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LOCATION OF FIXED POINTS
IN THE PRESENCE OF TWO CYCLES

Alfonso Ruiz-Herrera

Abstract. Any orientation-preserving homeomorphism of the plane hav-
ing a two cycle has also a fixed point. This well known result does not
provide any hint on how to locate the fixed point, in principle it can be
anywhere. J. Campos and R. Ortega in Location of fixed points and peri-
odic solutions in the plane consider the class of Lipschitz-continuous maps
and locate a fixed point in the region determined by the ellipse with foci at
the two cycle and eccentricity the inverse of the Lipschitz constant. It will
be shown that this region is not optimal and a sub-domain can be removed
from the interior. A curious fact is that the ellipse mentioned above is
relevant for the optimal location of fixed point in a neighbourhood of the
minor axis but it is of no relevance around the major axis.

1. Introduction

Given a continuous map of the real line h: R → R and a two cycle Q �= P

with h(P ) = Q, h(Q) = P , there exists a fixed point lying between P and Q.
This inequality is linked to the last inequality 2 � 1 in the Sharkovsky ordering.
Brouwer’s theory of planar maps leads to a partial extension of this result to
two dimensions. More precisely, if we assume that f : R2 → R2 is an orientation
preserving homeomorphism having two cycles, then a fixed point always exists.
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However, no information on the location of this point can be provided, it can be
anywhere in the plane. In [4], J. Campos and R. Ortega obtained a result on
the location of a fixed point for Lipschitz-continuous maps.

Theorem 1.1 ([4]). Assume that f : R2 → R2 is an orientation preserv-
ing homeomorphism having a two cycle P �= Q. In addition assume that f is
Lipschitz-continuous. Then f has a fixed point x satisfying

(1.1) ‖x− P‖ + ‖x−Q‖ ≤ L‖P −Q‖,
with ‖ · ‖ the euclidean norm and [f ]Lip ≤ L where [f ]Lip denotes the best
Lipschitz constant of f .

The inequality (1.1) describes the domain determined by the ellipse with foci
at P and Q and eccentricity 1/L.

In this paper we are going to study the optimality of the previous domain
in the Theorem 1.1. We will see that the previous theorem can be refined and
the fixed point can be found in a subregion of the interior of the ellipse having
several holes around the major axis. Also we will prove that close to the ellipse,
the major axis is irrelevant for the location and the minor axis is optimum. The
proofs of our results combine elementary geometric constructions and subtler
topological facts. The ideas of M. Brown in [3] on planar maps with a two cycles
are crucial. Mainly we will use the following result.

Theorem 1.2. Suppose that h is an orientation preserving homeomorphism
of the plane with a two cycle at {P,Q}. If A is an arc from P to Q then
h has a fixed point either in A or in some bounded connected component of
R2 \ (h(A) ∪A).

For a partial extension of this result to n-cycles see [2]. For other interesting
results of location of a fixed point for maps of the type Identity + contraction,
see [5], [1].

2. A refinement of the Ellipse Theorem

Firstly, we are going to fix the notation of the ellipse elements. Consider
P �= Q two points and L > 1. The ellipse with foci at P and Q and eccentricity
1/L will be denoted by E . The bounded component of R2 \ E will be E. The
intersection of this ellipse with the minor and major axes is composed by four
points: A−, A+, B−, B+.

Definition 2.1. A map f = f(x) is in the class FL if it satisfies:

(a) f is an orientation-preserving homeomorphism from R2 onto R2,
(b) [f ]Lip ≤ L,
(c) f(P ) = Q, f(Q) = P .
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We know from the above mentioned theorem that every map in FL has a fixed
points lying in E ∩ E. In this section we will show that this set can be reduced
with respect to the location of fixed points. To this end we consider the open
discs D− and D+ given by the equations

‖Q− x‖ > L‖P − x‖,(2.1)

‖P − x‖ > L‖Q− x‖,(2.2)

respectively. A straightforward computation shows that these discs shrink to P
and Q when L goes to infinity and becomes very large for L decreasing to 1.

