
Topological Methods in Nonlinear Analysis
Volume 42, No. 1, 2013, 9–49

c© 2013 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

APPLICATIONS OF WEIGHTED MAPS
TO PERIODIC PROBLEMS

OF AUTONOMOUS DIFFERENTIAL EQUATIONS

Robert Skiba

Abstract. In this paper we present a new approach for solving the prob-
lem of the existence of closed trajectories for autonomous differential equa-
tions without the uniqueness property. To this aim, we are using a special
class of set-valued maps, called weighted carriers or weighted maps.

Introduction

In this paper we are interested in the existence of solutions of the following
problem

(P)


u̇(s) = f(u(s)) for almost all s ∈ [0, T ],
u(s) ∈M × S1 for all s ∈ [0, T ],
u(0) = u(t0) for some 0 < t0 ≤ T,

where M ⊂ Rn is closed and contractible, f :M × S1 → Rn+2 is continuous
and T > 0 (additional assumptions on M ⊂ Rn and f will be specified later).
A solution u of the problem (P) will be called a closed trajectory or a periodic
solution (1).
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(1) Throughout this paper by a solution to a differential equation u̇ = f(u) we mean an

absolutely continuous function u that satisfies the equation u̇(s) = f(u(s)) almost everywhere.
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The above problem for smooth maps f and smooth manifolds M has been
treated in the following papers [9], [11]. It should be noted that this prob-
lem requires extreme caution because the counterexample has been provided by
F.B. Fuller in [17] (see also Figure 8 in this paper). Namely, he constructed a
nonvanishing vector field in a solid 4-dimensional torus D3(0, 1) × S1 with no
closed trajectories (2).
Recall that the above problem in the case when M × S1 is replaced by

any compact set K with χ(K) �= 0 has been studied by many authors (see for
example [5], [31]), where χ(K) is the Euler characteristic defined by the formula
χ(K) :=

∑
i≥0
(−1)idimHi(K;Q) (where H∗( · ;Q) denotes the singular homology

functor with rational coefficients). Notice that the methods discussed in the
mentioned papers cannot be applied in our case since χ(M × S1) = 0.
The main aim of this paper is to give sufficient conditions under which

the problem (P) admits a solution. It turned out that there was a need to
apply set-valued weighted carriers introduced by G. Darbo and further devel-
oped by several authors as G. Conti, J. Pejsachowicz and R. Skiba ([11], [26],
[29], [35], [36]). We should say a few words why set-valued weighted maps
play an important role in our considerations. Let X be a metric space and
let Π:X × R → X be a flow (3). Consider Y ⊂ X . Let Y0 := {y ∈ Y |
there exists t > 0 such that Π(y, t) �∈ Y }. Let τ :Y0 → [0,∞) be defined by
τ(y) := sup{t ≥ 0 | Π({y} × [0, t]) ⊂ Y }. Recall that the above map, for
example, is used to prove the Ważewski principle. In general, the above func-
tion is not continuous. Therefore, to solve the problem (P) we replaced the
function τ by the following set-valued map ϕ:Y0 � [0,∞) defined as follows
ϕ(y) := {t ≥ 0 | Π(y, t) ∈ bdY }. It turns out that under our assumptions the
latter map is well-defined and belongs to the class of set-valued weighted carriers.
That is why we use weighted maps in our considerations.
It should be noted that this article is strongly motivated by the papers [9],

[11] in which the problem (P) is also considered. But in [9], [11] the authors
assumed that the right-hand side of (P) is at least of class C1. In this article we
reject this assumption which in turn implies that this problem is more involved.
This article is organized as follows. After this Introduction it consists of

seven sections. The first section is devoted to some preliminaries. Whereas
the second section contains a slightly modified construction of the intersection
index (comp. [16] and [11]) which is much more useful and convenient in our

(2) It should be noted that in the paper [17] the solutions of differential equations are of
class C1 but it is not hard to see that all results obtained in [17] are also true in the case of
abolutely continuous solutions.

(3) By a flow we mean a continuous function Π: X × R → X satisfying the following
conditions: (a) Π(x, 0) = x for all x ∈ X, and (b) Π(x, t+ s) = Π(Π(s, x), t) for all t, s ∈ R and
x ∈ X.
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studies. In the third section we recall some basic definitions and facts concerning
weighted carriers. Furthermore, we prove that set-valued maps which appear in
the study of the problem (P) belong to the class of weighed maps. For more
information about weighted carriers we refer the reader to [29] and [35]. In the
next section we will present the main results of this paper. Namely, we prove
that under some assumptions on M and f the problem (P) admits a solution.
The fifth section concerns also the problem (P) but on manifolds. We show
that this assumption allows us to formulate easily verifiable conditions ensuring
the existence of closed trajectories. In the short sixth section we provide some
comments about possible extensions and applications of the results obtained in
this article. Section 7 contains for the reader’s convenience some technical proofs
of results from Section 3.

Summing up this Introduction, the main results of this paper are contained
in Theorems 4.13, 4.17 and 5.11. As far as the author knows, this is the first
time that periodic results for differential equations without uniqueness property
have been obtained by means of a set-valued weighted analysis.

1. Preliminaries

We start with some notations which will be used in this article. Throughout
the paper by a space we mean a metric space, by a pair of spaces – a pair (X,A),
where X is a space and A ⊂ X ; any space X is identified with the pair (X, ∅); all
single-valued maps between spaces are considered to be continuous. Let (X, d)
be a metric space. Given Y ⊂ X and A ⊂ Y , by intY A, clYA and bd YA we
denote the interior, the closure and the boundary of A in Y , respectively, while
intA, clA and bdA denote the interior, the closure and the boundary of A in X .
For any ε > 0,

B(A, ε) := {x ∈ X | dist(x,A) < ε}, D(A, ε) := {x ∈ X | dist(x,A) ≤ ε},

where dist(x,A) := inf{d(x, a) | a ∈ A} is the distance of x ∈ X from A. In
particular, by Dn(x, r) (resp. Bn(x, r)) we will denote the closed (resp. open)
ball around x ∈ Rn of radius r > 0, n ≥ 1. The Euclidean norm and the scalar
product in Rn are denoted by | · | and 〈 · , · 〉, respectively.
By dH(A1, A2) we shall denote the Hausdorff separation between two non-

empty compact subsets A1 andA2 ofX defined by dH(A1, A2) := sup
a∈A1
dist(a,A2).

It is well-known that dH(A1, A2) < ε if and only if A1 ⊂ B(A2, ε).
Now we recall some notions of nonsmooth analysis (see [10]). Let M ⊂ Rn

be a nonempty closed set. A function dM :Rn → [0,∞) defined by dM (x) :=
inf {|x− y| | y ∈M} is called the distance function to M . For any x ∈ M we
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put

(1.1) TM (x) :=
{
v ∈ Rn

∣∣∣∣ lim infh→0+
dM (x+ hv)
h

= 0
}
,

where TM (x) is called the Bouligand contingent cone to M at x.
We will say that f :M → Rn is tangent if f(x) ∈ TM (x) for all x ∈M and in

this case we will write f ∈ Vect(M). Given a closed subset M ⊂ Rn, the subset

TM = {(x, v) ∈M × Rn | v ∈ TM (x)}

of Rn×Rn is called the tangent bundle ofM . Observe that f ∈ Vect(M) induces
the following continuous map Tf :M → TM given by (Tf)(x) := (x, f(x)).
Recall two properties of the Bouligand cone which will be used in this paper

(see [4]):

• If M = M1 × M2, then TM1×M2(x1, x2) = TM1(x1) × TM2(x2) and
T (M1 ×M2) = TM1 × TM2.
• If M is a smooth manifold without boundary, then TM (x) = TxM ,
where TxM stands for the tangent space of M at x.

Let f :Rn → R be a locally Lipschitz function. The generalized directional
derivative of f at x in the direction v ∈ Rn in the sense of Clarke is defined as
follows

f◦(x; v) = lim sup
y→x
h→0+

f(y + hv)− f(y)
h

.

The generalized gradient of f at x is defined by

∂f(x) := {p ∈ Rn | 〈p, u〉 ≤ f◦(x;u) for all u ∈ Rn}.

Recall that if f is C1, then ∂f(x) = {∇f(x)}. Following [5], [12] we recall the
notion of a strictly regular set. Assume that f : Dom(f)→ R is a locally Lipschitz
function, where the domain Dom(f) is open in Rn. We put

(1.2) M := {x ∈ Dom(f) | f(x) ≤ 0}.

Notice thatM need not be closed in Rn. We will say thatM is represented by f .

Definition 1.1 ([5], [12]). We say that the setM given by (1.2) (represented
by a locally Lipschitz function f : Dom(f)→ R) is said to be strictly regular if

(a) M is closed,
(b) there is a neighbourhood U ofM such that inf

y∈U\M
|||∂f(y)||| > 0, where

|||∂f(y)||| := inf
p∈∂f(y)

|p|.
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In what follows, we will need the following property of strictly regular sets.

Remark 1.2. It is easily seen that if M ⊂ Rn is strictly regular, then so
is M × R. Indeed, let f : Dom(f) → R be a locally Lipschitz function and let
M := {x ∈ Dom(f) | f(x) ≤ 0}. Observe that

M × R = {(x, z) ∈ Dom(f)× R | f̃(x, z) ≤ 0},
where f̃ : Dom(f̃) → R is defined by f̃(x, z) := f(x) for all (x, z) ∈ Dom(f̃) :=
Dom(f)×R. Moreover, f̃◦((x, z); (u,w)) = f◦(x;u) for all (x, z) ∈ Dom(f̃) and
(u,w) ∈ Rn × R and hence

∂f̃(x, z) = ∂f(x)× {0}.
From this it follows that

inf
y∈U−M

|||∂f(y)||| > 0⇔ inf
(y,z)∈(U−M)×R

|||∂f̃(y, z)||| > 0,

which implies that M × R is strictly regular.

Notice that the class of strictly regular sets is quite large. Below we shall
provide a few examples of strictly regular sets (see [5] or [12]):

• Any closed convex subsetK of Rn, represented by dK , is strictly regular.
• A proximate retract K ⊂ Rn is strictly regular (4).
• Any closed manifold K ⊂ Rn of class C2 is strictly regular.
• If a compact subset M ⊂ Rn is strictly regular, then M is a neighbour-
hood retract in Rn ([5]).

The terminology and results from the algebraic topology which are used here
are quoted from the books [16] and [22], [39]. In particular, H∗(X,Y ;G) (resp.
Ȟ∗(X,Y ;G)) denotes the singular homology group (resp. the Čech homology
group) of a pair (X,Y ) with coefficients in a group G. A compact space X
will be called acyclic (resp. positively acyclic) if Ȟ∗(X ;Q) = Ȟ∗(pt;Q) (resp.
Ȟi(X ;Q) = Ȟi(pt;Q)) for all i ≥ 1), where pt is a one-point space and Q

denotes the set of rational numbers.
Given a metric space (X, d), by C(X,Rn) we denote the space of all bounded

and continuous functions f :X → Rn from X to Rn equipped with the norm
‖f‖C := sup

x∈X
|f(x)|.

Recall that a space X is an absolute neighbourhood retract (or ANR) if for
every space Y and a homeomorphic embedding i:X → Y of X onto a closed
subset i(X) ⊂ Y there is an open neighbourhood U of i(X) in Y and a function
r:U → i(X) such that r(y) = y for all y ∈ i(X). In particular, any compact
convex set is an ANR (see [7]).

