
Topological Methods in Nonlinear Analysis
Volume 46, No. 1, 2015, 471–493

c© 2015 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

HOPF–BIFURCATION THEOREM AND STABILITY

FOR THE MAGNETO-HYDRODYNAMICS EQUATIONS

Weiping Yan

Abstract. This paper is devoted to the study of the dynamical behavior
for the 3D viscous Magneto-hydrodynamics equations. We first prove that

this system under smooth external forces possesses time dependent periodic

solutions, bifurcating from a steady solution. If the time periodic solution
is smooth, then the linear stability of the time periodic solution implies

nonlinear stability is obtained in Lp for all p ∈ (3,∞).

1. Introduction and main results

We consider the 3D incompressible magneto-hydrodynamics (MHD) equa-

tions under external time-independent force

Ut − ν4U + (U · ∇)U = −∇P − 1

2
∇H2 +H · ∇H + fα,(1.1)

Ht − η4H + (U · ∇)H = H · ∇U + hα,(1.2)

∇ ·H = ∇ · U = 0,(1.3)

where U is the flow velocity vector, H is the magnetic field vector, the kinematic

viscosity ν and the magnetic diffusivity κ are positive constants. P is a scalar

pressure, fα and hα are external time independent forces, which depend smoothly

on some parameter α.
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Since the work of Sattinger [19], Iudovich [14] and Iooss [11] in 1971, the

bifurcation of periodic solutions from stationary solutions (i.e. Hopf-bifurcation)

of incompressible Navier–Stokes equation has attracted much attention, see [2],

[9], [12], [13], etc. When the linearized operator possesses a continuous spectrum

up to the imaginary axis and that a pair of imaginary eigenvalues crosses the

imaginary axis, A. Melcher et al. [17] proved Hopf-bifurcation for the vorticity

formulation of the incompressible Navier–Stokes equations in R3. Their work

is mainly motivated by the work of T. Brand et al. [1] who studied the Hopf-

bifurcation problem and its exchange of stability for a coupled reaction diffusion

model in Ra. We mention that Crandall and Rabinowitz [4] gave an abstract

infinite-dimensional version of Hopf bifurcation theorem which has found many

applications. But we can not directly use the method of dealing with Navier–

Stokes equation to magneto-hydrodynamics equations because of the presence of

the magnetic field and its interaction with the hydrodynamic motion in the MHD

flow of large oscillation. In this paper, our aim is first to establish the correspond-

ing Hopf-bifurcation result for the three-dimensional magneto-hydrodynamics

equations. Then, we prove that if the time periodic solution is smooth, then it

is (Lq,Lq) nonlinearly stable in the sense of Lyapunov.

By [20], we know that external forces fα and hα can be chosen suitably so

that (Uα(x) + Uc1 , Hα(x) + Hc1 , Pα(x)) is the solution of the steady magneto–

hydrodynamics equation

−ν4U + (U · ∇)U = −∇P − 1

2
∇H2 +H · ∇H + fα,(1.4)

−η4H + (U · ∇)H = H · ∇U + hα,(1.5)

∇ ·H = ∇ · U = 0,(1.6)

with Uc = (c1, 0, 0)T , Hc = (c1, 0, 0)T and

lim
|x|→∞

Uα(x) = 0, lim
|x|→∞

Hα(x) = 0,

where 0 = (0, 0, 0)T .

To seek the periodic solution, we linearize system (1.1)–(1.2) about the steady

state (Uα + Uc1 , Hα +Hc1 , Pα) by writing

U = u+ Uα + Uc1 , H = v +Hα +Hc1 , p = P − Pα.

Then, the deviation (u, v, p) from the stationary (Uα+Uc1 , Hα+Hc1 , Pα) satisfies

(1.7) ut − ν4u+ c1∂x1u+ uα · ∇u+ u · ∇uα + u · ∇u

= −∇p− 1

2
∇(|Hα + v|2 − |Hα|2) +Hα · ∇u+ u · ∇Hα + v · ∇v,
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(1.8) vt − η4v + c1∂x2
v + uα · ∇v + u · ∇vα + u · ∇v

= vα · ∇u+ v · ∇uα + v · ∇u,

with incompressible condition

(1.9) ∇ · u = ∇ · v = 0.

Here, for general matrices u = (uij)i,j=1,2,3,

∇ · u =

( 3∑
j=1

∂x1
u1j ,

3∑
j=1

∂x1
u2j ,

3∑
j=1

∂x1
u3j

)T
.

In fact, by the incompressible condition (1.9), it follows that

(1.10) ∇ · (uvT ) = u · ∇u+ u∇ · u = u · ∇u.

Thus using (1.9) and (1.10) to (1.7)–(1.8), we obtain

(1.11) ut − ν4u+ c1∂x1
u+∇ · (uαuT ) +∇ · (uuTα) +∇ · (uuT )

= −∇p− 1

2
∇(|Hα + v|2 − |Hα|2)

+∇ · (Hαu
T ) +∇ · (uHT

α ) +∇ · (vvT ),

(1.12) vt − η4v + c1∂x1
v +∇ · (uαvT ) +∇ · (uvTα ) +∇ · (uvT )

= ∇ · (vαuT ) + v · ∇uα +∇ · (vuT ).

The vorticity associated with velocity field u of the fluid is defined by ω = ∇×u.

Then, using ∇×∇ · (uuT ) = ∇ · (ωuT − uωT ), we can rewrite system (1.11) as

(1.13) ωt − ν4ω + c1∂x1ω +∇ · (ωαuT − uαωT )

+∇ · (ωuTα − uωTα ) +∇ · (ωuT − uωT )

= −1

2
∇×∇(|Hα + v|2 − |Hα|2) +∇ · (∇×Hαu

T −Hαω
T )

+∇ · (ωHT
α − u∇×HT

α ) +∇ · (∇× vvT − v∇× vT ).

Note that the space of divergence free vector fields is invariant under the evolu-

tion (1.13). We can assume that ∇ · ω = 0. Moreover, we can reconstruct the

velocity u from the vorticity ω by solving the equation

∇× u = ω, ∇ · ω = 0.

Denote ϕ = (ω, v)T . Then, we can write system (1.12)–(1.13) as the evolution

equation form

(1.14)
dϕ

dt
+Nϕ+G(ϕ) = F (ϕ),
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where

N =

(
−ν4+ c1∂x1

0

0 −η4+ c1∂x1

)
,

and

G(ϕ) =

(
g1

g2

)
, F (ϕ) =

(
g3

g4

)
with

g1 =∇ · (ωαuT − uαωT ) +∇ · (ωuTα − uωTα ) +∇×∇(Hαv)

−∇ · (∇×Hαu
T −Hαω

T )−∇ · (ωHT
α − u∇×HT

α ),

g2 =∇ · (uαvT ) +∇ · (uvTα )−∇ · (vαuT )− v · ∇uα,

g3 = −∇ · (ωuT − uωT )− 1

2
∇×∇(|Hα + v|2 − |Hα|2 − 2Hαv)

+∇ · (∇× vvT − v∇× vT ),

g4 =∇ · (vuT )−∇ · (uvT ).

We denote Ĝα by Ĝ for convenience. One overcomes usually the problem of

the essential spectrum of operator −(N̂ + Ĝ) up to the imaginary axis, we need

the following assumption:

(H1) For any α ∈ [αc − α0, αc + α0], (0, 0) is not an eigenvalue of N̂ + Ĝ.

