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NEUMANN PROBLEMS WITH DOUBLE RESONANCE

Donal O’ Regan — Nikolaos S. Papageorgiou — George Smyrlis

Abstract. We study elliptic Neumann problems in which the reaction

term at infinity is resonant with respect to any pair {bλm, bλm+1} of distinct

consecutive eigenvalues. Using variational methods combined with Morse
theoretic techniques, we show that when the double resonance occurs in a

“nonprincipal” spectral interval [bλm, bλm+1], m ≥ 1, we have at least three
nontrivial smooth solutions, two of which have constant sign. If the double

resonance occurs in the “principal” spectral [bλ0 = 0, bλ1], then we show that

the problem has at least one nontrivial smooth solution.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. We examine the
following nonlinear Neumann problem

(1.1) −∆u(z) = f(z, u(z)) in Ω,
∂u

∂n
= 0, on ∂Ω.

The aim of this paper is to prove multiplicity theorems for problem (1.1), when
double resonance occurs, namely asymptotically as |x| → ∞ the quotient f(z,x)

x

lies in the spectral interval [λ̂m, λ̂m+1], m ≥ 0 and we can have complete inter-
action with both endpoints of the interval (double resonance). Here {λ̂m}m≥0

is the sequence of distinct eigenvalues of the negative Laplacian with Neumann
boundary conditions, denoted henceforth by −∆N . We know that λ̂0 = 0 and
λ̂m →∞ as m→∞ (see Section 2).
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In the past such problems were investigated, almost exclusively, in the context
of Dirichlet equations. We mention the works of H. Berestycki and D. de Figueire-
do [3] (who coinced the term “double resonance”), N.P. Cac [4], S. Robinson [17]
and J. Su [18]. H. Berestycki and D. de Figueiredo [3] and S. Robinson [17],
prove existence theorems using certain generalized Landesman–Lazer conditions
(LL-conditions for short).

N.P. Cac [4] proves existence and multiplicity results, establishing the ex-
istence of two nontrivial solutions but under restrictive conditions on the data
of the problem. J. Su [18] proves a multiplicity result producing three nontriv-
ial solutions, using generalized LL-conditions, similar to the ones employed first
in the work of E. Landesman, S. Robinson and A. Rumbos [8]. He assumes
that f ∈ C1(Ω × R) and this makes the energy functional of the problem C2,
a fact that permits the author to use the complete arsenal of Morse theory.
For the Neumann problem, to the best of our knowledge, the only work dealing
with double resonant problems, is the recent one by M. Filippakis and N.S. Pa-
pageorgiou [6], where the authors prove two multiplicity theorems establishing
respectively two and three nontrivial solutions when f(z, · ) ∈ C1(R) and certain
generalized LL-conditions are satisfied. Also for the three solutions theorem, a
restriction is imposed on the eigenvalue λ̂m.

In the present work, the reaction term f(z, x) is a Caratheodory function (i.e.
for all x ∈ R, z → f(z, x) is measurable and for almost all z ∈ Ω, x → f(z, x)
is continuous), we do not use LL-type conditions and our hypotheses are in
principle easier to verify. Our approach combines variational methods based on
the critical point theory, together with techniques from Morse theory.

2. Mathematical background

In this section, for the convenience of the reader, we briefly review the main
mathematical tools that we will use in this work. We start with critical point
theory. So, let X be a Banach space and X∗ its topological dual. By 〈 · , · 〉 we
denote the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that
ϕ satisfies the “Cerami condition” (the C-condition for short), if the following is
true:
“Every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 is bounded and

(1 + ||xn||)ϕ′(xn) → 0 in X∗ as n→∞,

admits a strongly convergent subsequence”.
Using this compactness-type condition on ϕ, we can have the following min-

imax characterization of certain critical values of ϕ. The result is known in the
literature as the “mountain pass theorem”.
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Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X) and it satisfies the
C-condition, u0, u1 ∈ X, r > 0, ||u1 − u0|| > r,

max{ϕ(u0), ϕ(u1)} ≤ inf[ϕ(u) : ||u− u0|| = r] = ηr,

Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1} and c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)),

then c ≥ ηr and c is a critical value of ϕ.

For ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc = {u ∈ X : ϕ(x) ≤ c},
Kϕ = {u ∈ X : ϕ′(u) = 0}, Kc

ϕ = {u ∈ Kϕ : ϕ(x) = c}.

Let (Y1, Y2) be a topological pair with Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0,
by Hk(Y1, Y2) we denote the kth-relative singular homology group with integer
coefficients for the pair (Y1, Y2) . Recall that for k < 0, Hk(Y1, Y2) = 0. The
critical groups of ϕ at an isolated critical point u ∈ Kc

ϕ, are defined by

Ck(ϕ, u) = Hk(ϕc ∩ U,ϕc ∩ U \ {u}) for all k ≥ 0,

where U is a neighbourhood of u such that Kϕ ∩ ϕc ∩ U = {u}. The exci-
sion property of singular homology theory, implies that the above definition is
independent of the choice of the neighbourhood U .

Suppose that ϕ ∈ C1(X) satisfies the C-condition and −∞ < inf ϕ(Kϕ). Let
a < inf ϕ(Kϕ). The critical groups of ϕ at infinity, are defined by

Ck(ϕ,∞) = Hk(X,ϕa) for all k ≥ 0

(see T. Bartsch and S. Li [2]).
Since ϕ satisfies the C-condition, the second deformation theorem is valid

(see, for example, L. Gasinski nad N.S. Papageorgiou [7]). Using the second
deformation theorem, we see that the definition of critical groups of ϕ at infinity
is independent of the particular level a < inf ϕ(Kϕ). If for some integer m ≥
0Cm(ϕ,∞) 6= 0, then there exists u ∈ Kϕ such that Cm(ϕ, u) 6= 0.

In the study of problem (1.1), we will use the following two “natural” spaces

C1
n(Ω) =

{
u ∈ C1(Ω) :

∂u

∂n
= 0 on ∂Ω

}
, H1

n(Ω) = C1
n(Ω)

||·||
,

where ||·|| denotes the Sobolev norm ||u|| = (||u||22+||Du||22)1/2 for all u ∈ H1(Ω).
The space C1

n(Ω) is an ordered Banach space, with positive cone

C+ = {u ∈ C1
n(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
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Next let us recall some basic facts about the spectrum of −∆N . So, let
m ∈ L∞(Ω)+, m 6≡ 0 (the weight function) and consider the following weighted
eigenvalue problem

(2.1)

{ −∆u(z) = λ̂m(z)u(z) a.e. in Ω,
∂u

∂n
= 0 on ∂Ω.