(4) Following [30] we say that a closed subset K ⊂ R
n is a proximate retract if there exists

a neighbourhood U of K and a retraction r:U → K such that |r(x) − x| = dK(x).
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We finish this section by recalling some definitions and facts from the theory
of set-valued maps. Given two spaces X and Y , by a set-valued map (denoted
by the symbol �) ϕ:X � Y we mean a transformation which assigns to any
x ∈ X a nonempty compact set ϕ(x) ⊂ Y . A set-valued map ϕ:X � Y is
upper semicontinuous (written usc) if, given an open subset V ⊂ Y , the set
{x ∈ X | ϕ(x) ⊂ V } is open. A map ϕ is compact if ϕ(X) = ⋃

x∈X
ϕ(x) is

relatively compact. If ϕ:X � Y is usc and K ⊂ X is compact, then ϕ(K) is
compact. If f :X → Y (resp. ϕ:X � Y ) is a map (resp. set-valued map), then
Gr(f) (resp. Gr(ϕ)) stands for the graph of f (resp. of ϕ), i.e.

Gr(f) := {(x, f(x)) | x ∈ X}, Gr(ϕ) := {(x, y) ∈ X × Y | y ∈ ϕ(x)}.
We refer the reader to the book [21] which is a comprehensive source of set-valued
maps.

2. Intersection index

In this section we are going to give a construction of an intersection index.
But in our approach we also use some ideas from the construction of the fixed
point index for single-valued maps due to Dold and Granas (see [16] and [22]).
To be brief, we shall present a slightly modified version of the intersection index
given in [11], which will turn out to be very useful in our considerations. In
this section we will use the singular homology functor with integer coefficients
Z, which will be omitted from the notation.
Now we are going to define a fundamental class OK of H1(R,R − K). Let

K ⊂ R be compact. Since H1(R,R − 0) = Z, we can choose one of the two
possible generators once and for all and call it by O. Since K is compact, there
exists r > 0 such that K ⊂ B1(0, r).
Consider the following diagram

H1(R,R−K) i∗←− H1(R,R−B1(0, r)) j∗−→ H1(R,R− 0)
in which i, j are the respective inclusions. Since j∗ is an isomorphism (see [2,
Lemma 10.2.12]), we can define OK as follows

(2.1) OK = (i∗ ◦ (j∗)−1)(O).
It should be noted that the above definition does not depend on the choice of
r > 0. Indeed, this follows from the fact that the following diagram

H1(R,R−K)
id

��

H1(R,R−B1(0, r))��

��

�� H1(R,R− 0)
id

��

H1(R,R−K) H1(R,R−B1(0, r̃))�� �� H1(R,R− 0)



Applications of Weighted Maps to Periodic Problems 15

is commutative, where the unlabelled arrows are induced by the inclusions and
r̃ > r.
Observe that if U is an open set with K ⊂ U ⊂ R, then the excision property

of the singular homology implies that the induced homomorphism i∗:H1(U,U −
K)→ H1(R,R−K) is an isomorphism. Thus one can put

(2.2) OUK := i
−1
∗ (OK).

The following lemma is easy to prove.

Lemma 2.1 (see [11] or [21, Chapter 1]). Let K ⊂ K1 ⊂ V ⊂ U , where K,K1
are compact and U , V are open subsets of R. Let k: (V, V −K1)→ (U,U −K)
be the inclusion. Then k∗(OVK1) = O

U
K .

Let E be a subspace of Rn, let L be a closed subset of E such that H1(E,E−
L) �= 0 and let U be an open subset of R. We put

(2.3) C(U,E;L) := {f :U → E | f−1(L) is compact}.

Now we are ready to define the following concept:

Definition 2.2. Under the above assumptions, we define the intersection
index i(f, U) of f ∈ C(U,E;L) by

i(f, U) := f∗(OUK),

where f∗:H1(U,U − K) → H1(E,E − L) is the homomorphism induced by f
and K := f−1(L).

Now we shall present two lemmas which will be needed in the proof of the
main properties of the intersection index.

Lemma 2.3. Given f ∈ C(U,E;L), assume that F is a compact set such
that K := f−1(L) ⊂ F and F ⊂ U . Then

f̃∗(OUF ) = f∗(O
U
K),

where f̃ : (U,U − F )→ (E,E − L) is induced by f .
Proof. It follows easily from Lemma 2.1 and the fact that the following

diagram

H1(U,U −K) f∗
�� H1(E,E − L)

H1(U,U − F )
�f∗

��

i∗

��

H1(E,E − L)
id

��

is commutative, where i: (U,U − F )→ (U,U −K) is the inclusion. �
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Lemma 2.4 (see [8, Appendix B]). Let U1 and U2 be two disjoint open subsets
of R and let F ⊂ R be closed such that F ⊂ U1∪U2. Then the following diagram
is commutative:

H1(R,R− F )
(i1∗,i1∗) �� H1(R,R− F1)⊕H1(R,R− F2)

H1(U,U − F )
j∗

��

H1(U1, U1 − F1)⊕H1(U2, U2 − F2)
h1∗+h2∗
��

j1∗⊕j2∗

��

where all the homomorphisms in the above diagram are induced by the inclusions
and Fi := F ∩ Ui, for i = 1, 2, and U := U1 ∪ U2.
The intersection index satisfies the following properties:

Proposition 2.5. Let f ∈ C(U,E;L) and let K := f−1(L).
(a) (Existence) If i(f, U) �= 0, then K �= ∅.
(b) (Excision and Additivity) If K ⊂

k⋃
i=1
Ui, where Ui, 1 ≤ i ≤ k, are

disjoint open subsets of U , then

i(f, U) =
k∑
i=1

i(f |Ui, Ui).

(c) (Homotopy invariance) Let h:U × [0, 1]→ E be a continuous function.
If

Kh := {x ∈ U | h(x, t) ∈ L for some t ∈ [0, 1]}
is compact, then i(h0, U) = i(h1, U).

Proof. (a) Existence. Suppose on the contrary that K = ∅. Then we have
H1(U,U −K) = H1(U,U) = 0 and, in view of (2.2), OUK = 0. Thus, taking into
account Definition 2.2, we deduce that i(f, U) = 0, a contradiction.
(b) Excision and Additivity. The proof will be divided into two steps.

Step 1 (Excision). We assume that K ⊂ U0, where U0 ⊂ U . Consider the
following commutative diagram:

H1(R,R−K) H1(U,U −K)���
f∗ �� H1(E,E − L)

H1(R,R−K)
id

��

H1(U0, U0 −K)

��

�
��

(f |U0)∗

���������������

where the unlabelled arrows are induced by the inclusions. Now from the above
diagram it follows immediately that i(f, U) = i(f, U0), as required.

Step 2 (Additivity). We assume that K ⊂
k⋃
i=1
Ui, where Ui, 1 ≤ i ≤ k, are

disjoint open subsets of U . In addition, without loss of generality we can assume
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that k = 2. Let Ki := K ∩ Ui, 1 ≤ i ≤ 2. By Step 1, we may replace U by
U1 ∪ U2. Now, it suffices to prove that the following diagram is commutative:

H1(R,R− 0) (id∗,id∗)
�� H1(R,R− 0)⊕H1(R,R− 0)

H1(R,R−B1(0, r))

��

�
��

(id∗,id∗)
�� H1(R,R−B1(0, r))⊕H1(R,R−B1(0, r))

��

�
��

H1(R,R−K) (i1∗,i2∗) �� H1(R,R−K1)⊕H1(R,R−K2)

H1(U,U −K)
�

��

f∗
��

H1(U1, U1 −K1)⊕H1(U2, U2 −K2)
�

��

f1∗+f2∗
�����������������������������

h1∗+h2∗��

H1(E,E − L)

in which, except for f and its restrictions, all the homomorphisms are induced by
the inclusions. Indeed, let us observe that the lower square of the above diagram
commutes by Lemma 2.4, while the commutativity of the remaining squares
and the lower triangle is obvious, which completes the proof of the additivity
property.

(c) Homotopy invariance. First, let us observe that (ht)−1(L) ⊂ Kh for every
t ∈ [0, 1]. Consider now the following diagram:

H1(R,R−Kh) j∗←− H1(U,U −Kh) (ht)∗−→ H1(E,E − L),

for any t ∈ [0, 1]. Then, by Definition 2.2 and Lemma 2.3, we obtain

(2.4) i(ht, U) = (h̃t)∗(OUKt) = (ht)∗(O
U
Kh)

for all t ∈ [0, 1], where

(h̃t)∗:H1(U,U −Kt)→ H1(E,E − L)

is induced by ht and Kt := h−1t (L). From the homotopy invariance of the
singular homology functor it follows that

(2.5) (h0)∗ = (h1)∗.

Consequently, taking into account (2.4) and (2.5), we get i(h0, U) = i(h1, U),
which completes the proof. �
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L

f

f (1)

f (0)

L

g

g (1)

g (0)

L

h

h (1)

h (0)

Figure 1. i(f, (0, 1)) = 1, i(g, (0, 1)) = 0, i(h, (0, 1)) = −1

We finish this section by illustrating Definition 2.2 by putting E = D2(0, 1)×
R and L = D2(0, 1)× {c} (see Figure 1).

3. Weighted carriers

In this section, we shall survey the most important properties of set-valued
weighted carriers which will be used in the sequel. For a complete description of
the theory of set-valued weighted carriers we refer the reader to the monograph
[35] (see also: [11], [26]–[29], [32], [24], [25]).

In what follows, we shall use the following notation. Given any set-valued
map Φ:X � Y , we put

D(Φ) = {(V, x) | V is an open subset of Y and Φ(x) ∩ bdV = ∅}.

We begin with the following two definitions.

Definition 3.1. An usc set-valued map Φ:X � Y with compact values is
said to be a weighted carrier if there exists a function Iwloc:D(Φ)→ Q satisfying
the following three conditions:

(a) (Existence) If Iwloc(Φ, V, x) �= 0, then Φ(x) ∩ V �= ∅.
(b) (Local invariance) For every (V, x) ∈ D(Φ) there exists an open neigh-
bourhood Ux of x such that, for all x̃ ∈ Ux,

Iwloc(Φ, V, x) = Iwloc(Φ, V, x̃).

(c) (Additivity) If Φ(x)∩V ⊂
k⋃
i=1
Vi, where Vi, 1 ≤ i ≤ k, are open disjoint

subsets of V , then

Iwloc(Φ, V, x) =
k∑
i=1

Iwloc(Φ, Vi, x).
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Remark 3.2. (a) The additivity property in the case of k = 1 will be called
the excision property.

(b) It is easy to see that a function Iwloc:D(Φ)→ Q defined by Iwloc(Φ, V, x)
= 0 for all (V, x) ∈ D(Φ) satisfies all the conditions of Definition 3.1. But this
example is trivial and it will not be interesting for us and we will always try to
look for a nontrivial function Iwloc for Φ.

Definition 3.3. Let Φ:X � Y be a weighted carrier and let X be a con-
nected space. Then the number

Iw(Φ) := Iwloc(Φ, Y, x0)

is said to be the weighted index of Φ, where x0 ∈ X is a fixed point.

Proposition 3.4 (see [35, Proposition 3.2.4]). Let Φ2:Y � Z and Φ1:X �
Y be two weighted carriers. If Φ1 is a set-valued map with connected values, then
Φ2 ◦ Φ1:X � Z is a weighted carrier, where Iwloc:D(Φ2 ◦Φ1)→ Q is given by

Iwloc(Φ2 ◦ Φ1, U, x) := Iwloc(Φ2, U, y),

where (U, x) ∈ D(Φ2 ◦ Φ1) and y ∈ Φ1(x) is any fixed point. In particular, if X
and Y are connected, then Iw(Φ2 ◦ Φ1) = Iw(Φ2).

