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INVOLVING ALL DERIVATIVES OF ODD ORDERS
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Abstract. We are concerned with the existence, multiplicity and unique-

ness of positive solutions for the 2n-order boundary value problem

8><
>:

(−1)nu(2n) = f(t, u, u′,−u′′′, . . . ,

(−1)i−1u(2i−1), . . . , (−1)n−1u(2n−1)),

u(2i)(0) = u(2i+1)(1) = 0, i = 0, . . . , n− 1.

where n ≥ 2 and f ∈ C([0, 1] × Rn+1
+ , R+) (R+ := [0,∞)) depends on u

and all derivatives of odd orders. Our main hypotheses on f are formulated

in terms of the linear function g(x) := x1 + 2
Pn+1

i=2 xi. We use fixed point
index theory to establish our main results, based on a priori estimates

achieved by utilizing some integral identities and an integral inequality.

Finally, we apply our main results to establish the existence, multiplicity
and uniqueness of positive symmetric solutions for a Lidostone problem

involving an open question posed by P. W. Eloe in 2000.
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1. Introduction

We are concerned with the existence, multiplicity and uniqueness of positive
solutions for the 2n-order value boundary problem

(1.1)


(−1)nu(2n) = f(t, u, u′,−u′′′, . . . ,

(−1)i−1u(2i−1), . . . , (−1)n−1u(2n−1)),

u(2i)(0) = u(2i+1)(1) = 0, i = 0, . . . , n− 1,

where n ≥ 2, and f ∈ C([0, 1] × Rn+1
+ ,R+) (R+ := [0,∞)) depends on u and

all derivatives of odd orders. By a positive solution of (1.1) we mean a function
u ∈ C2n[0, 1] that solves (1.1) and satisfies u(t) > 0 for all t ∈ (0, 1].

In recent years, the so-called Lidstone problem

(1.2)

{
(−1)nu(2n) = f(t, u,−u′′, . . . , (−1)n−1u(2n−2)),

u(2i)(0) = u(2i)(1) = 0, i = 0, . . . , n− 1,

has been extensively studied; see [1]–[7], [9]–[14], [17], [19]–[23], [26]–[28] and the
references cited therein. In [24], the author studied the existence and uniqueness
of positive solutions for the generalized Lidstone problem

(1.3)


(−1)nu(2n) = f(t, u,−u′′, . . . , (−1)n−1u(2n−2)),

α0u
(2i)(0)− β0u

(2i+1)(0) = 0 (i = 0, . . . , n− 1),

α1u
(2i)(1) + β1u

(2i+1)(1) = 0 (i = 0, . . . , n− 1),

where f ∈ C([0, 1] × Rn
+,R+), and αj , βj (j = 0, 1) are nonnegative constants

with α0α1 + α0β1 + α1β0 > 0. The main results obtained in [24] are presented
in terms of spectral radii of some linear integral operators associated with the
nonlinearity f and the boundary conditions in (1.3), and thus can be viewed
as extensions of the corresponding optimal results on second order differential
equations, due to Z. Liu and F. Li in 1996 (see [16]). This means that, owing to
the symmetry brought about by derivatives of even orders, (1.2) and (1.3) have
much in common with the Dirichlet problem and the Sturm–Liouville problem
for second-order ordinary differential equations.

To the best of our knowledge, (1.1) is an untreated topic in the literature,
and it involves an open question posed by P. W. Eloe in [13]. Interestingly,
we find, by observing some integral identities, (1.1) does possess some kind of
symmetry, which enables us to formulate our main hypotheses on the nonlinearity
f in terms of a linear function g(x) := x1 + 2

∑n+1
i=2 xi on Rn+1

+ . This means
that with extending the corresponding results in [16], [25], our main results are
optimal in some sense. Our basic strategy in tackling (1.1) is to first use the
method of order reduction to transform (1.1) into a boundary value problem for
an integro-differential equation and then seek positive solutions of the resulting
problem. We use fixed point index theory to develop our work here based on
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a priori estimates achieved by utilizing some integral identities and an integral
inequality. In deriving a priori estimates of positive solutions for the case of
f growing superlinearly at infinity, we need a condition of Berstein–Nagumo
type; see [8] and [18]. This is an essential difference between (1.1) and (1.3)
(see [24], [25]).

