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POSITIVE SOLUTIONS FOR SECOND-ORDER FOUR-POINT
BOUNDARY VALUE PROBLEMS AT RESONANCE

Chunfang Shen — Liu Yang — Yan Liang

Abstract. Using Leggett–Williams norm-type theorem due to D. O’Re-
gan and M. Zima, we establish the existence of positive solution for a class of

second-order four point boundary value problem under different resonance

conditions. An example is given to illustrate the main results.

1. Introduction

The purpose of this paper is to study the existence of positive solution for
the second-order four point boundary value problem

(1.1)

{
x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = αx(η), x(1) = βx(ξ),

where η, ξ ∈ (0, 1) under the resonance condition:

(1.2) α = β = 1

or

(1.3) 0 < α <
1

1− η
, 0 < β <

1
ξ
, αη(1− β) + (1− α)(1− βξ) = 0.

2010 Mathematics Subject Classification. 34B10, 34B15.

Key words and phrases. Four-point boundary value problem, resonance, positive solution,
cone, fixed point.

This work was supported by the Natural Science Foundation of Anhui Department of
Education (KJ2010B163) and Anhui Provincial Natural Science Foundation (10040606Q50).

c©2011 Juliusz Schauder University Centre for Nonlinear Studies

1



2 Ch. Shen — L. Yang — Y. Liang

The multi-point boundary value problems for ordinary differential equations arise
in different areas of applied mathematics and physics. The study of multi-point
boundary value problems for linear and nonlinear ordinary differential equa-
tions was initiated by A. V. Bitsadze and A. A. Samarskĭı [8] and continued by
V. A. Il’in, E. I. Moiseev [15], [16] and C. P. Gupta [11], [12]. Since then, by
using various methods, such as Leray–Schauder continuation theorem, nonlin-
ear alternatives of Leray–Schauder, coincidence degree theory and different fixed
point theorems, the more general nonlinear multi-point boundary value problems
have been studied by several authors. We refer the reader to [1], [2], [4], [10],
[13], [14], [20], [21], [27], [28] and references along this line.

For problem (1.1) under the case f(t, x) = a(t)f(x), B. Liu [19] established
the existence of positive solutions by using Krasnosel’skĭı–Guo fixed point theo-
rem on cone expansion and compression and fixed point index theorem. Bai, Li
and Ge [6] obtained the multiple positive solutions by using a new fixed point
theorem due to Avery and Peterson. All these results were established under the
condition

0 < α <
1

1− η
, 0 < β <

1
ξ
, αη(1− β) + (1− α)(1− βξ) 6= 0,

which ensures that the problem studied is not at resonance, that is, the associated
linear operator Lx = −x′′ is invertible. In the resonace case, Rachunková [24]–
[26] obtained the existence of solutions for problem (1.1) with resonant condition
(1.2) by using upper and lower solutions method and topological degree theory.
Z. Bai [7] obtained the existence of solutions for problem (1.1) with resonant
condition (1.3) by using coincidence degree theorey and upper and lower solutions
method. B. Liu [18] considered m-point boundary value problem

x′′(t) = f(t, x(t), x′(t)) + e(t), t ∈ (0, 1),

x(0) = αx(η), x(1) =
n−2∑
j=1

βjx(ξj),

where 0 < ξ1 < . . . < ξn−2 < 1,
∑n−2

j=1 βj = 1. By using J. Mawhin continuation
principle [22], he established the existence results of solution for this resonant
problem. In paper [3], the problems in the resonance were treated too, but the
four-point boundary condition in the paper was more restrictive. Namely, if the
boundary points are a, b, c, d, then in the paper: b− a = d− c, which is not the
authors’ case.

It is well known that the problem of existence of positive solution to boundary
value problems is very difficult when the resonant case is considered. Only few
papers deal with positive solutions to boundary value problems at resonance.
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Z. Bai and J. Fang [5] established the existence of positive solutions of the second-
order differential equation{

(p(t)x′(t))′ = f(t, x(t), x′(t)), t ∈ (0, 1),

x′(0) = 0, x(1) = x(η),

by using a fixed point index theorem for semi-linear A-proper maps due to
C. T. Cremins [9]. G. Infante and M. Zima [17] obtained the existence of positive
solution for problem 

x′′(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x′(0) = 0, x(1) =
m−2∑
i=1

αix(ηi),

with resonant condition
∑m−2

i=1 αi = 1. The result was based on the Leggett–
Williams norm-type theorem due to D. O’Regan and M. Zima [23].