We say that λ̂ ∈ R is an eigenvalue of −∆N , if problem (2.1) admits a
nontrivial solution. It is clear that a necessary condition for λ̂ ∈ R to be an
eigenvalue is that λ̂ ≥ 0. To emphasize the dependence on the weight m, we
write λ̂(m) and if m ≡ 1, then we set λ̂(1) = λ̂. Note that λ̂0(m) = 0 is
an eigenvalue of (2.1), with corresponding eigenspace R (the space of constant
functions). Moreover, using the spectral theorem for compact operators, we can
show that (2.1) has a sequence {λ̂k(m)}k≥0 of distinct eigenvalues such that
λ̂k(m) →∞ as k →∞.

For every integer k ≥ 0, by E(λ̂k(m)) we denote the eigenspace corresponding
to the eigenvalue λ̂k(m). From regularity theory, we have E(λ̂k(m)) ⊆ C1

n(Ω)
and the space E(λ̂k(m)) exhibits the unique continuation property (UCP for
short) which says that, if u ∈ E(λ̂k(m)) vanishes on a set of positive Lebesgue
measure, then u(z) = 0 for all z ∈ Ω. We set

Hi =
i⊕

k=0

E(λ̂k(m)) and Ĥi = H
⊥
i =

⊕
k≥i+1

E(λ̂k(m)).

Using these spaces, we have the following variational characterizations of the
eigenvalues:

(2.2) λ̂0(m) = min
[

‖Du‖22∫
Ω
mu2 dz

: u ∈ H1
n(Ω), u 6≡ 0

]
and for i ≥ 1

λ̂i(m) = max
[

‖Du‖22∫
Ω
mu2 dz

: u ∈ Hi, u 6≡ 0
]

(2.3)

= min
[

‖Dû‖22∫
Ω
mû2 dz

: û ∈ Ĥi−1, û 6≡ 0
]
.

In (2.2) and (2.3) the min and max are realized in the corresponding eigenspace
E(λ̂i(m)).

The next lemmata are consequences of (2.2), (2.3) and of the UCP.

Lemma 2.2. If m,m′ ∈ L∞(Ω)+ \ {0}, m(z) ≤ m′(z), for almost all z ∈ Ω
and m 6= m′, then λ̂k(m′) < λ̂k(m) for all k ≥ 0.
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Lemma 2.3. If ϑ, ϑ̂ ∈ L∞(Ω), m ≥ −1, ` ≥ 0, ϑ(z) ≤ λ̂m+1, ϑ̂(z) ≥ λ̂`
almost everywhere in Ω, ϑ 6= λ̂m, ϑ̂ 6= λ̂`, then there exist ξ0, ξ1 > 0 such that

||Du||22 −
∫

Ω

ϑu2 dz ≥ ξ0||u||2 for all u ∈ Ĥm,

||Du||22 −
∫

Ω

ϑ̂u2 dz ≤ −ξ1||u||2 for all u ∈ H`.

For every x ∈ R, we set x± = max{±x, 0}. Also, as already mentioned, by
|| · || we denote the usual Sobolev norm in the space H1

n(Ω), by || · ||p(1 < p <∞)
we denote the norm of the Lebesgue space Lp(Ω) or Lp(Ω,RN ) and by | · |N we
denote the Lebesgue measure on RN .

Finally by û0 we denote the Lp-normalized positive eigenfunction correspond-
ing to λ̂0(m) = 0. Every eigenfunction to a positive eigenvalue λ̂k(m) > 0, k ≥ 1
is necessarily nodal (i.e. sign changing).

3. Three solutions theorem

In this section we establish the existence of at least three nontrivial smooth
solution when double resonance occurs at any spectral interval [λ̂m, λ̂m+1] m≥1.

The hypotheses on the reaction f(z, x) are:

(H) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for almost
all z ∈ Ω, and

(a) |f(z, x)| ≤ α(z)+ c|x| for almost all z ∈ Ω, all x ∈ R with α ∈ L∞(Ω)+,
c > 0;

(b) there exists an integer m ≥ 1 such that

λ̂m ≤ lim inf
|x|→∞

f(z, x)
x

≤ lim sup
|x|→∞

f(z, x)
x

≤ λ̂m+1

uniformly for almost all z ∈ Ω and, if F (z, x) =
∫ x
0
f(z, s) ds, then

lim
|x|→∞

[f(z, x)x− 2F (z, x)] = ∞ uniformly for a.a. z ∈ Ω;

(c) there exists a function ϑ ∈ L∞(Ω), ϑ(z) ≤ 0, almost everywhere in Ω,
ϑ 6= 0 and

lim sup
x→0

2F (z, x)
x2

≤ ϑ(z) uniformly for a.a. z ∈ Ω.

Remark 3.1. Hypothesis (H)(b) implies that we have double resonance in
the spectral interval [λ̂m, λ̂m+1], m ≥ 1. Also, hypothesis (H)(c) implies that
at the origin we have nonuniform nonresonance with respect to the principal
eigenvalue λ̂0 = 0. We emphasize that no differentiability conditions are assumed
on f(z, · ) in contrast to the works of M. Filippakis and N.S. Papageorgiou [16]
and J. Su [18].
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Example 3.2. The following function f(x) satisfies hypotheses (H) (for the
sake of simplicity, we drop the z-dependence):

f(x) =

{
λ̂m|x|r−2x− x if |x| ≤ 1,

λ̂mx− |x|q−2x if |x| > 1,
with m ≥ 1, 1 < q < 2 < r <∞.

Note that f is not C1.

First we produce two constant sign smooth solutions. For this purpose
we choose ε ∈ (0, λ̂1) and introduce the following truncations-perturbations of
f(z, · ):

f̂+(z, x) =

{
0 if x ≤ 0,

f(z, x) + εx if x > 0,
,(3.1)

f̂−(z, x) =

{
f(z, x) + εx if x < 0,

0 if x ≥ 0.
(3.2)

Both are Carathéodory functions. Let

F̂±(z, x) =
∫ x

0

f̂±(z, s) ds

and consider the C1-functionals ϕ̂±:H1
n(Ω) → R defined by

ϕ̂±(u) =
1
2
||Du||22 +

ε

2
||u||22 −

∫
Ω

F̂±(z, u(z)) dz for all u ∈ H1
n(Ω).

Also, let ϕ:H1
n(Ω) → R be the energy functional for problem (1.1) defined by

ϕ(u) =
1
2
||Du||22 −

∫
Ω

F (z, u(z)) dz for all u ∈ H1
n(Ω).

Evidently ϕ ∈ C1(H1
n(Ω)).

Proposition 3.3. If hypotheses (H) hold, then ϕ̂± satisfy the C-condition.