The plan of this paper is as follows. Sections 2 contains some integral iden-
tities and an integral inequality, which play an important role in the proofs of
our main results. Our main results are stated and proved in Section 3. Section 4
contains some examples that illustrate our main results. As a byproduct of our
main results, in Section 5, finally, we apply our main results to establish the
existence, multiplicity and uniqueness of positive symmetric solutions for a Li-
dostone problem that involves an open question posed by P. W. Eloe in 2000
(see [13]).

2. Preliminaries

We assume the following condition in this section and the next section.

(H1) f ∈ C([0, 1]× Rn+1
+ ,R+) (R+ := [0,∞)).

Let
E = C1[0, 1], ‖u‖ = max{‖u‖0, ‖u′‖0},

where ‖w‖0 = max{|w(t)| : 0 ≤ t ≤ 1}. Furthermore, let

P := {u ∈ E : u(t) ≥ 0, u′(t) ≥ 0, for all t ∈ [0, 1]}.

Then (E, ‖ · ‖) is a real Banach space and P is a cone on it.
Let

k(t, s) := min{t, s}, (Tu)(t) :=
∫ 1

0

k(t, s)u(s) ds.

Now let v := (−1)n−1u(2n−2), and note (1.1) is equivalent to the boundary
value problem for the integro-differential equation{

−v′′ = f(t, Tn−1v, (Tn−1v)′, (Tn−2v)′, . . . , (Tv)′, v′),

v(0) = v′(1) = 0.

Furthermore, the above problem is equivalent to

v(t) =
∫ 1

0

k(t, s)f(s, (Tn−1v)(s), (Tn−1v)′(s), (Tn−2v)′(s),

. . . , (Tv)′(s), v′(s)) ds.

Define the operator A by

(Av)(t) :=
∫ 1

0

k(t, s)f(s, (Tn−1v)(s), (Tn−1v)′(s), (Tn−2v)′(s),

. . . , (Tv)′(s), v′(s)) ds.
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Note (H1) implies that A:P → P is a completely continuous operator.

Lemma 2.1. If v ∈ P , then

(2.1)
∫ 1

0

((Tv)(t) + 2(Tv)′(t))tet dt =
∫ 1

0

v(t)tet dt.

Proof. Notice (Tv)(0) = 0. Integrating by parts, we obtain∫ 1

0

(Tv)(t)tet dt =
∫ 1

0

(Tv)′(t)(1− t)et dt

and thus ∫ 1

0

((Tv)(t) + 2(Tv)′(t))tet dt =
∫ 1

0

(Tv)′(t)(1 + t)et dt.

Notice (Tv)′(1) = 0 and (Tv)′′(t) = −v(t). Integrating by parts again yields
identity (2.1). �

A consequence of Lemma 2.1 is the following result that is of crucial impor-
tance in the proofs of our main results.

Lemma 2.2. Let v ∈ P . Then∫ 1

0

(
(Tn−1v)(t) + 2

n−1∑
i=0

(Tn−1−iv)′(t)
)
tet dt =

∫ 1

0

(v(t) + 2v′(t))tet dt.

Lemma 2.3. If v ∈ P ∩ C2[0, 1], v(0) = v′(1) = 0, then

(2.2)
∫ 1

0

(−v′′(t))tet dt =
∫ 1

0

(v(t) + 2v′(t))tet dt.

Proof. Integrating by parts and using v(0) = v′(1) = 0, we have∫ 1

0

(−v′′(t))tet dt =
∫ 1

0

v′(t)(t+ 1)et dt =
∫ 1

0

2v′(t)tet dt+
∫ 1

0

v′(t)(1− t)et dt

and ∫ 1

0

v′(t)(1− t)et dt =
∫ 1

0

v(t)tet dt,

from which (2.2) follows. �

Lemma 2.4. If v ∈ P , v(0) = 0, then

v(1) ≤
∫ 1

0

(v(t) + 2v′(t))tet dt.

Proof. Notice v(0) = 0. Integrating by parts we have∫ 1

0

v(t)tet dt =
∫ 1

0

v′(t)(1− t)et dt
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and thus∫ 1

0

(v(t) + 2v′(t))tet dt =
∫ 1

0

v′(t)(1 + t)et dt ≥
∫ 1

0

v′(t) dt = v(1). �

Lemma 2.5 (see [15]). Let E be a real Banach space and P a cone on E.
Suppose that Ω ⊂ E is a bounded open set and that T : Ω∩P → P is a completely
continuous operator. If there exists w0 ∈ P \ {0} such that

w − Tw 6= λw0, for all λ ≥ 0, w ∈ ∂Ω ∩ P,

then i(T,Ω ∩ P, P ) = 0, where i indicates the fixed point index on P .

