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ON THE SOLVABILITY OF NONLINEAR

IMPULSIVE BOUNDARY VALUE PROBLEMS

Daniel Maroncelli — Jesús Rodŕıguez

Abstract. In this paper we provide sufficient conditions for the existence

of solutions to two-point boundary value problems for nonlinear ordinary
differential equations subject to impulses. Our results depend on proper-

ties of the nonlinearities as well as on the solution space of the associated

linear problem. Our approach is based on topological degree arguments in
conjunction with the Lyapunov–Schmidt procedure.

1. Introduction

In this paper we provide criteria for the solvability of nonlinear, impulsive,

two-point boundary value problems. We consider problems of the form

x′(t) = A(t)x(t) + f(t, x(t)), t ∈ [0, 1] \ {t1, . . . , tk},(1.1)

x(t+i )− x(t−i ) = Ji(x(t−i )), i = 1, . . . , k,(1.2)

subject to boundary conditions

(1.3) Bx(0) +Dx(1) = 0,

where the points ti, i = 1, . . . , k, are fixed with 0 < t1 < . . . < tk < 1.

Throughout the discussion we will assume that f , each Ji, and A are con-

tinuous. x(t) is an element of Rn, f : Rn+1 → Rn, Ji : Rn → Rn, and for each

t ∈ [0, 1], A(t) is an n×n matrix. The matrices B and D are n×n and, in order
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to avoid redundancies, we will assume that the augmented matrix [B|D] has full

row rank.

The main objective of this paper is the study of nonlinear impulsive bound-

ary value problems at resonance; that is, systems where the associated linear

homogeneous problem has nontrivial solutions. Our approach is based on the

use of topological degree theory in conjunction with the Lyapunov–Schmidt pro-

cedure. The results we obtain depend on both properties of the nonlinearities

and the solution space of the associated linear homogeneous problem.

There is an extensive literature regarding degree theory, the Lyapunov–

Schmidt procedure, and projection schemes in nonlinear analysis. General theo-

retical results and applications to boundary value problems in differential equa-

tions can be found in [1], [3], [5], [10]–[12], [14]–[16], [18]. The solvability of

discrete systems is considered in [2], [8], [13]. Those interested in the theory and

application of impulsive systems may consult [4], [6], [7], [9], [17].

2. Preliminaries

We will formulate the nonlinear boundary value problem (1.1)–(1.3) as an

operator equation. In order to do so, we introduce appropriate spaces and oper-

ators.

PC{ti}[0, 1] will represent the set of Rn-valued continuous functions on [0, 1]\
{t1, . . . , tk} which have right and left-hand limits at each ti, i = 1, . . . , k. On

PC{ti}[0, 1] we will use the supremum norm; that is,

‖φ‖ = sup
t∈[0,1]\{t1,...,tk}

|φ(t)|,

where | · | denotes the euclidean norm on Rn. It is well known that when en-

dowed with this norm, PC{ti}[0, 1] is a Banach space. The subset of PC{ti}[0, 1]

consisting of continuously differentiable functions φ : [0, 1] \ {t1, . . . , tk} → Rn

such that φ′ has finite right and left-hand limits at each ti, i = 1, . . . , k, will be

denoted by PC1
{ti}[0, 1]. Finally, we define

X = {φ ∈ PC{ti}[0, 1] | Bφ(0) +Dφ(1) = 0}.

The norms on PC1
{ti}[0, 1] and X will be the same as on PC{ti}[0, 1]. We would

like to remark that with this norm PC1
{ti}[0, 1] is not a Banach space.

We now introduce mappings L and F . The domain of L, written dom(L), is

given by

dom(L) = PC1
{ti}[0, 1] ∩X.
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The mapping L : dom(L) ⊂ X → PC{ti}[0, 1]× Rnk is defined by

Lx =


x′( · )−A( · )x( · )

x(t+1 )− x(t−1 )

...

x(t+k )− x(t−k )

 .

The nonlinear operator F : PC{ti}[0, 1]→ PC{ti}[0, 1]× Rnk is given by

Fx =


f( · , x( · ))

J1(x(t−1 ))

...

Jk(x(t−k ))

 .