(H2) For α = αc, the operator −(N̂ + Ĝ) has two pair eigenvalues (λ+0 , µ
+
0 )

and (λ−0 , µ
−
0 ) satisfying

λ±0 (αc) = µ±0 (αc) = ±iξ0 6= 0, for ξ0 > 0,

d

dα
Re(λ±0 (α))

∣∣∣∣
α=αc

,
d

dα
Re(µ±0 (α))

∣∣∣∣
α=αc

> 0.

(H3) The rest eigenvalue of −(N̂ + Ĝ) is strictly bounded away from the

imaginary axis in the left half plane for all α ∈ [αc − α0, αc + α0].

Under the generic assumption the cubic coefficient terms a1, a2 6= 0 in (3.41)–

(3.42), Hopf-bifurcation result about MHD is stated:

Theorem 1.1. Assume that (H1)–(H3) hold. Then system (1.1)–(1.3) has a

one dimensional family of small time-periodic solutions, i.e.

U(x, t) = U(x, t+ 2π/ξ1), H(x, t) = H(x, t+ 2π/ξ2)

with α = αc + ε, ε ∈ (0, α0). Moreover, ξ1 = ξ0 +O(ε), ξ2 = ξ0 +O(ε), and

‖U‖C0
b(R3×[0,2π/ξ1]) = O(ε), ‖H‖C0

b(R3×[0,2π/ξ2]) = O(ε).

Now we give the definition of Lyapunov stability and instability in the frame-

work MHD. This definition is a small modification of Definition 2.1 in [21].
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Definition 1.2. Let (X,Z) be a pair of Banach spaces. An equilibrium

(uα, Hα) which is the solution of (1.4)–(1.6) is called (X,Z) Lyapunov nonlin-

early stable if, no matter how small ε > 0, there exist σ > 0 and (u0, v0) ∈ X
such that ‖(u0, v0)‖Z < σ imply the following two assertions:

(a) there exists a global in time solution to (1.11)–(1.12) such that (u, v) ∈
C([0,∞);X);

(b) ‖(u, v)‖Z ≤ ε for almost every t ∈ [0,∞).

An equilibrium (Uα, Hα) that is unstable in the above sense is called Lyapunov

nonlinearly unstable.

Theorem 1.3. Let q > 3. Assume that (H2) holds. If MHD (1.1)–(1.3) has

a smooth time periodic solution (U,H), then (U,H) is (Lq,Lq) nonlinearly stable

in the sense of Lyapunov.

This paper is organized as follows. In Section 2, we introduce some notation

and preliminaries. In section 3, the main proof of Theorem 1.1 is carried out

by using Lyapunov–Schmidt method. In section 4, using a bootstrap argument,

we prove that the linear stability of time periodic solution implies nonlinear

instability for MHD (1.1)–(1.3).

2. Preliminaries

We start this section by introducing some notations. Consider the following

standard Sobolev space, spatially weighted Lebesgue space

Wq
κ :=

{
u : ‖u‖qκ :=

∑
|α|≤κ

‖Dαu‖qLq <∞
}
,

Lps :=

{
u : ‖u‖ps :=

∫
R3

ρs(x)up(x) dx <∞
}
,

where weighted function ρ(x) =
√

1 + |x|2. The Fourier transform is a continu-

ous mapping from Lps into Wq
κ. Especially, when p = 2, the Fourier transform

is an isomorphism between Hp and L2
p with ‖u‖L2

p
= ‖ρpu‖L2 .

To investigate periodic solutions of system (1.1)–(1.2), we also introduce the

space X := {u = (un)n∈Z : ‖u‖X < ∞} and weighted space Lps = Lps × Lps ,

Hm = Hm ×Hm, X = X×X, with norms

‖u‖X =
∑
n∈Z

‖un‖Hp , ‖ϕ‖X := ‖u‖X + ‖v‖X,

‖ϕ̂‖Lps := ‖û‖Lps + ‖v̂‖Lps+1
, ‖ϕ̂‖Hm := ‖u‖Hm + ‖v‖Hm ,

for ϕ = (u, v)T ∈ Lps or X , respectively.

In this paper, we consider the following form of time-periodic solution

ω = ω(x, t/ξ1), v = v(x, t/ξ2),
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where ξ1, ξ2 ∈ R+ denote the corresponding frequencies.

Thus we need to find 2π time periodic solutions of

(2.1) Ξ
dϕ

dt
+Nϕ+G(ϕ) = F (ϕ),

where

Ξ =

(
ξ1 0

0 ξ2

)
, N =

(
−ν4+ c1∂x1 0

0 −η4+ c1∂x1

)
,

and

G(ϕ) =

(
g1

g2

)
, F (ϕ) =

(
g3

g4

)
with

g1 =∇ · (ωαuT − uαωT ) +∇ · (ωuTα − uωTα ) +∇×∇(Hαv)

−∇ · (∇×Hαu
T −Hαω

T )−∇ · (ωHT
α − u∇×HT

α ),

g2 =∇ · (uαvT ) +∇ · (uvTα )−∇ · (vαuT )− v · ∇uα,

g3 = −∇ · (ωuT − uωT )− 1

2
∇×∇(|Hα + v|2 − |Hα|2 − 2Hαv)(2.2)

+∇ · (∇× vvT − v∇× vT ),

g4 =∇ · (vuT )−∇ · (uvT ).(2.3)

By the classical result in [10], we know that the essential spectrum of the operator

N +G is relatively compact perturbation of N which has the essential spectrum

{λ ∈ C2 : λ = (−|y|2 + icy1,−|y|2 + icy1), y ∈ R3}.

Moreover, the spectra of N + G and N only differ by isolated eigenvalues of

finite multiplicity. The above spectrum properties are critical to prove our main

result. For convenience, we can rewrite (2.1) as

(2.4) ξ1ωt = M1ω + g3(ω, u, v), ξ2vt = M2v + g4(ω, u, v),

where g3 and g4 defined in (2.2)–(2.3),

M1 = M1 + g1 = ν4+ c1∂x1
+ g1, M2 = M2 + g2 = η4+ c1∂x1

+ g2.

We make the ansatz

ω(x, t) =
∑
n∈Z

ωn(x)eint, v(x, t) =
∑
n∈Z

vn(x)eint

to (2.4), we obtain

(2.5) (inξ1 −M1)ωn = g3n(ω, u, v), (inξ2 −M2)vn = g4n(ω, u, v),

where

g3(ω, u, v)(x, t) =
∑
n∈Z

g3n(ω, u, v)eint, g4(ω, u, v)(x, t) =
∑
n∈Z

g4n(ω, u, v)eint.
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Note that we are interested in real valued solution only. We will always suppose

that (ωn, vn) = (ω−n, v−n) for n ∈ Z. These series are uniformly convergent on

R3 × [0, 2π] in the spaces which we have chosen. More precisely, we have the

following result:

Lemma 2.1. A linear operator J : X → C0
b(R3 × [0, π]) is defined by

(Ju)(x, t) = ũ(x, t) :=
∑
n∈Z

un(x)eint, u = (un)n∈Z ∈ X .

Then J is bounded.

The counterpart of multiplication uv in the physical space is given by the

convolution
( ∑
k∈Z

un−kvk

)
n∈Z

, since

uv =
∑
l∈Z

ul(x)eilt
∑
j∈Z

vj(x)eijt =
∑
n∈Z

(∑
k∈Z

un−k(x)vk(x)

)
eint.