Proof. We do the proof for ϕ̂+, the proof for ϕ̂− being similar.
We consider a sequence {un}n≥1 ⊆ H1

n(Ω) such that

|ϕ̂+(un)| ≤M1 for some M1 > 0, n ≥ 1,(3.3)

(1 + ||un||)ϕ̂′+(un) → 0 in H1
n(Ω)∗ as n→∞.(3.4)

From (3.4) we have that for all h ∈ H1
n(Ω),

(3.5)
∣∣∣∣〈A(un), h〉+ ε

∫
Ω

unh dz −
∫

Ω

f̂+(z, un)h dz
∣∣∣∣ ≤ εn||h||

1 + ||un||
,

for all u ∈ H1
n(Ω) with εn ↓ 0, where A ∈ L(H1

n(Ω),H1
n(Ω)∗) is defined by

〈A(u), y〉 =
∫

Ω

(Du,Dy)RN dz for all u, y ∈ H1
n(Ω).
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In (3.5) we choose h = −u−n ∈ H1
n(Ω). Then

||Du−n ||22 + ε||u−n ||22 ≤ εn for all n ≥ 1 (see (3.1)–(3.2)),(3.6)

⇒ u−n → 0 in H1
n(Ω) as n→∞.

Claim. {u+
n }n≥1 ⊆ H1

n(Ω) is bounded.

We proceed by contradiction. So, suppose that ||u+
n || → ∞ and yn =

u+
n /||u+

n ||, n ≥ 1. Then ||yn|| = 1 for all n ≥ 1 and so we may assume that

(3.7) yn
w−→ y in H1

n(Ω) and yn → y in L2(Ω).

From (3.5) and (3.6) we have

(3.8)
∣∣∣∣〈A(yn), h〉+ ε

∫
Ω

ynh dz −
∫

Ω

f̂+(z, u+
n )

||u+
n ||

h dz

∣∣∣∣ ≤ ε′n||h||,

with ε′n → 0.
In (3.8) we choose h = yn − y ∈ H1

n(Ω) and pass to the limit as n → ∞.
Using (3.7) and hypothesis (H)(a), we obtain

(3.9) lim
n→∞

〈A(yn), yn − y〉 = 0 ⇒ ||Dyn||2 → ||Dy||2

(see (3.7)). Also, we know that Dyn
w−→ Dy in L2(Ω,RN ) (see (3.7)). Then by

virtue of the Kadec–Klee property of Hilbert spaces, we have

(3.10) yn → y in H1
n(Ω) and so ||y|| = 1, y ≥ 0.

Hypothesis (H)(a) implies that{
ĝn( · ) =

f̂+( · , u+
n ( · ))

||u+
n ||

}
n≥1

⊆ L2(Ω)

is bounded. So, we may assume that

(3.11) ĝn
w−→ ĝ in L2(Ω) as n→∞.

Using hypotheses (H)(b) and reasoning as in Motreanu, Motreanu and Papage-
orgiou [11] (see the proof of Proposition 5), we have that

(3.12) ĝ = (ξ̂ + ε)y with λ̂m ≤ ξ̂(z) ≤ λ̂m+1 a.e. in Ω.

We return to (3.8), pass to the limit as n→∞ and use (3.10)–(3.12). Then

〈A(y), h〉 =
∫

Ω

ξ̂yh dz for all h ∈ H1
n(Ω),(3.13)

⇒ A(y) = ξ̂y in H1
n(Ω)∗,

⇒ −∆y(z) = ξ̂(z)y(z) a.e. in Ω,
∂y

∂n
= 0, on ∂Ω, y 6= 0,

(see Motreanu and Papageorgiou [13] and (3.10)).
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From (3.13) and since ξ̂(z) ≥ λ̂m almost everywhere in Ω with m ≥ 1,
we see that ξ̂(z) > 0 almost everywhere in Ω and so y must be nodal, which
contradicts (3.10). Therefore {u+

n }n≥1 ⊆ H1
n(Ω) is bounded and this proves the

Claim.

From (3.6) and the Claim, it follows that {un}n≥1 ⊆ H1
n(Ω) is bounded and so

we may assume that un
w−→ u inH1

n(Ω). If in (3.5) we choose h = un−u ∈ H1
n(Ω)

and pass to the limit as n→∞, then

lim
n→∞

〈A(un), un − y〉 = 0 ⇒ un → u in H1
n(Ω) (as before).

This proves that ϕ̂+ satisfies the C-condition. Similarly for ϕ̂−. �

Proposition 3.4. If hypotheses (H) hold, then ϕ satisfies the C-condition.

Proof. We consider a sequence {un}n≥1 ⊆ H1
n(Ω) such that

(3.14) |ϕ(un)| ≤M2 for some M2 > 0 and all n ≥ 1

and

(3.15) (1 + ||un||)ϕ′(un) → 0 in H1
n(Ω)∗ as n→∞.

From (3.15) we have

(3.16)
∣∣∣∣〈A(un), h〉 −

∫
Ω

f(z, un)h dz
∣∣∣∣ ≤ εn||h||

1 + ||un||
,

for all h ∈ H1
n(Ω), with εn → 0+. In (3.16) we choose h = un ∈ H1

n(Ω). Then

(3.17) −||Dun||22 +
∫

Ω

f(z, un)un dz ≤ εn for all n ≥ 1.

On the other hand from (3.14), we have

(3.18) ||Dun||22 −
∫

Ω

2F (z, un) dz ≤ 2M2 for all n ≥ 1.

Adding (3.17) and (3.18), we obtain

(3.19)
∫

Ω

[f(z, un)un − 2F (z, un)] dz ≤M3 for some M3 > 0, all n ≥ 1.

Claim. {un}n≥1 ⊆ H1
n(Ω) is bounded.

We argue indirectly. So, suppose that ||un|| → ∞ and set yn = un/||un||,
n ≥ 1. Then ||yn|| = 1 for all n ≥ 1 and so we may assume that

(3.20) yn
w−→ y in H1

n(Ω) and yn → y in L2(Ω).

From (3.16), we have

(3.21)
∣∣∣∣〈A(yn), h〉 −

∫
Ω

f(z, un)
||un||

h dz

∣∣∣∣ ≤ εn||h||
(1 + ||un||)||un||

, for all n ≥ 1.
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Note that by virtue of hypothesis (H)(a)
{
f( · ,un( · ))
||un||

}
n≥1

⊆ L2(Ω) is bounded.

Hence, if in (3.21) we choose h = yn−y ∈ H1
n(Ω) and pass to the limit as n→∞,

then

(3.22) lim
n→∞

〈A(yn), yn − y〉 = 0 ⇒ yn → y in H1
n(Ω) and so ||y|| = 1.

Since
{
gn( · ) = f(·,un( · ))

||un||

}
n≥1

⊆ L2(Ω) is bounded, we may assume that

(3.23) gn
w−→ g in L2(Ω) and g = ξy, λ̂m ≤ ξ(z) ≤ λ̂m+1 a.e. in Ω

(as in the proof of Proposition 3.3). Passing to the limit as n→∞ in (3.21) and
using (3.22) and (3.23), we obtain

〈A(y), h〉 =
∫

Ω

ξy dz for all h ∈ H1
n(Ω),(3.24)

⇒ A(y) = ξy,

⇒ −∆y(z) = ξ(z)y(z) a.e. in Ω,
∂u

∂n
= 0 on ∂Ω.