Below we shall present a number of examples of weighted carriers.

Example 3.5. It is easy to see that if a set-valued map Φ:X � Y is usc
with compact and connected values, then Φ is a weighted carrier. Indeed, it
suffices to define a function Iwloc:D(Φ)→ Q as follows

Iwloc(Φ, V, x) :=

{
1 if Φ(x) ∩ V �= ∅,
0 if Φ(x) ∩ V = ∅,

for any (V, x) ∈ D(Φ). In particular, if Φ:R � R is defined by Φ(x) = [−x, x],

x

y

Figure 2. A graph of a set-valued map Φ: R � R
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then D(Φ) = {(V, x) | V ⊂ R is open and [−x, x] ⊂ R− bd V } and

Iwloc(Φ, V, x) =

{
1 if x ∈ V,
0 if x �∈ V.

Example 3.6. Let X be a compact ANR and let f :X × [0, 1] → X be
a continuous function with the Lefschetz number λ(f0) �= 0 of f0, where f0( · ) =
f( · , 0). Then an usc set-valued map Φ: [0, 1]� X defined by Φ(t) = {x ∈ X |
ft(x) := f(x, t) = x}, for all t ∈ [0, 1], is a weighted carrier. Indeed, it suffices to
define a nontrivial function Iwloc:D(Φ)→ Q by

Iwloc(Φ, U, t) := ind(ft, U,X),

where ind(ft, U,X) denotes the fixed point index for single-valued maps (for
more information on the fixed point index for single-valued maps see [22]).

In what follows, we shall make use of the following space:

(3.1) CV ([a, b],Rm) := {f ∈ C([a, b],Rm) | f(a) ∈ V, f(b) ∈ Rm − clV },
where [a, b] ⊂ R and V is an open subset of Rm. The space CV ([a, b],Rm) is
equipped with the following metric d(f, g) := max

t∈[a,b]
|f(t) − g(t)|. Furthermore,

one can prove that CV ([a, b],Rm) is an ANR.

Lemma 3.7. Under the above assumptions, CV ([a, b],Rm) is an ANR.

Proof. Since C([a, b],Rm) is a linear space, and hence an ANR, it suffices
to show that CV ([a, b],Rm) is an open subset of C([a, b],Rm). To this end,
fix f ∈ CV ([a, b],Rm). Then f(a) ∈ V and f(b) ∈ Rm − clV . Since V and
Rm − clV are open, it follows that there exists ε > 0 such that B(f(a), ε) ⊂ V
and B(f(b), ε) ⊂ Rm − clV . Thus

B(f, ε) := {g ∈ C([a, b],Rm) | ‖f − g‖C < ε} ⊂ CV ([a, b],Rm),
which completes the proof. �

The following two results will be of crucial importance for our further con-
siderations.

Lemma 3.8. Under the above assumptions, a set-valued map P:CV ([a, b],Rm)
� (a, b) defined by

(3.2) P(f) := {t ∈ [a, b] | f(t) ∈ bd V }
is usc with compact values.

Proof. First, define a set-valued map P0:CV ([a, b],Rm)� [a, b] by P0(f) :=
P(f) for all f ∈ CV ([a, b],Rm). It is clear that the upper semicontinuity of P0

implies that P is usc. Therefore it is enough to prove that P0 is usc. Since
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P0(CV ([a, b],Rm)) ⊂ [a, b], it suffices to show that the graph Gr(P0) of P0 is
closed (see [21, Proposition 14.5]). For this purpose, take a sequence (fn, tn) ∈
Gr(P0) such that

(fn, tn)
n→∞−−−−→ (f0, t0) ∈ CV ([a, b],Rm)× [a, b].

We have to prove that f0(t0) ∈ bd V . Let ε > 0. Then there exists n0 > 0 such
that for any n ≥ n0 one has

(3.3) |f0(t0)− f0(tn0)| < ε/2 and |f0(s)− fn(s)| < ε/2

for all s ∈ [a, b]. Consequently, in view of (3.3), we get

|f0(t0)− fn0(tn0)| < ε.

Thus f0(t0) ∈ B(bd V, ε). Since ε was arbitrary, this shows (recall that bdV is
closed) that f0(t0) ∈ bdV . This completes the proof. �

Proposition 3.9.A set-valued map P:CV ([a, b],Rm)�(a, b) defined in (3.2)
is a weighted carrier.

Proof. We have proved in Lemma 3.8 that P is usc. Now, let Iwloc:D(P)→
Z be defined by the formula:

(3.4) Iwloc(P, U, f) := i(f |U,U),

for any (U, f) ∈ D(P) := {(U, f) | f ∈ CV ([a, b],Rm), U ⊂ (a, b), P(f) ∩ bdU =
∅} (5). First, observe that if (U, f) ∈ D(P), then f |U ∈ C(U,Rm; bd V ) (see
(2.3)). Now, we shall prove that such a function Iwloc:D(P)→ Z satisfies all the
conditions of Definition 3.1.

Existence. If Iwloc(P, U, f) �= 0, then i(f |U,U) �= 0. Consequently, Proposi-
tion 2.5 implies that f−1(bdV ) ∩ U �= ∅, which proves that P(f) ∩ U �= ∅.
Local invariance. Let (U, f) ∈ D(P). We are to prove that there exists r > 0

such that

(3.5) Iwloc(P, U, f) = Iwloc(P, U, g)

for all g ∈ B(f, r) = {g ∈ CV ([a, b],Rm) | d(f, g) < r}. Let

(3.6) ε0 := min
x∈bdU

dist(f(x), bd V ) > 0.

Before proceeding further, we need to state the following lemma.

(5) Just in case, we recall that the boundary of U is taken with respect to R.
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Lemma 3.10 ([22, Chapter 11]). Let X be a compact ANR and let Y be
an ANR. In addition, let f :X → Y be a continuous function and let ε > 0.
Then there exists δf > 0 such that for any continuous map g:X → Y with
d(f(x), g(x)) < δf , for all x ∈ X, there exists a continuous map h:X×[0, 1]→ Y
such that

(a) h(x, 0) = f(x), h(x, 1) = g(x), for all x ∈ X,
(b) diam(h({x} × [0, 1])) < ε, for all x ∈ X,

where diam(h({x} × [0, 1])) := sup{d(h(x, t1), h(x, t2)) | t1, t2 ∈ [0, 1]}.
Let δf be as in Lemma 3.10 for ε0/2 and f (where X = [a, b] and Y = Rm).

We claim that it is enough to put r := δf . To see this, choose any function
g ∈ B(f, r). Then, by Lemma 3.10, there exists a homotopy h: [a, b]×[0, 1]→ Rm

such that h(x, 0) = f(x), h(x, 1) = g(x) and h( · , t) ∈ B(f, ε0/2), for all t ∈ [0, 1].
Let us observe that

{x ∈ clU | h(x, t) ∈ bdV for some t ∈ [0, 1]} ∩ bdU = ∅.
Indeed, otherwise, there exists x0 ∈ bdU such that h(x0, t0) ∈ bdV for some
t0 ∈ [0, 1]. Moreover, one has
(3.7) |dist(f(x), bd V )− dist(h(x, t0), bdV )| ≤ |f(x)− h(x, t0)|,
for all x ∈ [a, b]. Consequently, taking into account (3.6)–(3.7), one obtains

ε0 ≤ dist(f(x0), bd V ) ≤ ε0/2,
a contradiction. Therefore, by the homotopy invariance of the intersection index,
one obtains

Iwloc(P, U, f) = i(f |U,U) = i(g|U,U) = Iwloc(P, U, g),
which proves (3.5) as required.
Additivity. This condition follows immediately from the additivity property

of the intersection index. �
Remark 3.11. Let U0 and U1 be two disjoint nonempty connected subsets

of Rm. Then from the long exact sequence of the pair (Rm, U0 ∪ U1) for the
singular homology functor it follows that

H1(Rm, U0 ∪ U1) = Z.

Furthermore, any continuous function σ: [0, 1]→ Rm with σ(0) ∈ U0 and σ(1) ∈
U1 belongs to the group of relative 1-cycles Z1(Rm, U0 ∪ U1) and the homology
class [σ] of σ generatesH1(Rm, U0∪U1). What is more, if τ is another continuous
function with τ(0) ∈ U0 and τ(1) ∈ U1, then [σ] = [τ ]. Therefore we will identify
this homology class [σ] with the generator 1 ∈ Z.

Now we are able to prove the following important lemma.
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Lemma 3.12. Let P:CV ([a, b],Rm) � (a, b) and Iwloc:D(P) → Q be given
by (3.2) and (3.4), respectively. Let V ⊂ Rm be open and connected such that
Rm − clV is connected. Then
(a) Iwloc(P, (a, b), f) is the generator of H1(Rm,Rm − bd V ), for any f ∈
CV ([a, b],Rm);

(b) Iwloc(P, (a, b), f) = Iwloc(P, (a, b), g), for all f, g ∈ CV ([a, b],Rm), and
hence Iw(P) = 1.

Proof. Fix f ∈ CV ([a, b],Rm). Let K := f−1(bd V ) ⊂ (a, b) and let r:R→
[a, b] be a retraction such that r(x) = a for x ≤ a and r(x) = b for x ≥ b. Let
Rm−bdV = U0∪U1, where U0 := V and U1 := Rm−clV Consider the following
commutative diagram:

(3.8)

H1(R,R−K) r∗
�

�� H1([a, b], [a, b]−K) f∗ �� H1(Rm,Rm − bd V )

H1(R,R−K)
id

��

H1((a, b), (a, b)−K).
�

��

�
��

(f |(a,b))∗

������������������

Let c := 2max{|a|, |b|}. Let σ: [0, 1] → R be any continuous function such that
σ(0) = −c and σ(1) = c. Then OK = [σ] ∈ H1(R,R−K) and

Iwloc(P, (a, b), f) = i(f, f |(a, b)) = (f |(a, b))∗(O(a,b)K ).

In addition, one has

(3.9) (f∗ ◦ r∗)(OK) = [f ◦ r ◦ σ].
By Remark 3.11, H1(Rm,Rm − bdV ) = Z and [f ◦ r ◦ σ] is the generator of
H1(Rm,Rm−bdV ) since (f ◦r◦σ)(0) = f(r(−c)) = f(a) ∈ U0 and (f ◦r◦σ)(1) =
f(r(c)) = f(b) ∈ U1. Hence, taking into account (3.8)–(3.9), we get that

Iwloc(P, (a, b), f) = [f ◦ r ◦ σ]
is the generator of H1(Rm,Rm − bdV ) = Z, which completes the proof of (a).
As concerns (b), if f, g ∈ CV ([a, b],Rm), then

Iwloc(P, (a, b), f) = [f ◦ r ◦ σ] Remark 3.11 [g ◦ r ◦ σ] = Iwloc(P, (a, b), g).

Now we shall present some very important fact which may not be true in Rn

for n > 1.