Lemma 2.2. For u = (un)n∈Z, v = (vn)n∈Z ∈ X, the convolution u ∗ v ∈ X

is defined by

(u ∗ v)n =
∑
k∈Z

un−kvk, n ∈ Z.

Then there exists C > 0 such that

‖u ∗ v‖X ≤ C‖u‖X ‖v‖X .

Lemma 2.3. Let a linear operator Mi : X→ X be defined component-wise as

(Miu)n = Minun for u = (un)n∈Z. Then

‖Miu‖X =

(
‖Mi0‖Hm→Hm + sup

n∈Z\{0}
‖Mi‖Hm→Hm

)
‖u‖X, for i = 1, 2.

The proofs of above three lemmas are rather standard, so we omit it.

For any bounded analytic semigroup Aαγ , the following result holds.

Lemma 2.4 ([18]). For every 0 < γ < 1 and p > 1 there exists a constant

M > 0 such that for all t > 0 one has

‖AγσeAσt‖Lp→Lp ≤
M

tγ
.

The proof of following result can be found in [8] for bounded domain and

[18] for Rn.

Lemma 2.5. For every 1/2 < γ < 1 and p > 1 there exists a constant C > 0

such that

‖A−γσ f‖Lp ≤ C‖f‖W−2γ,p .

The following result shows a weighted Young theorem.
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Lemma 2.6. There exists a positive constant C such that

‖ω̂ ∗ û‖L2
m
≤ C‖ω̂‖L2

m
‖û‖L2

m
, i.e. ‖ωu‖Hm ≤ C‖ω‖Hm‖u‖Hm .

Proof. It is easy to check that

(2.6) ρ(x) ≤ ρ(x− y)ρ(y), x, y ∈ R3,

where we take the weighted function as ρ(x) = (1 + |x|2)1/2. Then, there exist

positive constants s1, s2, s such that s1 + s2 = m+ s, with s1, s2, s < m. Using

Young inequality and (2.6), we have

‖ω̂ ∗ û‖2L2
m

=

∫
R3

ρ2m(ω̂ ∗ û)2(x) dx

=

∫
R3

(∫
R3

ω̂(x− y)û(y)ρ2m(x)dy

)2

dx

=

∫
R3

ρ−2s(x)

(∫
R3

ρs1(x− y)ω̂(x− y)ρs2(y)û(y) dy

)2

dx

≤
∫
R3

ρ−2s(x)

(∫
R3

ρ2s1(z)ω̂2(z) dz

)(∫
R3

ρ2s2(y)û2(y) dy

)
dx

≤C‖ω̂‖2L2
s1

‖û‖2L2
s2

≤ C‖ω̂‖2L2
m
‖û‖2L2

m
.

This completes the proof. �

3. Proof of Theorem 1.1

In this section, we will give the detail of proof of Theorem 1.1. By (H2) and

(H3), we know that the operator Mi has two eigenvalues λ±0 (β) and all other

eigenvalues of Mi are strictly bounded away from the imaginary axis in the left

half plane. Thus we construct a Mi-invariant projections P±1,c by

P1,cω = (ψ+,∗, ω)L2ψ+, P−1,cω = (ψ−,∗, ω)L2ψ−,(3.1)

P1,cv = (ψ+,∗, v)L2ψ+, P−1,cv = (ψ−,∗, v)L2ψ−,(3.2)

where ψ± denotes the associated normalized eigenfunctions, ψ±1,∗ denotes the

associated normalized eigenfunctions of the adjoint operator M∗i . The bounded

”stable” part of the projection is P±1,s = I−P±1,c, we also know that P±,cMi =

MiP±,c and P±,sMi = MiP±,s. Thus we can split ω±1 and v±1 as

ω1 = ω1,c + ω1,s, ω−1 = ω−1,c + ω−1,s,

v1 = v1,c + v1,s, v−1 = v−1,c + v−1,s

with ω±1,c = P±1,cω1, ω±1,s = P±1,sω1, v±1,c = P±1,cv1, v±1,s = P±1,sv1.

Applying above decompositions to (3.35), we have

(inξ1 −M1)ωn = g3n(ω, u, v), n = ±2,±3, . . . ,(3.3)

(inξ2 −M2)vn = g4n(ω, u, v), n = ±2,±3, . . . ,(3.4)
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M1ω0 = g30(ω, u, v), n = 0,(3.5)

M2v0 = g40(ω, u, v), n = 0,(3.6)

(±iξ1 −M1)ω±1,s = P±1,sg
3
±1(ω, u, v),(3.7)

(±iξ2 −M2)v±1,s = P±1,sg
4
±1(ω, u, v),(3.8)

(±iξ1 −M1)ω±1,c = P±1,cg
3
±1(ω, u, v),(3.9)

(±iξ2 −M2)v±1,c = P±1,cg
4
±1(ω, u, v).(3.10)

The organization of proof of Theorem 1.1 is that we first solve the equations

(3.5)–(3.6). Then using the fixed point theorem to solve equations (3.3)–(3.4)

and (3.7)–(3.8) which is nontrivial due to the nonlinear term g3n(ω, u, v) and

g4n(ω, u, v). At last, we employ the implicit function theorem to solve equation

(3.9)–(3.10). The process of solving equation (3.9)–(3.10) is inspired by the

classical Hopf-bifurcation result [16].

Rewrite (3.3)–(3.10) as

(inΞ +N +G)ϕn = Fn(ϕ, u), n = ±2,±3, . . . ,(3.11)

(N +G)ϕ0 = F0(ϕ, u), n = 0,(3.12)

(±iΞ +N +G)ϕ±1,s = P±1,sF±1(ϕ, u),(3.13)

(±iΞ +N +G)ϕ±1,c = P±1,cF±1(ϕ, u).(3.14)

Now we first solve the equation (3.12). The linear operator N has essential

spectrum up to the imaginary axis, it can be be inverted in the following sense.

Lemma 3.1. For j = 1, 2 and f = (f1, f2)T ∈ (Hm−1 ×Hm−1)∩ (L1 ×L1),

the equation

Nϕ = ∂jf

has a unique solution ϕ = N−1∂jf ∈ Hm ×Hm. Moreover,

‖ϕ‖Hm×Hm ≤ C‖f‖(Hm−1×Hm−1)∩(L1×L1).

Proof. Define a smooth cut-off function χ taking its value in [0, 1] as

χ(y) :=

1 if |y| ≤ 1,

0 if |y| ≥ 2.

We denote

(f̂11 , f̂
2
1 ) = (f̂1χ, f̂2χ) and (f̂12 , f̂

2
2 ) = (f̂1(1− χ), f̂2(1− χ))

with f̂ = (f1, f2) = (f̂11 + f̂12 , f̂
2
1 + f̂22 ). Then

ω̂1(y) =
iyj f̂

1
1

inξ1 − ν|y|2 − ic1y1
and ω̂2(y) =

iyj f̂
1
2

inξ1 − ν|y|2 − ic1y1
,

v̂1(y) =
iyj f̂

2
1

inξ2 − η|y|2 − ic1y1
and v̂2(y) =

iyj f̂
2
2

inξ2 − η|y|2 − ic1y1
.
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Then (ω, v) = (ω1 + ω2, v1 + v2). Moreover, it has

‖ω1‖2Hm = ‖ω̂1‖2L2
m

=

∫
R2

|yj |2|f̂χ(y)|2

|inξ1 − ν|y|2 − ic1y1|2
ρ2m(y) dy

≤C‖f‖2L1

∫
|y|≤2

|yj |2

r4 + c2y21
dy ≤ C‖f‖2L1 ,

and

‖ω2‖2Hm = ‖ω̂2‖2L2
m

=

∫
R2

|yj |2|f̂(1− χ(y))|2

|inξ1 − ν|y|2 − ic1y1|2
ρ2m(y) dy

≤C
∫
R2

|f̂(y)|2ρ(2m−1)(y) dy ≤ C‖f‖2Hm−1 .