To the best of our knowledge, positive solution of problem (1.1) at resonance
has not been considered before. The main purpose of this paper is to fill this
gap. In this paper we will give the sufficient conditions to ensure the existence
of positive solution for problem (1.1) with resonant condition (1.2) and reso-
nant condition (1.3). Our method is based on the Leggett–Williams norm-type
theorem.

The rest of the paper is organized as follows. The preliminary definitions and
lemma are given in Section 2. In Section 3, we discuss the existence of at least one
positive solution for problem (1.1) with resonant condition (1.2). The existence
of at least one positive solution for problem (1.1) with resonant condition (1.3)
is considered in Section 4. Finally, in Section 5, we give an example to illustrate
the main results.

2. Preliminaries

For the convenience of the reader,we present here the necessary definitions
and a new fixed point theorem due to D. O’Regan and M. Zima. Let X, Y be
real Banach spaces. A nonempty convex closed set C ⊂ X is said to be a cone
provided that

(i) ax ∈ C, for all x ∈ C, a ≥ 0,
(ii) x,−x ∈ C implies x = 0.

Note that every one cone C ⊂ X induces an ordering in X given by x ≤ y if
y − x ∈ C.

L: dom L ⊂ X → Y is called a Fredholm operator with index zero, that
is, Im L is closed and dim Ker L = codim Im L < ∞, which implies that there
exist continuous projections P :X → X and Q:Y → Y such that Im P = Ker L

and KerQ = Im L. Moreover, since dim Im Q = codim Im L, there exists an
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isomorphism J : ImQ → KerL. Denote by LP the restriction of L to KerP ∩
dom L to Im L and its inverse by KP , so KP : ImL → KerP ∩ dom L and the
coincidence equation Lx = Nx is equivalent to

x = (P + JQN)x + KP (I −Q)Nx.

Denote γ:X → C be a retraction, that is, a continuous mapping such that
γx = x for all x ∈ C and

Ψ := P + JQN + KP (I −Q)N and Ψγ := Ψ ◦ γ.

Lemma 2.1 ([23]). Let C be a cone in X and Ω1, Ω2 be open bounded subsets
of X with Ω1 ⊂ Ω2 and C ∩ (Ω2 \ Ω1) 6= ∅. Assume that L: domL ⊂ X → Y is
a Fredholm operator of index zero and

(C1) QN :X → Y is continuous and bounded, KP (I −Q)N :X → X is com-
pact on every bounded subset of X,

(C2) Lx 6= λNx for all x ∈ C ∩ ∂Ω2 ∩ domL and λ ∈ (0, 1),
(C3) γ maps subsets of Ω2 into bounded subsets of C.
(C4) dB([I − (P +JQN)γ]|Ker L, KerL∩Ω2, 0) 6= 0, where dB stands for the

Brouwer degree,
(C5) There exists u0 ∈ C \ {0} such that ‖x‖ ≤ σ(u0)‖Ψx‖ for x ∈ C(u0) ∩

∂Ω1, where C(u0) = {x ∈ C : µu0 ≤ x for some µ > 0 and σ(u0) is
such that ‖x + u0‖ ≥ σ(u0)‖x‖ for every x ∈ C,

(C6) (P + JQN)γ(∂Ω2) ⊂ C,
(C7) Ψγ(Ω2 \ Ω1) ⊂ C,

then the equation Lx = Nx has a solution in the set C ∩ (Ω2 \ Ω1).

3. Problem (1.1) with resonant condition (1.2)

Consider the Banach spaces X = Y = C[0, 1] endowed with the norm ‖x‖ =
max0≤t≤1 |x(t)|.

Define linear operator L: dom L ⊂ X → Y , (Lx)(t) = −x′′(t), t ∈ [0, 1],
where

dom L = {x ∈ X | x′′ ∈ C[0, 1], x(0) = x(η), x(1) = x(ξ)}

and N :X → Y with

(Nx)(t) = f(t, x(t)), t ∈ [0, 1].

It is obvious that

KerL = {x ∈ dom L:x(t) ≡ c, t ∈ [0, 1]}.