Lemma 3.13. If A ⊂ R is compact, then Ȟk(A;Q) = 0 for k ≥ 1.
Proof. Let B(A, ε) := {x ∈ R | dist(x,A) < ε}. Since B(A, ε) ⊂ R, we

infer that it can be represented as a finite (disjoint) sum of convex sets. Hence we
deduce that D(A, ε) is also a finite (disjoint) sum of convex sets. Consequently,
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it follows that Ȟk(D(A, ε);Q) = 0, for k ≥ 1. Now from this we arrive at the
conclusion of lemma, since

Ȟ∗(A;Q) = lim←− Ȟ∗(D(A, 1/n);Q)
(see [22, Chapter 20]). �

4. Main results

In this section we will prove the existence of solutions for the problem (P).
To this aim we need some preliminary results. We start with some remarks and
lemmas. Before we do it, we will introduce some notations. Let p:R→ S1 be a
covering map defined by p(t) = (cos(t), sin(t)), for t ∈ R. Let id × p:M × R →
M × S1 and T0:Rn+1 × R→ Rn+2 be given by

(id× p)(x, y) := (x, p(y)) and T0((x, u), y) := (x, u(− sin(y), cos(y))).
In what follows, we shall make use of the following two projections: pr1:X1 ×
X2 → X1 and pr2:X1 ×X2 → X2.

Remark 4.1. From now on we will assume that M ⊂ Rn (represented by
a locally Lipschitz function f : Dom(f)→ R) is a contractible and strictly regu-
lar ANR.

Now we shall prove a lifting lemma which will be used in our further consi-
derations.

Lemma 4.2 (Lifting lemma). Let f :M × S1 → Rn+2 be continuous and
tangent. Then there exists a continuous and tangent map f̃ :M × R → Rn+1

such that the following diagram:

(4.1)

M × R

id×p
��

( �f,pr2)
�������� Rn+1 × R

T0

��

M × S1
f

�� Rn+2

commutes.

Proof. Let f(x, y) = (f1(x, y), f2(x, y)), where f1(x, y) ∈ Rn, f2(x, y) ∈ R2,
x ∈ Rn and y ∈ S1. Then it suffices to define f̃ as follows

f̃ := (f1 ◦ (id× p), f̃2 ◦ (id× p)),
where f̃2(x, y) := 〈f2(x, y), y⊥〉 and y⊥ = (y1, y2)⊥ = (−y2, y1). �

Remark 4.3. A function f̃ satisfying (4.1) will be called a lift of f . Fur-
thermore, it is easily seen that if f is bounded, then f̃ is also a bounded map.
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Let N ⊂ Rk be a strictly regular set and let g ∈ Vect(N) be bounded.
Consider the Cauchy problem:{

u̇(t) = g(u(t)),

u(0) = z0 ∈ N.
In what follows by

Sg(z) := {u | u̇(t) = g(u(t)) a.e. on [0,∞), u(0) = z, u([0,∞)) ⊂ N}
we will denote the set of all solutions to the Cauchy problem, for all z ∈ N . The
following lemma will be useful in the sequel.

Lemma 4.4 ([5]). If g ∈ Vect(N) is bounded, then Sg(z) is a compact Rδ-set
in Cu([0,∞),Rk) (6).

Remark 4.5. (a) It is well-known that the map Sg:N � Cu([0,∞),Rk) is
usc (see [4], [15], [18]).
(b) It should be noted that in the paper [5] it was only proved that the set of

all solutions restricted to [0, T ] (denoted by STg (z), for any z ∈ N) is a compact
Rδ-set. However, by using the technique of inverse systems, one can extend this
result to the case where all solutions are defined on [0,∞) (see [1], [20]). What is
more, Lemma 4.4 is also true for maps g:N → Rk having a sublinear growth, i.e.
such that there is c > 0 with |g(z)| ≤ c(1 + |z|) for all z ∈ N . This follows from
the fact that, for any T > 0, by using the Gronwall inequality ([15, p. 52]) one
can prove that g can be replaced by a bounded map g such that STg (z) = S

T
g (z),

for any z ∈ N .
(c) Consider a map Πg:N × [0,∞)� N given by the formula

Πg(x, t) := {u(t) | u( · ) ∈ Sg(x)}.
Then Πg is an usc set-valued map with compact values satisfying the following
conditions:

• Πg(x, 0) = {x};
• Πg(Πg(x, s), t) = Πg(x, s+ t), for s, t ∈ [0,∞).

In what folows, we will call Πg a set-valued semiflow.

Definition 4.6. A compact subsetK ⊂ N is called an attractor for a vector
field g ∈ Vect(N) if dH(Πg(x, t),K) → 0 as t → ∞, for every x ∈ N . A vector
field g ∈ Vect(N) is said to be of compact attraction (written g ∈ Vectc(N)) if
g has a compact attractor.

(6) Recall here that a nonempty compact subset C of a metric space X is called an Rδ-set
if it is the intersection of a decreasing family of compact contractible sets Cn ⊂ X (see [23]). In
particular, an Rδ-set is connected. Cu([0,∞), R

k) stands for the Fréchet space of all continuous
maps [0,∞) → R

k with the topology of almost uniform convergence.
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Remark 4.7. Notice that if K is a compact attractor for g ∈ Vect(N), then
any compact set K ′ containing K is also a compact attractor.

Let f ∈ Vect(M × S1) and let f̃ ∈ Vect(M × R) be a lift of f . Fix x0 ∈M ,
y0 ∈ S1 and ỹ0 ∈ p−1(y0). Then one can consider two Cauchy problems:

(CP0)

{
u̇(t) = f(u(t)),

u(0) = (x0, y0),

(CP1)

{
u̇(t) = f̃(u(t)),

u(0) = (x0, ỹ0).

We shall prove that there exists a connection between problem (CP0) and (CP1)
which will be used in order to solve problem (P). To be precise, we will prove that
S
�f (x0, ỹ0) ⊂ Cu([0,∞),Rn+1) is homeomorphic to Sf(x0, y0)⊂Cu([0,∞),Rn+2).
Since p:R → S1 is a covering map, it follows in view of the lifting theorem

that for any map u: [0,∞)→M×S1 there exists a unique map ũ: [0,∞)→M×R

such that the following diagram commutes (see [Span66]):

(4.2)

M × R

id×p
��

[0,∞)

�u

�����������

u
�� M × S1

and u(0) = (x0, y0), ũ(0) = (x0, ỹ0). It is clear that the above diagram induces
the following:

(4.3)

T (M × R)

T

��

[0,∞)

T [�u]
������������

T [u]
�� T (M × S1)

where T , T [ũ] and T [u] (7) are given by

T ((x, y), (u, v)) = ((x, (cos(y), sin(y))
)
,
(
u, v(− sin(y), cos(y)))),

T [ũ](t) = (ũ(t), ˙̃u(t)), T [u](t) = (u(t), u̇(t)).

Now we are ready to prove the following proposition.

Proposition 4.8. Under the above assumptions, a function S:Sf (x0, y0)→
S
�f (x0, ỹ0) defined by S(u) := ũ is a bijection.

Proof. First we will prove that

(4.4) u ∈ Sf (x0, y0)⇔ ũ ∈ S�f (x0, ỹ0),

(7) For simplicity, later in this paper, we will denote T [�u] and T [u] by �̇u and u̇, respectively.
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where u and ũ satisfy (4.2). To this aim, it suffices to observe that (4.4) follows
directly from the following commutative diagram:

T (M × S1) M × S1Tf
��

[0,∞)
�̇u

��

u̇

������������
T (M × R)

T

��

M × R

id×p
��

T �f

�� [0,∞)
�u

��

u

		���������

and the fact that for any point (x, y) ∈M×R a function T(x,y):Rn×R→ Rn×R2

induced by T , i.e.

T(x,y)(u, v) := (u, v(− sin(y), cos(y)),

is an isomorphism. Notice that the commutativity of the left and right triangle
in the above diagram follows from (4.2) and (4.3), respectively. Recall that the
left triangle is well-defined for almost all t ∈ [0,∞). Thus (4.4) implies that
S:Sf (x0, y0) → S�f (x0, ỹ0) is well-defined. Finally, the surjectivity of S follows
from (4.4), but the injectivity of S follows easily from (4.2). This completes the
proof. �

Remark 4.9. It is easy to see that S−1:S
�f (x0, ỹ0) → Sf (x0, y0) is given

by S−1(ũ) := (id × p) ◦ ũ for all ũ ∈ S
�f (x0, ỹ0). Since Cu([0,∞),Rm), for any

m ∈ N, is endowed with the topology of almost uniform convergence, it follows
that S−1 is continuous, and hence S is continuous because S

�f (x0, ỹ0) is compact
in Cu([0,∞),Rn+1).
From the above considerations it follows that the following diagram is com-

mutative:

(4.5)

M × R× [0,∞)
id×p×id

��

Π
f ◦M × R

id×p
��

M × S1 × [0,∞)
Πf
◦M × S1.

The next lemma explains what properties of f are inherited by a lift f̃ of f .

Lemma 4.10. Let f ∈ Vect(M × S1). Then:
(a) if f has a sublinear growth (resp. f is bounded), then f̃ has also a sub-
linear growth (resp. f̃ is also bounded);

(b) if f ∈ Vectc(M ×S1), then there exists a compact set K̃ ⊂M such that

dH(pr1(Π�f ((x, 0), t)), K̃)
t→∞−−−−→ 0,

for every x ∈M .
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Proof. The assertion (a) follows from the following calculations:

|f̃(x, y)|2 = |f1(x, p(y)), f̃2(x, p(y))|2 = |f1(x, p(y))|2 + |f̃2(x, p(y))|2
= |f1(x, p(y))|2 + 〈f2(x, p(y)), p(y)⊥〉2
≤ |f1(x, p(y))|2 + |f2(x, p(y))|2|p(y)|2 = |f1(x, p(y))|2 + |f2(x, p(y))|2
= |f(x, p(y))|2 ≤ c2(1 + |(x, p(y))|)2 ≤ c2(1 + |x|+ |p(y)|)2
≤ c2(1 + |x|+ 1 + |y|)2 ≤ (2c)2(1 + |(x, y)|)2,

where (x, y) ∈ M × S1. Since |f̃(x, y)|2 ≤ |f(x, p(y))|2, it follows that the
boundedness of f implies the boundedness of f̃ . As for (b), let K be a compact
attractor for f ∈ Vect(M × S1). Without loss of generality we can assume that
K = K ′ × S1, where K ′ is a compact subset of M . Let K̃ := pr1(K) = K ′.
Then, taking into account the diagram (4.5), one obtains

Πf ((x, (1, 0)), t) ⊂ B(K, ε)⇒ pr1(Πf ((x, (1, 0)), t)) ⊂ B(pr1(K), ε),
pr1(Πf ((x, (1, 0)), t)) = pr1(Π�f ((x, 0), t)), B(pr1(K), ε) = B(K̃, ε),

which implies that

dH(Πf ((x, (1, 0)), t),K)
t→∞−−−−→ 0⇒ dH(pr1(Π�f ((x, 0), t)), K̃)

t→∞−−−−→ 0. �

Remark 4.11. A set of vector fields f̃ ∈ Vect(M × R) satisfying condition
(b) from Lemma 4.10 will be denoted by the symbol Vectwc(M ×R), while a set
K̃ from the above lemma will be called a weak attractor for f̃ .

It should be noted that without additional assumptions on M nothing can
be said about the structure of solutions to (P).

Example 4.12 (see [5]). Let M =M−1 ∪M1 ⊂ R2, where

Mi := {(x, y) ∈ R2 | (x− i)2 + y2 = 1}.

Let f :M × S1 → R4 be defined by

f((x, y), z) =

{
((y, 1 − x), 0) if (x, y) ∈M1,
((−y, 1 + x), 0) if (x, y) ∈M−1.