We make PC{ti}[0, 1] × Rnk a Banach space by introducing the following

norm: ∥∥∥∥∥∥∥∥∥∥


h

v1
...

vk


∥∥∥∥∥∥∥∥∥∥

= max{‖h‖ , |v1|, . . . , |vk|}.

Remark 2.1. With the definitions as above, it is clear that solving the

nonlinear boundary value problem (1.1)–(1.3) is equivalent to solving Lx = Fx.

Before focusing on the nonlinear boundary problem (1.1)–(1.3), we analyze

the linear homogeneous problem

(2.1) x′(t) = A(t)x(t), t ∈ [0, 1] \ {t1, . . . , tk}

subject to boundary conditions (1.3), as well as the linear nonhomogeneous prob-

lem

(2.2)
x′(t) = A(t)x(t) + h(t), t ∈ [0, 1] \ {t1, . . . , tk},

x(t+i )− x(t−i ) = vi, i = 1, . . . , k,

subject to the same boundary conditions. Here we assume h ∈ PC{ti}[0, 1] and

each vi, i = 1, . . . , k, is an element of Rn.

It is clear that a function x is a solution to the linear nonhomogeneous prob-

lem (2.2) subject to boundary conditions (1.3) if and only if Lx = [ hv ], where

v =

[
v1
...
vk

]
. Taking [ hv ] = 0, we see that the solution space of the linear homo-

geneous problem (2.1) subject to the boundary conditions (1.3) is given by the

Ker(L). We now characterize Ker(L) and Im(L).
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Proposition 2.2. A function x is a solution to the linear homogeneous

problem (2.1) subject to the boundary conditions (1.3) if and only if x(t) = Φ(t)c

for some c ∈ Ker(B + DΦ(1)). Here Φ( · ) is the principal fundamental matrix

solution to x′ = A( · )x.

Proof.

Lx = 0⇔ x′ = A(·)x and Bx(0) +Dx(1) = 0

⇔ x = Φ( · )x(0) and Bx(0) +Dx(1) = 0

⇔ there exists c ∈ Rn, such that x = Φ( · )c and Bc+DΦ(1)c = 0. �

Corollary 2.3. The solution space of the linear homogeneous problem (2.1)

subject to the boundary conditions (1.3) has the same dimension as the Ker(B+

DΦ(1)).

We now choose vectors b1, . . . , bp, where p ≤ n, from Rn which form a basis

for Ker(B +DΦ(1)) and make the following definition:

Definition 2.4. We define S(t) to be the n× p matrix whose ith column is

Si(t) := Φ(t)bi.

Corollary 2.5. A function x is a solution to the linear homogeneous prob-

lem (2.1) with boundary conditions (1.3) if and only if x( · ) = S( · )α for some

α ∈ Rp.

Proposition 2.6. Let {c1, . . . , cp} be a basis for Ker((B +DΦ(1))T ). Then

the linear nonhomogeneous problem (2.2) subject to the boundary conditions (1.3)

has a solution if and only if for each i = 1, . . . , p, we have〈
ci, DΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

)〉
= 0.

Here 〈 · , · 〉 denotes the standard inner product on Rn.

Proof. It is well documented, see [4], [17], that Lx = [ hv ] if and only if x is

given by the variation of parameters formula

(2.3) x(t) = Φ(t)

(
x(0) +

∫ t

0

Φ−1(s)h(s) ds+
∑
ti<t

Φ−1(ti)vi

)
and x satisfies the boundary conditions (1.3).

Imposing the boundary conditions, we have [ hv ] ∈ Im(L) if and only if there

exists w ∈ Rn such that

Bw+D

(
Φ(1)

(
w +

∫ 1

0

Φ−1(s)h(s) ds+

k∑
l=1

Φ−1(tl)vl

))
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⇔ [B +DΦ(1)]w = −DΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
l=1

Φ−1(tl)vl

)

⇔ DΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
l=1

Φ−1(tl)vl

)
∈ Im(B +DΦ(1)).(2.4)

Using the fact that Im(B+DΦ(1)) is the orthogonal complement of Ker((B+

DΦ(1))T), we have that[
h

v

]
∈ Im(L)⇔

〈
c,DΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
l=1

Φ−1(tl)vl

)〉
= 0

for all c ∈ Ker((B +DΦ(1))T).