By the same process, we also can obtain

‖v1‖2Hm = ‖v̂1‖2L2
m
≤ C‖f‖2L1 , ‖v2‖2Hm = ‖v̂2‖2L2

m
≤ C‖f‖2Hm−1 .

This completes the proof. �

This lemma tells us that N̂ (iyi, iyi)
T · is bounded compact operator in from

L2
m × L2

m to itself. Furthermore, the spectra of N̂ +G and N̂ only differ by

isolated eigenvalues of finite multiplicity (see the book of Henry [10, p. 136]).

The following lemma gives the solvable of the equation (3.12).

Lemma 3.2. Assume that (H1)–(H3) holds. Then the equation (3.12) has a

unique solution

(3.15) ϕ0 = (N +G)−1F0(ϕ, u).

Moreover, ‖ϕ0‖Hm×Hm ≤ C‖y−1j I2×2 ̂F0(ϕ, u)‖L2
m×L2

m
.

Proof. Since the operator N̂−1Ĝ : L2
m × L2

m → L2
m × L2

m is compact, the

operator I+N̂−1Ĝ is Fredholm with index 0. If (I+N̂−1Ĝ)ϕ̂ = 0 had a nontrivial

solution, then (N̂ + Ĝ)ϕ̂ = N̂ (I + N̂−1Ĝ)ϕ̂ = 0 would also have a nontrivial

solution. This would contradict (H1). Hence the Fredholm property implies

that the existence of (I + N̂−1Ĝ)−1 : L2
m × L2

m → L2
m × L2

m. Then we have

N̂ (I + N̂−1Ĝ)ϕ̂ = iyjI2×2f̂ ,

where I2×2 is the unit matrix.

Thus, by Lemma 2.4, we obtain

‖ϕ‖Hm×Hm = ‖ϕ̂‖L2
m×L2

m

≤ ‖(I + N̂−1Ĝ)−1‖L2
m×L2

m→L2
m×L2

m
‖N̂−1iyjI2×2f̂‖L2

m×L2
m
≤ C‖f̂‖L2

m×L2
m
.

This completes the proof. �



Hopf–Bifurcation Theorem and Stability 481

The velocity field u is defined in terms of the vorticity via the Biot–Savart

law

(3.16) u(x) = − 1

4π

∫
R3

(x− y)⊥ × ω(y)

|x− y|3
dy, x ∈ R3.

Lemma 3.3. There exist a constant C > 0 such that

(3.17) ‖u‖Hm ≤ C‖ω‖Hm , ‖∂xiu‖Hm ≤ C‖ω‖Hm .

Proof. The related equation of the velocity u and the vorticity ω is

∇× u = ω, ∇ · u = 0, ∇ · ω = 0.

This leads in Fourier space to
0 −iy3 iy2
iy3 0 −iy1
−iy2 iy1 0

iy1 iy2 iy3


 û1

û2
û3

 =


ω̂1

ω̂2

ω̂3

0

 .

We can get

N̂ ω̂ = − 1

|y|2

 0 iy3 −iy2 iy1
−iy3 0 iy1 iy2
iy2 −iy1 0 iy3


 ω̂1

ω̂2

ω̂3

 =

 û1
û2
û3

 = û.

Using Hölder’s inequality, for 1/p1 + 1/p2 = 1, p1, p2 > 1, s1 + s2 = 2m and

s1, s2 > 0, we have

‖u‖2Hm = ‖û‖2L2
m
≤ C(‖χ|y|≤1N̂‖2L2p1

s1/2

‖ω̂‖2
L

2p2
s2/2

+ ‖χ|y|≥1N̂‖2L∞‖ω̂‖2L2
m

)

≤ C(‖χ|y|≤1N̂‖2L2p1
s1/2

+ ‖χ|y|≥1N̂‖2L∞)‖ω̂‖2L2
m
≤ C‖ω̂‖2L2

m
= C‖ω‖2Hm ,

where we use the weighted function ρ(y) = |y|(1 + |y|)1/2, the boundedness of

‖χ|y|≥1iyi/|y|2‖2L∞ and∥∥∥∥χ|y|≤1 iyi|y|2
∥∥∥∥2
L

2p1
s1/2

=

∫
|y|≤1

∣∣∣∣ iyi|y|2
∣∣∣∣2p1ρp1s dy

=

∫
|y|≤1

∣∣∣∣ iyi|y|2
∣∣∣∣2p1 |y|p1s(1 + |y|)p1s/2 dy

≤C
∫ 1

0

%2p1

%4p1
%p1s(1 + %)p1s%2d%

=C

∫ 1

0

%p1s−2p1+2(1 + %)p1s%2d% ≤ ∞,

for p1s− 2p1 + 2 > 0. The second estimate in (3.17) is followed by

‖∂xiu‖Hm = ‖iyiûρm‖L2 ≤ ‖iyiN̂‖L∞‖ω̂‖L2
m
≤ C‖ω‖Hm . �
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From the form of the nonlinear terms g3 and g4, it is critical to estimate

the term as uv and u2. For convenience, we derive some estimates about the

nonlinear term N1(ϕ) = ϕ2 and N2(ϕ,ψ) = ϕψ. This proof is similar with

Lemma 4 in [3], so we omit it.

Lemma 3.4. Define N1 : X → X by N1(ϕn) = N1(Jϕn) and N2 : X×X → X
by N2(ϕn) = N2(Jϕn,Jψn) for ϕ,ψ ∈ X . Then there exists C > 0 such that

(3.18) ‖N1(ϕ)‖X ≤ C‖ϕ‖2X , ‖N2(ϕ,ψ)‖X ≤ C‖ψ‖X ‖ϕ‖X

for ϕ,ψ ∈ X with ‖ϕ‖X ≤ 1 and ‖ψ‖X ≤ 1. Moreover, there exists C > 0 such

that

‖N1(ϕ1)−N1(ϕ2)‖X ≤C(‖ϕ1‖X + ‖ϕ2‖X )‖ϕ1 − ϕ2‖X ,(3.19)

‖N2(ϕ1, ψ1)−N2(ϕ2, ψ2)‖X ≤C(‖ϕ1‖X + ‖ϕ2‖X + ‖ψ1‖X + ‖ψ2‖X )(3.20)

× (‖ϕ1 − ϕ2‖X + ‖ψ1 − ψ2‖X ),

for ϕ1, ϕ2, ψ1, ψ2 ∈ X with ‖ϕ1‖X , ‖ϕ2‖X , ‖ψ1‖X , ‖ψ2‖X ≤ 1.

Then we have the following result.

Lemma 3.5. Assume that ξ close enough to ξ0. Then there exists a constant

C > 0 such that, for n 6= 0,

‖(inΞ +N )−1‖X→X ≤C,

‖(inΞ +N −G)−1‖X→X ≤C,

‖(inΞ +N −G)−1P±1,s‖X→X ≤C.