Theorem 2.2. For each L > 1 there exist neighbourhoods V + and V − of
B+ and B− such that every map in FL has a fixed point lying in E \ (V +∪V −∪
D+ ∪D−).

The Figure 1 illustrates the region where the fixed point is found for L = 2.7,
P = (−1, 0) and Q = (1, 0). Notice that the ellipse and the discs have been
exactly computed but the neighbourhoods V + and V − are just hypothetical.

A+

A−

B+B− Q

D+

P

D−

Figure 1

Proof. Take f ∈ FL. We know in advance that there is a fixed point in
E ∪ E and so we must exclude the sets E , D+ ∪D− and V + ∪ V −. We proceed
by steps.

Step 1. A metric obstruction.

Fix(f) ∩ (D+ ∪D−) = ∅.

Assume that x is a fixed point of f . Then

‖Q− x‖ = ‖f(P ) − x‖ ≤ L‖P − x‖

and (2.1) does not hold. In consequence x is not in the disc D+. The argument
for D− is analogous.
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Step 2. Exclusion of E .
Fix(f) ∩E �= ∅.

Before proving this claim we recall two basic geometrical facts:

• Assume that γ = f([A,B]) is the image of the segment joining two
points A �= B. Then γ is rectifiable and its length satisfies

l(γ) ≤ L‖A−B‖.
• Assume that γ is a rectifiable arc with end points at the foci P and Q.

In addition assume that γ ∩ E �= ∅. Then

l(γ) ≥ L‖P −Q‖
and the inequality is strict excepting for the piecewise linear arcs of the
type γ = [P,R] ∗ [R,Q] with R ∈ E .

The notation ∗ is employed for the juxtaposition of arcs. Namely, given
arcs α, β: [0, 1] → R2 with α(1) = β(0), α ∗ β(t) = α(2t) if t ∈ [0, 1/2] and
α ∗ β(t) = β(2t− 1) if t ∈ [1/2, 1].

We are now ready to prove the assertion of Step 2. It is not restrictive
to assume that f has no fixed points on the segment [P,Q], for otherwise the
result is already proved. From the previous comments, it is clear that the loop
Γ = [P,Q] ∗ f([P,Q]) remains inside E or touches E in at the most one point.
In any case all the bounded connected components of R2 \ Γ are included in E.
Hence the result follows from Theorem 1.2.

Step 3. Exclusion of V + and V −.
Firstly we are going to construct V +, V −. We fix a positive number ε ≤

‖P −Q‖/2L and consider the strip around the major axis

Σ = {x ∈ E : dist(x, [B+, B−]) ≤ ε}.
Next we find connected neighbourhoods V + and V − of B+ and B− respectively
with the following property: any rectifiable arc γ joining P and Q and satisfying

γ ∩ (V + ∪ V −) �= ∅, l(γ) ≤ L‖P −Q‖
must be contained in Σ. Notice that such neighbourhoods exist because the
length of the part [P,B+] ∗ [B+, Q] is precisely L‖P −Q‖. Moreover, it satisfies
that if γ ∩ V + �= ∅ then γ ∩ V − = ∅ or if γ ∩ V − �= ∅ then γ ∩ V + = ∅. Next we
are going to prove an implication that will complete the proof. Namely,

Fix(f) ∩ (V + ∪ V −) �= ∅ ⇒ Fix(f) ∩ [E \ (V − ∪ V +)] �= ∅.
We can assume that f does not have a fixed point in [P,Q]. After that, we can
distinguish two cases:

• f([P,Q]) ∩ (V − ∪ V +) = ∅.
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In this case, it is clear that the bounded connected components of R2 \
([P,Q] ∗ f([P,Q])) are contained in E \ (V + ∪ V −) and the proof follows from
Theorem 1.2.