If we now define W := [c1, . . . , cp] and Ψ(t)T := WTDΦ(1)Φ−1(t), we get the

following corollary:

Corollary 2.7. The linear nonhomogeneous problem (2.2) with boundary

conditions (1.3) has a solution if and only if∫ 1

0

ΨT (s)h(s) ds+

k∑
i=1

ΨT (ti)vi = 0.

Remark 2.8. It is now clear that the linear nonhomogeneous boundary value

problem (2.2) subject to the boundary conditions (1.3) has a unique solution if

and only if B +DΦ(1) is invertible. If this is the case, L is a bijection. We then

have, for each element [ hv ] ∈ PC{ti}[0, 1], that the unique solution to Lx = [ hv ]

is given by

x(t) =L−1
[
h

v

]
(t)

= Φ(t)

(
− [B +DΦ(1)]−1DΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

))

+ Φ(t)

(∫ t

0

Φ−1(s)h(s) ds+
∑
ti<t

Φ−1(ti)vi

)
.

3. Main Results

In this section we focus on the nonlinear boundary value problem

x′(t) = A(t)x(t) + f(t, x(t)), t ∈ [0, 1] \ {t1, . . . , tk},

x(t+i )− x(t−i ) = Ji(x(t−i )), i = 1, · · · , k,

with boundary conditions

Bx(0) +Dx(1) = 0.
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We are mainly interested in systems at resonance and our principle result

in this regard is Theorem 3.7. In this theorem we establish conditions for the

existence of solutions which are based on the interplay between the nonlinearities

f, J1, . . . , Jk and the solution space of the linear homogeneous problem (2.1)

subject to the boundary conditions (1.3).

In Theorem 3.1 we present criteria for the solvability of (1.1)–(1.3) in the

nonresonant case. The analysis in this case is simpler and the results obtained

here are based on the growth rate of the nonlinearities.

Theorem 3.1. Suppose that the only solution to the linear homogeneous

problem (2.1) subject to the boundary conditions (1.3) is the trivial solution. If

there exist real numbers M1, M2 and α, with 0 ≤ α < 1, such that for all

t ∈ [0, 1] and y ∈ Rn, |f(t, y)| ≤ M1|y|α +M2 and |Ji(y)| ≤ M1|y|α +M2, then

the nonlinear boundary value problem (1.1)–(1.3) has a solution.

Proof. Define H : PC{ti}[0, 1]→ PC{ti}[0, 1] by

[H(x)](t) = Φ(t)

(
− [B +DΦ(1)]−1DΦ(1)

·
(∫ 1

0

Φ−1(s)f(s, x(s)) ds+

k∑
i=1

Φ−1(ti)Ji(x(t−i ))

))

+ Φ(t)

(∫ t

0

Φ−1(s)f(s, x(s)) ds+
∑
ti<t

Φ−1(ti)Ji(x(t−i ))

)
.

From Remark 2.8, it is clear that the solutions of (1.1)–(1.3) are precisely the

fixed points of H.

Using the fact that for all t ∈ [0, 1] and y ∈ Rn

|f(t, y)| ≤M1|y|α +M2 and |Ji(y)| ≤M1|y|α +M2,

it follows that there exist B1, B2 such that

‖H(x)‖ ≤ B1‖x‖α +B2.

Since α < 1, we may choose r sufficiently large such that B1r
α +B2 ≤ r. With

this in mind, we define B = {x ∈ PC{ti}[0, 1] : ‖x‖ ≤ r}.
It is clear that H(B) ⊂ B. From basic properties of integral operators, it

is evident that H is compact. The existence of a fixed point for H is now

a consequence of Schauder’s theorem. �

We now turn our attention to the case in which the linear homogeneous

problem (2.1) subject to the boundary conditions (1.3) has a nontrivial solution

space. In this case we analyze (1.1)–(1.3) using a projection scheme known as

the Lyapunov–Schmidt procedure. To do so we construct projections onto the

Ker(L) and Im(L).



Nonlinear Impulsive BVP’s 387

Definition 3.2. Let V : Rn → Rn be the orthogonal projection onto Ker(B+

DΦ(1)). Define P : X → X by

[Px](t) = Φ(t)V x(0).