First suppose that ξ 6= λ̂m and ξ 6= λ̂m+1 (see (3.23)). Then by virtue of
Lemma 2.2, we have

(3.25) λ̂m(ξ) < λ̂m(λm) = 1 and 1 = λ̂m+1(λ̂m+1) < λ̂m+1(ξ).

From (3.24) and (3.25) it follows that y = 0, which contradicts (3.22).
So, we assume that ξ(z) = λ̂m or ξ(z) = λ̂m+1 almost everywhere in Ω. Then

y ∈ E(λ̂m)\{0} or y ∈ E(λ̂m+1)\{0} (see (3.22) and (3.23)) and so by the UCP
we have y(z) 6= 0 almost everywhere in Ω. Therefore |un(z)| → ∞ for almost all
z ∈ Ω and so by virtue of hypothesis (H)(b) we have

f(z, un(z))un(z)− 2F (z, un(z)) →∞ for a.a. z ∈ Ω,(3.26)

⇒
∫

Ω

[f(z, un)un − 2F (z, un)] dz →∞ (by Fatou’s lemma).

Comparing (3.19) and (3.26), we reach a contradiction. This proves the Claim.
By virtue of the Claim, we may assume that un

w−→ u in H1
n(Ω) and un → u

in L2(Ω). Setting h = un − u in (3.16) and passing to the limit as n → ∞, we
obtain

lim
n→∞

〈A(un), un − u〉 = 0 ⇒ un → u in H1
n(Ω) (as before).

This proves the proposition. �
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Proposition 3.5. If hypotheses (H) hold, then u = 0 is a local minimizer
of ϕ̂± and of ϕ.

Proof. We do the proof for ϕ̂+, the proof for ϕ̂− and for ϕ being similar.
By virtue of hypothesis (H)(c), given ε̂ > 0 we can find δ̂ = δ̂(ε̂) > 0 such

that

(3.27) F (z, x) ≤ 1
2
(ϑ(z) + ε̂)x2 for a.a. z ∈ Ω, and all |x| ≤ δ̂.

Let u ∈ C1
n(Ω) such that ||u||C1

n(Ω) ≤ δ̂. Then

ϕ̂+(u) =
1
2
||Du||22 +

ε

2
||u||22 −

∫
Ω

F̂+(z, u) dz(3.28)

≥1
2
||Du||22 −

∫
Ω

F (z, u+) dz

≥1
2
||Du||22 −

1
2

∫
Ω

ϑu2 dz − ε̂

2
||u||2 (see (3.27))

≥ξ0 − ε̂

2
||u||2 (see Lemma 2.3).

Choosing ε̂ ∈ (0, ξ0), from (3.28) we infer that

ϕ̂+(u) > 0 for all u ∈ C1
n(Ω) with 0 < ||u||C1

n(Ω) ≤ δ̂,

⇒ u = 0 is a local C1
n(Ω)-minimizer of ϕ̂+

⇒ u = 0 is a local H1
n(Ω)-minimizer of ϕ̂+

(see Motreanu, Motreanu and Papageorgiou [12]). �

We may assume that u = 0 is an isolated critical point of ϕ̂+. Indeed,
otherwise we can find {un}n≥1 ⊆ H1

n(Ω) \ {0} such that un → 0 in H1
n(Ω) and

ϕ̂′+(un) = 0, for all n ≥ 1,(3.29)

⇒ A(un) + εun = N
bf+

(un) for all n ≥ 1,

where N
bf+

(u)( · ) = f̂+( · , u( · )) for all u ∈ H1
n(Ω).

Acting on (3.29) with −u−n ∈ H1
n(Ω) and using (3.1)–(3.2), we see that un ≥ 0

for all n ≥ 1 and so (3.29) becomes

A(un) = Nf (un) for all n ≥ 1,

where Nf (u)( · ) = f( · , u( · )) for all u ∈ H1
n(Ω),

⇒ u ∈ C1
n(Ω) (by regularity theory) solves problem (1.1)

(see Motreanu and Papageorgiou [13]).
Therefore we have produced a whole sequence of nonnegative smooth solu-

tions of (1.1) and so we are done.
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Since u = 0 is an isolated critical point, reasoning as in Motreanu, Motreanu
and Papageorgiou [11] (see the proof of Proposition 3.5), we can find ρ ∈ (0, 1)
small such that

(3.30) ϕ̂+(0) = 0 < inf[ϕ̂+(u) : ||u|| = ρ] = η̂+.

Similarly we have that

(3.31) ϕ̂−(0) = 0 < inf[ϕ̂−(u) : ||u|| = ρ] = η̂−.

Now we are ready to produce two constant sign smooth solutions for prob-
lem (1.1).

Proposition 3.6. If hypotheses (H) hold then problem (1.1) has at least two
constant sign smooth solutions

u0 ∈ intC+ and v0 ∈ −intC+.

Proof. Let ξ ∈ R, ξ > 0. Then

ϕ̂+(ξ) = −
∫

Ω

F (z, ξ) dz (see (3.1)–(3.2)).

From hypothesis (H)(b) it follows that

λ̂m ≤ lim inf
ξ→∞

2F (z, ξ)
ξ2

≤ lim sup
ξ→∞

2F (z, ξ)
ξ2

≤ λ̂m+1 uniformly for a.a. z ∈ Ω.

Hence −
∫
Ω
F (z, ξ) dz → −∞ as ξ →∞ (recall m ≥ 1). Therefore

(3.32) ϕ̂+(ξ) → −∞ as ξ →∞.

From (3.30), (3.32) and Proposition 3.3, we see that we can apply Theo-
rem 1.1 (the mountain pass theorem) and obtain u0 ∈ H1

n(Ω) such that

ϕ̂+(0) = 0 < η̂+ ≤ ϕ̂+(u0),(3.33)

ϕ̂′+(u0) = 0.(3.34)

From (3.33) we have u0 6= 0. From (3.34) we have

(3.35) A(u0) + εu0 = N
bf+

(u0).

As before, acting on (3.35) with −u−0 ∈ H1
n(Ω), we show that u0 ≥ 0. So, (3.35)

becomes

A(u0) = Nf (u0),(3.36)

⇒ −∆u0(z) = f(z, u0(z)) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω,

⇒ u0 ∈ C+ \ {0} (regularity theory).
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Let r = ||u0||∞. Then by virtue of hypothesis (H)(a), we can find ξr > 0
such that

f(z, x) + ξrx ≥ 0 for all z ∈ Ω and all x ∈ [0, r].