Proof. We observe that the solution ϕ of the equation (inΞ +N )ϕ = f is

given by

ϕ̂(y) =

(
inξ1 + ν|y|2 − ic1y1 0

0 inξ2 + η|y|2 − ic1y1

)−1
f̂(y), y ∈ R3.

For δ = min{ν2, η2}ξ2/(ξ2 + 4c21), we have

|inξ1 + ν|y|2 − ic1y1|2 = ν2|y|4 + (c1y1 + nξ1)2

≥ ω2

4c21
χ|y|≤ω/(2c1) + δ2(1 + |y|2)χ|y|≥ω/(2c1),

|inξ2 + η|y|2 − ic1y1|2 = η2|y|4 + (c1y1 + nξ2)2

≥ ω2

4c21
χ|y|≤ω/(2c1) + δ2(1 + |y|2)χ|y|≥ω/(2c1).

It follows for f ∈ Hm ×Hm that θ̂ ∈ L2
m+2 × L2

m+2, thus θ ∈ Hm+2 ×Hm+2.
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Let f̂ ∈ L2
m+2 × L2

m+2 ⊂ L2
m × L2

m, ω̂ = ρ(y, ε)ω̂ and v̂ = ρ(y, ε)v̂ with

ρ(x, ε) =
√

1 + ε|x|2. Note that ϕ is a solution of the equation (inΞ +N )ϕ = f .

By a direct computation, we have

(inΞ + N̂ ϕ̂) + εL(y, ε)ϕ̂ = ĝ,

where ϕ = (ω̂, v̂)T , ĝ = ρ(y, ε)f̂ and

εL(y, ε)

=

(
(inξ1 + ν|y|2 − icy1)(1− ρ−1(y, ε)) 0

0 (inξ2 + η|y|2 − icy1)(1− ρ−1(y, ε))

)
.

Here we use the fact that N is elliptic of order of 2. Hence it derives from the

form of ρ(y, ε) =
√

1 + ε|y|2 that

L(y, ε) ∼ ε|y|4

1 + ε|y|2 +
√

1 + ε|y|2

(
ν0 0

0 κ0

)
.

Using a Neumann series, it derives from the boundness of the operator L : L2
m+2×

L2
m+2 → L2

m × L2
m that

(inΞ + N̂ ) + εL : L2
m+2 × L2

m+2 → L2
m × L2

m

is invertible with a bounded inverse, for sufficient small ε > 0. This implies that

ϕ ∈ L2
m+2 × L2

m+2, i.e. ϕ ∈ Hm+2 ×Hm+2. Moreover, we have

‖ϕ‖Hm+2×Hm+2 = ‖ϕ̂‖L2
m+2×L2

m+2
= ‖ϕ̂‖L2

m+2×L2
m+2

≤C‖ĝ‖L2
m×L2

m
= C‖f‖Hm+2×Hm+2 .

Above result shows that (inΞ +N )−1 : Hm×Hm → Hm+2×Hm+2 is bounded.

But we only need this operator to be bounded X → X . This implies that the

spectrum of N in X well separated from inΞ for n 6= 0 and ε > 0 sufficient small.

In a similar manner to prove the first inequality, the rest two inequalities can be

obtained, so we omit it. �

By the same proof in Lemma 3.3, we obtain the following result.

Lemma 3.6. Assume that ξi close enough to ξ0 for i = 1, 2. Then there exists

a constant C > 0 such that

‖(inξi −Mi)
−1‖Hm→Hm ≤ C, ‖(inξi −Mi)

−1∇j · ‖Hm→Hm ≤ C,

‖(inξi −Mi)
−1‖Hm→Hm ≤ C, ‖(inξi −Mi)

−1∇j · ‖Hm→Hm ≤ C,

‖(inξi −Mi)
−1P±1,s‖Hm→Hm ≤ C, ‖(inξi −Mi)

−1∇j ·P±1,s‖Hm→Hm ≤ C,

for n 6= 0 and j = 1, 2.
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Thus by Lemmas 2.4 and 2.5, we can obtain the solution of equations (3.11)

and (3.13) as

ϕn = (inΞ +N )−1Fn(ϕ, u), n = ±2,±3, . . . ,

ϕ±1,s = (±iΞ +N )−1P±1,sF±1(ϕ, u),

i.e.

ωn = (inξ1 −M1)−1g3n(ω, u, v), n = ±2,±3, . . . ,(3.21)

vn = (inξ2 −M2)−1g4n(ω, u, v), n = ±2,±3, . . . ,(3.22)

ω±1,s = (±iξ1 −M1)−1P±1,sg
3
±1(ω, u, v),(3.23)

v±1,s = (±iξ2 −M2)−1P±1,sg
4
±1(ω, u, v).(3.24)

The following lemma shows the solvable of equations (3.22)–(3.24).

Lemma 3.7. Assume that there exist σ1, σ2 > 0 such that for all ξ1, ξ2 > 0

with |ξ1−ξ0|, |ξ2−ξ0| ≤ σ1 and all ω±1,c, v±1,c ∈ Hm with ‖ω±1,c‖Hm , ‖v±1,c‖Hm
≤ σ2. Then equations (3.21)–(3.24) has a unique solution (ω̃, ṽ) = Φ(ωc, vc) ∈ X ,

where

ωc = (ω−1,c, ω1,c), ω̃ = (. . . , ω−2, ω−1,c + ω−1,s, ω0, ω1,c + ω1,s, ω2, . . .),

vc = (v−1,c, v1,c), ṽ = (. . . , v−2, v−1,c + v−1,s, v0, v1,c + v1,s, v2, . . .).

Moreover, there exits C > 0 such that

Φ(0, 0) = (0, 0),(3.25)

‖ω̃ − ωc‖X ≤ C(‖ω−1,c‖2Hm + ‖ω1,c‖2Hm),(3.26)

‖ṽ − vc‖X ≤ C(‖v−1,c‖2Hm + ‖v1,c‖2Hm),(3.27)

and

‖ω̃‖X ≤ C(‖ω−1,c‖2Hm + ‖ω1,c‖2Hm),(3.28)

‖ũ‖X ≤ C(‖ω−1,c‖2Hm + ‖ω1,c‖2Hm),(3.29)

‖ṽ‖X ≤ C(‖v−1,c‖2Hm + ‖v1,c‖2Hm),(3.30)

with ω̃−ωc := (. . . , , 0, ω−1,c, 0, ω1,c, 0, . . .), ṽ−vc := (. . . , , 0, v−1,c, 0, v1,c, 0, . . .).

Proof. For fixed ξ1, ξ2 > 0 so close to ξ0 and given ω±1,c, v±1,c ∈ Hm with

‖ω±1,c‖Hm , ‖v±1,c‖Hm ≤ σ2. Define the operator

Γ: (ω̃∗, ṽ∗) 7→ (ω̃, ṽ)

= (ω̃∗ + (. . . , 0, ω−1,c, 0, ω1,c, 0, . . .), ṽ
∗ + (. . . , 0, v−1,c, 0, v1,c, 0, . . .))

