z}^{\prime} \times V_{z}, \tag{7.4}
\end{equation*}
$$

for all $(\widetilde{x}, \widetilde{z}) \in W_{x} \times W_{z}$. In addition, from the local invariance property of $I_{\text {wloc }}$ for Ψ it follows that there exists an open neighbourhood $B(x, \varepsilon)$ of a point x such that

$$
\begin{equation*}
I_{\text {wloc }}\left(\Psi, \operatorname{pr}\left(U_{z}\right), x\right)=I_{\text {wloc }}\left(\Psi, \operatorname{pr}\left(U_{z}\right), \widetilde{x}\right) \tag{7.5}
\end{equation*}
$$

[^7]for all $\widetilde{x} \in B(x, \varepsilon)$. Now we will show that the following equality holds
$$
I_{\mathrm{wloc}}(\Psi \times \mathrm{id}, U,(x, z))=I_{\mathrm{wloc}}(\Psi \times \mathrm{id}, U,(\widetilde{x}, \widetilde{z}))
$$
for all $(\widetilde{x}, \widetilde{z}) \in\left(B(x, \varepsilon) \cap W_{x}\right) \times W_{z}$. For this purpose, fix a point $(\widetilde{x}, \widetilde{z}) \in$ $\left(B(x, \varepsilon) \cap W_{x}\right) \times W_{z}$. Then, taking into account (7.2)-(7.4), we obtain
(7.6) $(\Psi(x) \times\{z\}) \cap U_{z}=(\Psi(x) \times\{z\}) \cap(U \cap(Y \times\{z\})) \subset V_{x} \times\{z\} \subset U_{z}$,
(7.7) $\quad(\Psi(\widetilde{x}) \times\{\widetilde{z}\}) \cap U_{\widetilde{z}}=(\Psi(\widetilde{x}) \times\{\widetilde{z}\}) \cap(U \cap(Y \times\{\widetilde{z}\})) \subset V_{x} \times\{\widetilde{z}\} \subset U_{\widetilde{z}}$,
where $U_{z}=U \cap(Y \times\{z\})$ and $U_{\widetilde{z}}=U \cap(Y \times\{\widetilde{z}\})$. Consequently,
\[

$$
\begin{aligned}
\Psi(x) \cap \operatorname{pr}\left(U_{z}\right) & =\operatorname{pr}(\Psi(x) \times\{z\}) \cap \operatorname{pr}\left(U_{z}\right) \\
& =\operatorname{pr}\left(\Psi(x) \times\{z\} \cap U_{z}\right) \stackrel{(7.6)}{\subset} \operatorname{pr}\left(V_{x} \times\{z\}\right)=V_{x} \\
\Psi(\widetilde{x}) \cap \operatorname{pr}\left(U_{\widetilde{z}}\right) & =\operatorname{pr}(\Psi(\widetilde{x}) \times\{\widetilde{z}\}) \cap \operatorname{pr}\left(U_{\widetilde{z}}\right) \\
& =\operatorname{pr}\left(\Psi(\widetilde{x}) \times\{\widetilde{z}\} \cap U_{\widetilde{z}}\right) \stackrel{(7.7)}{\subset} \operatorname{pr}\left(V_{x} \times\{\widetilde{z}\}\right)=V_{x} .
\end{aligned}
$$
\]

Hence from the excision property of $I_{\text {wloc }}$ for Ψ it follows that

$$
\begin{equation*}
I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{z}\right), \widetilde{x}\right)=I_{\mathrm{wloc}}\left(\Psi, V_{x}, \widetilde{x}\right)=I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{\bar{z}}\right), \widetilde{x}\right) \tag{7.8}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
I_{\mathrm{wloc}}(\Psi \times \mathrm{id}, U,(x, z)) & =I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{z}\right), x\right) \stackrel{(7.5)}{=} I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{z}\right), \widetilde{x}\right) \\
& \stackrel{(7.8)}{=} I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{\widetilde{z}}\right), \widetilde{x}\right)=I_{\mathrm{wloc}}(\Psi \times \mathrm{id}, U,(\widetilde{x}, \widetilde{z}))
\end{aligned}
$$

as desired.
Additivity. Let $\Psi(x) \times \operatorname{id}(z) \cap U \subset \bigcup_{i=1}^{k} U^{i} \subset U$, where U^{i}, for $i=1, \ldots, k$, are open subsets of U and $U^{i} \cap U^{j}=\emptyset$ for $i \neq j$. Since