Denote the function G(s) as follow:
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For 0 < η < ξ < 1

G(s) =


s(1− ξ) if 0 ≤ s < η,

η(1− ξ) if η ≤ s < ξ,

η(1− s) if ξ < s ≤ 1.

For 0 < ξ < η < 1,

G(s) =


s(1− ξ) if 0 ≤ s < ξ,

(1− η − ξ)s + ηξ if ξ ≤ s < η,

η(1− s) if η < s ≤ 1.

Note that G(s) ≥ 0, s ∈ [0, 1].
Denote the function U(t, s) as follow:

U(t, s) =


(1− s)2

2
+

3t2 + 5

6
∫ 1

0
G(s) ds

G(s) if 0 ≤ t ≤ s ≤ 1,

(1− s)2

2
+ s− t +

3t2 + 5

6
∫ 1

0
G(s) ds

G(s) if 0 ≤ s ≤ t ≤ 1

and

κ := min
{

1, min
0≤s≤1

∫ 1

0
G(s) ds

G(s)
, min
t,s∈[0,1]

1
U(t, s)

}
> 0.

Theorem 3.1. Assume that there exists R ∈ (0,∞) such that f : [0, 1] ×
[0, R] → R is continuous and

(H1) f(t, x) > −κx, for all (t, x) ∈ [0, 1]× [0, R],
(H2) f(t, R) < 0, for all t ∈ [0, 1],
(H3) there exists r ∈ (0, R), t0 ∈ [0, 1], a ∈ (0, 1], M ∈ (0, 1) and contin-

uous functions g: [0, 1] → [0,∞), h: (0, r] → [0,∞) such that f(t, x) ≥
g(t)h(x) for [t, x] ∈ [0, 1]× (0, r] and h(x)/xa is non-increasing on (0, r]
with

h(r)
ra

∫ 1

0

U(t0, s)g(s) ds ≥ 1−M

Ma
,

then problem (1.1) with resonance condition (1.2) has at least one positive solu-
tion.

Proof. Firstly We claim that

Im L =
{

y ∈ Y

∣∣∣∣ ∫ 1

0

G(s)y(s) ds = 0
}

.

In fact, for each y ∈ {y ∈ Y |
∫ 1

0
G(s)y(s) ds = 0}, we take

x(t) = −
∫ t

0

(t− s)y(s) ds +
t

η

∫ η

0

(η − s)y(s) ds.
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It is easy to check that −x′′(t) = y(t), x(0) = x(η), x(1) = x(ξ). This gives
x(t) ∈ dom L, which means{

y ∈ Y

∣∣∣∣ ∫ 1

0

G(s)y(s) ds = 0
}
⊂ Im L.

On the other hand, for each y(t) ∈ Im L, there exists x(t) ∈ dom L, that is

x′′(t) = −y(t), x(0) = x(η), x(1) = x(ξ).

Thus

x(t) = −
∫ t

0

(t− s)y(s) ds + x′(0)t + x(0).

Considering the boundary condition x(0) = x(η), x(1) = x(ξ), we conclude that

η

∫ 1

0

(1− s)y(s) ds− η

∫ ξ

0

(ξ − s)y(s) ds− (1− ξ)
∫ η

0

(η − s)y(s) ds = 0

which equivalents to the conclusion that
∫ 1

0
G(s)y(s) ds = 0. So we have

Im L ⊂
{

y ∈ Y

∣∣∣∣ ∫ 1

0

G(s)y(s) ds = 0
}

.

Thus,

Im L =
{

y ∈ Y

∣∣∣∣ ∫ 1

0

G(s)y(s) ds = 0
}

.

Clearly, dim KerL = 1 and Im L is closed. Observe that Y = Y1 ⊕ Im L, where

Y1 =
{

y1

∣∣∣∣ y1 =
1∫ 1

0
G(s) ds

∫ 1

0

G(s)y(s) ds, y ∈ Y

}
.

In fact, for each y(t) ∈ Y , we have∫ 1

0

G(s)[y(s)− y1] ds = 0.

This shows that y − y1 ∈ Im L. Since Y1 ∩ Im L = {0}, we have Y = Y1 ⊕ Im L.
Thus L is a Fredholm operator with index zero. Then define the projections
P :X → X, Q:Y → Y by

Px =
∫ 1

0

x(s) ds, Qy =
1∫ 1

0
G(s) ds

∫ 1

0

G(s)y(s) ds.