It is easy to see that for all ((x, y), z) ∈ M × S1, f((x, y), z) ∈ TM×S1((x, y), z)
and that the set STf ((0, 0), 0) (for any T > 0) is disconnected, and hence it is not
an Rδ-set.

Now we are going to prove the result which is closely related (by Proposi-
tion 4.8) to problem (P) – see also Theorem 4.17.
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Theorem 4.13. Assume that M ⊂ Rn is a contractible and strictly regu-
lar ANR. Let f̃ ∈ Vectwc(M × R) be a lift of a bounded and continuous (or
a continuous map with a sublinear growth) vector field f ∈ Vectc(M × S1). If
(4.6) there exists T > 0 such that γ(T ) ∈M × (2π,∞)

for all γ ∈ S
�f(M × {0}) (8),

then there exists x0 ∈M and γ ∈ S�f (x0, 0) such that γ(t0) = (x0, 2π), for some
t0 ∈ (0, T ) (see Figure 3).

�� ��

( ,0)x0 ( ,0)x’

( ,2 )x0 � (y ,2 )’ � M x { }2�

M x { }0

Figure 3. A trajectory γ1 satisfies the assertion of Theorem 4.13

Proof. Consider the following diagram:

M
S ◦C0

∆ �� C0 × C0 P×id ◦(0, T )× C0 λ �� M × R
pr1 �� M,

where P is given by (3.2), C0 := CV ([0, T ],Rn+1) (see (3.1) for V := Rn ×
(−∞, 2π)) and S, ∆, P× id and λ are defined as follows

(4.7)
S(x) :=S

�f (x, 0), ∆(x) = (x, x),

(P× id)(x, y) = (P(x), y), λ(t, h) = h(t).
Let us define Φ:M �M by

(4.8) Φ := (pr1 ◦ λ) ◦ ((P× id) ◦ (∆ ◦ S)).

Now, let us observe that if Fix(Φ) �= ∅, then there exist x0 ∈M and a trajectory
γ ∈ S(x0) such that

γ(t0) = (x0, 2π), for some t0 ∈ (0, T ).
Consequently, it suffices to show that Fix(Φ) �= ∅. For this purpose, we shall
make use of Theorem 7.8 from Appendix. First observe that Lemma 4.4, Re-
mark 4.5 and Example 3.5 imply that S is a weighted carrier with acyclic values

(8) If Z ⊂ M × S1 (resp. Z ⊂ M × R), then we put Sf (Z) :=
�

z∈Z
Sf (z)

�
resp. S

�f
(Z) :=

�
z∈Z

S
�f
(z)
�
.
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and Iw(S) = 1. Of course, ∆, pr1 and λ are weighted carriers with Iw(∆) = 1,
Iw(pr1) = 1 and Iw(λ) = 1, respectively. Furthermore, Propositions 3.9 and 7.3
and Lemmas 3.12 and 3.13 imply that P× id is a weighted carrier with positively
acyclic values (recall from algebraic topology that the Cartesian product of two
positively acyclic sets is also positively acyclic) and Iw(P × id) = 1. Conse-
quently, we deduce from Proposition 3.4 and Lemma 3.13 that (P× id) ◦ (∆ ◦ S)
is a weighted carrier with positively acyclic values and Iw((P× id)◦ (∆◦S)) = 1.
Thus we have proved that Φ has the following decomposition:

Φ = f ◦Ψ ∈ CAW(M)
(see Appendix), where f := pr1 ◦ λ and Ψ := (P × id) ◦ (∆ ◦ S). What is more,
taking into account Lemma 3.7, and since the Cartesian product of ANRs is an
ANR, we infer that C0 × C0, (0, T )× C0 and M × R are ANRs.
Now we have to prove that the set-valued map Φ:M �M defined as in (4.8)

has a compact attractor. To this aim, we are going to prove it in a few steps.

Claim 1. If C ⊂ M is a compact subset of M , then there exists 0 < ε < T
such that P(S(C)) ⊂ [ε, T ).
Indeed, assume on the contrary that P(S(C)) ∩ [0, ε] �= ∅, for any 0 < ε < T .

Then there exists a sequence εm → 0 and a sequence γm ∈ S(C) such that
P(γm) ∩ [0, εm] �= ∅. Since S(C) is compact, we can assume without loss of
generality that a sequence γm converges to some point γ ∈ S(C). In particular,
γm converges uniformly to γ on [0, T ]. Furthermore, for any γm there exists
0 < tm ≤ εm such that γm(tm) ∈ bd V . It is easily seen that γm(tm) → γ(0) as
m→∞, which implies that γ(0) ∈ bdV = Rn×{2π}. This contradicts the fact
that γ(0) ∈ Rn × {0}.

Claim 2. For any x ∈ M there exists ε > 0 such that for all γ ∈ S(x) and
for all m ∈ N:

tm(γ) := inf{t ∈ [0,∞) | γ(t) ∈ bd Vm} ≥ mε,
where Vm := Rn × (−∞, 2mπ).
Indeed, fix x ∈M . Let us put

C := cl(pr1(Π�f ({(x, 0)} × [0,∞)))) ⊂M.

We will show that C is compact. To this aim, let K̃ ⊂ M be a weak global
attractor for f̃ and take D(K̃, δ) ⊂ M , where δ > 0. Then Lemma 4.10 implies
that there exists t0 > 0 such that pr1(Π�f ({(x, 0)} × [t0,∞))) ⊂ B(K̃, δ). Hence,
one has

C ⊂ pr1(Π�f ({(x, 0)} × [0, t0])) ∪D(K̃, δ) =: K0.
Since C is closed and K0 is compact, we infer that C is compact. Now observe
that, in view of Claim 1, there exists ε > 0 such that t1(γ) ≥ ε for any γ ∈ S(C).
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Fix γ ∈ S(C) and assume by the induction hypothesis that tm(γ) ≥ mε. We are
to prove that

tm+1(γ) ≥ (m+ 1)ε.
For this purpose, define γ̃: [0,∞)→M × R by

γ̃(t) := (pr1(γ(t+ tm(γ))), pr2(γ(t+ tm(γ)))− 2mπ).

Then γ̃(0) ∈ C × {0}. Consequently, since

f̃(x, y) = f̃(x, y + 2kπ)

for all k ∈ Z and (x, y) ∈M × R, we deduce that γ̃ ∈ S(C). Furthermore,

(4.9) γ̃(t) ∈ bdV1 ⇔ γ(t+ tm(γ)) ∈ bd Vm+1.

Hence,

tm+1(γ) = tm(γ) + t1(γ̃) ≥ mε+ ε = (m+ 1)ε,
which completes the proof of Claim 2.

Claim 3. For all x ∈M there exists ε > 0 such that

(4.10) Φm(x) ⊂ pr1(Π�f ({(x, 0)} × [mε,∞))),

for all m ∈ N, where Φm denotes the m-th iterate of Φ. Indeed, this assertion
follows from the fact that for any x ∈M there exists ε > 0 such that

Φm(x) =Φ(Φm−1(x))
Claim 1==== {y ∈M | ∃γ ∈ S

�f (Φ
m−1(x)× {0})

such that γ(t) = (y, 2π) for some t ∈ [ε,∞)}
Claim 2==== {y ∈M | ∃γ ∈ S

�f (x, 0)

such that γ(t) = (y, 2mπ) for some t ∈ [mε,∞)},

for all m ∈ N.

Claim 4. Φ:M � M has a compact attractor. Indeed, let K̃ ⊂ M be
a weak attractor for f̃ . Fix x ∈M and δ > 0. Then

dH(pr1(Π�f ((x, 0), t)), K̃)→ 0 as t→∞.

Thus there exists t̃ > 0 such that

dH(pr1(Π�f ((x, 0), t)), K̃) < δ,

for all t ≥ t̃, which implies that

(4.11) pr1(Π�f ({(x, 0)} × [t̃,∞))) ⊂ B(K̃, δ).
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Now, taking into account (4.10) and (4.11), we deduce that there exists m0 such
that

Φm(x) ⊂ B(K̃, δ)
for all m ≥ m0, which proves that K̃ is an attractor for Φ.
Finally, Theorem 7.8 implies the assertion of Theorem 4.13. �

M x { }c

M x { }0

�

M x { }c

M x { }0

�

Figure 4. A trajectory β is transversal to M×{c} but α is not transversal
to M × {c}

Remark 4.14. The main difficulty in the proof of Theorem 4.13 is that
a given trajectory starting from M × {0} and passing through M × {c} need
not be transversal to M × {c} (see Figures 4 and 5), which implies that the
so-called exit function τ :S

�f (M × {0}) → [0,∞) given by τ(γ) = sup{t ≥ 0 |
γ(t) ∈ M × (−∞, c]} is only upper semicontinuous, i.e. for any r ∈ R, the set
{γ ∈ S

�f (M × {0}) | τ(γ) < r} is open in S�f (M × {0}) (see [3]). Therefore we
had to modify the definition of the exit function in order to prove Theorem 4.13.
Moreover, in our situation it may happen that a given trajectory can stay in

the section M × {c} for some time.

Mx { }0

M cx { }

�

Figure 5. The trajectory γ is not transversal to M × {c}

From the proof of Theorem 4.13 we obtain the following corollary.

Corollary 4.15. LetM ⊂ Rn be a contractible compact and strictly regular
set and let g ∈ Vect(M ×R) be a bounded continuous map (or a continuous map
with a sublinear growth), c > 0. If

there exists T > 0 such that γ(T ) ∈M × (c,∞) for all γ ∈ Sg(M × {0}),
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then there exists x0 ∈ M and γ ∈ Sg(x0, 0) such that γ(t0) = (x0, c) for some
t0 ∈ (0, T ).

Remark 4.16. It should be noted that if in Theorem 4.13 we replace 2π by
−2π, then one can prove the following assertion: if there exists T > 0 such that
γ(T ) ∈M × (−∞,−2π) for all γ ∈ S

�f (M × {0}), then there exists x0 ∈M and
γ ∈ S

�f (x0, 0) such that γ(t0) = (x0,−2π) for some t0 ∈ (0, T ). The proof of this
fact goes without any essential changes.

Now we prove the next of the main results of the paper.

Theorem 4.17. Let M ⊂ Rn be a contractible strictly regular ANR and let
f ∈ Vectc(M × S1) be a continuous and bounded map. If a lift f̃ of f satisfies
(4.6) in Theorem 4.13, then Problem (P) admits a solution u ∈ Sf (M ×{(1, 0)})
which generates π1(M × S1).

Proof. From Theorem 4.13 it follows that there exist x0 ∈ M , t0 ∈ (0, T )
and ũ ∈ S

�f (x0, 0) such that

(4.12) ũ(0) = (x0, 0) and ũ(t0) = (x0, 2π).