$$
\Psi(x) \cap \operatorname{pr}\left(U_{z}\right)=\operatorname{pr}\left((\Psi(x) \times\{z\}) \cap U_{z}\right) \subset \bigcup_{i=1}^{k} \operatorname{pr}\left(U_{z}^{i}\right) \subset \operatorname{pr}\left(U_{z}\right)
$$

we deduce from the additivity property of $I_{\text {wloc }}$ for Ψ that

$$
\begin{aligned}
I_{\mathrm{wloc}}(\Psi \times \mathrm{id}, U,(x, z)) & =I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{z}\right), x\right) \\
& =\sum_{i=1}^{k} I_{\mathrm{wloc}}\left(\Psi, \operatorname{pr}\left(U_{z}^{i}\right), x\right)=\sum_{i=1}^{k} I_{\mathrm{wloc}}\left(\Psi \times \mathrm{id}, U^{i},(x, z)\right)
\end{aligned}
$$

as required. Finally, let us observe that

$$
I_{w}(\Psi \times \mathrm{id})=I_{\mathrm{wloc}}(\Psi \times \mathrm{id}, Y \times Z,(x, z))=I_{\mathrm{wloc}}(\Psi, Y, x)=I_{w}(\Psi)
$$

which completes the proof.

Definition 7.4. An usc set-valued map $\Phi: X \multimap Y$ is called locally compact provided each $x \in X$ has a neighbourhood U_{x} such that the restriction $\Psi \mid U_{x}: U_{x} \multimap Y$ is compact.

Definition 7.5. Let $\Phi: X \multimap X$ be locally compact. We say that
(a) Φ has a compact attractor provided there exists a compact set $K \subset X$ such that for every open neighbourhood U of K in X and for every $x \in X$ there exists a natural number n_{x} such that $\Phi^{n}(x) \subset U$ for every $n \geq n_{x}$.
(b) Φ is called a compact absorbing contraction if there exists an open subset X_{0} of X satisfying: $(1) \Phi\left(X_{0}\right) \subset X_{0},(2) \Phi \mid X_{0}: X_{0} \multimap X_{0}$ is a compact map, (3) for every $x \in X$ there exists n_{x} such that $\Phi^{n_{x}}(x) \subset X_{0}$ (written $\left.\Phi \in \operatorname{CAC}\left(X, X_{0}\right)\right)$.

Lemma 7.6 (see [21, Chapter IV]). If $\Phi: X \multimap X$ has a compact attractor, then Φ is a compact absorbing contraction.

Notice that for any map $\Phi \in \mathrm{CAC}\left(X, X_{0}\right) \cap \mathrm{CA}_{\mathrm{W}}\left(X, X_{0}\right)$, using the methods developed in [35], one can define the Lefschetz numbers $\Lambda(\Phi), \Lambda\left(\Phi_{X}\right), \Lambda\left(\Phi_{X_{0}}\right) \in$ \mathbb{Q} which have all the expected properties of the Lefschetz number for singlevalued maps (see [35, Chapter 4], [29] and [22, Chapter V]). In particular, if X is a contractible ANR and $\Phi \in \mathrm{CAC}\left(X, X_{0}\right) \cap \mathrm{CA}_{\mathrm{W}}\left(X, X_{0}\right)$, then

$$
\begin{equation*}
\Lambda(\Phi)=0 \quad \text { and } \quad \Lambda\left(\Phi_{X}\right)=\Lambda\left(\Phi_{X_{0}}\right)=I_{w}\left(\Phi_{X}\right) \neq 0 \tag{7.9}
\end{equation*}
$$

The proof of this fact is analogous as in the case of single-valued maps (see [22, Chapter V] for single-valued maps).

Theorem 7.7 ([35, Corollary 4.5.17]). If X is an ANR and $\Phi \in \operatorname{CA}_{\mathrm{W}}(X)$ is compact with $\Lambda(\Phi) \neq 0$, then $\operatorname{Fix}(\Phi) \neq \emptyset$.

The above theorem can be extended to the case when Φ is not compact.
Theorem 7.8. If X is a contractible ANR and

$$
\Phi \in \mathrm{CAC}\left(X, X_{0}\right) \cap \mathrm{CA}_{\mathrm{W}}\left(X, X_{0}\right)
$$

then $\operatorname{Fix}(\Phi) \neq \emptyset$.
Proof. It follows directly from (7.9) and Theorem 7.7.
Acknowledgements. The author is grateful to the referee for a number of helpful suggestions for improvement in the article.