Lemma 2.6 (see [15]). Let E be a real Banach space and P a cone on E.
Suppose that Ω ⊂ E is a bounded open set with 0 ∈ Ω and that T : Ω ∩ P → P is
a completely continuous operator. If

w − λTw 6= 0, for all λ ∈ [0, 1], w ∈ ∂Ω ∩ P,

then i(T,Ω ∩ P, P ) = 1.

The following is a result that can be obtained by elementary calculus.

Lemma 2.7. Suppose h ∈ P \ {0}. Then there exist two positive numbers
bh > ah such that

ahw0(t) ≤
∫ 1

0

k(t, s)h(s) ds ≤ bhw0(t), for all t ∈ [0, 1],

where

(2.3) w0(t) :=
∫ 1

0

k(t, s) ds =
2t− t2

2
.

3. Main results

For simplicity, we denote by x := (x1, . . . , xn+1) ∈ Rn+1
+ and

g(x) := x1 + 2
n+1∑
i=2

xi for x ∈ Rn+1
+ .

Now we list our hypotheses on f .

(H2) There exist constants a > 1 and c > 0 such that f(t, x) ≥ ag(x) − c

holds for all x ∈ Rn+1
+ , t ∈ [0, 1].

(H3) For every M > 0, there exists a function ΦM ∈ C(R+,R+) such that

f(t, x1, . . . , xn, y) ≤ ΦM (y)
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for all (x1, . . . , xn) ∈ [0,M ]× . . .× [0,M ]︸ ︷︷ ︸
n

and y ≥ 0, and

∫ ∞

0

ξ dξ

ΦM (ξ) + δ
= ∞

for all δ > 0.
(H4) There exist constants b ∈ (0, 1) and r > 0 such that

f(t, x) ≤ bg(x)

holds for all x ∈ [0, r]× . . .× [0, r]︸ ︷︷ ︸
n+1

, t ∈ [0, 1].

(H5) There exist constants α ∈ (0, 1) and c > 0 such that

f(t, x) ≤ αg(x) + c

holds for all x ∈ Rn+1
+ , t ∈ [0, 1].

(H6) There exist constants β > 1 and r > 0 such that

f(t, x) ≥ βg(x)

holds for all x ∈ [0, r]× . . .× [0, r]︸ ︷︷ ︸
n+1

, t ∈ [0, 1].

(H7) f is increasing in x and there is a constant ω > 0 such that∫ 1

0

f(s, ω, . . . , ω︸ ︷︷ ︸
n+1

) ds < ω.

Remark 3.1. f is said to be increasing in x if f(t, x) ≤ f(t, y) holds for
every pair x, y ∈ Rn+1

+ with x ≤ y, where the partial ordering ≤ in Rn+1 is
understood componentwise.

(H8) f(t, λx)>λf(t, x) for any λ∈(0, 1), x∈(0,∞)×. . .×(0,∞)︸ ︷︷ ︸
n+1

, t∈ [0, 1].

Theorem 3.2. If (H1)–(H4) hold, then (1.1) has at least one positive solu-
tion.

Proof. Let M1 := {v ∈ P : v = Av + λϕ, λ ≥ 0}, where ϕ(t) := te−t.
We are now going to prove that M1 is bounded. Indeed, if v0 ∈ M1, then
v0 ∈ P ∩ C2[0, 1] and v0 = Av0 + λ0ϕ for some λ0 ∈ R+, which can be written
in the form

−v′′0 (t) = f(t, (Tn−1v0)(t), (Tn−1v0)
′
(t), . . . , (Tv0)′(t), v′0(t)) + λ0(2− t)e−t.

By (H2), we have

−v′′0 (t) ≥ a

(
(Tn−1v0)(t) + 2

n−1∑
i=0

(Tn−i−1v0)′(t)
)
− c.
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Multiply by ψ(t) := tet on both sides of the above and integrate over [0, 1] and
use Lemmas 2.2 and 2.3 to obtain∫ 1

0

(v0(t) + 2v′0(t))te
t dt ≥ a

∫ 1

0

(v0(t) + 2v′0(t))te
t dt− c

and so ∫ 1

0

(v0(t) + 2v′0(t))te
t dt ≤ c

a− 1
, for all v0 ∈ M1.