Proposition 3.3. P is a projection onto Ker(L).

Proof. [P 2x](t) = Φ(t)V 2x(0) = Φ(t)V x(0) = [Px](t), thus P is a projec-

tion. From the characterization of Ker(L), it follows that Im(P ) = Ker(L). �

Let T : Rn → Rn be the orthogonal projection onto Ker(WTDΦ(1)). It

follows from Corollary 2.7 that[
h

v

]
∈ Im(L)⇔ [I − T ]

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

)
= 0.

Definition 3.4. Define E : PC{ti}[0, 1]× Rnk → PC{ti}[0, 1]× Rnk by

E

[
h

v

]
=

 h( · )− Φ( · )[I − T ]

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

)
v

 .
Proposition 3.5. E is a projection onto Im(L).

Proof.

[I − T ]

(∫ 1

0

Φ−1(s)

[
h(s)− Φ(s)(I − T )

·
(∫ 1

0

Φ−1(u)h(u) du+

k∑
i=1

Φ−1(ti)vi

)]
+

k∑
i=1

Φ−1(ti)vi

)

= [I − T ]

(∫ 1

0

Φ−1(s)h(s) +
k∑
i=1

Φ−1(ti)vi

)

− [I − T ]2
(∫ 1

0

Φ−1(u)h(u) du+

k∑
i=1

Φ−1(ti)vi

)
= 0.

It follows that E2 = E and that Im(E) ⊂ Im(L).

To see that Im(L) ⊂ Im(E) note that if [ hv ] ∈ Im(L), then

[I − T ]

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

)
= 0.

We then have

Φ( · )[I − T ]

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

)
= 0,

from which it follows that E [ hv ] = [ hv ]. �
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For the sake of completeness, we now give a self-contained description of the

Lyapunov–Schmidt projection procedure.

Proposition 3.6. Solving Lx = Fx is equivalent to solving the system
x = Px+MpEFx
and

(I − E)Fx = 0

where Mp is L−1|Ker(P )∩dom(L).

Proof. We have

Lx = Fx⇔


E[Lx−Fx] = 0

and

(I − E)[Lx−Fx] = 0

⇔


Lx− EFx = 0

and

(I − E)Fx = 0

⇔


MpLx−MpEFx = 0

and

(I − E)Fx = 0

⇔


(I − P )x−MpEFx = 0

and

(I − E)Fx = 0. �

We now come to our main result concerning the nonlinear boundary value

problem (1.1)-(1.3). Before stating the result, we make some introductory as-

sumptions and definitions.

In the following it will be assumed that for sufficiently large r, the map

(t, x)→


f(t, x)

J1(x)

...

Jk(x)


is Lipschitz, in x, on the complement of B(0, r). Here we use the standard

convention of denoting, for any normed space Y , {y ∈ Y : ‖y‖ < r} by B(0, r).

More specifically, we assume there exist real numbers R0 and L, such that for

all t ∈ [0, 1] and any x and y ∈ Rn with |x| > R0 and |y| > R0, we have∣∣∣∣∣∣∣∣∣∣∣∣


f(t, x)− f(t, y)

J1(x)− J1(y)

...

Jk(x)− Jk(y)



∣∣∣∣∣∣∣∣∣∣∣∣
≤ L|x− y|.

We let, for r ≥ R0, L(r) denote the smallest Lipschitz constant on the comple-

ment of B(0, r).
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The following observation will be used in what follows. Let Mn×p denote the

space of real-valued n × p matrices. The map (C, y) → Cy from Mn×p × Rp is

obviously a continuous bilinear map. Combining this with the fact that t→ S(t)

is continuous, we see that (t, α)→ S(t)α is the composition of continuous maps

and therefore continuous. It follows that (t, α) → |S(t)α| attains its minimum

on the compact set

O := [0, 1]× {α ∈ Rp : |α| = 1}.

For each α 6=0, S( · )α is a nonzero solution to (2.1) and so η := inf
(t,α)∈O

|S(t)α| > 0.

Theorem 3.7. Suppose the following conditions hold:

(C1) The functions f, J1, . . . , Jk, are bounded, say by b.