References

[1] J. Andres, G. Gabor and L. Górniewicz, Topological structure of solution sets to multivalued asymptotic problems, Z. Anal. Anwendungen 19 (2000), 35-60.
[2] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, Recent Advances, North-Holland Mathematical Library, vol. 52, Amsterdam, North-Holland, 1994.
[3] J.P. Aubin, Viability Theory, Birkhäuser, Boston, 1991.
[4] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[5] R. Bader and W. Kryszewski, On the solution sets of constrained differential inclusions with applications, Set-Valued Anal. 9 (2001), 289-313.
[6] H. Ben-El-Mechaiekh and W. Kryszewski, Equilibria of set-valued maps on nonconvex domains, Trans. Amer. Math. Soc. (10) 349 (1997), 4159-4179.
[7] K. Borsuk, Theory of Retracts, Monografie Matematyczne, PWN, Warszawa, 1967.
[8] R. Brown, A Topological Introduction to Nonlinear Analysis, Birkhäuser, 1993.
[9] C.I. Byrnes, Topological methods for nonlinear oscillations, Notices Amer. Math. Soc. (9) 57 (2010), 1080-1091.
[10] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
[11] G. Conti and J. Pejsachowicz, Fixed point theorems for multivalued weighted maps, Ann. Mat. Pura Appl. (4) 126 (1980), 319-341.
[12] A. Ćwiszewski and W. Kryszewski, Equilibria of set-valued maps: variational approach, Nonlinear Anal. 9 (2001), 289-313.
[13] G. Darbo, Teoria dell'omologia in una categoria di mappe plurivalenti ponderate, Rend. Sem. Mat. Univ. Padova 28 (1958), 188-220.
[14] , Estensione alle mappe ponderate del teorema di Lefschetz sui punti fissi, Rend. Sem. Mat. Univ. Padova 31 (1961), 46-57.
[15] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.
[16] A. Dold, Lectures on Algebraic Topology, Die Grundlehren der mathematischen Wissenschaften, Band 200, Springer-Verlag, New York, 1972.
[17] F.B. Fuller, Note on trajectories in a solid torus, Ann. of Math. 58 (1952), 438-439.
[18] G. Gabor, On the acyclicity of fixed point sets of multivalued maps, Topol. Methods Nonlinear Anal. 14 (1999), 327-343.
[19] One Wazewski retract method, Lecture Notes in Nonlinear Analysis, vol. 12, Nicolaus Copernicus University, Juliusz Schauder Center for Nonlinear Studies, 2011, pp. 7-20.
[20] L. Górniewicz, Topological structure of solution sets: current results, Arch. Math. (Brno) 36 (2000), 343-382.
[21] , Topological Fixed Point Theory of Multivalued Mappings, second edition, Topological Fixed Point Theory and Its Applications, vol. 4, Kluwer Academic Publishers, Dordrecht, 2006.
[22] A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
[23] D.M. Hyman, On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1969), 91-97.
[24] F. von Haeseler, H.-O. Peitgen and G. Skordev, Lefschetz fixed point theorem for acyclic maps with multiplicity, Topol. Methods Nonlinear Anal. 19 (2002), 339-374.
[25] F. von Haeseler and G. Skordev, Borsuk-Ulam theorem, fixed point index and chain approximations for maps with multiplicity, Pacific J. Math. 153 (1992), 369-396.
[26] J. Pejsachowicz, The homotopy theory of weighted mappings, Boll. Unione Mat. Ital. B (5) $\mathbf{1 4}$ (1977), 702-721.
[27] , A Lefschetz fixed point theorem for multivalued weighted mappings, Boll. Unione Mat. Ital. A (5) 14 (1977), 391-397.
[28] \qquad , Relation between the homotopy and the homology theory of weighted mappings, Boll. Unione Mat. Ital. B (5) 15 (1978), 285-302.
[29] J. Pejsachowicz and R. Skiba, Fixed point theory of multivalued weighted maps, Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, pp. 217-263.
[30] S. Plaskacz, On the solution sets for differential inclusions, Boll. Unione Mat. Ital. A (7) 6 (1992), 387-394.
[31] , Periodic solutions of differential inclusions on compact subsets of \mathbb{R}^{n}, J. Math. Anal. Appl. 148 (1990), 202-212.
[32] H.W. Siegberg and G. Skordev, Fixed point index and chain approximations, Pacific J. Math. 102 (1982), 455-486.
[33] R. Skiba, On the Lefschetz fixed point theorem for multivalued weighted mappings, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 40 (2001), 201-214.
[34] \qquad , Topological essentiality for multivalued weighted mappings, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 41 (2002), 131-145.
[35] , Fixed points of multivalued weighted maps, Lecture Notes in Nonlinear Analysis, vol. 9, Juliusz Schauder Center for Nonlinear Studies, Nicolaus Copernicus University, Toruń, 2007, pp. 1-148.
[36] , Graph-approximation of multivalued weighted maps, Topol. Methods Nonlinear Anal. 29 (2007), 119-161.
[37] E.G. Sklyarenko and G. Skordev, Intger-valued fixed point index for acyclic maps on ANR's, C.R. Acad Bulgare Sci. 57 (2004), 5-8.
[38] H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, vol. 118, American Mathematical Society, 2011.
[39] E. Spanier, Algebraic Topology, Springer-Verlag, MacGraw-Hill, New York, 1966.