• f([P,Q]) ∩ (V − ∪ V +) �= ∅.
From the previous observation, we deduce that either f([P,Q]) ∩ V + �= ∅

and f([P,Q]) ∩ V − = ∅ or f([P,Q]) ∩ V + = ∅ and f([P,Q]) ∩ V − �= ∅. We
are going to concentrate on the first case. We can assume that there exists
a fixed point R of f that belongs to V + and a bounded connected components
of R2 \ [P,Q] ∗ f([P,Q]) for otherwise the searched conclusion already holds.

Denote by r the line perpendicular to [P,Q] passing through Q. This line
splits the plane in two half-planes, one of them contains R, B+ and will be
denotedH1 and the other half plane is denoted byH2. Next, define C = D1∩H1,
K = D2 where D1 is the open disc with center at Q and radius ‖P −Q‖/L and
D2 is another open disc with center at P and radius ‖P −Q‖. Since f(P ) = Q,
f(Q) = P and f has Lipschitz-constant not greater than L, it follows that
K ∩C = ∅ and f(C) ⊂ K. Since the loop [P,Q] ∗ f([P,Q]) is contained in Σ, we
can take p: R2 → R2 a contraction toward r along the orthogonal direction so
that p(R) and p(B+) belong to C and thus p(f([P,Q])∩H1) ⊂ C. For instance,
if r is the y axis, then p(x1, x2) = (δx1, x2) with δ > 0 small enough. Next, we
define the orientation preserving homeomorphism:

h(x) =

{
p(x) if x ∈ H1,

x if x ∈ H2.

Finally, it is clear that f̂ = f ◦ h is an orientation preserving homeomorphism
with a two cycle in {P,Q}. Then the Brown’s results is applicable and f̂ must
have a fixed point lying on D, where D is the union of the bounded components
of the complement of the loop [P,Q] ∗ f̂([P,Q]) = [P,Q] ∗ f([P,Q]).

We can deduce that f̂ has not a fixed point in D ∩H1 since h(D ∩H1) ⊂ C

and f(C) ⊂ K. Therefore f̂ has a fixed point in H2 ∩D but in this case f̂ = f

and so the conclusion is reached. �

3. Non-removable points

The elements introduced in the previous section clearly depend on L. In this
section, we will make this dependence explicit. For example, EL is the ellipse
with foci at P,Q and eccentricity 1/L.

We say that a point x ∈ R2 \ {P,Q} is non-removable if there exists h ∈ FL

such that x is the unique fixed point of h. Notice that the number L plays an
important role in the above definition. The results in the previous section imply
that x must belong to EL \ {D+

L ∪D−
L ∪ V +

L ∪ V −
L }.

For all L > 1, the simplest non-removable point is the midpoint between P , Q.
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After a simple change of variables we can assume that P = −Q. Then the map
h = −id belongs to FL and the only fixed point is the origin. The rest of the
paper will be devoted to find other non-removable points.

3.1. The amenable set. In this section we will realize the importance of
the ellipse in the location since the non-removable points “touch” to the ellipse
in a neighbourhood of A+

L and A−
L .

Proposition 3.1. Consider P �= Q two points of R2. Then, given R ∈
R2 \ {P,Q} there exists an unique point R∗ in the segment ]P,Q[ such that

(3.1)
‖P −R∗‖
‖Q−R‖ =

‖Q−R∗‖
‖P −R‖ .

Moreover, the map
R2 \ {P,Q} → [P,Q], R �→ R∗

is Lipschitz-continuous. Notice that the number ε = ‖P −R∗‖/‖Q−R‖ is pre-
cisely the eccentricity of the ellipse passing through R and having P and Q as
foci.

Proof. It is clear that R belongs to the ellipse with eccentricity

ε =
‖P −Q‖

‖P −R‖ + ‖Q−R‖ .

Firstly, we are going to concentrate on proving ε = ‖P −R∗‖/‖Q−R‖. We look
for a point R∗ = tQ + (1 − t)P with t ∈ ]0, 1[ such that the previous identity
holds. A straightforward computation shows that R∗ is unique and t(R) =
‖Q−R‖/(‖Q−R‖ + ‖P −R‖). Again a direct computation shows that the
identity in (3.1) holds. Here we are using the equation of the ellipse. Therefore
R∗ is the searched point. The function t = t(R) is Lipschitz-continuous and the
same property holds for the map R �→ R∗. �

It will be useful to get some geometric insights on this map. If we consider an
arc of the ellipse going from B−

L to B+
L then the image through the map R �→ R∗

is the segment going from (B−
L )∗ to (B+

L )∗. Notice also that (B−
L )∗ is closer to

B+
L than (B+

L )∗. Moreover, (A±
L )∗ = (P +Q)/2 holds.