7→ (ω, v) 7→ (ω̃∗∗, ṽ∗∗) = right hand side of (3.21)–(3.24),

where (ω, v) = (Jω̃,Jṽ) are defined in Lemma 2.1 and

(ω̃∗, ṽ∗) = ((. . . , ω−2, ω−1,s, ω0, ω1,s, ω2, . . .), (. . . , v−2, v−1,s, v0, v1,s, v2, . . .)),
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(ω̃, ṽ) = (ω̃∗ + ωc, ṽ
∗ + vc)

= (ω̃∗ + (. . . , 0, ω−1,c, 0, ω1,c, 0, . . .), ṽ
∗ + (. . . , 0, v−1,c, 0, v1,c, 0, . . .)).

Now we prove the operator Γ is a self-map of a sufficiently small ball in X . Using

Lemmas 2.6, 3.1, 3.2 and Lemma 3.4, by the form of nonlinear terms g3 and g4

in (2.2)–(2.3), respectively, we derive

‖ω̃∗∗‖X ≤C sup{‖(inξ1 −M1)−1‖Hm→Hm ,(3.31)

‖(±iξ1 −M1)−1P±1,s‖Hm→Hm ,

‖(inξ1 −M1)−1∇j‖Hm→Hm ,

‖(±iξ1 −M1)−1∇jP±1,s‖Hm→Hm : n ∈ Z \ {−1, 1}}

× ‖(g̃3n(ω, u, v))n∈Z‖X
≤C‖g̃3(ω̃, u, ṽ)‖X
≤C(‖ω̃‖X‖u‖X + ‖ω̃‖X‖ṽ‖X + ‖u‖X‖ṽ‖X)

≤C(‖ω̃‖2X + ‖ω̃‖X‖ṽ‖X)

≤C(‖ω̃∗‖2X + ‖ω−1,c‖2Hm + ‖ω1,c‖2Hm

+ ‖ṽ∗‖2X + ‖v−1,c‖2Hm + ‖v1,c‖2Hm)

≤C(‖ω̃∗‖2X + ‖ṽ∗‖2X + σ2
2),

‖ṽ∗∗‖X ≤C sup{‖(inξ2 −M2)−1‖Hm→Hm ,(3.32)

‖(±iξ2 −M2)−1P±1,s‖Hm→Hm ,

‖(inξ2 −M2)−1∇j‖Hm→Hm ,

‖(±iξ2 −M2)−1∇jP±1,s‖Hm→Hm : n ∈ Z \ {−1, 1}}

× ‖(g̃4n(ω, u, v))n∈Z‖X
≤C‖g̃4(ω̃, u, ṽ)‖X ≤ C(‖ṽ‖2X + ‖ω̃‖X‖ṽ‖X)

≤C(‖ω̃∗‖2X + ‖ω−1,c‖2Hm + ‖ω1,c‖2Hm

+ ‖ṽ∗‖2X + ‖v−1,c‖2Hm + ‖v1,c‖2Hm)

≤C(‖ω̃∗‖2X + ‖ṽ∗‖2X + σ2
2),

where g̃3 = C(ωuT + uωT + |v|2/2 + vvT ), g̃4 = C(vuT − uvT ). Thus, for

σ2 ≤ 1/
√

2C and (ω̃∗, ṽ∗) ∈ X with ‖(ω̃∗, ṽ∗)‖X ≤ 1/
√

2C, we have

‖Γ(ω̃∗, ṽ∗)‖X = ‖ω̃∗∗‖X + ‖ṽ∗∗‖X ≤ C((‖ω̃∗‖X + ‖ṽ∗‖X)2 + σ2
2) ≤ 1,

which implies that for sufficient small σ2 > 0, Γ maps the ‖ · ‖X ball of radius

r = 1. Hence, we obtain a unique fixed point (θ̃∗, ṽ∗) ∈ X of Γ, which means that

equations (3.21)–(3.24) has solution of (ω̃, ṽ) = (ω̃∗ + ωc, ṽ
∗ + vc). Moreover, if

(ω±1,c, v±1,c) = (0, 0), then Φ(0, 0) = (0, 0). Next we prove the second inequality
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in (3.25). Note that

(ω̃∗, ṽ∗) = Γ(ω̃∗, ṽ∗) = (θ̃∗∗, ṽ∗∗),

which combine with (3.31)–(3.32), we derive

‖ω̃ − ωc‖X = ‖ω̃∗‖X = ‖ω̃∗∗‖X ≤ C(‖ω̃∗‖2X + ‖ω−1,c‖2Hm + ‖ω1,c‖2Hm),

‖ṽ − vc‖X = ‖ṽ∗‖X = ‖ṽ∗∗‖X ≤ C(‖ṽ∗‖2X + ‖v−1,c‖2Hm + ‖v−1,c‖2Hm).

Thus we deduce that for sufficient small ball Br(0) ⊂ B1(0),

‖ω̃ − ωc‖X ≤C(‖ω−1,c‖2Hm + ‖ω1,c‖2Hm),(3.33)

‖ṽ − vc‖X ≤C(‖v−1,c‖2Hm + ‖v1,c‖2Hm).(3.34)

Note that

ω̃− ωc := (. . . , , 0, ω−1,c, 0, ω1,c, 0, . . .), ṽ− vc := (. . . , , 0, v−1,c, 0, v1,c, 0, . . .).

Hence by (3.33)–(3.34) and Lemma 2.6, we obtain

‖ωc‖X ≤ C(‖ω−1,c‖2Hm + ‖ω1,c‖2Hm), ‖vc‖X ≤ C(‖v−1,c‖2Hm + ‖v1,c‖2Hm),

and

‖ω̃‖X ≤C(‖ω−1,c‖2Hm + ‖ω1,c‖2Hm),

‖ũ‖X ≤C(‖ω−1,c‖2Hm + ‖ω1,c‖2Hm),

‖ṽ‖X ≤C(‖v−1,c‖2Hm + ‖v1,c‖2Hm).

This completes the proof. �

In the following, we can complete our proof of Theorem 1.1.

Proof of Theorem 1.1. To prove Theorem 1.1, the rest remains to analyze

equations (3.9)–(3.10). We restate equations:

(±iξ1 −M1)ω±1,c =P±1,cg
3
±1(ω, u, v),

(±iξ2 −M2)v±1,c =P±1,cg
4
±1(ω, u, v).

It follows from (ω−1, v−1) = (ω1, v1) and (g3±1, g
4
±1) = (g3±1, g

4
±1) that the “−”

equation is the complex conjugate of the “+” equation. By Lemma 2.1, we can

denote (ω, v) = (Jω̃,Jṽ) by means of

(ω̃, ṽ) = Φ(ωc, vc) = Φ((ω1,c, ω1,c), (v1,c, v1,c)).

Our target is to find (ξ1, β) and (ξ2, β) close to (ξ0, βc) and a nontrivial solution

(ω1,c, v1,c) = (ω1,c, v1,c)(x) of

−iξ1ω1,c +M1ω1,c + P1,cg
3
1(JΦ(ω1,c, ω1,c, v1,c, v1,c)) = 0,(3.35)

−iξ2v1,c +M2v1,c + P1,cg
4
1(JΦ(ω1,c, ω1,c, v1,c, v1,c)) = 0.(3.36)



Hopf–Bifurcation Theorem and Stability 487

Due to ω1,c, v1,c ∈ Cψ+ and (M1ψ
+,M2ψ

+) = (λ+0 (β)ψ+, µ+
0 (β)ψ+), we can

write

ω1,c = ηψ+, v1,c = δψ+.