[^8]
[^0]: 2010 Mathematics Subject Classification. Primary 34A12, 34C25; Secondary 55M20, 54C60.

 Key words and phrases. Differential equation, closed trajectory, weighted map.
 This work was supported by Polish scientific grant N N201 395137.
 $\left({ }^{1}\right)$ Throughout this paper by a solution to a differential equation $\dot{u}=f(u)$ we mean an absolutely continuous function u that satisfies the equation $\dot{u}(s)=f(u(s))$ almost everywhere.

[^1]: $\left({ }^{2}\right)$ It should be noted that in the paper [17] the solutions of differential equations are of class C^{1} but it is not hard to see that all results obtained in [17] are also true in the case of abolutely continuous solutions.
 $\left(^{3}\right)$ By a flow we mean a continuous function $\Pi: X \times \mathbb{R} \rightarrow X$ satisfying the following conditions: (a) $\Pi(x, 0)=x$ for all $x \in X$, and (b) $\Pi(x, t+s)=\Pi(\Pi(s, x), t)$ for all $t, s \in \mathbb{R}$ and $x \in X$.

[^2]: $\left({ }^{4}\right)$ Following [30] we say that a closed subset $K \subset \mathbb{R}^{n}$ is a proximate retract if there exists a neighbourhood U of K and a retraction $r: U \rightarrow K$ such that $|r(x)-x|=d_{K}(x)$.

[^3]: $\left({ }^{5}\right)$ Just in case, we recall that the boundary of U is taken with respect to \mathbb{R}.

[^4]: $\left({ }^{6}\right)$ Recall here that a nonempty compact subset C of a metric space X is called an R_{δ}-set if it is the intersection of a decreasing family of compact contractible sets $C_{n} \subset X$ (see [23]). In particular, an R_{δ}-set is connected. $C_{u}\left([0, \infty), \mathbb{R}^{k}\right)$ stands for the Fréchet space of all continuous maps $[0, \infty) \rightarrow \mathbb{R}^{k}$ with the topology of almost uniform convergence.

[^5]: $\left({ }^{9}\right)$ Recall that a compact set $K \subset \mathbb{R}^{n}$ is said to be asymptotically stable if K is stable (i.e. for every neighbourhood V of K, there exists a neighbourhood V^{\prime} of K such that $\Pi_{f}\left(V^{\prime} \times\{t\}\right) \subset$ V for all $t \geq 0$, where Π_{f} denotes a flow generated by f) and attracts points locally (i.e. there exists a neighbourhood W of K such that K attracts each point in W).
 $\left.{ }^{(10}\right)$ Given $\gamma \in S_{f}\left(M \times S^{1}\right)$, by γ_{t} we will denote the restriction of γ to $[0, t]$.

[^6]: ${ }^{(12)}$ By a diffeomorphism between X and Y we will understand a homeomorphism $h: X \rightarrow Y$ such that h and h^{-1} are of class C^{2}.

[^7]: $\left({ }^{14}\right)$ In this section by pr we denote the projection of the Cartesian product of two spaces on the first factor.

[^8]: Robert Skiba
 Faculty of Mathematics and Computer Science
 Nicolaus Copernicus University
 Chopina 12/18
 87-100 Toruń, POLAND
 E-mail address: robo@mat.umk.pl