(C2) There exist real numbers R, d > 0, and β such that for all α ∈ Rp with

|α| > R,∣∣∣∣ ∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

∣∣∣∣ ≥ d
and〈
α,

∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

〉
≥ β > −d2.

(C3) lim
r→∞

L(r)(k + 1) ‖MpE‖
∥∥ΨT ( · )

∥∥ b < min{
√
d2 + β/

√
2, d},

where
∥∥ΨT ( · )

∥∥ = sup
t∈[0,1]

∥∥ΨT (t)
∥∥, ‖MpE‖ denotes the operator norm of

MpE, and b is as in (C1).

Then there exists a solution to the nonlinear boundary value problem (1.1)–(1.3).

Proof. Since the functions f, J1, . . . , Jk are bounded by b, we have ‖Fx‖ ≤ b
for each x in PC{ti}[0, 1]. For convenience, we assume {b1, . . . , bp} (Defini-

tion 2.4) and {c1, . . . , cp} (Proposition 2.6) have been chosen such that

‖S( · )‖ ≤ 1 and
∥∥ΨT ( · )

∥∥ ≤ 1.

From (C1)–(C3), there exists a positive real number, which we also denote

by R, such that for all α ∈ Rp with |α| ≥ R and each real number r ≥ R, we

have the following:

(a)

∣∣∣∣ ∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

∣∣∣∣ ≥ d.

(b)

〈
α,

∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

〉
≥ β > −d2.

(c) L(r)(k + 1) ‖MpE‖
∥∥ΨT ( · )

∥∥ b < min

{√
d2 + β√

2
, d

}
.
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We will establish the existence of a solution to (1.1)–(1.3) by showing the

existence of a fixed point for an operator H.

We define the operator H : Rp × Im(I − P )→ Rp × Im(I − P ) by

H(α, x)=


α−

∫ 1

0

ΨT (t)f(t, S(t)α+ x(t)) dt−
k∑
i=1

ΨT (ti)Ji(S(ti)α+ x(t−i ))

MpEF(S( · )α+ x)

 .
We use the max norm on the space Rp × Im(I − P ); that is,

‖(α, x)‖ = max{|α|, ‖x‖}.

For h ∈ PC{ti}[0, 1] and v ∈ Rnk define

Nh,v(t) = Φ(t)

(
−MBDDΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

))

+ Φ(t)

(∫ t

0

Φ−1(s)h(s) ds+
∑
ti<t

Φ−1(ti)vi

)
,

where MBD denotes the right inverse of B+DΦ(1) when restricted to orthogonal

complement of Ker(B +BΦ(1)). Since

Nh,v(0) = −MBDDΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

)
,

we have V Nh,v(0) = 0 and thus P (Nh,v) = 0. Further, from the characterization

of the Im(L), (2.3)–(2.4), it follows that L(Nh,v) = [ hv ]. Since Mp ([ hv ]) is the

unique element satisfying P (Mp ([ hv ])) = 0 and L (Mp ([ hv ])) = [ hv ], it follows

that

Mp

([
h

v

])
(t) = Φ(t)

(
−MBDDΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

))

+ Φ(t)

(∫ t

0

Φ−1(s)h(s) ds+
∑
ti<t

Φ−1(ti)vi

)
.

We now establish the compactness of Mp. Recall that for

 h
v1
...
vk

 in PC{ti}[0, 1]

×Rnk we use the norm∥∥∥∥∥∥∥∥∥∥


h

v1
...

vk


∥∥∥∥∥∥∥∥∥∥

= max{‖h‖ , |v1|, . . . , |vk|}.
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Let

C =




h

v1
...

vk

 :

∥∥∥∥∥∥∥∥∥∥


h

v1
...

vk


∥∥∥∥∥∥∥∥∥∥
≤ c

 .

Writing [ hv ] for an element

 h
v1
...
vk

 in C, we have

∣∣∣∣∣Mp

([
h

v

])
(t)

∣∣∣∣∣
=

∣∣∣∣Φ(t)

(
−MBDDΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

))

+ Φ(t)

(∫ t

0

Φ−1(s)h(s) ds+
∑
ti<t

Φ−1(ti)vi

)∣∣∣∣
≤ ‖Φ( · )‖ ‖MBDDΦ(1)‖

∥∥Φ−1( · )
∥∥ c(k + 1) + ‖Φ( · )‖

∥∥Φ−1( · )
∥∥ c(k + 1).