Then from (3.36) we have

−∆u0(z) ≤ ξru0(z), a.e. in Ω,⇒ u0 ∈ intC+ (see Vazquez [19]).

Similarly, working this time with the functional ϕ̂− and using (3.31), we obtain
a second constant sign smooth solution v0 ∈ intC+. �

Next using Morse theory, we will produce a third nontrivial smooth solution
for problem (1.1). To this end, first we prove an auxiliary result which will
allow us to compute the critical groups of the functionals ϕ̂± and ϕ. We state
the result in more generality than what is actually needed here, since we believe
that result can be useful in more general settings (like nonlinear equations driven
by the p-Laplacian). Our result extends Lemma 2.4 of Perera and Schechter [16]
which is formulated in Hilbert spaces.

Lemma 3.7. If X is a Banach space, (t, u) → ht(u) belongs to C1([0, 1]×X)
and it is bounded, the maps u→ ∂tht(u) and u→ h′t(u) are both locally Lipschitz,
h0 and h1 both satisfy the C-condition and there exist β ∈ R and δ > 0 such that

ht(u) ≤ β ⇒ (1 + ||u||)||h′t(u)||∗ ≥ δ for all t ∈ [0, 1],

then Ck(h0,∞) = Ck(h1,∞) for all k ≥ 0.

Proof. Since by hypothesis h ∈ C1([0, 1] × X), we know that ht admits
a pseudogradient vector field vt( · ). Also, by defintion (t, u) → vt(u) is locally
Lipschitz. For every (t, u) ∈ [0, 1]× (X \Kht

) we have

(3.37) 〈h′t(u), vt(u)〉 ≥ ||h′t(u)||2∗.

The map

X \Kht 3 u→ − |∂tht(u)|
||h′t(u)||2∗

vt(u) = wt(u) ∈ X

is well defined and locally Lipschitz. Since by hypothesis (t, u) → ht(u) is
bounded, we choose η ≤ β such that

hη0 6= 0 or hη1 6= 0.

(If no such η can be found, then Ck(h0,∞) = Ck(h1,∞) = δk,0Z for all k ≥ 0
and so we are done.) To fix things, we assume that hη0 6= 0 and choose y ∈ hη0 .
We consider the following Cauchy problem

(3.38)
dξ

dt
= wt(ξ), t ∈ [0, 1], ξ(0) = y.
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Since wt is locally Lipschitz, this Cauchy problem admits a unique local flow
(see L. Gasinski and N.S. Papageorgiou [7, p. 618]). We have

d

dt
ht(ξ) =

〈
h′t(ξ),

dξ

dt

〉
+ ∂tht(ξ)

= 〈h′t(ξ), wt(ξ)〉+ ∂tht(ξ) (see (3.38))

≤ −|∂tht(ξ)|+ ∂tht(ξ) ≤ 0 (see (3.37))

⇒ t→ ht(ξ(t, y)) is nonincreasing,

⇒ ht(ξ(t, y)) ≤ h0(ξ(0, y)) = h0(y) ≤ η ≤ β,

⇒ (1 + ||ξ(t, y)||)||h′t(ξ(t, y))||∗ ≥ δ (by hypothesis),

⇒ h′t(ξ(t, y)) 6= 0.

This shows that the flow ξ( · , y) is global on [0, 1]. Then ξ(1, y) is a homeo-
morphism between hη0 and a subset of hη1 . Reversing the time (t → 1 − t), we
show that hη1 is a homeomorphism to a subset of hη0 . Therefore hη0 and hη1 are
homotopy equivalent and so

Hk(X,h
η
0) = Hk(X,h

η
1) for all k ≥ 0,

⇒ Ck(h0,∞) = Ck(h1,∞) for all k ≥ 0. �

Lemma 3.8. If hypotheses (H) hold and dm = dimHm ≥ 2, then Ck(ϕ,∞) =
δk,dm

Z for all k ≥ 0.

Proof. Let µ ∈ (λ̂m, λ̂m+1) and consider the C2-functional ψ:H1
n(Ω) → R

defined by

ψ(u) =
1
2
||Du||22 −

µ

2
||u||22 for all u ∈ H1

n(Ω).

We consider the homotopy h: [0, 1]×H1
n(Ω) → R defined by

h(t, u) = (1− t)ϕ(u) + tψ(u) for all (t, u) ∈ [0, 1]×H1
n(Ω).

Clearly we may assume that Kϕ is finite (or otherwise we already have infinitely
many nontrivial smooth solutions of (1.1) and so we are done).

Note that h0( · ) = h(0, · ) = ϕ satisfies the C-condition (see Proposition 3.4)
and h1( · ) = h(1, · ) = ψ which too satisfies the C-condition, since by hypothesis
µ ∈ (λ̂m, λ̂m+1).

Claim. There exist β ∈ R and δ > 0 such that

h(t, u) ≤ β ⇒ (1 + ||u||)||h′u(t, u)||∗ ≥ δ for all t ∈ [0, 1].

We argue by contradiction. So, suppose that the Claim is not true. Since h( · , · )
is bounded, we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ H1

n(Ω) such that

(3.39) tn → t, ||un|| → ∞, h(tn, un) → −∞, x∗n → 0 in H1
n(Ω)∗,
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where x∗n = (1 + ||un||)h′u(tn, un), n ≥ 1.
By virtue of the last convergence in (3.39), we have

(3.40)
∣∣∣∣〈A(un), h〉 − (1− tn)

∫
Ω

f(z, un)h dz − tnµ

∫
Ω

unh dz

∣∣∣∣ ≤ εn||h||
1 + ||un||

for all h ∈ H1
n(Ω) with εn → 0+.

We set yn = un/||un||, n ≥ 1. Then ||yn|| = 1 for all n ≥ 1 and so we may
assume that

(3.41) yn
w−→ y in H1

n(Ω) and yn → y in L2(Ω).

From (3.40) we have

(3.42)
∣∣∣∣〈A(yn), h〉 − (1− tn)

∫
Ω

f(z, un)
||un||

h dz − tnµ

∫
Ω

ynh dz

∣∣∣∣
≤ εn||h||

(1 + ||un||)||un||
, for all n ≥ 1.

Recall (see the proof of Proposition 3.4), that

(3.43)
f( · , un( · ))

||un||
w−→ g = ξy in L2(Ω) with λ̂m ≤ ξ(z) ≤ λ̂m+1 a.e. in Ω.

In (3.42) we choose h = yn− y ∈ H1
n(Ω), pass to the limit as n→∞ and use

(3.41). Then

(3.44) lim
n→∞

〈A(yn), yn − y〉 = 0, ⇒ yn → y in H1
n(Ω) and so ||y|| = 1.