Clearly, Im P = KerL, KerQ = Im L and Ker P = {x ∈ X |
∫ 1

0
x(s) ds = 0}.

Note that for y ∈ Im L, the inverse KP of LP is given by

(KP )y(t) =
∫ t

0

k(t, s)y(s) ds
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where

k(t, s) =


(1− s)2

2
if 0 ≤ t ≤ s ≤ 1,

(1− s)2

2
+ s− t if 0 ≤ s ≤ t ≤ 1.

Considering that f can be extended continuously on [0, 1]×R, (C1) of Lemma 2.1
is fulfilled.

Define the cone of nonnegative functions

C = {x ∈ X | x(t) ≥ 0, t ∈ [0, 1]}

and

Ω1 = {x ∈ X | r > |x| > M‖x‖, t ∈ [0, 1]}, Ω2 = {x ∈ X | ‖x‖ < R}.

Clearly, Ω1 and Ω2 are bounded and open sets, furthermore

Ω1 = {x ∈ X | r ≥ |x| ≥ M‖x‖, t ∈ [0, 1]} ⊂ Ω2, C ∩ Ω2 \ Ω1 6= ∨.

Let J = I and (γx)(t) = |x(t)| for x ∈ X. Then γ is a retraction and maps
subsets of Ω2 into bounded subsets of C, which means that (C3) of Lemma 2.1
holds.

Next we confirm that (C2) of Lemma 2.1 holds. For this purpose, suppose
that there exists x0 ∈ C ∩ ∂Ω2 ∩ dom L and λ0 ∈ (0, 1) such that Lx0 = λ0Nx0.
Then

x′′0(t) + λ0f(t, x0) = 0

for all t ∈ (0, 1). Let t1 ∈ [0, 1] be such that x0(t1) = R. This gives

0 ≥ x′′(t1) = −λ0f(t1, R),

which contradicts to (H2). Thus (C2) holds.
For x ∈ KerL ∩ Ω2, x(t) ≡ c on [0, 1]. Define

H(x, λ) = x− λ|x| − λ∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s, |x|) ds,

where x ∈ KerL ∩ Ω2 and λ ∈ [0, 1]. Suppose H(x, λ) = 0. In view of (H1) we
obtain

c =λ|c|+ λ∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s, |c|) ds

≥λ|c| − λ∫ 1

0
G(s) ds

∫ 1

0

G(s)κ|c| ds = λ|c|(1− κ) ≥ 0.

Hence H(x, λ) = 0 implies c ≥ 0. Furthermore, if H(R, λ) = 0, we get

0 ≤ R(1− λ) =
λ∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s,R) ds,
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contradicting to (H2). Thus H(x, λ) 6= 0 for x ∈ ∂Ω2 and λ ∈ [0, 1]. Therefore

dB(H(x, 0),KerL ∩ Ω2, 0) = dB(H(x, 1),KerL ∩ Ω2, 0).

However

dB(H(x, 0),KerL ∩ Ω2, 0) = dB(I,KerL ∩ Ω2, 0) = 1.

This gives

dB([I − (P + JQN)γ]|Ker L,KerL ∩ Ω2, 0) = dB(H(x, 1),KerL ∩ Ω2, 0) 6= 0.

Let x ∈ Ω2 \ Ω1 and t ∈ [0, 1]. Then

(Ψγx)(t) =
∫ 1

0

|x(t)| dt +
1∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s, |x(s)|) ds

+
∫ 1

0

k(t, s)[f(s, |x(s)|)− 1∫ 1

0
G(s) ds

∫ 1

0

G(τ)f(τ, |x(τ)|) dτ ] ds

=
∫ 1

0

|x(t)| dt +
∫ 1

0

U(t, s)f(s, |x(s)|) ds

≥
∫ 1

0

|x(s)| ds− κ

∫ 1

0

U(t, s)|x(s)| ds

=
∫ 1

0

(1− κU(t, s))|x(s)| ds ≥ 0.

Hence Ψγ(Ω2) \ Ω1 ⊂ C. Moreover, since for x ∈ ∂Ω2, we have

(P + JQN)γx =
∫ 1

0

|x(s)| ds +
1∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s, |x(s)|) ds

≥
∫ 1

0

(1− κ∫ 1

0
G(s) ds

G(s))|x(s)| ds ≥ 0,

which means (P +JQN)γ(∂Ω2) ⊂ C. This ensures that (C6), (C7) of Lemma 2.1
hold.