Now Lemma 2.4 implies

(3.1) ‖v0‖0 = v0(1) ≤ c

a− 1
, for all v0 ∈ M1.

Furthermore, this estimate leads to

‖Tn−1v0‖0 = (Tn−1v0)(1) ≤ c

a− 1

for all v0 ∈ M1 and

‖(Tn−i−1v0)′‖0 = (Tn−i−1v0)′(0) =
∫ 1

0

(Tn−i−2v0)(t) dt ≤
c

a− 1

for all v0 ∈ M1, i = 0, . . . , n− 2. Let

Π := {µ ≥ 0 : there exists some v ∈ P such that v = Av + µϕ}.

Now (3.1) implies that µ0 := supΠ < +∞. Let M := c/(a− 1). By (H3), there
is a function ΦM ∈ C(R+,R+) such that

f(t, (Tn−1v)(t), (Tn−1v)′(t), . . . , v(t), v′(t)) ≤ ΦM (v′(t)), for all v ∈ M1

and hence we obtain

−v′′(t) = f(t, (Tn−1v)(t), (Tn−1v)′(t), . . . , v(t), v′(t)) + µ(2− t)e−t

≤ΦM (v′(t))+µ(2− t)e−t ≤ ΦM (v′(t))+2µ0,

for all v ∈ M1, µ ∈ Π, and∫ v′(0)

0

ξ dξ

ΦM (ξ) + 2µ0
≤

∫ 1

0

v′(t) dt = v(1) ≤M, for all v ∈ M1.

By (H3) again, there exists a constant M1 > 0 such that

‖v′‖0 = v′(0) ≤M1, for all v ∈ M1.

This means that M1 is bounded. Taking R > sup{||v|| : v ∈ M1}, we have

v 6= Av + λϕ, for all v ∈ ∂BR ∩ P, λ ≥ 0.

Now Lemma 2.5 yields

(3.2) i(A,BR ∩ P, P ) = 0.
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Let M2 := {v ∈ Br ∩ P : v = λAv, λ ∈ [0, 1]}. We are in the position to prove
M2 = {0}. Indeed, if v ∈ M2, then v ∈ Br ∩ P ∩ C2[0, 1], v(0) = v′(1) = 0, and
there is λ ∈ [0, 1] such that

v(t) =λ(Av)(t)

=λ

∫ 1

0

k(t, s)f(s, (Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s)) ds,

which can be written in the form

−v′′(t) = λf(t, (Tn−1v)(t), (Tn−1v)′(t), . . . , (Tv)′(t), v′(t)).

By (H4), we have

−v′′(t) ≤ b

(
(Tn−1v)(t) + 2

n−1∑
i=0

(Tn−i−1v)′(t)
)
.

Multiply by ψ(t) := tet on both sides of the above and integrate over [0, 1] and
use Lemmas 2.2 and 2.3 to obtain∫ 1

0

(v(t) + 2v′(t))tet dt ≤ b

∫ 1

0

(v(t) + 2v′(t))tet dt,

so that
∫ 1

0
(v(t)+2v′(t))tet dt = 0, for all v ∈ M1, whence v(t) ≡ 0 and M2 = {0},

as required. A consequence of this is v 6= λAv, for all v ∈ ∂Br ∩ P , λ ∈ [0, 1].
Lemma 2.6 yields

(3.3) i(A,Br ∩ P, P ) = 1.

Combining (3.2) and (3.3) we arrive at

i(A, (BR \Br) ∩ P, P ) = 0− 1 = −1.

Therefore A has at least one fixed point on (BR \ Br) ∩ P . This implies that
(1.1) has at least one positive solution, which completes the proof. �

Theorem 3.3. If (H1), (H5) and (H6) are satisfied, then (1.1) has at least
one positive solution.