So, if in (3.42) we pass to the limit as n→∞ and use (3.43) and (3.44), then

〈A(y), h〉 = (1− t)
∫

Ω

ξyh dz + tµ

∫
Ω

yh dz for all h ∈ H1
n(Ω),(3.45)

⇒ A(y) = ξty with ξt = (1− t)ξ + tµ,

⇒ −∆y(z) = ξt(z)y(z) a.e. in Ω,
∂u

∂n
= 0 on ∂Ω.

Note that λ̂m ≤ ξt(z) ≤ λ̂m+1 almost everywhere in Ω and for all t ∈ [0, 1]. If
t ∈ (0, 1], then:

ξt 6= λ̂m and ξt 6= λ̂m+1,

⇒ λ̂m(ξt) < λ̂m(λ̂m) = 1, λ̂m+1(ξt) > λ̂m+1(λ̂m+1) = 1 (see Lemma 2.2)

⇒ y = 0 (see (3.45)),

contradicting (3.44).
Suppose that t = 0. Then ξ0 = ξ and we proceed as in the proof of Proposi-

tion 3.4 to reach a contradiction using hypothesis (H)(b) and the third conver-
gence in (3.39). This proves the Claim.
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Because of the Claim, we can apply Lemma 3.7 and infer that

(3.46) Ck(ϕ,∞) = Ck(ψ,∞) for all k ≥ 0.

Since µ ∈ (λ̂m, λ̂m+1), u = 0 is the only critical point of ψ. Hence

(3.47) Ck(ψ,∞) = Ck(ψ, 0) for all k ≥ 0.

Recall that ψ ∈ C2(H1
n(Ω)) and that ψ′′(0) is invertible since µ ∈ (λ̂m, λ̂m+1).

So, u = 0 is a nondegenerate critical point of ψ with Morse index dm (since
(ϕ′′(0)y, y) < 0 for all y ∈ Hm, see Lemma 2.3). Hence

(3.48) Ck(ψ, 0) = δk,dm
Z for all k ≥ 0

(see Mawhin and Willem [10, p. 188]). From (3.46)–(3.48), we conclude that
Ck(ϕ,∞) = δk,dm

Z for all k ≥ 0. �

We compute also the critical groups at infinity for the functionals ϕ̂±.

Proposition 3.9. If hypotheses (H) hold, then

Ck(ϕ̂+,∞) = Ck(ϕ̂−,∞) = 0, for all k ≥ 0.

Proof. We do the proof for ϕ̂+, the proof for the functional ϕ̂− being
similar. Let µ ∈ (λ̂m, λ̂m+1) and for ε ∈ (0, λ̂1), we consider the C1-functional
ψ+:H1

n(Ω) → R defined by

ψ+(u) =
1
2
||Du||22 +

ε

2
||u||22 −

µ+ ε

2
||u+||22 for all u ∈ H1

n(Ω).

We consider the homotopy h+: [0, 1]×H1
n(Ω) → R defined by

h+(t, u) = (1− t)ϕ̂+(u) + tψ+(u) for all t ∈ [0, 1] and all u ∈ H1
n(Ω).

As before, without any loss of generality we may assume that K
bϕ+ is finite.

Claim. There exist β ∈ R and δ > 0 such that

h+(t, u) ≤ β ⇒ (1 + ||u||)||(h+)′u(t, u)||∗ ≥ δ for all t ∈ [0, 1].

As before we argue by contradiction and so we assume that we can find
{tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ H1

n(Ω) such that

(3.49) tn → t, ||un|| → ∞, h+(tn, un) → −∞, y∗n → 0 in H1
n(Ω)∗,

where y∗n = (1 + ||un||)(h+)′u(tn, un), n ≥ 1.
From the last convergence in (3.49), we have

(3.50)
∣∣∣∣〈A(un), h〉+ ε

∫
Ω

unh dz

− (1− tn)
∫

Ω

f̂+(z, un)h dz − tn(µ+ ε)
∫

Ω

u+
nh dz

∣∣∣∣ ≤ εn||h||
1 + ||un||
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for all h ∈ H1
n(Ω), with εn → 0+.

In (3.50) we choose h = −u−n ∈ H1
n(Ω) and obtain

(3.51) ||Du−n ||22 + ε||u−n ||22 ≤ εn for all n ≥ 1 ⇒ u−n → 0 in H1
n(Ω).

Therefore we must have ||u+
n || → ∞ (see (3.49)). We set yn = u+

n /||u+
n ||, n ≥ 1.

Then ||yn|| = 1 for all n ≥ 1 and so we may assume that

(3.52) yn
w−→ y in H1

n(Ω) and yn → y in L2(Ω).

From (3.50) and (3.51) we have

(3.53)
∣∣∣∣〈A(yn), h〉+ ε

∫
Ω

ynh dz

− (1− tn)
∫

Ω

f̂+(z, u+
n )

||u+
n ||

h dz − tn(µ+ ε)
∫

Ω

ynh dz

∣∣∣∣ ≤ ε′n||h||,

for all h ∈ H1
n(Ω), with ε′n → 0+.

In (3.53) we choose h = yn − y, pass to the limit as n → ∞ and use (3.52).
Then

(3.54) lim
n→∞

〈A(yn), yn− y〉 = 0, ⇒ yn → y in H1
n(Ω) and so ||y|| = 1, y ≥ 0.

Recall that

(3.55)
f̂+( · , u+

n ( · ))
||u+

n ||
w−→ (ξ + ε)y

in L2(Ω) with λ̂m ≤ ξ(z) ≤ λ̂m+1, almost everywhere in Ω (see the proof of
Proposition 3.3).

So, if in (3.53) we pass to the limit as n→∞ and use (3.54) and (3.55), then

〈A(y), h〉 =
∫

Ω

ξtyh dz for all h ∈ H1
n(Ω) with ξt = (1− t)ξ + tµ,(3.56)

⇒ A(y) = ξty,

⇒ −∆y(z) = ξt(z)y(z) a.e. in Ω,
∂y

∂n
= 0 on ∂Ω.

Since ξt(z) ∈ [λ̂m, λ̂m+1], almost everywhere in Ω, from (3.56) we see that y is
nodal or trivial, contradicting (3.54). This proves the Claim.

Because of the Claim, we can apply Lemma 3.7 and have

(3.57) Ck(ϕ̂+,∞) = Ck(ψ+,∞) for all k ≥ 0.

Since µ ∈ (λ̂m, λ̂m+1),u = 0 is the only critical point of ψ+. Hence

(3.58) Ck(ψ+,∞) = Ck(ψ+, 0) for all k ≥ 0.
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Let β ∈ L∞(Ω)+, β 6= 0 and consider the homotopy ĥ+: [0, 1] ×H1
n(Ω) → R

defined by

ĥ+(t, u) = ψ+(u)− t

∫
Ω

βu dz for all (t, u) ∈ [0, 1]×H1
n(Ω).

We claim that

(3.59) (ĥ+)′u(t, u) 6= 0 for all t ∈ [0, 1] and all u 6= 0.