Then, by Proposition 4.8, u := S−1(ũ) ∈ Sf(x0, (1, 0)) and u(0) = u(t0). Let
t̃ := inf{t > 0 | ũ(t) = (x0, 2π)} > 0. For simplicity one can assume that
t̃ = 1. We will show that the homotopy class [u] of u: [0, 1]→M × S1 generates
π1(M × S1). Since π1(M × S1) = π1(M) × π1(S1) � π1(S1), we infer that it
suffices to prove that [u2 := pr2 ◦ u] is a generator of π1(S1). To this end, recall
that a homomorphism h:π1(S1)→ Z given by h([w]) = w̃(1) is an isomorphism
(see [39]), where w̃ is a lift of w, i.e. the following diagram

R

p

��

[0, 1]

�w



��������

w
�� S1

is commutative with w(0) = (1, 0) and w̃(0) = 0. Since h is an isomorphism, it
follows that a loop [w] ∈ π1(S1) is a generator of π1(S1) if and only if w̃(1) = 2π.
Thus in view of (4.12) one gets that h([u2]) = 2π. This completes the proof. �

5. Differential equations on manifolds

Now we are going to show that in the case when N is a manifold, we are
able to express the assumptions of Theorem 4.16 in the language of differential
forms. For this purpose, we need to introduce the following concepts.
Recall that if N is an m-dimensional manifold of class C2, then a one-form

ω:N → TN∗ has the following form ω(x) =∑mi=1 ai(x)dxi, where ai:N → R are
functions of class C2. Furthermore, in this paper we will assume that a one-form
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ω is at least closed, i.e. dω = 0. Moreover, recall that if a path γ: [a, b] → N is
of class C1, then∮

γ

ω =
∫ b
a

〈ω(γ(s)), γ̇(s)〉 ds =
∫ b
a

( m∑
i=1

ai(γ(s))γ̇i(s)
)
ds,

where the γi are the coordinates of γ in N . Let notice that the right-hand side
of the above formula makes sense even if γ is absolute continuous. Therefore in
our paper we will integrate one-forms ω on absolute continuous paths γ.
In this section by M ⊂ Rn we shall denote a k-dimensional closed and con-

tractible manifold of class C2. By ωS1 :M×S1 → T (M×S1)∗ we shall understand
a one-form defined by

(5.1) ωS1 = dx
k+1.

Remark 5.1. Notice that ωS1 is a generator of H1d(M × S1;R) � R, where
H1d denotes de Rham cohomology group with coefficients in R. Moreover, if
h:N →M×S1 is a diffeomorphism, then the pullback h∗ωS1 of ωS1 is a generator
of H1d(N ;R) (see also Remark 5.14).

Remark 5.2. Let γ: [0, t]→ M × S1 be a path with γ(0) = (x0, (1, 0)) and
let γ̃: [0, t] → M × R be a path such that γ = (id × p) ◦ γ̃ and γ̃(0) = (x0, 0).
Let γ = (γ1, . . . , γk, γk+1). Then γk+1 = p ◦ γ̃k+1. Since the derivative ṗ:TsR→
Tp(s)S

1 of p at s ∈ R is the identity map, we infer that γ̇k+1(s) = ˙̃γk+1(s) for all
s ∈ R. Now we are ready to make the following calculations:∮

γ

ωS1 =
∫ t
0
〈ωS1(γ(s)), γ̇(s)〉 ds =

∫ t
0
γ̇k+1(s) ds(5.2)

=
∫ t
0

˙̃γk+1(s) ds = γ̃k+1(t)− γ̃k+1(0) = γ̃k+1(t).

Remark 5.3. In what follows by ωl:M × S1 → T (M × S1)∗ we will denote
a one-form which has the following decomposition:

(5.3) ωl = ωe + l · ωS1 ,
where ωe:M × S1 → T (M × S1)∗ is an exact one-form and ωS1 is as in (5.1),
l ∈ R. Since ωe is exact, it follows that there exists a differentiable function
g:M×S1 → Rn+2 such that ωe = dg. We will say that ωe is a bounded one-form
provided g is bounded, i.e. there exists a constant Mω such that |g(z)| ≤ Mω
for all z ∈ M × S1. It is clear that if M is compact, then ωe is bounded.
Furthermore, we will say that ωl is bounded provided ωe is bounded.

Definition 5.4 (see also [9]). Let f ∈ Vect(N). A one-form ω:N → TN∗
is said to be a Lyapunov form with respect to f if there exists c > 0 such that

(5.4) 〈ω(x), f(x)〉 > c, for all x ∈ N .
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Remark 5.5. Observe that if N is compact, then (5.4) one can replace by
〈ω(x), f(x)〉 > 0 for all x ∈ N .
Let us observe that Condition (5.4) can be checked pointwise without know-

ing the trajectories of f just like in the Lyapunov theory. The following example
illustrates the concept of a Lyapunov form.

Example 5.6 (see [9]). Let 0 < β < 1 < α and ε > 0. Consider the following
system on N : 

ẋ = x(1− x− αy − βz) + ε,
ẏ = y(1− βx− y − αz) + ε,
ż = z(1− αx− βy − z) + ε.

x

y

z

Figure 6. N := {(x, y, z) ∈ R3 | 0 < x, y, z < 1} − {(x, y, z) ∈ R3 | x =
y = z > 0}

It is not hard to see that N is diffeomorphic to R2 × S1. Then the following
closed one-form

ω(x, y, z) :=
(z − y)dx+ (x− z)dy + (y − x)dz
(z − y)2 + (x− z)2 + (y − x)2

satisfies the condition: 〈ω(x, y, z), f(x, y, z)〉 > 0, for all (x, y, z) ∈ N , where

f(x, y, z) = (x(1−x−αy−βz)+ε, y(1−βx−y−αz)+ε, z(1−αx−βy−z)+ε).

Indeed, it follows from the following calculations:

〈((z − y)2 + (x− z)2 + (y − x)2)ω(x, y, z), f(x, y, z)〉
= x(y(1− βx− y − αz) + ε)− y(x(1− x− αy − βz) + ε)
+ y(z(1− αx − βy − z) + ε)− z(y(1− βx − y − αz) + ε)
+ z(x(1− x− αy − βz) + ε)− x(z(1− αx− βy − z) + ε)

= (1− β)(x2y + y2z + z2x) + (α− 1)(x2z + y2x+ z2y) + 3xyz(β − α)
= (1− β)(x2y + y2z + z2x− 3xyz) + (α− 1)(x2z + y2x+ z2y − 3xyz).
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But the inequality of arithmetic and geometric means implies that x2y + y2z +
z2x − 3xyz > 0 and x2z + y2x + z2y − 3xyz > 0 for (x, y, z) ∈ N . Thus we
deduce the desired inequality.

The following result explains the relationship between a periodic orbit and
a Lyapunov form.

Proposition 5.7 ([9]). If γ is an asymptotically stable (9) orbit of a smooth
vector field f :Rn → Rn, then there exists a smooth positively invariant n-
dimensional submanifold γ ⊂ M ⊂ Rn, homeomorphic to Dn(0, 1) × S1, and
a Lyapunov form ω (with respect to f).

Now we are going to establish the most important properties of Lyapunov
forms.

Lemma 5.8. Let f ∈ Vect(M × S1). If ωl is a bounded Lyapunov form with
respect to f , then l �= 0 and there exists c > 0 such that∮

γt

ωl > tc,

for all γ ∈ Sf (M × S1) and t > 0 (10). In particular, there exists T > 0 such
that ∮

γT

ωl > 2(π|l|+Mω),

for all γ ∈ Sf (M × S1).
Proof. Let c > 0 be such that 〈ωl(x), f(x)〉 > c for all x ∈ M × S1. Fix

γ ∈ Sf (M × S1). Then∮
γt

ωl =
∫ t
0
〈ωl(γt(s)), γ̇t(s)〉 ds =

∫ t
0
〈ωl(γt(s)), f(γt(s))〉 ds >

∫ t
0
c ds = tc,

for any t > 0. Now we are going to show that l �= 0. To this aim, assume on the
contrary that l = 0. Then

ωl(x) = ωe(x) =
k+1∑
i=1

ai(x) dxi,

where ai:M ×S1 → R are functions of class C2. Since ωl is an exact form, there
exists a differentiable function g:M × S1 → R such that

∂g(x)
∂xi

= ai(x)

(9) Recall that a compact set K ⊂ R
n is said to be asymptotically stable if K is stable (i.e.

for every neighbourhood V of K, there exists a neighbourhood V ′ of K such that Πf (V ′×{t}) ⊂
V for all t ≥ 0, where Πf denotes a flow generated by f) and attracts points locally (i.e. there
exists a neighbourhood W of K such that K attracts each point in W ).

(10) Given γ ∈ Sf (M × S1), by γt we will denote the restriction of γ to [0, t].



Applications of Weighted Maps to Periodic Problems 37

for i = 1, . . . , k + 1 and there exists Mω > 0 such that |g(x)| < Mω for all
x ∈M × S1. Finally, one has

tc <

∮
γt

ωl =
∫ t
0
〈ωl(γt(s)), γ̇t(s)〉 ds =

∫ t
0
〈ωe(γt(s)), γ̇t(s)〉 ds(5.5)

=
∫ t
0

( k+1∑
i=1

ai(γt(s))γ̇ti(s)
)
ds =

∫ t
0

( k+1∑
i=1

∂g

∂xi
(γt(s))γ̇ti(s)

)
ds

=
∫ t
0

d(g ◦ γt)(s)
ds

ds = g(γt(t))− g(γt(0)) < 2Mω.

Hence we get that tc < 2Mω for all t > 0, which implies that c ≤ 0. This
contradicts the fact that c > 0. Finally, it is easy to that there exists T > 0 such
that Tc > 2(π|l|+Mω). This completes the proof. �

Lemma 5.9. If ω:M × S1 → T (M × S1)∗ is a closed one-form, then there
exists l ∈ R such that ω = ωl. If additionally ωl is a bounded Lyapunov form
with respect to f ∈ Vect(M × S1), then l �= 0.

Proof. This follows from the fact that H1d(M ×S1;R) � R, where H1d(M ×
S1;R) denotes de Rham cohomology group with coefficients in R (11). Finally,
Lemma 5.8 implies that l �= 0, which completes the proof. �

Remark 5.10. From now on we will say that a closed one-form ω:M×S1 →
T (M × S1)∗ is bounded if the corresponding one-form ωl is bounded.

Theorem 5.11. Assume that f ∈ Vectc(M × S1) is bounded. If there exists
a bounded Lyapunov form ω:M × S1 → T (M × S1)∗ for f , then problem (P)
admits a solution which generates π1(M × S1).

Proof. Let f̃ :M × R→ Rn+1 be a lift of f . Lemma 5.9 implies that there
exists a closed one-form ωl such that ω = ωl and l �= 0. Without loss of generality
we can assume that l > 0 (see Remark 4.16). From Lemma 5.8 it follows that
there exists T > 0 such that ∮

γT

ωl > 2(πl +Mω),

for all γ ∈ Sf (M × {(1, 0)}), where γT denotes the restriction of γ to [0, T ]. Fix
γ ∈ Sf (M × {(1, 0)}). Let γ̃ ∈ S�f (M × {0}) be a lift of γ, i.e. satisfying the
condition γ = (id× p) ◦ γ̃. Now, reasoning as in (5.2) and (5.5), we obtain

2(πl +Mω) <
∮
γT

ωl =
∮
γT

ωe + l
∮
γT

ωS1

= g(γT (T ))− g(γT (0)) + lγ̃k+1(T ) < 2Mω + lγ̃k+1(T ).

(11) A different proof can be found in [9].
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Thus 2π < γ̃k+1(T ) and, consequently, we get that γ̃(T ) ∈M × (2π,∞). There-
fore f̃ satisfies the condition (4.6). Consequently, our conclusion follows directly
from Theorem 4.16, which completes the proof. �

In particular, we get following corollary which has been proved in [9] and [11].

Corollary 5.12. If f ∈ Vect(Dn(0, 1) × S1) and there exists a Lyapunov
form ω:Dn(0, 1)× S1 → T (Dn(0, 1)× S1)∗ for f , then there exists a nontrivial
and noncontractible periodic orbit in Dn(0, 1)× S1, where n ≥ 1.
However, if n = 1, then we have the following stronger result:

Theorem 5.13 (Poincaré–Bendixson). Assume that N ⊂ R2 is diffeomor-
phic to D1(0, 1) × S1. Let f :N → R2 be of class C1 pointing inward on bdN .
If f has no equilibria, then f has a periodic orbit which is not contractible in N .