Proof. Let M3 := {v ∈ P : v = λAv, λ ∈ [0, 1]}. We shall prove that
M3 is bounded. Indeed, if v0 ∈ M3, then, by definition, v0 ∈ P ∩ C2[0, 1],
v0(0) = v′0(1) = 0, and there is λ ∈ [0, 1] such that

v0(t) =λ(Av0)(t)

=λ

∫ 1

0

k(t, s)f(s, (Tn−1v0)(s), (Tn−1v0)′(s), . . . , (Tv0)′(s), v′0(s)) ds,

which can be written in the form

−v′′0 (t) = λf(t, (Tn−1v0))(t), (Tn−1v0)′(t), . . . , (Tv0)′(t), v′0(t)).
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By (H5), we have

(3.4) −v′′0 (t) ≤ α

(
(Tn−1v0)(t) + 2

n−1∑
i=0

(Tn−i−1v0)′(t)
)

+ c.

Multiply by ψ(t) := tet on both sides of the above and integrate over [0, 1] and
use Lemmas 2.2 and 2.3 to obtain∫ 1

0

(v0(t) + 2v′0(t))te
t dt ≤ α

∫ 1

0

(v0(t) + 2v′0(t))te
t dt+ c,

so that
∫ 1

0
(v0(t) + 2v′0(t))te

t dt ≤ c/(1− α). By Lemma 2.4, we obtain

‖v0‖0 = v0(1) ≤
∫ 1

0

(v0(t) + 2v′0(t))te
t dt ≤ c

1− α
, for all v0 ∈ M3.

Furthermore, this estimate leads to

‖Tn−1v0‖0 = (Tn−1v0)(1) ≤ c

1− α

for all v0 ∈ M1 and

‖(Tn−i−1v0)′‖0 = (Tn−i−1v0)′(0) =
∫ 1

0

(Tn−i−2v0)(t) dt ≤
c

1− α

for all v0 ∈ M1, i = 0, 1, · · · , n− 2. Let c1 := c/(1− α). By (3.4), we have

−v′′0 (t) ≤ (2n− 1)αc1 + 2αv′0(t) + c, for all v0 ∈ M3.

Noticing v′(1) = 0, we obtain

v′0(t) ≤
(2n− 1)αc1 + c

2α
(e2α−2αt − 1), for all v0 ∈ M3,

so that

‖v′0‖0 = v′0(0) ≤ (2n− 1)αc1 + c

2α
(e2α − 1) for all v0 ∈ M3.

This proves the boundedness of M3. Taking R > sup{‖v‖ : v ∈ M3}, we have

v 6= λAv, for all v ∈ ∂BR ∩ P, λ ∈ [0, 1].

Lemma 2.6 yields

(3.5) i(A,BR ∩ P, P ) = 1.

Let M4 := {v ∈ Br∩P : v = Av+λϕ, λ ≥ 0}, where ϕ(t) := te−t. Next we shall
prove M4 ⊂ {0}. Indeed, if v ∈ M4, then v ∈ Br ∩P ∩C2[0, 1], v(0) = v′(1) = 0,
and there is λ ≥ 0 such that

v(t) = (Av)(t) + λϕ(t)

=
∫ 1

0

k(t, s)f(s, (Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s)) ds+ λϕ(t),
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which can be written in the form

−v′′(t) = f(t, (Tn−1v)(t), (Tn−1v)′(t), . . . , (Tv)′(t), v′(t)) + λ(2− t)e−t.

By (H6), we have

−v′′(t) ≥ β

(
(Tn−1v)(t) + 2

n−1∑
i=0

(Tn−i−1v)′(t)
)
.

Multiply by ψ(t) := tet on both sides of the above and integrate over [0, 1] and
use Lemmas 2.2 and 2.3 to obtain∫ 1

0

(v(t) + 2v′(t))tet dt ≥ β

∫ 1

0

(v(t) + 2v′(t))tet dt.

Consequently
∫ 1

0
(v(t) + 2v′(t))tet dt = 0 and hence v(t) ≡ 0. This proves M4 ⊂

{0}, as required. Consequently, v 6= Av + λϕ, for all v ∈ ∂Br ∩ P , λ ≥ 0. Now
Lemma 2.5 yields

(3.6) i(A,Br ∩ P, P ) = 0.

Combining (3.5) and (3.6), we arrive at

i(A, (BR \Br) ∩ P, P ) = 1− 0 = 1.

Therefore A has at least one fixed point on (BR \ Br) ∩ P . Hence, (1.1) has at
least one positive solution. �

Theorem 3.4. If (H1)–(H3), (H6) and (H7) are satisfied, then (1.1) has at
least two positive solutions.