At last, we confirm that (C5) is satisfied. Taking u0(t) ≡ 1 on [0, 1], we see
u0 ∈ C \ {0}, C(u0) = {x ∈ C | x(t) > 0 on[0, 1]} and we can take σ(u0) = 1.
Let x ∈ C(u0) ∩ ∂Ω1, we have x(t) > 0 on [0, 1], 0 < ‖x‖ ≤ r and x(t) ≥ M‖x‖
on [0, 1].

Therefore, in view of (H3), we obtain for all x ∈ C(u0) ∩ ∂Ω1,

(Ψx)(t0) =
∫ 1

0

x(s) ds +
∫ 1

0

U(t0, s)f(s, x(s)) ds

≥M‖x‖+
∫ 1

0

U(t0, s)g(s)h(x(s)) ds

=M‖x‖+
∫ 1

0

U(t0, s)g(s)
h(x(s))
xa(s)

xa(s) ds
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≥M‖x‖+
h(r)
ra

∫ 1

0

U(t0, s)g(s)Ma‖x‖a ds

≥M‖x‖+ (1−M)‖x‖ = ‖x‖.

So ‖x‖ ≤ σ(u0)‖Ψx‖ for all x ∈ C(u0) ∩ ∂Ω1, which means (C5) of Lemma 2.1
holds.

Thus by Lemma 2.1, we confirm that the equation Lx = Nx has a solution
x, which implies that problem (1.1) with resonance condition (1.2) has at least
one positive solution. �

4. Problem (1.1) with resonant condition (1.3)

In this section, we study the positive solution for problem (1.1) with condition
(1.3). For this purpose, we also consider the Banach spaces X = Y = C[0, 1]
and the linear operator L: dom L ⊂ X → Y , (Lx)(t) = −x′′(t), t ∈ [0, 1],
where

dom L = {x ∈ X | x′′ ∈ C[0, 1], x(0) = αx(η), x(1) = βx(ξ)}

and N :X → Y with

(Nx)(t) = f(t, x(t)), t ∈ [0, 1].

By a simple computation,

KerL = {x ∈ dom L | x(t) = c[αη + (1− α)t], c ∈ R, t ∈ [0, 1]}.

Denote function G(s) as follow: For 0 < η < ξ < 1,

G(s) =


(1− βξ + βη − η)s + βξ(1− η) for 0 ≤ s < η,

η[(β − 1)s + (1− βξ)] for η ≤ s < ξ,

η(1− s) for ξ < s ≤ 1.

For 0 < ξ < η < 1

G(s) =


(1− βξ + βη − η)s + βξ(1− η) for 0 ≤ s < ξ,

η(1− s)− (1− βξ)(η − s) for ξ ≤ s < η,

η(1− s) for η < s ≤ 1.

Denote

U(t, s) =


(1− s)2

2
+

3t2 + 5

6
∫ 1

0
G(s) ds

G(s) for 0 ≤ t ≤ s ≤ 1,

(1− s)2

2
+ s− t +

3t2 + 5

6
∫ 1

0
G(s) ds

G(s) for 0 ≤ s ≤ t ≤ 1,

ρ1 =

{
αη for α < 1,

αη + 1− α for α > 1,
ρ2 =

{
αη + 1− α for α < 1,

αη for α > 1,
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ρ3 =


αη

αη + 1− α
for α < 1,

αη + 1− α

αη
for α > 1,

and

κ := min
{

1, min
s∈[0,1]

ρ1

∫ 1

0
G(s) ds

G(s)
, min
t,s∈[0,1]

ρ1

U(t, s)

}
.

It’s easy to check that κ > 0, G(s) > 0, s ∈ [0, 1] and U(t, s) > 0, 0 ≤ t, s ≤ 1.
Furthermore,

αη + (1− α)t ∈ [ρ1, ρ2], t ∈ [0, 1].