We argue indirectly. So, suppose we can find t ∈ [0, 1] and u 6= 0 such that

(3.60) (ĥ+)′u(t, u) = 0, ⇒ A(u) + εu = (µ+ ε)u+ + tβ.

On (3.60) we act with −u−n ∈ H1
n(Ω) and we obtain ||Du−||22 + ε||u−||22 ≤ 0

and so u ≥ 0. Hence (3.60) becomes

(3.61) A(u) = µu+ tβ, u ≥ 0, u 6= 0.

If t = 0, then

A(u) = µu,

⇒ −∆u(z) = µu(z) a.e. in Ω,
∂u

∂n
= 0 on Ω,

⇒ u = nodal (since µ ∈ (λ̂m, λ̂m+1))

which contradicts (3.61). If t ∈ (0, 1], then

A(u) = µu+ tβ,(3.62)

⇒ −∆u(z) = µu(z) + tβ(z) a.e. in Ω,
∂u

∂n
= 0 on Ω.

By regularity theory u ∈ C+ \ {0} and since ∆u(z) ≤ 0 almost everywhere in Ω
(see (3.62)), from Vazquez [19] we have u ∈ int C+. For y ∈ C+, we set

R(y, u)(z) = ||Dy(z)||2 −
(
Du(z), D

(
y2

u

)
(z)

)
RN

.

Then from Picone’s identity (see Allegretto and Huang [1]), we have

0 ≤
∫

Ω

R(y, u) dz

=||Dy||22 −
∫

Ω

(−∆u)
y2

u
dz (by Green’s identity)

=||Dy||22 −
∫

Ω

(µu+ tβ)
y2

u
dz (see (3.62))

≤||Dy||22 − µ||y||22 (since β ≥ 0).
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We choose y = û0 (recall û0 = 1/|Ω|1/2N ∈ int C+ is the L2-normalized
principal eigenfunction of −∆N ). Then

0 ≤ −µû2
0|Ω|N < 0,

a contradiction. Therefore (3.59) holds.
From this and the homotopy invariance of critical groups we have

(3.63) Ck(ψ+, 0) = Ck(ψ̃+, 0) for all k ≥ 0,

where ψ̃(u) = ψ+(u)− βu = ĥ+(1, u). But from the previous considerations we
have that K

eψ = ∨ and so

Ck(ψ̃+, 0) = 0 for all k ≥ 0,

⇒ Ck(ψ+, 0) = 0 for all k ≥ 0 (see (3.63)),

⇒ Ck(ϕ̂+,∞) = 0 for all k ≥ 0 (see (3.57) and (3.58)).

Similarly we show that Ck(ϕ̂−,∞) = 0 for all k ≥ 0. �

Next we compute the critical groups of ϕ at the two constant sign smooth
solutions u0 and v0 obtained in Proposition 3.6.

Proposition 3.10. If hypotheses (H) hold and u0∈ intC+ and v0 ∈ −intC+

are the two constant sign smooth solutions of (1.1) obtained in Proposition 3.6,
then Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

Proof. We do the proof for the pair (ϕ, u0), the proof for (ϕ, v0) being
similar.

Suppose that {0, u0} are the only critical points of ϕ̂+ (otherwise we already
have a third nontrivial solution of (1.1) which in fact is positive and so we are
done).

Let ξ < 0 < β < η̂+ (see (3.30)) and consider the following triple of sets

ϕ̂ξ+ ⊆ ϕ̂β+ ⊆ H1
n(Ω).

For this triple, we consider the long exact sequence of singular homology groups

(3.64) . . .Hk(H1
n(Ω), ϕ̂ξ+) i∗−→ Hk(H1

n(Ω), ϕ̂β+) ∂∗−→ Hk−1(ϕ̂
β
+, ϕ̂

ξ
+) . . .

Here i∗ is the group homomorphism induced by the inclusion

(H1
n(Ω), ϕ̂ξ+)

i
↪→ (H1

n(Ω), ϕ̂β+)

and ∂∗ is the boundary homomorphism. From the rank theorem, we have

rankHk(H1
n(Ω), ϕ̂β+) = rank (ker ∂∗) + rank (im ∂∗)(3.65)

= rank (im i∗) + rank (im ∂∗)

(due to the exactness of (3.64)).
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From the choice of ξ and by Proposition 3.8 we know that

(3.66) Hk(H1
n(Ω), ϕ̂ξ+) = Ck(ϕ̂+,∞) = 0 for all k ≥ 0 ⇒ im i∗ = {0}.

Also we have Hk−1(ϕ̂
β
+, ϕ̂

ξ
+) = Ck−1(ϕ̂+, 0) = δk,1Z for all k ≥ 0 (see Proposi-

tion 3.5). Therefore

(3.67) rank (im ∂∗) ≤ 1.

Finally note that from the choice of β > 0, we have

(3.68) Hk(H1
n(Ω), ϕ̂β+) = Ck(ϕ̂+, u0) for all k ≥ 0.

Returning to (3.65) and using (3.66)–(3.68), we obtain

(3.69) rankC1(ϕ̂+, u0) ≤ 1.

From the proof of Proposition 3.6 we know that u0 is a critical point of mountain
pass type for ϕ̂+. Hence C1(ϕ̂+, 0) 6= 0 (see, for example, Chang [5, p. 89]) and
this combined with (3.69) implies

Ck(ϕ̂+, u0) = δk,1Z for all k ≥ 0. 3.70

We consider the homotopy h̃+: [0, 1]×H1
n(Ω) → R defined by

h̃+(t, u) = (1− t)ϕ(u) + tϕ̂+(u) for all (t, u) ∈ [0, 1]×H1
n(Ω).

Claim. We can always assume that there exists ρ ∈ (0, 1) small such that
u0 is the only critical point of h̃+(t, · ) for all t ∈ [0, 1] in

Bρ(u0) = {u ∈ H1
n(Ω) : ||u− u0|| ≤ ρ}.

Indeed, if no such small ρ ∈ (0, 1) can be found, then there exist {tn}n≥1 ⊆ [0, 1]
and {un}n≥1 ⊆ H1

n(Ω) such that

(3.71) tn → t in [0, 1], ũn → u0 in H1
n(Ω), (h̃+)′u(tn, un) = 0, n ≥ 1.

From the equation in (3.71), we have

A(ũn) + tnεũn =(1− tn)Nf (ũn) + tnN bf+
(ũn) for all n ≥ 1,(3.72)

⇒ −∆ũn(z) =f(z, ũ+
n (z))

+ (1− tn)f(z,−ũ−n (z)) + tnεu
−
n (z) a.e. in Ω,

∂ũn
∂n

=0 on ∂Ω,

(see (3.1)–(3.2)). From (3.72), regularity theory and Theorem 2 of Lieberman [9],
we can find τ ∈ (0, 1) and M4 > 0 such that

(3.73) ũn ∈ C1,τ (Ω) and ||ũn||C1,τ (Ω) ≤M4 for all n ≥ 1.
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Recalling that C1,τ (Ω) is embedded compactly in C1(Ω), from (3.71) and (3.73)
it follows that we have

ũn → u0 in C1
n(Ω).