Proof. By (H2), (H3), and (H6), we know that (3.2) and (3.6) hold. Note
we may choose R > ω > r in (3.2) and (3.6) (see the proofs of Theorems 3.2
and 3.3). By (H9), we have for all v ∈ ∂Bω ∩ P ,

||Av||0 = (Av)(1)

=
∫ 1

0

sf(s, (Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s)) ds

≤
∫ 1

0

f(s, (Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s)) ds

≤
∫ 1

0

f(s, ω, . . . , ω) ds < ω = ‖v‖
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and

||(Av)′||0 = (Av)′(0)

=
∫ 1

0

f(s, (Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s)) ds

≤
∫ 1

0

f(s, ω, . . . , ω) ds < ω = ‖v‖.

Thus we obtain ||Av|| < ω = ‖v‖, for all v ∈ ∂Bω ∩ P . This implies v 6= λAv,
for all u ∈ ∂Bω ∩ P , λ ∈ [0, 1]. Now Lemma 2.6 yields

i(A,Bω ∩ P, P ) = 1.

Combining (3.2) and (3.6), we arrive at

i(A, (BR \Bω) ∩ P, P ) = 0− 1 = −1, i(A, (Bω \Br) ∩ P, P ) = 1− 0 = 1.

Therefore, A has at least two fixed points, with one on (BR \ Bω) ∩ P and the
other on (Bω \Br) ∩ P . Hence (1.1) has at least two positive solutions. �

Theorem 3.5. If (H1), (H5), (H6) and (H8) are satisfied, then (1.1) has
exactly one positive solution.

Proof. By Theorem 3.3, (1.1) has at least one positive solution. It remains
to prove the uniqueness of the positive solutions.

Now suppose that u1 ∈ C2n[0, 1] and u2 ∈ C2n[0, 1] are two positive solutions
of (1.1). Then v1 := (−1)n−1u

(2n−2)
1 ∈ C2[0, 1] and v2 := (−1)n−1u

(2n−2)
2 ∈

C2[0, 1] are two positive fixed points of A, satisfying

vi(t) > 0, v′i(t) > 0, for all t ∈ (0, 1),

vi(t) =
∫ 1

0

k(t, s)f(s, (Tn−1vi)(s), (Tn−1vi)′(s), . . . , (Tvi)′(s), v′i(s)) ds

for i = 1, 2. By Lemma 2.7, there are ai > 0 and bi > 0 such that

aiw0(t) ≤ vi(t) ≤ biw0(t) (i = 1, 2),

where w0(t) is given by (2.3). Thus we have

v2(t) ≥ a2w0(t) ≥
a2

b1
v1(t).

Let µ0 := sup{µ > 0 : v2(t) ≥ µv1(t), for all t ∈ [0, 1]}. It is easy to see that
0 < µ0 <∞. We claim µ0 ≥ 1. Suppose the contrary 0 < µ0 < 1. Let

h(t) := f(t, µ0(Tn−1v1)(t), µ0(Tn−1v1)′(t), . . . , µ0(Tv1)′(t), µ0v
′
1(t))

− µ0f(t, (Tn−1v1)(t), (Tn−1v1)′(t), . . . , (Tv1)′(t), v′1(t)).
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By (H8), we have h(t) > 0, for all t ∈ (0, 1). Lemma 2.7 implies that there exists
an ε > 0 such that ∫ 1

0

k(t, s)h(s) ds ≥ εw0(t).

Therefore,

v2(t)≥
∫ 1

0

k(t, s)f(s, µ0(Tn−1v1)(s), µ0(Tn−1v1)′(s), . . . , µ0(Tv1)′(s), µ0v
′
1(s)) ds

=
∫ 1

0

k(t, s)h(s) ds+ µ0v1(t) ≥ εw0(t) + µ0v1(t) ≥
(
µ0 +

ε

b1

)
v1(t),

contradicting the definition of µ0. As a result, we have µ0 ≥ 1. Thus v2(t) ≥
v1(t). Similarly, we have v1(t) ≥ v2(t). Therefore, v1(t) ≡ v2(t) and hence
u1(t) ≡ u2(t). This says that (1.1) has exactly one positive solution, which
completes the proof. �

4. Some examples

In this section we offer some examples to illustrate our main results.

Example 4.1. Let

f(t, x) :=

{
g(x)/2 if g(x) ≤ 1,

2g(x)− 3/2 if g(x) ≥ 1.