Theorem 4.1. Assume that there exists R ∈ (0,∞) such that f : [0, 1] ×
[0, R] → R is continuous and

(H4) f(t, x) > −κx for all (t, x) ∈ [0, 1]× [0, R],
(H5) f(t, x) < 0 for [t, x] ∈ [0, 1]× [ρ3R,R],
(H6) there exists r ∈ (0, R), t0 ∈ [0, 1], a ∈ (0, 1], M ∈ (0, 1) and functions

g:→ [0, 1] → [0,∞), h: (0, r] → [0,∞) such that f(t, x) ≥ g(t)h(x) for
[t, x] ∈ [0, 1]× (0, r], h(x)/xa is non-increasing on (0, r] with

h(r)
ra

∫ 1

0

U(t0, s)g(s) ds ≥ 1−Mρ1

Ma
,

then the problem (1.1) with resonance condition (1.3) has at least one positive
solution.

Proof. By a analogous computation with Section 3, we have

Im L =
{

y ∈ Y

∣∣∣∣ ∫ 1

0

G(s)y(s) ds = 0
}

.

Clearly, dim KerL = 1 and Im L is closed. Observe that Y = Y1 + Im L, where

Y1 =
{

y1

∣∣∣∣ y1 =
1∫ 1

0
G(s) ds

∫ 1

0

G(s)y(s) ds, y ∈ Y

}
.

Thus L is a Fredholm operator with index zero. Define the projections P :X →
X, Q:Y → Y by

Px =
∫ 1

0

x(s) ds[αη + (1− α)t], x ∈ X, t ∈ [0, 1],

Qy =
1∫ 1

0
G(s) ds

∫ 1

0

G(s)y(s) ds.
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Clearly, Im P = KerL, Ker Q = Im L and KerP = {x ∈ X |
∫ 1

0
x(s) ds = 0} and

the inverse KP of LP is given by

(KP )y(t) =
∫ t

0

k(t, s)y(s) ds

where

k(t, s) =


(1− s)2

2
for 0 ≤ t ≤ s ≤ 1,

(1− s)2

2
+ s− t for 0 ≤ s ≤ t ≤ 1.

Considering that f can be extended continuously on [0, 1]×R, (C1) of Lemma 2.1
is fulfilled.

Also define the cone of nonnegative functions

C = {x ∈ X | x(t) ≥ 0, t ∈ [0, 1]}.

and

Ω1 = {x ∈ X | r > |x| > M‖x‖, t ∈ [0, 1]}, Ω2 = {x ∈ X | ‖x‖ < R}.

Clearly, Ω1 and Ω2 are bounded and open sets and

Ω1 = {x ∈ X | r ≥ |x| ≥ M‖x‖, t ∈ [0, 1]} ⊂ Ω2, C ∩ Ω2 \ Ω1 6= ∨.

Let J = I and (γx)(t) = |x(t)| for x ∈ X. It’s easy to check that (C3) of
Lemma 2.1 holds.

Suppose that there exists x0 ∈ C ∩ ∂Ω2 ∩ dom L and λ0 ∈ (0, 1) such that
Lx0 = λ0Nx0. Then

x′′0(t) + λ0f(t, x0) = 0

for all t ∈ (0, 1). Let t1 ∈ [0, 1] be such that x0(t1) = R. This gives

0 ≥ x′′(t1) = −λ0f(t1, R),

which contradicts to (H5). Therefore (C2) is satisfied.
To prove that (C4) holds, consider x ∈ KerL ∩ Ω2 and define

H(x, λ) = x− λ|x| − λ∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s, |x|) ds,

Suppose x ∈ ∂Ω2 ∩KerL and H(x, λ) = 0, we see x = (R/ρ2)[αη +(1−α)t] and
‖x‖ = R. Thus for the definition of ρ3, we have ρ3R ≤ x(t) ≤ R, which means
f(t, x) < 0. This contradicts to

0 ≤ (1− λ)x =
λ∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s, |x|) ds,

So H(x, λ) 6= 0 for x ∈ ∂Ω2 and λ ∈ [0, 1], which induces that

dB([I − (P + JQN)γ]|Ker L,KerL ∩ Ω2, 0) = dB(H(c, 1),KerL ∩ Ω2, 0) 6= 0.
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Let x ∈ Ω2 \ Ω1 and t ∈ [0, 1]. Then

(Ψγx)(t) =
∫ 1

0

|x(s)| ds× [αη + (1− α)t] +
1∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s, |x(s)|) ds

+
∫ 1

0

k(t, s)
[
f(s, |x(s)|)− 1∫ 1

0
G(s) ds

∫ 1

0

G(τ)f(τ, |x(τ)|) dτ

]
ds

=
∫ 1

0

|x(s)| ds× [αη + (1− α)t] +
∫ 1

0

U(t, s)f(s, |x(s)|) ds

≥ ρ1

∫ 1

0

|x(s)| ds− κ

∫ 1

0

U(t, s)|x(s)| ds ≥ 0.