Thus, Mp(C) is a uniformily bounded family of functions in PC{ti}[0, 1]. Further,

if tj < u < w < tj+1 for some j = 0, . . . , k, where 0 = t0 < t1 < . . . < tk <

tk+1 = 1 then∣∣∣∣Mp

([
h

v

])
(w)−Mp

([
h

v

])
(u)

∣∣∣∣
=

∣∣∣∣(Φ(w)− Φ(u))

(
−MBDDΦ(1)

(∫ 1

0

Φ−1(s)h(s) ds+

k∑
i=1

Φ−1(ti)vi

))

+ (Φ(w)− Φ(u))

(∫ u

0

Φ−1(s)h(s) ds+

j∑
i=1

Φ−1(ti)vi

)
+ Φ(w)

∫ w

u

Φ−1(s)h(s) ds

∣∣∣∣
≤ ‖Φ(w)− Φ(u)‖

∥∥Φ−1( · )
∥∥ c(‖MBDDΦ(1)‖ k + j + 1)

+ ‖Φ( · )‖
∥∥Φ−1( · )

∥∥ c(w − u),

so that it is clear that Mp(C) is an equicontinuous family on any subinterval of

[0, 1] \ {t1, . . . , tk}. From the Arzelá–Ascoli Theorem applied to each subinterval

between jumps, we see that Mp(C) is a relatively compact subset of PC{ti}[0, 1].

The compactness of Mp now follows.

Since the composition of a compact map with a bounded map is compact,

the compactness of Mp and the boundedness of EF imply that H is a com-

pact operator. Further, from Proposition 3.6, having a solution to (1.1)–(1.3) is

equivalent to H having a fixed point.
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We choose R∗ > max{(k + 1)b, (R+ ‖MpE‖ b)/η} and define

Ω := B(0, R∗)×B(0, ‖MpE‖ b).

We will show that deg(I −H,Ω, 0) 6= 0. To this end, define

Q : [0, 1]× Ω→ Rp × Im(I − P )

by

Q(λ, (α, x)) =(1− λ)α+ λ

(∫ 1

0

ΨT (t)f(t, S(t)α+ x(t)) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α+ x(t−i )

)
x− λMpEF(S( · )α+ x)


Using the fact that deg(Q(0, · , · ),Ω, 0) = deg(I,Ω, 0) = 1, and that Q is clearly

a homotopy between I and I − H, the result will follow once we show 0 /∈
Q(λ, ∂(Ω)) for each λ ∈ (0, 1).

Now, it is clear that (α, x) ∈ ∂(Ω) if and only if

|α| = R∗ and ‖x‖ ≤ ‖MpE‖ b, or |α| ≤ R∗ and ‖x‖ = ‖MpE‖ b.

With this in mind, let (α, x) be in ∂(Ω) and assume |α| ≤ R∗ with ‖x‖ =

‖MpE‖ b. It follows that

‖x− λMpEF(S( · )α+ x)‖ ≥ | ‖x‖ − λ ‖MpEF(S( · )α+ x)‖ |

≥ ‖MpE‖ b− λ ‖MpE‖ b > 0.

Thus, Q(λ, (α, x)) 6= 0.

Now suppose (α, x) is in ∂(Ω) and assume |α| = R∗ with ‖x‖ ≤ ‖MpE‖ b.
We then have∣∣∣∣(1 − λ)α+ λ

(∫ 1

0

ΨT (t)f(t, S(t)α+ x(t)) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α+ x(t−i ))

)∣∣∣∣
≥
∣∣∣∣(1− λ)α+ λ

(∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

)∣∣∣∣
−
∣∣∣∣λ(∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

)

− λ
(∫ 1

0

ΨT (t)f(t, S(t)α+ x(t)) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α+ x(t−i ))

)∣∣∣∣.
Now∣∣∣∣(1 − λ)α+ λ

(∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

)∣∣∣∣2
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= (1− λ)2|α|2 + λ2
∣∣∣∣( ∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

)∣∣∣∣2

+ 2(1− λ)λ

〈
α,

∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

〉
.