This map is helpful for the following geometric construction. Given a point
R ∈ R2 \ [P,Q] we draw the line r passing through R∗ and perpendicular to
the segment [P,Q]. We say that R is a right point (resp. left point) if the line
r intersects ]P,R] (resp. ]Q,R]). Notice that the points of the mediatrix of P
and Q are simultaneously left and right points. For R a right (resp. left) point,
we denote by S the point of intersection between r and ]P,R] (resp. ]Q,R]).
Finally we consider the line s passing through S and perpendicular to [P,R]
(resp. [Q,R]).
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Definition 3.2. A right point R in R2 \ [P,Q] will be amenable if the line
s cuts the segment ]Q,R].

We can define analogously amenable point for left point. We illustrate this
definition with Figures 2, in the second case R is amenable but not in the first
one.

2

P

R∗

Q

Rr

s

P

R∗

Q

Rr

s

Figures 2

The set of amenable points will be denoted by A(P,Q). The next aim is to study
this set.

Proposition 3.3. Given P �= Q, let C denote the midpoint. Then the set
A(P,Q) is not empty and there exists ρ > 0 such that A(P,Q) ∩ {‖x−C‖ > ρ}
is an open subset of R2.

Proof. Firstly, the amenable set is not empty since it always contains the
mediatrix of the segment [P,Q], excepting the midpoint. It is clear that there
are no amenable points on the line passing through P and Q. The points in the
segment [P,Q] are excluded by definition. For the remaining points R on the
line, we observe that the line s is perpendicular to [P,Q] and passes through R∗.
Thus s cannot intersect the segment [Q,R].

Let H+ denote the open half-plane above the line passing through P and Q.
By symmetry it is enough to prove that A(P,Q) ∩H+ ∩ {‖x−C‖ > ρ} is open.
First, we pick ρ > 0 large enough so that the angle determined by the vectors−→
RP and

−→
RQ is small whenever R is outside the disc of center C and radius ρ.

To be precise,

(3.2) �(
−→
RP,

−→
RQ) ≤ π

4
if ‖R− C‖ > ρ.

Consider now the map

Ψ:H+ ∩ {‖x− C‖ > ρ} → R2, R �→ Ψ(R)
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where Ψ(R), for a right point, is the intersection point between s and the line
passing through R and Q. For left points the definition of Ψ(R) is analogous.

Notice that the condition (3.2) says that these two lines are far from being
parallel and so they intersect at an unique Ψ(R). Notice also that Ψ(R) = R

on the mediatrix and therefore it is easy to check that Ψ is well defined and
continuous.

From the definition of amenable point,

A(P,Q) ∩H+ ∩ {‖x− C‖ > ρ} = Ψ−1(H+)

and so we conclude that it is an open set. �

Theorem 3.4. Let S be the open strip between P and Q determined by the
lines perpendicular to the segment [P,Q] passing through P and Q. Then every
point in EL ∩ A(P,Q) ∩ S is non-removable.

We need the following definition and results.

Definition 3.5. Given points z1, . . . , zn in the unit circle S1, we say that
they are cyclically ordered if they can be represented as zj = eiθj with θ1 < θ2 <

. . . < θ1 + 2π. We employ the notation

z1 ≺ . . . ≺ zn.

The set of rays emanating from a point R on the plane is in an one-to-one
correspondence with S1 and so we can employ the cyclic ordering on this set of
rays. Notice that we are ordering the rays in the counter-clockwise sense.