Hence Ψγ(Ω2) \ Ω1 ⊂ C. Moreover, since for x ∈ ∂Ω2, we have

(P + JQN)γx =
∫ 1

0

|x(s)| ds× [αη + (1− α)t]

+
1∫ 1

0
G(s) ds

∫ 1

0

G(s)f(s, |x(s)|) ds

≥
∫ 1

0

(ρ1 −
κ∫ 1

0
G(s) ds

G(s))|x(s)| ds ≥ 0.

We conclude that (P + JQN)γ(∂Ω2) ⊂ C.

At last we take u0(t) ≡ 1 on [0, 1]. Then u0 ∈ C \ {0}, C(u0) = {x ∈ C |
x(t) > 0 on [0, 1]} and we can take σ(u0) = 1. Let x ∈ C(u0) ∩ ∂Ω1. Then
x(t) > 0 on [0, 1], 0 < ‖x‖ ≤ r and x(t) ≥ M‖x‖ on [0, 1].

Therefore, in view of (H6), we obtain, for all x ∈ C(u0) ∩ ∂Ω1,

(Ψx)(t0) =
∫ 1

0

x(s) ds[αη + (1− α)t0] +
∫ 1

0

U(t0, s)f(s, x(s)) ds

≥Mρ1‖x‖+
∫ 1

0

U(t0, s)g(s)h(x(s)) ds

=Mρ1‖x‖+
∫ 1

0

U(t0, s)g(s)
h(x(s))
xa(s)

xa(s) ds

≥Mρ1‖x‖+
h(r)
ra

∫ 1

0

U(t0, s)g(s)Ma‖x‖a ds

≥Mρ1‖x‖+ (1−Mρ1)‖x‖ = ‖x‖.

Thus ‖x‖ ≤ σ(u0)‖Ψx‖ for all x ∈ C(u0) ∩ ∂Ω1.

By Lemma 2.1, the equation Lx = Nx has a solution x, which implies that
problem (1.1) with resonance condition (1.3) has at least one positive solution.�
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5. Example

In this section we give an example to illustrate the main results of the paper.
Consider the four point boundary value problem:

(5.1)


x′′(t) +

(
− 1

2
t2 +

1
2
t +

1
2

)
(x2 − 4x + 3)

√
x2 − 6x + 10 = 0

for t ∈ (0, 1),

x(0) = x

(
1
4

)
, x(1) = x

(
1
2

)
,

where α = β = 1, η = 1/4, ξ = 1/2 and

G(s) =


s/2 for 0 ≤ s < 1/4,

1/8 for 1/4 ≤ s < 1/2,

(1− s)/4 for 1/2 < s ≤ 1.

By a simple computation, we have∫ 1

0

G(s) ds =
5
64

, κ =
5
8
,

∫ 1

0

U(0, s) ds = 1.

We take R = 6/5, r = 1/2, t0 = 0, a = 1, M = 1/2 and

g(t) = −1
2
t2 +

1
2
t +

1
2
, h(x) =

√
x2 − 6x + 10.

It’s easy to check that

1
2
≤ g(t) ≤ 5

8
, t ∈ [0, 1], x2 − 4x + 3 ≥ −x, x ∈

[
0,

6
5

]
.

We see that

(1) f(t, x) > −(5/8)x, for all (t, x) ∈ [0, 1]× [0, 6/5],
(2) f(t, 6/5) < 0, for all t ∈ [0, 1],
(3) f(t, x) ≥ g(t)h(x) for all [t, x] ∈ [0, 1]× (0, 1/2] and

h(x)
x

=
√

x2 − 6x + 10
x

is non-increasing on (0, 1/2] with

h(r)
ra

∫ 1

0

U(0, s)g(s) ds ≥
√

29
2

∫ 1

0

U(0, s) ds ≥ 1 =
1−M

M
.

Thus all the conditions of Theorem 3.1 are satisfied. This ensures that resonance
problem (5.1) has at least one solution, positive on [0, 1].

Remark 5.1. We note that the early existence results about second-order
four-point or m-point boundary value problems in [6], [7], [18], [19], [24]–[26] are
not applicable to this problem.
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