Since

|α| = R∗ > b(k + 1) ≥
∣∣∣∣ ∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

∣∣∣∣,
we have

(1− λ)2|α|2 ≥ (1− λ)2
∣∣∣∣ ∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

∣∣∣∣2.
Combining this with the fact that (C2) holds, we have

(1− λ)2|α|2 + λ2
∣∣∣∣( ∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

)∣∣∣∣2

+ 2(1− λ)λ

〈
α,

∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

〉

≥ ((1− λ)2 + λ2)

∣∣∣∣ ∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

∣∣∣∣2

+ 2(1− λ)λ

〈
α,

∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

〉
≥ ((1− λ)2 + λ2)d2 + 2(1− λ)λβ.

For λ ∈ [0, 1], the function λ→ ((1−λ)2+λ2)d2+2(1−λ)λβ has a minimum

of either (d2 + β)/2 or d2. Thus,

∣∣∣∣(1− λ)α+ λ

(∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

)∣∣∣∣
≥ min

{√
d2 + β√

2
, d

}
.

Using the fact that |α| ≥ (R+ ‖MpE‖ b)/η, we get

inf
t∈[0,1]

|S(t)α| ≥ η
(
R

η

)
= R,

and

inf
t∈[0,1]

|S(t)α+ x(t)| ≥ η
(
R+ ‖MpE‖ b

η

)
− ‖MpE‖ b = R.
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It follows that∣∣∣∣(1− λ)α + λ

(∫ 1

0

ΨT (t)f(t, S(t)α+ x(t)) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α+ x(t−i ))

)∣∣∣∣
≥ min

{√
d2 + β√

2
, d

}
−
∥∥ΨT ( · )

∥∥L(R)(k + 1) ‖x‖

≥ min

{√
d2 + β√

2
, d

}
−
∥∥ΨT ( · )

∥∥L(R)(k + 1) ‖MpE‖ b > 0. �

Remark 3.8. Theorem 3.7 is a considerable extension of the ideas appearing

in [8], [15], [12] in many ways. First, it allows for continuous systems with im-

pulses. Most importantly, it places no restriction on the dimension of the solution

space of the linear homogeneous problem (2.1) with boundary conditions (1.3).

4. Examples

The following examples illustrate ways in which the hypothesis of the main

result can be satisfied.

In our first example we analyze the solvability of

x′(t) = f(x(t)), t ∈ [0, 1] \
{

1

4

}
,

x

(
1

4

+)
− x
(

1

4

−)
= J

(
x

(
1

4

−))
subject to

Bx(0) +Dx(1),

where

B =

−1 0 0

0 −1 0

1 0 0

 and D =

1 0 0

0 1 0

0 0 0

 .
Since A = 0, it follows that Φ(t) = I for all t ∈ [0, 1], and therefore

B +DΦ(1) = B +D =

0 0 0

0 0 0

1 0 0

 .
We choose

WT =

[
1 0 0

0 1 0

]
and S(t) =

0 0

1 0

0 1

 .
It follows that

ΨT (t) = WT .



Nonlinear Impulsive BVP’s 395

We now take

f(x1, x2, x3) =


(x2 + sin(x2 + x3))/(1 +

√
x21 + x22 + x23)

x3/(1 +
√
x21 + x22 + x23)

f3(x1, x2, x3)


and

J(x1, x2, x3) =


−x3/(1 +

√
x21 + x22 + x23)

(cos(x1 + x2) + x2)/(1 +
√
x21 + x22 + x23)

J3(x1, x2, x3)

 ,
where f3 and J3 are bounded continuous functions. We then have

∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

=

 (α1 − α2 + sin(α1 + α2))/(1 +
√
α2
1 + α2

2)

(α1 + α2 + cos(α1))/(1 +
√
α2
1 + α2

2)

 .
Now,∣∣∣∣∣∣
 (α1 − α2 + sin(α1 + α2))/(1 +

√
α2
1 + α2

2)

(α1 + α2 + cos(α1))/(1 +
√
α2
1 + α2

2)

∣∣∣∣∣∣
2

=
2|α|2 + 2(α1 − α2) sin(α1 + α2) + 2(α1 + α2) cos(α1)

(1 + |α|)2

+
sin2(α1 + α2) + cos2(α1)

(1 + |α|)2

and〈 α1

α2

 ,
 (α1 − α2 + sin(α1 + α2))/(1 +

√
α2
1 + α2

2)

(α1 + α2 + cos(α1))/(1 +
√
α2
1 + α2

2)

〉

=
|α|2 + α1 sin(α1 + α2) + α2 cos(α1)

1 + |α|
.