Remark 3.6. Let r1 ≺ . . . ≺ rn be rays emanating from a point R and con-
sider the closed sectors A1, . . . , An which are determined by r1, . . . , rn. Assume
that fi:Ai → R2 is a Lipschitz-continuous with [fi]Lip ≤ Li. Moreover, f1 = fn

on r1 and fi = fi+1 on ri+1, 1 ≤ i ≤ n − 1. Then the map f : R2 → R2 defined
as f(x) = fi(x), when x belongs to Ai, is well defined and Lipschitz-continuous
with [f ]Lip ≤ max{Li : i = 1, . . . , n}.

Lemma 3.7. Let A be a linear map of R2 satisfying A(v1) = w1, A(v2) = 0
where v1, v2 are two linearly independent vectors. Then

‖A‖ =
‖w1‖

‖v1‖| sinα|
where α is the angle between v1 and v2 and ‖A‖ refers to the matrix norm
associated to the euclidean norm in the plane.

Proof. Given a rotation R, it is clear that ‖A ◦ R‖ = ‖R ◦ A‖ = ‖A‖ and
so, after a rescaling, it is not restrictive to assume that v1 = (1, 0) and w1 = λv1
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with λ > 0. Thus v2 = ‖v2‖(cosα, sinα). Now, we have just to compute the
norm of the following matrix

A = λ

(
1 − cos α

sin α

0 0

)
. �

Proof of the Theorem 3.4. We are going to prove that given L > 1
and R ∈ EL ∩ A(P,Q) ∩ S then for all L∗ > L there exists F ∈ FL∗ such that
Fix(F ) = {R}. The previous claim proves the theorem since EL =

⋂
1≤L<L EL.

In the rest of the construction we will assume that R is an amenable right
point. The homeomorphism, which we are going to construct, is the composition
of two homeomorphism:

Construction of the first homeomorphism. The line s splits the plane into
two half-planes, one of them contains the point R and will be denoted by H1

and the other contains the segment [P,Q] and we will be denoted by H2. To fix
the notation we assume that they are closed so that H1 ∩H2 is the line s. We
choose an orthonormal basis {v, w} of R2, such that w is in the direction of s
and and v enters into H1.

P R∗ Q

R

v

w
H1

H2

Figure 3

Next we consider a contraction on H1 parallel to v. To be more precise take
δ ∈ ]0, 1] and define (for simplicity assume that S = 0)

hδ(x) =

{
δ < x, v > v+ < x,w > w if x ∈ H1,

x if x ∈ H2.

This map has the following properties:

• hδ is a Lipschitz-continuous homeomorphism with [hδ]Lip = 1,
• [P,Q] ⊂ Fix(hδ),
• hδ(R) → S as δ ↘ 0.
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Before the construction of the second map, we need some preliminaries. For
a fixed δ in ]0, 1] we employ the notation Rδ = hδ(R). Denote by t1 and t3

the rays emanating from Rδ and passing through P , Q, respectively. The sets
aδ = h−1(t1) and bδ = h−1

δ (t3) will play a role in what follows. Notice that aδ

is just the ray emanating from R and passing through P while bδ is a piecewise
linear set.

Finally we select an arbitrary ray j2 emanating from R and lying in the sector
determined by the rays passing through P , Q. This ray is chosen so that it does
not intersect aδ and bδ.

Construction of the second homeomorphism. Consider an ordered sequence
of rays t1 ≺ . . . ≺ t5 emanating from Rδ and having the following properties:
t1, t2, t3 pass through P , R∗, Q, respectively, t4 and t5 are perpendicular to t3
and t1, respectively. Notice that this construction is possible because the angle
determined by the rays t1 and t3 is less than π. Consider A1, . . . , A5 the sectors
determined by the previous rays so that the boundaries of A1 and A5 are t1 ∪ t2
and t5 ∪ t1, respectively.

Now, we consider other configuration j1 ≺ . . . ≺ j5. These rays emanate
from R and have following properties: j1, j4 pass through P , Q, respectively, j2
is defined previously, j3 is an arbitrary ray between j2 and j4, and finally j5 is
the ray bisecting the exterior of P̂RQ.