Then by (3.35)–(3.36), we obtain

−iξ1ηψ+ + λ+0 (β)ηψ+ + P1,cg
3
1(JΦ(ηψ+, ηψ+, δψ+, δψ+)) = 0,(3.37)

−iξ2δψ+ + µ+
0 (β)δψ+ + P1,cg

4
1(JΦ(ηψ+, ηψ+, δψ+, δψ+)) = 0,(3.38)

for some η, δ ∈ C \ {0}.
To be simple, we introduce (p1,c, θ1,c) by

(P1,cω,P1,cv) = (p1,c(ω)ψ+, θ1,c(v)ψ+).

Then equations (3.37)–(3.38) can be written as

−iξ1η + λ+0 (β)η + g3(β, η, δ) = 0, for some η ∈ C,(3.39)

−iξ2δ + µ+
0 (β)δ + g4(β, η, δ) = 0, for some δ ∈ C,(3.40)

where the cubic coefficient µ 6= 0 in

g3(β, η, δ) := p1,c(g
3
1(JΦ(ηψ+, ηψ+, δψ+, δψ+)),(3.41)

g4(β, η, δ) := p1,c(g
4
1(JΦ(ηψ+, ηψ+, δψ+, δψ+)).(3.42)

Note that

|p1,c(ω)| ≤C‖P1,cω‖Hm ≤ C‖ω‖Hm ,(3.43)

|p1,c(v)| ≤C‖P1,cv‖Hm ≤ C‖v‖Hm .(3.44)

So by (3.28)–(3.30), (3.43)–(3.44), we derive

|p1,c(g31(JΦ(ηψ+, ηψ+, δψ+, δψ+))| ≤ C‖g31(JΦ(ηψ+, ηψ+, δψ+, δψ+)‖Hm

≤C‖Φ(ηψ+, ηψ+, δψ+, δψ+)‖X
≤C(‖ω1,c‖2Hm + ‖ω1,c‖2Hm + ‖v1,c‖2Hm + ‖v1,c‖2Hm)

≤C(‖ηψ+‖2Hm + ‖δψ+‖2Hm) ≤ C(|η|2 + |δ|2),

|p1,c(g41(JΦ(ηψ+, ηψ+, δψ+, δψ+))| ≤ C‖g41(JΦ(ηψ+, ηψ+, δψ+, δψ+)‖Hm

≤C‖Φ(ηψ+, ηψ+, δψ+, δψ+)‖X
≤C(‖ω1,c‖2Hm + ‖ω1,c‖2Hm + ‖v1,c‖2Hm + ‖v1,c‖2Hm)

≤C(‖ηψ+‖2Hm + ‖δψ+‖2Hm) ≤ C(|η|2 + |δ|2),

where we use the notation (ω̃, ṽ) = Φ(ωc, vc) = Φ(ηψ+, ηψ+, δψ+, δψ+). Inspired

by the classical Hopf-bifurcation result [16], one can employ the implicit function
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theorem to find real value solutions (i.e. find (γ1, γ2) = (η, δ) ∈R2) of equations

(3.39)–(3.40). Hence, we define the complex-valued smooth function

Υ1(γ1, γ2; %, β) :=

−i(ξ0 + %) + λ+0 (βc + ε) + γ−11 g3(βc + ε, γ1, γ2), γ1 6= 0,

−i(ξ0 + %) + λ+0 (βc + ε), γ1 = 0,

Υ2(γ1, γ2; %, β) :=

−i(ξ0 + %) + µ+
0 (βc + ε) + γ−12 g4(βc + ε, γ1, γ2), γ2 6= 0,

−i(ξ0 + %) + µ+
0 (βc + ε), γ2 = 0.

It follows from (λ+0 (βc), µ
+
0 (βc)) = (iξ0, iξ0) that (Υ1(0, 0, 0, 0),Υ2(0, 0, 0, 0)) =

(0, 0). Moreover, by assumption (H2) the Jacobi matrix

Dρ,εΥ
1(γ1, γ2; %, ε)|γ1=γ2=%=ε=0 =


0

d

dβ
Reλ+0 (β)

∣∣∣∣
β=βc

−1
d

dβ
Imλ+0 (β)

∣∣∣∣
β=βc

 ,

Dρ,εΥ
2(γ1, γ2; %, ε)|γ1=γ2=%=ε=0 =


0

d

dβ
Reµ+

0 (β)

∣∣∣∣
β=βc

−1
d

dβ
Imµ+

0 (β)

∣∣∣∣
β=βc

 ,

with respect to ρ, ε has

detDρ,εΥ
1(γ1, γ2; %, ε)|γ1=γ2=%=ε=0 =

d

dβ
Reλ+0 (β)

∣∣∣∣
β=βc

> 0,

detDρ,εΥ
2(γ, γ2; %, ε)|γ1=γ2=%=ε=0 =

d

dβ
Reµ+

0 (β)

∣∣∣∣
β=βc

> 0.

Thus, for sufficient small γ1, γ2 > 0, we find a function γ1 7→ (%(γ1), ε(γ1)) and

γ2 7→ (%(γ2), ε(γ2)) with %(0) = ε(0) = 0 such that

− i(ξ0 + %(γ1)) + λ+0 (βc + ε(γ1))− γ−11 g3(βc + ε(γ1), γ1, βc + ε(γ2), γ2) = 0,

− i(ξ0 + %(γ2)) + µ+
0 (βc + ε(γ2))− γ−12 g4(βc + ε(γ1), γ1, βc + ε(γ2), γ2) = 0.

Note that the degree of nonlinearity. Then it follows from differentiating this

equation that εi 6= 0 for some first i. Hence, the function γ1 7→ ε(γ1) and

γ1 7→ ε(γ2) are locally invertible, and have ε 7→ γ1(ε) and ε 7→ γ2(ε). It implies

that the following equation holds

− i(ξ0 + %(γ1(ε)))γ1(ε) + λ+0 (βc + ε)γ1(ε)− g3(βc + ε, γ1(ε), γ2(ε)) = 0,

− i(ξ0 + %(γ2(ε)))γ2(ε) + µ+
0 (βc + ε)γ2(ε)− g4(βc + ε, γ1(ε), γ2(ε)) = 0,

for sufficient small ε > 0.

Therefore we obtain the desired solutions of (3.35)–(3.36) by setting

(ξ1, ξ2) = (ξ0 + %(γ1(ε)), ξ0 + %(γ2(ε))), β = βc + ε,



Hopf–Bifurcation Theorem and Stability 489

(ω1,c, v1,c) = (γ1(ε)ψ+
βc+ε

, γ2(ε)ψ+
βc+ε

)(x).

This result combines with Lemma 2.5 giving the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

In this section, inspired by the work [5], we will use Bootstrap Techniques

to prove that linear stability of smooth time periodic solution implies nonlinear

stability for MHD in Lp for p > 3.

Assume that (Uα, Hα) is the smooth periodic solution of (1.1)–(1.3) and

c1 =0. P denotes the Leray projection onto the space of divergence free functions.

We introduce the deviation

u = U − Uα, v = H −Hα.