Thus, we may choose a real number R such that for each α ∈ Rp with |α| ≥ R,∣∣∣∣∣∣
 (α1 − α2 + sin(α1 + α2))/(1 +

√
α2
1 + α2

2)

(α1 + α2 + cos(α1))/(1 +
√
α2
1 + α2

2)

∣∣∣∣∣∣ > 1
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and 〈 α1

α2

 ,
 (α1 − α2 + sin(α1 + α2))/(1 +

√
α2
1 + α2

2)

(α1 + α2 + cos(α1))/(1 +
√
α2
1 + α2

2)

〉 > 0.

We now assume that, for i = 1, 2, 3, ∂f3
∂xi

and ∂J3
∂xi

exist and that

lim
r→∞

sup
|x|>r

∂f3
∂xi

(x) <∞ and lim
r→∞

sup
|x|>r

∂J3
∂xi

(x) <∞.

An easy calculation shows

Df(y1, y2, y3)

=c(y)


−y1y2−y1 sin(y2+y3) −y1y3 ∂f3

∂x1
(y1, y2, y3)

d(y)(1+cos(y2+y3))−y22−y2 sin(y2+y3) −y2y3 ∂f3
∂x2

(y1, y2, y3)

d(y)(cos(y2 + y3))−y2y3−y3 sin(y2+y3) d(y)−y23
∂f3
∂x3

(y1, y2, y3)


T

,

where c(y) = 1/(|y|(1 + |y|)2) and d(y) = |y|(1 + |y|). It is then clear that

L∗0(r) := sup
|x|>r

‖Df(x)‖

satisfies lim
r→∞

L∗0(r) = 0. A simialr calculation shows the same is true for

L∗i (r) := sup
|x|>r

‖DJi(x)‖.

An application of the integral mean value theorem then shows that (C3) is sat-

isfied. Thus, by Theorem 3.7, the nonlinear boundary value problem has a solu-

tion.

Remark 4.1. We have chosen the matrix A to be 0 in order to convey the

essential ideas of Theorem 3.7; that is, the relationship between the behavior of

the nonlinearities and the solution space of the associated linear homogeneous

boundary value problem. It should be clear that a similar analysis can be carried

out when the matrix A is nonzero.

For our second example we focus on the solvability of

x′(t) = A(t)x(t) + f(t, x(t)), t ∈ [0, 1] \ {t1, . . . , tk},

x(t+i )− x(t−i ) = Ji(x(t−i )), i = 1, . . . , k

subject to

Bx(0) +Dx(1) = 0,

when, for large α,
k∑
i=1

ΨT (ti)Ji(S(ti)α) is bounded away from 0. That is, we

assume that there exists positive real numbers R1 and d, such that for all α ∈ Rp
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with |α| > R1, ∣∣∣∣ k∑
i=1

ΨT (ti)Ji(S(ti)α)

∣∣∣∣ > d.

If we assume the following:

(1) There exists a real number R2 such that for all α ∈ Rp with |α| > R2,〈
α,

∫ 1

0

ΨT (t)f(t, S(t)α) dt+

k∑
i=1

ΨT (ti)Ji(S(ti)α)

〉
≥ 0.

(2) lim
r→∞

L(r) = 0,

then Theorem 3.7 guarantees that the nonlinear boundary value problem has

a solution provided, for large α,∣∣∣∣ ∫ 1

0

ΨT (t)f(t, S(t)α) dt

∣∣∣∣ < d.

We would like to point out the relative simplicity of computing∣∣∣∣ k∑
i=1

ΨT (ti)Ji(S(ti)α)

∣∣∣∣.
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