We distinguish between points P , Q, R, Rδ . . . lying in the affine space and
vectors −→v in the underlying vector space. Let −→vti and −→vji be the vectors in the
direction of the rays ti, ji having norm 1.

Fix ε > 0, we are going to define a continuous map fε which is affine on each
sector A1, . . . , A5. In A1, fε is the unique affine map such that Rδ �→ R, P �→ Q,
−→vt2 �→ ε−→vj5 . In A2 it is sufficient to define fε on t3, namely Q �→ P . Analogously
in A3, −→vt4 �→ ε−→vj2 . In A4, −→vt5 �→ ε−→vj3 . In A5, it is defined by continuity. The
Figure 4 describes the behaviour of the map.

Rδ

t4

R∗

t2t1

t5

Q

t3

P

R

j5

j1

Q

j2 j3 j4

P

Figure 4. Behaviour of fε
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For ε > 0, fε is an orientation preserving homeomorphism such that fε(P ) =
Q, fε(Q) = P , fε(Rδ) = R. In each sector Ai we employ the notation

fε(x) = Mε,ix+ bi, i = 1, . . . , 5.

As ε ↘ 0 we notice that Mε,1 converges to linear map of the type given by the
Lemma 3.7 with −→v1 = P −Rδ, −→w1 = Q−R, −→v2 = R∗−Rδ. The same happens in
the sectors A2, A3 and A5 with −→v1 = Q−Rδ, −→w1 = P −R, −→v2 = R∗ −Rδ;−→v1 =
Q−Rδ, −→w1 = P −R, −→v2 = −→vt4 ;

−→v1 = P −Rδ, −→w1 = Q−R, −→v2 = −→vt5 respectively.
Finally we observe that Mε,4 converges to the matrix 0. The continuity of the
norm, the Lemma 3.7 and the Remark 3.6 imply that

lim
ε↘0

[fε]Lip = max
{ ‖R−Q‖
‖Rδ − P‖ sinβ

,
‖R− P‖

‖Rδ −Q‖ sinγ

}
= L̃

where β is the angle between t1, t2 and γ is the angle between t2 and t3. When
Rδ is S, L̃ = L because

‖P − S‖ sinβ = ‖P −R∗‖, ‖Q− S‖ sinγ = ‖Q−R∗‖

and using the Proposition 3.1, we know that

L =
‖R−Q‖
‖P −R∗‖ =

‖R− P‖
‖Q−R∗‖ .

Therefore, we can achieve ε0 > 0 and δ0 > 0 such that [fε0 ]Lip ≤ L∗. Finally,
consider F = fε0 ◦hδ0 . It is clear that F is an orientation-preserving homeomor-
phism and verifies

F (P ) = fε(hδ(P )) = fε(P ) = Q,

F (Q) = fε(hδ(Q)) = fε(Q) = P,

F (R) = fε(hδ(R)) = fε(R) = R.

Since [hδ]Lip = 1, it is clear that [F ]Lip ≤ L∗.
Now, we have just to prove that the uniqueness of fixed point. We denote by

W the closed region limited by aδ and bδ which does not contain the segment
[P,Q]. We recall that aδ is the ray emanating from R passing through P and
bδ is a piecewise linear set. By construction, we know that that F (aδ) is the
ray j4 where j4 is the ray emanating from R and passing through Q and F (bδ)
is the ray j1 where j1 is the ray emanating from R and passing through P . As
aδ ∩ j4 = {R} and bδ ∩ j1 = {R}, we deduce that {R} is the unique fixed point
for F in the boundary of W . In addition, we know that F (W ) is the closure of
the sector P̂RQ.
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Figure 5

From the previous comments, we deduce easily that {R} is the unique fixed
point for F in the following regions:

• Region 1: R1 is the closed region determined by the intersection between
the sector P̂RQ and the complement of W .

• Region 2: R2 is the closed region determined by the complement of the
sector P̂RQ and W .