�

Figure 7. An illustration of Poincaré–Bendixson theorem

Unfortunately the above result is not true in higher dimensions without ad-
ditional assumptions. Namely, F.B. Fuller [17] has constructed a nonvanishing
vector field f ∈ Vect(D2(0, 1)× S1) which has no periodic and noncontractible
trajectory in the torus D2(0, 1)×S1 (see [17]). Briefly speaking, his construction
(see Figure 8) has the property that any trajectory starting from the section S1
is attracting by the section S2 which in turn implies that such a trajectory does
not reach the area between two sections S1 and S2, and therefore there exists no
closed trajectory generating π1(D2(0, 1)× S1). It is a main reason why we have
to assume the existence of a Lyapunov form on M × S1. However, it should be
noted that in this case there are closed and contractible trajectories. Namely,
they appear only in Section S2.
It should be noted that the problem (P) defined on M × S1 (where M is

assumed to be a manifold of class C2) can be considered on any manifold N
which is diffeomorphic to M ×S1. For example M ×S1 can be diffeomorphic to
the space drawn on Figures 6, 8 and 9.
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�

S1
S2

Figure 8. Fuller’s construction

Remark 5.14. Consider f :N → TN and a closed one-form ω:N → TN∗.
Assume additionally that h:M × S1 → N is a diffeomorphism (12) between two
manifolds N and M × S1. Then the following two diagrams:

M × S1
�f

�����

h

��

T (M × S1)

N
f

�� TN

D(h−1)

��
M × S1 �ω �����

h

��

T (M × S1)∗

N ω
�� TN∗

(Dh)∗
��

induce f̃ and ω̃, where Dh (resp. D(h−1)) stands for the derivative map of h
(resp. h−1). Another words, ω̃ is the pull-back of a differential form ω, i.e.
ω̃ = h∗ω. Moreover, one has

〈ω̃(x), f̃ (x)〉 = 〈(Dh)∗(ω(h(x))), D(h−1)(f(h(x)))〉
= 〈ω(h(x)), Dh (D(h−1)(f(h(x))))〉
= 〈ω(h(x)), f(h(x))〉 = 〈ω(y), f(y)〉

for x ∈ M × S1 and y = h(x) ∈ N . Hence we infer that ω is a Lyapunov form
if and only if ω̃ is a Lyapunov form. Furthermore, it is not hard to see that
γ ∈ S

�f (M × S1) if and only if h ◦ γ ∈ Sf (N) and f̃ ∈ Vectc(M ×S1) if and only
if f ∈ Vectc(N). Finally, we will say that ω:N → TN∗ is a bounded one-form if
the pull-back h∗ω is a bounded one-form.

Thus, from Remark 5.14 and Theorem 5.11 we get the following corollary.

Corollary 5.15. Let h:M × S1 → N be a diffeomorphism and let f ∈
Vectc(N) be bounded. If there exists a bounded Lyapunov form ω:N → TN∗
for f , then there exists a nontrivial and noncontractible periodic orbit in N .

Now we would like to provide some examples illustrating our results presented
in this article. In addition, the first example shows how one can follow in other
cases in order to find a closed trajectory.

(12) By a diffeomorphism between X and Y we will understand a homeomorphism h:X→Y
such that h and h−1 are of class C2.
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Example 5.16. Consider the following system of differential equations on N
(see Figure 9):

(5.6)


ẋ = −yg1(x, y, z) + xg2(x, y, z),
ẏ = xg1(x, y, z) + yg2(x, y, z),

ż = α(x, y, z),

where g1:N → R, g2:N → R and α:N → R are continuous and bounded and
satisfy the following conditions:

• there exists c1 > 0 such that α(x, y, z) < 0 for (x, y, z) ∈ N with z ≥ c1
and there exists c2 < 0 such that α(x, y, z) > 0 for (x, y, z) ∈ N with
z ≤ c2;
• g2(x, y, z) > 0 for (x, y, z) ∈ N with x2 + y2 = r2 and g2(x, y, z) < 0 for
(x, y, z) ∈ N with x2 + y2 = R2;
• there exists m > 0 such that g1(x, y, z) ≥ m for all (x, y, z) ∈ N .

attractor

Figure 9. N := {(x, y, z) ∈ R
3 | r2 ≤ x2 + y2 ≤ R2, z ∈ R}

Let f :N → R3 be given by

f(x, y, z) = (−yg1(x, y, z) + xg2(x, y, z), xg1(x, y, z) + yg2(x, y, z), α(x, y, z)),

where N is defined as follows: let ω:N → TN∗ be a closed one-form defined by

ω(x, y, z) =
−y dx+ xdy
x2 + y2

− 0 dz.

Then

〈ω(x, y, z), f(x, y, z)〉 = g1(x, y, z) ≥ m > 0, for all (x, y, z) ∈ N .

It is easy to see that if h:M × S1 → N is a diffeomorphism given by

h(x, z, α) = (x cos(α), x sin(α), z),
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where M = [r,R]× R and S1 = [0, 2π]/{0, 2π} (we identify 0 with 2π), then

h∗
(−ydx+ xdy
x2 + y2

)
= dα = ωS1 .

Thus ω is a bounded Lyapunov form. Now we will show that f ∈ Vect(N). For
this purpose it suffices to show that f points inward on the boundary of N . But
this holds if and only if the following two inequalities are satisfied:

〈(f1(x, y, z), f2(x, y, z)), (x, y)〉 ≥ 0 (resp. ≤ 0)
if x2 + y2 = r2 (resp. x2 + y2 = R2).

Since

〈(f1(x, y, z), f2(x, y, z)), (x, y)〉
= 〈(−yg1(x, y, z) + xg2(x, y, z), xg1(x, y, z) + yg2(x, y, z)) , (x, y)〉
= (x2 + y2)g2(x, y, z),

it follows that the above inequalities hold true. Now we will show that

N0 := {(x, y, z) ∈ N | c2 ≤ z ≤ c1}
is a compact attractor for f (see Figure 9). First of all, since the vector field
f is tangent on the set N0, i.e. f(x, y, z) ∈ TN0(x, y, z), it follows that N0 is
positively invariant with respect to a set-valued semiflow generated by (5.6).
Furthermore, for any trajectory [0,∞) � t �→ (x(t), y(t), z(t)) starting from
a point (x0, y0, z0) ∈ N −N0 there exists t0 > 0 such that (x(t0), y(t0), z(t0)) ∈
N0. To this aim, suppose on the contrary, that (x(t), y(t), z(t)) �∈ N0 for all
t ≥ 0. Let L:N → R be given by L(x, y, z) = z2. Then a function [0,∞) � t γ�−→
L(x(t), y(t), z(t)) is absolute continuous and hence the derivative of γ exists for
almost all t ≥ 0. It is easy to see that if γ̇(t) exists, then
(5.7) γ̇(t) = 2z(t)α(x(t), y(t), z(t)) < 0.

Consequently, the function L is nonincreasing along the trajectory γ. Hence if
t > s, then

(5.8) z(t)2 = L(x(t), y(t), z(t)) ≤ L(x(s), y(s), z(s)) = z(s)2,

which implies that |z(t)| t→∞−−−−→ c. There are two possibilities:
(i) z(t) > c1 for all t ≥ 0, or
(ii) z(t) < c2 for all t ≥ 0.

It suffices to consider the first case (in the second case the reasoning is similar).
In the case (i) we have z(t) t→∞−−−−→ c ≥ c1. Then

(x(t), y(t), z(t)) ∈ Nc1 := {(x, y, z) ∈ N | c1 ≤ |z| ≤ z0},
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for all t ≥ 0. Let Mz0 := max
(x,y,z)∈Nc1

α(x, y, z) < 0. Hence γ̇(t) ≤ 2z0Mz0 < 0, for
almost all t ≥ 0. Now taking into account the Fundamental Theorem of Calculus
for absolute continuous functions we obtain

L(x(t), y(t), z(t)) − L(x0, y0, z0) =
∫ t
0

d

ds
L(x(s), y(s), z(s)) ds

=
∫ t
0
γ̇(s)ds ≤

∫ t
0
2z0Mz0 ds ≤ 2tz0Mz0 .

Consequently,

(5.9) L(x(t), y(t), z(t)) ≤ L(x0, y0, z0) + 2tz0Mz0 .

This follows that there exists t0 > 0 such that L(x0, y0, z0) + 2t0z0Mz0 < 0 and
hence we deduce that L(x(t0), y(t0), z(t0)) < 0, which contradicts the fact that
the function L is nonnegative. Now we are to prove that for every (x0, y0, z0) ∈ N
one has

(5.10) dH(Πf ((x0, y0, z0), t), N0)
t→∞−−−−→ 0.

First, observe that if (x0, y0, z0) ∈ N0, then any γ ∈ Sf (x0, y0, z0) satisfies
the following condition: γ(t) ∈ N0 for all t ≥ 0. Consequently, we deduce
that dH(Πf ((x0, y0, z0), t), N0) = 0 for all t ≥ 0. On the other hand, since
L is always nonincreasing along each part of the trajectory of (5.6) included
in N − N0, we infer that if (x0, y0, z0) ∈ N − N0, then there exists t0 > 0
(depending on (x0, y0, z0) ∈ N−N0) such that γ(t) ∈ N0 for all γ ∈ Sf (x0, y0, z0)
and t ≥ t0 (for instance, if z0 > c1, then, in view of (5.9), it suffices to put
t0 := (z20 − c21)/(2z0|Mz0 |), which implies that dH(Πf ((x0, y0, z0), t), N0) = 0 for
all t ≥ t0. This proves (5.10).
Consequently, we have proved that N0 is an attractor for f . Finally, Corol-

lary 5.15 implies that there exists a nontrivial periodic orbit. Since the space N0
is an attractor for f , it follows that a periodic orbit is contained in N0.

Example 5.17. In particular one can consider the following system of dif-
ferential equations: 

ẋ = −y + x(1 − x2 − 2y2),
ẏ = x+ y(1− x2 − 2y2),
ż = −2sign(z)√|z|+ x2 − y4,

where N := {(x, y, z) ∈ R3 | 4−1 ≤ x2 + y2 ≤ 4, z ∈ R} and ω:N → TN∗ is
defined by

(5.11) ω(x, y, z) =
−y dx+ xdy
x2 + y2

− 0 dz.
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Thus, reasoning as in the previous example, we deduce that there exists a non-
trivial periodic orbit in N .

Example 5.18. Consider the following system of differential equations onN :
ẋ = −yg1(x, y, z) + xg2(x, y, z),
ẏ = xg1(x, y, z) + yg2(x, y, z),

ż = (g1(x, y, z)− d)(z2 + 1),
where N := {(x, y, z) ∈ R3 | r2 ≤ x2 + y2 ≤ R2}, 0 < r < R, g1:N → R and
g2:N → R are continuous and bounded and satisfy the following conditions:

• g1(x, y, z)<d if z>c1 and g1(x, y, z)>d if z<−c2, where c1, c2, d>0;
• g2(x, y, z) > 0 for (x, y, z) ∈ N with x2 + y2 = r2;
• g2(x, y, z) < 0 for (x, y, z) ∈ N with x2 + y2 = R2.

In this example we define ω:N → TN∗ as follows:

ω(x, y, z) =
−y dx+ xdy
x2 + y2

− 1
1 + z2

dz.