Now (H1)–(H4) are satisfied. By Theorem 3.2, (1.1) has at least one positive
solution.

Example 4.2. Let

f(t, x) :=

{
2g(x) if g(x) ≤ 1,

g(x)/2 + 3/2 if g(x) ≥ 1.

Now (H1), (H5) and (H6) are satisfied. By Theorem 3.3, (1.1) has at least one
positive solution.

Example 4.3. Let

f(t, x) :=
( n∑

i=1

aixi

)p

+ an+1x
q
n+1,

where ai > 0 (i = 1, . . . , n+ 1), p > 1, 1 < q ≤ 2. Now (H1)–(H4) are satisfied.
By Theorem 3.2, (1.1) has at least one positive solution.

Example 4.4. Let

f(t, x) :=
n+1∑
i=1

aix
pi

i +
n+1∑
i=1

bix
qi

i ,

where ai > 0(i = 1, . . . , n + 1), pi > 1 (i = 1, . . . , n), 1 < pn+1 ≤ 2, bi > 0(i =
1, . . . , n + 1), 0 < qi < 1 (i = 1, . . . , n + 1), with

∑n+1
i=1 (ai + bi) < 1. Now
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(H1)–(H3), (H6) and (H7) are satisfied. By Theorem 3.4, (1.1) has at least two
positive solutions.

Example 4.5. Let

f(t, x) :=
( n+1∑

i=1

aixi

)p

,

where ai > 0 (i = 1, . . . , n+ 1), 0 < p < 1. Now (H1), (H5), (H6) and (H8) are
satisfied. By Theorem 3.5, (1.1) has exactly one positive solution.

5. An open question posed by P. W. Eloe
and positive symmetric solutions of a Lidstone problem

In [13], P. W. Eloe considered the nonlinear Lidstone boundary value problem
more general than (1.2) (with a(t) continuous and nonnegative){

(−1)nu(2n) = λa(t)f(t, u,−u′′, . . . , (−1)n−1u(2n−2)) for 0 < t < 1,

u(2i)(0) = u(2i)(1) = 0 for i = 0, . . . , n− 1,

where f ∈ C(Rn
+,R+) and λ > 0 is a real parameter. He posed an open question

in this way: “Can the methods employed here apply to a Lidstone BVP with
nonlinear dependence on odd order derivatives of the unknown function ?”. In
this section we shall answer the question partly by considering the simple case
a(t) := 1. More precisely, we study the existence, multiplicity and uniqueness of
positive symmetric solutions for the 2n-order value boundary value problem

(5.1)

{
(−1)nu(2n) = f(u, u′,−u′′′, . . . , (−1)i−1u(2i−1), . . . , (−1)n−1u(2n−1)),

u(2i)(−1) = u(2i)(1) = 0, i = 0, . . . , n− 1,

where f satisfies the following condition:

(H9) f ∈ C(R+ × Rn
+,R+) and f(x1,−x2, . . . ,−xn+1) = f(x) for all x =

(x1, . . . , xn+1) ∈ Rn+1
+ .

Note that the nonlinearity f in (5.1) is a special case of the nonlinearity f

in (1.1) when x ∈ Rn+1
+ . With this view we apply Theorems 3.2–3.5 and obtain

the following results on (5.1).

Theorem 5.1. If (H9) and (H2)–(H4) hold, then (5.1) has at least one sym-
metric positive solution.

Proof. By Theorem 3.2, the boundary value problem{
(−1)nu(2n) = f(u, u′,−u′′′, . . . , (−1)i−1u(2i−1), . . . , (−1)n−1u(2n−1)),

u(2i)(0) = u(2i+1)(1) = 0, i = 0, . . . , n− 1,

has at least one positive solution w. Let

u(t) :=

{
w(1− t) for 0 ≤ t ≤ 1,

w(1 + t) for − 1 ≤ t ≤ 0.
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Then u ∈ C2n([−1, 1],R+) is a symmetric positive solution of (5.1). �

The following results can be proved analogously:

Theorem 5.2. If (H9), (H5) and (H6) are satisfied, then (5.1) has at least
one positive solution.

Theorem 5.3. If (H9), (H2), (H3), (H6) and (H7) are satisfied, then (5.1)
has at least two symmetric positive solutions.

Theorem 5.4. If (H9), (H5), (H6) and (H8) are satisfied, then (5.1) has
exactly one symmetric positive solution.
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