To conclude the uniqueness of fixed point for F we need to study the following
regions:

• Region 3: R3 is the closed region determined by the intersection between
the sector P̂RQ and W . By construction, we deduce that hδ(R3) is
contained in the sector determined by j1 and j2. From the definition of
j2, we deduce that F (R3) ∩R3 = {R}.

• Region 4: R4 is the closed region determined by the complement of
P̂RQ and the complement of W . From the definition of R4 we deduce
that hδ(R4) = R4. Hence F (R4) = fε(R4). We are going to show that
R4 ⊂ A2 and so F (R4) ∩ R4 ⊂ fε(A2) ∩ A2 = {R}. To verify that R4

is contained in A2 it is sufficient to check that the ray t2 and j4do not
intersect. This holds because R is an amenable right point lying in the
strip S. �

3.2. Non-removable points in the minor axis. In this subsection we
prove that, for large values of L, the ellipse EL is optimal in a small neighbour-
hood of the minor axis.

Theorem 3.8. There exists L∗ such that for L > L∗ there exists an open
set UL such that

[A−
L , A

+
L ] ⊂ UL

and every point in UL ∩ EL is non-removable.
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This result is obtained as a direct consequence of Proposition 3.3 and The-
orem 3.4 and the result stated below. From the proofs it is possible to obtain
a more or less explicit description of UL.

Proposition 3.9. For each L > 1 there exists an open set VL ⊂ EL such
that ]A−

L , A
+
L [ ⊂ VL and every point of VL is non-removable.

Proof. For simplicity, suppose that Q = (1, 0) and P = (−1, 0). Also we
fix a point (x0, y0) with 0 ≤ x0 < 1, 0 < y0. We are going to construct a family
of maps {Fλ} having a two cycle in {P,Q} and an unique fixed point in (x0, y0).
Given λ > 0, we define

Fλ(x, y) = (ϕ(x), ψ(x) + τ(y))

where ϕ, ψ, τ : R → R are the simplest piecewise linear functions that can be
constructed in the following way. First, we fix µ > y0 close enough to y0 so that
the line joining (0, µ) and (y0, y0) has slope dominated by λ. In other words,
(µ− y0)/y0 < λ and so µ tends to y0 if λ tends to 0. Then we impose the
conditions:

• φ(−1) = 1, φ(x0) = x0, φ(1) = −1, φ has a corner point at (x0, x0).
• τ(0) = µ, τ(y0) = y0 and τ ′(y+

0 ) = −λ, τ has a corner point at (y0, y0).
• ψ(−1) = −µ, ψ(x0) = 0, ψ(1) = −µ, ψ has a corner point at x0.

It is easy to prove that Fλ is an orientation-preserving homeomorphism with
Fλ(P ) = Q, Fλ(Q) = P , Fix(Fλ) = {(x0, y0)}. Moreover, Fλ is Lipschitz-
continuous and it is possible to compute its Lipschitz-constant via the Jacobian
matrix, defined almost every (x, y) and using the following observation of the
norm of a triangular matrix. Given a matrix A =

(
a 0

b c

)
the norm is given by

‖A‖ =

√
a2 + b2 + c2 + |a2 + b2 − c2|

2
.

Letting λ to tend to 0 we notice that:

lim
λ↘0

[Fλ]Lip =

√(
1 + x0

1 − x0

)2

+
(

y0
1 − x0

)2

since the possible values of c are −(µ− y0)/y0, −λ. From this construction we
conclude that the points (x0, y0) satisfying(

1 + x0

1 − x0

)2

+
(

y0
1 − x0

)2

< L2, 0 ≤ x0 < 1, y0 > 0

are non-removable.
Also the points (x0, 0) with ((1 + x0)/(1 − x0))2 < L2 are non-removable.

This is easily achieved with a map of the type Fλ(x, y) = (φ(x), τ(y)). Repeating
the previous argument on the other quadrants one concludes the proof. �
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The search of non-removable points is not finished. For instance, using a sim-
ilar homeomorphism to the second homeomorphism in the Theorem 3.4, it is
possible to construct, apart from D+ and D−, a strip of the major axis between
P , Q of non-removable points.
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