Since u0 ∈ int C+ (see Proposition 3.6), we can find integer n0 ≥ 1 such that

ũn ∈ intC+ for all n ≥ n0,

⇒ −∆ũn(z) = f(z, ũn(z)) a.e. in Ω,
∂ũn
∂n

= 0 on ∂Ω,

for all n ≥ n0 (see (3.72))

and we conclude that {ũn}n≥n0 ⊆ intC+ are nontrivial smooth distinct solutions
of problem (1.1). This establishes the Claim.

Then the Claim and the homotopy invariance of the critical groups, imply

Ck(ϕ, u0) = Ck(ϕ̂+, u0) for all k ≥ 0, ⇒ Ck(ϕ, u0) = δk,1Z for all k ≥ 0

(see (3.70)). Similarly we show that Ck(ϕ, v0) = δk,1Z for all k ≥ 0. �

Now we are ready for the full multiplicity theorem for problem (1.1).

Theorem 3.11. If hypotheses (H) hold, then problem (1.1) has at least three
nontrivial smooth solutions

u0 ∈ intC+, v0 ∈ −intC+, y0 ∈ C1
n(Ω).

Proof. From Proposition 3.6, we already have two nontrivial smooth solu-
tions of constant sign

u0 ∈ intC+, v0 ∈ −intC+.

From Proposition 3.10 we know that

(3.74) Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ≥ 0.

From Proposition 3.5, we have

(3.75) Ck(ϕ, 0) = δk,0Z for all k ≥ 0.

Finally from Lemma 3.8, we know that Cdm
(ϕ,∞) 6= 0. So, we can find y0 ∈ Kϕ

such that

(3.76) Cdm(ϕ, y0) 6= 0 and dm ≥ 2.

Comparing (3.76) with (3.74) and (3.75), we see that y0 6∈ {0, u0, v0}. Also
y0 ∈ C1

n(Ω) (regularity theory) solves (1.1). �
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4. Existence theorem

In previous section, we allowed for double resonance in any spectral interval
[λ̂m, λ̂m+1], m ≥ 1. In this section we investigate what happens if we have double
resonance in the “principal” spectral interval [0, λ̂1]. We show that in this case
we can still guarantee existence of a nontrivial smooth solution.

The hypotheses on the reaction f(z, x) are the following:

(H′) f : Ω × R → R is a Carathéodory function such that for almost all z ∈ Ω,
f(z, 0) = 0 and

(a) |f(z, x)| ≤ α(z) + c|x| for almost all z ∈ Ω and all x ∈ R with α ∈
L∞(Ω)+, c > 0;

(b) 0 ≤ lim inf
|x|→∞

f(z, x)
x

≤ lim sup
|x|→∞

f(z, x)
x

≤ λ̂1 uniformly for almost all z ∈ Ω

and lim
|x|→∞

[f(z, x)x− 2F (z, x)] = ∞ uniformly for almost all z ∈ Ω;

(c) there exist an integer ` ≥ 1 and functions η, η̂ ∈ L∞(Ω)+ such that
λ̂` ≤ η(z) ≤ η̂(z) ≤ λ̂`+1 for almost all z ∈ Ω, λ̂` 6= η, λ̂`+1 6= η̂ and

η(z) ≤ lim inf
x→0

f(z, x)
x

≤ lim sup
x→0

f(z, x)
x

≤ η̂(z)

uniformly for almost all z ∈ Ω.

Example 4.1. The following function satisfies hypotheses (H′) (as before,
for the sake of simplicity, we drop the z-dependence):

f(x) =

{
ηx− c0x

3, if |x| ≤ 1,

λ̂1x−
c1
x

if |x| > 1,

with c0 > c1 > 0, η − λ̂1 = c0 − c1 and η ∈ (λ̂`, λ̂`+1), ` ≥ 1.

As before ϕ:H1
n(Ω) → R is the energy functional for problem (1.1) defined

by

ϕ(u) =
1
2
||Du||22 −

∫
Ω

F (z, u(z)) dz for all u ∈ H1
n(Ω).

We know that ϕ ∈ C1
n(Ω)). A careful reading of the proof of Proposition 3.4,

reveals that it remains valid in the present setting too and so we have:

Proposition 4.2. If hypotheses (H′) hold, then ϕ satisfies the C-condition.

Let µ ∈ (λ̂`, λ̂`+1) and let ψ ∈ C2(H1
n(Ω)) be the functional defined by

ψ(u) =
1
2
||Du||22 −

µ

2
||u||22 for all u ∈ H1

n(Ω).

We have the following existence theorem.
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Theorem 4.3. If hypotheses (H′) hold, then problem ((1.1) has at least one
nontrivial smooth solution û ∈ C1(Ω).

Proof. As in Perera [15] (see Lemma 4.1), we can find R > 0 and a func-
tional ϕ̃ ∈ C1(H1

n(Ω)) such that

ϕ̃(u) =

{
ψ(u) if ||u|| ≤ R,

ϕ(u) if ||u|| ≥
√

2R,

and K
eϕ ⊆ Kϕ. We have

(4.1) Ck(ϕ̃, 0) = Ck(ψ, 0) for all k ≥ 0.

Hypothesis (H′)(c) and Lemma 2.3 imply that u = 0 is a nondegenerate critical
point of ψ with Morse index d` = dimH` ≥ 2 (recall ψ ∈ C1(H1

n(Ω)), ` ≥ 1).
Hence

Ck(ψ, 0) = δk,d`
Z for all k ≥ 0 (see [10, p. 188]),(4.2)

⇒ Ck(ϕ̃, 0) = δk,d`
Z for all k ≥ 0 (see (4.1)).

On the other hand, we have

(4.3) Ck(ϕ̃,∞) = Ck(ϕ,∞) for all k ≥ 0.

Hypothesis (H′)(c) implies that

ϕ|E(bλ0)=R is anticoercive and ϕ|
bH1=R⊥ is coercive.

So, by virtue of Proposition 3.8 of T. Bartsch and S. Li [2], we have

(4.4) C1(ϕ,∞) 6= 0, ⇒ C1(ϕ̃,∞) 6= 0 (see (4.3)).

From (4.4) it follows that we can find û ∈ K
eϕ such that

(4.5) C1(ϕ̃, û) 6= 0.

Comparing (4.2) and (4.5) we see that û 6= 0 (recall d` ≥ 2). Since K
eϕ ⊆ Kϕ we

have û ∈ Kϕ and so û ∈ C1
n(Ω) (regularity theory) solves problem (1.1). �
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