Then 〈ω(x, y, z), f(x, y, z)〉 = d > 0, where

f(x, y, z) = (−yg1(x, y, z)+xg2(x, y, z), xg1(x, y, z)+yg2(x, y, z), g1(x, y, z)−d).

Notice that a one-form ω0:N → TN∗ given by

ω0(x, y, z) =
−y dx+ xdy
x2 + y2

− 0 dz

does not work in this case because

〈ω0(x, y, z), f(x, y, z)〉 = g1(x, y, z)

and g1(x, y, z) can take the value zero for some (x, y, z) ∈ N . Let h:M×S1 → N
be a diffeomorphism as in Example 5.16. Then

h∗ω = dα− 1
1 + z2

dz = ωS1 + ωe,

where ωS1(x, z, α) = dα and ωe(x, z, α) = (−1)/(1 + z2)dz. Since
1
1 + z2

=
d(arctan(z))
dz

and arctan(z) is bounded, it follows that ω is a bounded one-form (see Re-
mark 5.14). Now following Example 5.16 one can prove that f ∈ Vectc(N).
Thus from Corollary 5.15 we deduce that there exists a nontrivial periodic orbit
in N which generates π1(N).
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6. Comments

In this section we will make some comments about possible extensions and
applications of the results obtained in this paper.

• The methods presented in Section 2 suggests that one can obtain an
extension of the well-known Ważewski principle to some cases in which
not all egress points are strict egress points (see a survey paper on the
Ważewski retract method [19] and Introduction in this paper).
• By using the standard methods from the theory of set-valued maps one
can extend all results obtained in this paper to the case of differential
inclusions (see [21]).
• Example 5.6 suggests that the technique of Lyapunov forms can be
applied in the mathematical theory of persistence (see [38]).

7. Appendix

In the last section we have collected some definitions and facts from the
theory of weighted maps which are used in this article. For more information
about this class of set-valued maps we refer the reader to the textbook [35] and
the papers [11], [26]–[29], [32], [24], [25].
From now on we will assume the all considered spaces are connected ANRs.

Given a map Φ: (X,X0)� (Y, Y0) we denote by ΦX :X � Y and ΦX0 :X0 � Y0
the evident maps defined by Φ (if X0 = ∅, then we will identify ΦX with Φ).
We put (13):

W((X,X0), (Y, Y0)) := {Ψ: (X,X0)� (Y, Y0) | Ψ is a weighted carrier
with Iw(Ψ) �= 0},

AW((X,X0), (Y, Y0)) := {Ψ ∈W((X,X0), (Y, Y0)) | Ȟk(Ψ(x); Q) = 0

for all k ≥ 1 for all x ∈ X},
C((X,X0), (Y, Y0)) := {f : (X,X0)→ (Y, Y0) | f is continuous

with Iw(f) = 1},
CAW (X,X0) := {Φ | Φ = f ◦Ψ, f ∈ C((Y, Y0), (X,X0)),

Ψ ∈ AW ((X,X0), (Y, Y0))}.
Definition 7.1. Let Ψ:X � Y and id:Z → Z be two weighted carriers.

Let (x, z) ∈ X × Z be an arbitrary point and let U be an open subset of Y × Z
such that (Ψ(x)× id(z)) ∩ bdU = ∅. Then Iwloc:D(Ψ × id) → Q is defined as
follows

(7.1) Iwloc(Ψ× id, U, (x, z)) := Iwloc(Ψ, pr(Uz), x) (14),

(13) If X0 = ∅, then we will write CAW (X) instead of CAW (X, X0) and so on.
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where Uz := U ∩ (Y × {z}).
Remark 7.2. Let us observe that pr(Uz) is an open subset of a space Y .

Moreover, since

(Ψ(x)× {z}) ∩ bd (pr(Uz)) = ∅ and bdY×{z}Uz ⊂ bdU,
we conclude that (Ψ(x)× {z}) ∩ bdY×{z} Uz = ∅. Hence,

Ψ(x) ∩ bd (pr(Uz)) =pr(Ψ(x)× {z}) ∩ pr(bdY×{z}Uz)
=pr((Ψ(x)× {z}) ∩ bdY×{z}Uz) = ∅.

Consequently, the right-hand side of (7.1) is well-defined.

Proposition 7.3. Let Ψ:X � Y and id:Z → Z be two weighted carriers.
Then a function Iwloc:D(Ψ× id)→ Q defined as in (7.1) satisfies all the condi-
tions of Definition 3.1. In particular, if X is connected, then Iw(Ψ×id) = Iw(Ψ).

Proof. Let (x, z) ∈ X × Z and let U be an open subset of Y × Z with
(Ψ(x)× id(z)) ∩ bdU = ∅.
Existence. Assume that Iwloc(Ψ×id, U, (x, z)) �= 0. Then, by (7.1), we obtain

Iwloc(Ψ, pr(Uz), x) �= 0.
Consequently, Ψ(x) ∩ pr(Uz) �= ∅ and
∅ �= (Ψ(x)× id(z))∩ (pr(Uz)× id(z)) = (Ψ(x)× id(z))∩Uz ⊂ (Ψ(x)× id(z))∩U,
as required.
Local invariance. Let

(Ψ(x)× id(z)) ∩ U = Fx × {z}, (Ψ(x) × id(z)) ∩ ((X × Y ) \ U) = F ′x × {z}.
Then Fx ∪ F ′x = Ψ(x) and Fx ∩ F ′x = ∅. Moreover, the compactness of Fx and
F ′x implies that there exist open subsets Vx, V

′
x ⊂ Y and Vz ⊂ Z such that

Fx × {z} ⊂ Vx × Vz ⊂ U,(7.2)

F ′x × {z} ⊂ V ′x × Vz ⊂ (Y × Z) \ U.(7.3)

Since Ψ × id is usc, it follows that there exist open sets Wx and Wz such that
(7.4) x ∈ Wx, z ∈Wz , Ψ(x̃)× id(z̃) ⊂ Vx × Vz ∪ V ′z × Vz ,
for all (x̃, z̃) ∈Wx×Wz . In addition, from the local invariance property of Iwloc
for Ψ it follows that there exists an open neighbourhood B(x, ε) of a point x
such that

(7.5) Iwloc(Ψ, pr(Uz), x) = Iwloc(Ψ, pr(Uz), x̃),

(14) In this section by pr we denote the projection of the Cartesian product of two spaces
on the first factor.



46 R. Skiba

for all x̃ ∈ B(x, ε). Now we will show that the following equality holds

Iwloc(Ψ× id, U, (x, z)) = Iwloc(Ψ × id, U, (x̃, z̃)).

for all (x̃, z̃) ∈ (B(x, ε) ∩ Wx) × Wz . For this purpose, fix a point (x̃, z̃) ∈
(B(x, ε) ∩Wx)×Wz . Then, taking into account (7.2)–(7.4), we obtain

(7.6) (Ψ(x) × {z}) ∩ Uz = (Ψ(x) × {z}) ∩ (U ∩ (Y × {z})) ⊂ Vx × {z} ⊂ Uz,
(7.7) (Ψ(x̃)× {z̃}) ∩ U

�z = (Ψ(x̃)× {z̃}) ∩ (U ∩ (Y × {z̃})) ⊂ Vx × {z̃} ⊂ U�z,

where Uz = U ∩ (Y × {z}) and U�z = U ∩ (Y × {z̃}). Consequently,

Ψ(x) ∩ pr(Uz) = pr(Ψ(x)× {z}) ∩ pr(Uz)
= pr(Ψ(x)× {z} ∩ Uz)

(7.6)⊂ pr(Vx × {z}) = Vx,
Ψ(x̃) ∩ pr(U

�z) = pr(Ψ(x̃)× {z̃}) ∩ pr(U�z)
= pr(Ψ(x̃)× {z̃} ∩ U

�z)
(7.7)⊂ pr(Vx × {z̃}) = Vx.

Hence from the excision property of Iwloc for Ψ it follows that

(7.8) Iwloc(Ψ, pr(Uz), x̃) = Iwloc(Ψ, Vx, x̃) = Iwloc(Ψ, pr(U�z), x̃).

Finally,

Iwloc(Ψ × id, U, (x, z)) = Iwloc(Ψ, pr(Uz), x) (7.5)= Iwloc(Ψ, pr(Uz), x̃)
(7.8)
= Iwloc(Ψ, pr(U�z), x̃) = Iwloc(Ψ× id, U, (x̃, z̃)),

as desired.

Additivity. Let Ψ(x) × id(z) ∩ U ⊂
k⋃
i=1
U i ⊂ U , where U i, for i = 1, . . . , k,

are open subsets of U and U i ∩ U j = ∅ for i �= j. Since

Ψ(x) ∩ pr(Uz) = pr((Ψ(x)× {z}) ∩ Uz) ⊂
k⋃
i=1

pr(U iz) ⊂ pr(Uz),

we deduce from the additivity property of Iwloc for Ψ that

Iwloc(Ψ× id, U, (x, z)) = Iwloc(Ψ, pr(Uz), x)

=
k∑
i=1

Iwloc(Ψ, pr(U iz), x) =
k∑
i=1

Iwloc(Ψ× id, U i, (x, z)),

as required. Finally, let us observe that

Iw(Ψ× id) = Iwloc(Ψ× id, Y × Z, (x, z)) = Iwloc(Ψ, Y, x) = Iw(Ψ),

which completes the proof. �
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Definition 7.4. An usc set-valued map Φ:X � Y is called locally com-
pact provided each x ∈ X has a neighbourhood Ux such that the restriction
Ψ|Ux:Ux � Y is compact.

Definition 7.5. Let Φ:X � X be locally compact. We say that
(a) Φ has a compact attractor provided there exists a compact set K ⊂ X
such that for every open neighbourhood U of K in X and for every
x ∈ X there exists a natural number nx such that Φn(x) ⊂ U for every
n ≥ nx.

(b) Φ is called a compact absorbing contraction if there exists an open subset
X0 of X satisfying: (1) Φ(X0) ⊂ X0, (2) Φ|X0:X0 � X0 is a compact
map, (3) for every x ∈ X there exists nx such that Φnx(x) ⊂ X0 (written
Φ ∈ CAC(X,X0)).

Lemma 7.6 (see [21, Chapter IV]). If Φ:X � X has a compact attractor,
then Φ is a compact absorbing contraction.

Notice that for any map Φ ∈ CAC(X,X0)∩CAW(X,X0), using the methods
developed in [35], one can define the Lefschetz numbers Λ(Φ), Λ(ΦX), Λ(ΦX0) ∈
Q which have all the expected properties of the Lefschetz number for single-
valued maps (see [35, Chapter 4], [29] and [22, Chapter V]). In particular, if X
is a contractible ANR and Φ ∈ CAC(X,X0) ∩CAW(X,X0), then

(7.9) Λ(Φ) = 0 and Λ(ΦX) = Λ(ΦX0) = Iw(ΦX) �= 0.

The proof of this fact is analogous as in the case of single-valued maps (see [22,
Chapter V] for single-valued maps).

Theorem 7.7 ([35, Corollary 4.5.17]). If X is an ANR and Φ ∈ CAW(X)
is compact with Λ(Φ) �= 0, then Fix(Φ) �= ∅.

The above theorem can be extended to the case when Φ is not compact.

Theorem 7.8. If X is a contractible ANR and

Φ ∈ CAC(X,X0) ∩ CAW(X,X0),

then Fix(Φ) �= ∅.

Proof. It follows directly from (7.9) and Theorem 7.7. �
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