Then, we can obtain:

ut = Au+N1(u, v),(4.1)

vt = Bv′ +N2(u, v),(4.2)

u|t=0 = u0, v|t=0 = v0,

where

Au = P[ν4u− uα · ∇u− u · ∇uα −Hα · ∇u+Hα · ∇u+ u · ∇Hα],(4.3)

Bv′ = P[η4v − uα · ∇v − u · ∇vα + vα · ∇u+ v · ∇uα],(4.4)

and

N1(u, v) = P

[
−∇ · (u⊗ u)− 1

2
∇|v|2 +∇ · (v ⊗ v)

]
,(4.5)

N2(u, v) = P[−∇ · (u⊗ v) +∇ · (v ⊗ u)].(4.6)

By [22], we note that the linear periodic operator A and B is a bounded perturba-

tion of the Stokes operator P4. The operator A and B generates a strongly con-

tinuous semigroup in every Sobolev space Ws,p which we denote by eAt and eBt:

u(t) = eAtu0, u0 ∈Ws,p,

v(t) = eBtv0, v0 ∈Ws,p.

Let λ1 and λ2 be the eigenvalue of A and B with maximal positive real part,

which we denote by µ1 and µ, and let φ1, φ2 ∈ Lp, with ‖φ‖Lp = ‖φ‖Lp = 1,

be the corresponding eigenfunction. For fixed 0 < σ1 < λ1 and 0 < σ2 < λ2 we

denote by Aσ and Bσ the following operator:

Aσ1 = A− λ1 − σ1, Bσ2 = B − λ2 − σ2.

Let us fix an arbitrary small ε > 0, and solve the Cauchy problem (4.1)–(4.2)

with initial condition (u0, v0) = (εφ1, εφ2). By [23], we note that for such initial

condition, with ε small enough, there exists a unique global in time classical
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solution to (4.1)–(4.2). Using Duhamel’s formula we write the solution in the

form

ut = u0e
λ1t +

∫ t

0

eA(t−s)N1(u, v)(s) ds,(4.7)

vt = v0e
λ2t +

∫ t

0

eB(t−s)N2(u, v)(s) ds.(4.8)

Before we show the proof of Theorem 1.3, we state the following Sobolev

embedding theorem which is taken from [5].

Lemma 4.1. Let s > 0, 1 < r1 <∞ and 1 < r2 <∞ satisfy

1

r1
< 1− s

n
, r2 ≤ r1,

1

r2
≤ 1

r1
+
s

n
.

Then ‖f‖W−s,r1 ≤ ‖f‖Lr2 .

Proof of Theorem 1.3. By assumption (H3), the spectrum of linear time

periodic operators A and B are strictly bounded away from the imaginary axis in

the left half plane for all α ∈ [αc−α0, αc +α0]. So there exist positive constants

µ1 and µ2 such that

‖eAtu0‖Lq ≤ Ce−µ1t‖u0‖Lq , ‖eBtv0‖Lq ≤ Ce−µ2t‖v0‖Lq ,

for all t > 0 and (u0, v0) ∈ Lp.
Then by (4.7)–(4.8) and Lemma 2.4, we derive

‖u‖Lq = ‖eAtu0‖Lq +

∥∥∥∥∫ t

0

e−µ1(t−s)AγeA(t−s)A−γN1(u, v)(s) ds

∥∥∥∥
Lq

(4.9)

≤Ce−µ1t‖u0‖Lq + C

∫ t

0

e−µ1(t−s) 1

(t− s)γ
‖A−γN1(u, v)(s)‖Lq ds,

and

‖v‖Lq = ‖eBtv0‖Lq +

∥∥∥∥∫ t

0

e−µ2(t−s)AγeB(t−s)B−γN2(u, v)(s) ds

∥∥∥∥
Lq

(4.10)

≤Ce−µ2t‖v0‖Lq + C

∫ t

0

e−µ2(t−s) 1

(t− s)γ
‖B−γN2(u, v)(s)‖Lq ds.

Then, by Lemma 2.5, (4.5)–(4.6) and the continuity of the Leray projection, we

have

‖A−αN1(u, v)(s)‖Lq ≤‖N1(u, v)(s)‖W−2γ,q ≤ ‖N1(u, v)(s)‖W−2γ,q

≤C(‖u⊗ u‖W1−2γ,q + ‖v‖2W1−2γ,q + ‖v ⊗ v‖W1−2γ,q ),

and

‖B−αN2(u, v)(s)‖Lq ≤‖N2(u, v)(s)‖W−2γ,q ≤ ‖N2(u, v)(s)‖W−2γ,q

≤C(‖u⊗ v‖W1−2γ,q + ‖v ⊗ u‖W1−2γ,q ).
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We choose γ close to 1 so that q > 3/(2γ − 1). This means that the conditions

in Lemma 4.1 is satisfied with s = 2γ − 1, r1 = q and r2 = q/2. Thus, we have

‖A−γN1(u, v)(s)‖Lq ≤C(‖u⊗ u‖Lq/2 + ‖v‖2
Lq/2

+ ‖v ⊗ v‖Lq/2)

≤C(‖u‖2Lq + ‖v‖2Lq ),

‖B−γN2(u, v)(s)‖Lq ≤C(‖u⊗ v‖Lq/2 + ‖v ⊗ u‖Lq/2) ≤ C‖u‖Lq‖v‖Lq .

Thus, by (4.9)–(4.10), we obtain

‖u‖Lq ≤Ce−µ1t‖u0‖Lq(4.11)

+ C

∫ t

0

e−µ1(t−s) 1

(t− s)γ
(‖u(s)‖2Lq + ‖v(s)‖2Lq ) ds,(4.12)

and

(4.13) ‖v‖Lq ≤ Ce−µ2t‖v0‖Lq + C

∫ t

0

e−µ2(t−s) 1

(t− s)γ
‖u(s)‖Lq‖v(s)‖Lq ds.

Let T be the maximal time for which

‖u‖Lq ≤ 2Ce−µ1t‖u0‖Lq , t ≤ T,(4.14)

‖v‖Lq ≤ 2Ce−µ2t‖v0‖Lq , t ≤ T,(4.15)

Combining (4.11)–(4.15), we have

‖v‖Lq ≤ Ce−µ2t‖v0‖Lq (1 + 4C2‖u0‖Lqe−µ1t)(4.16)

≤ Ce−µ2t‖v0‖Lq (1 + 4C2‖u0‖Lq ),

‖u‖Lq ≤ Ce−µ1t‖u0‖Lq (1 + 4C2‖u0‖Lqe−µ1t) + 4C3‖v0‖2Lqe−2µ2t,(4.17)

for t ≤ T . Summing up (4.16)–(4.17), we have

‖u‖Lq + ‖v‖Lq ≤Ce−µ1t‖u0‖Lq (1 + 4C2‖u0‖Lqe−µ1t)(4.18)

+ 4C3‖v0‖2Lqe−2µ2t + Ce−µ2t‖v0‖Lq (1 + 4C2‖u0‖Lq ),

for t ≤ T . We choose ‖u0‖Lq < 1/(8C2), ‖v0‖Lq ≤ 1/(16C2). Then, by (4.18),

we obtain

(4.19) ‖u‖Lq + ‖v‖Lq ≤
3C

2
e−µ1t‖u0‖Lq +

7C

4
e−µ2t‖v0‖Lq , t ≤ T,

But from (4.14)–(4.15), we have

(4.20) ‖u‖Lq + ‖v‖Lq ≤ 2C(e−µ1t‖u0‖Lq + e−µ2t‖v0‖Lq ), t ≤ T.

Therefore, (4.20) implies the smaller bound of (4.19), which means a contradic-

tion with a maximal time T . Thus, T = ∞ and the bound (4.20) holds for all

t ≥ 0. �
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