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Abstract. We study the existence of solutions for a class of nonlinear

Schrödinger equations involving a magnetic field with mixed Dirichlet–
Neumann boundary conditions. We use Lusternik–Shnirelman category

and the Morse theory to estimate the number of nontrivial solutions in

terms of the topology of the part of the boundary where the Neumann
condition is prescribed.

1. Introduction

A major role in quantum physics is played by the nonlinear Schrödinger

equation

(1.1) ih
∂Ψ

∂t
=

(
h

i
∇−A(x)

)2

Ψ + U(x)Ψ− f(|Ψ|2)Ψ, x ∈ Ω,
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where Ω is a bounded smooth domain in RN , N ≥ 3, t ∈ R, h is a positive

constant, i is the imaginary unit, Ψ:R × RN → C is the wave function, f is

a nonlinear term, U is the real electric potential, A:RN → RN denotes a magnetic

potential and the Schrödinger operator is defined by(
h

i
∇−A(x)

)2

Ψ = −h2∆Ψ− 2h

i
A∇Ψ + |A|2Ψ− h

i
ΨdivA.

We are interested in standing wave solutions, that is, solutions for (1.1) in the

form Ψ(t, x) = e−iEt/hu(x), where u satisfies

(1.2)

(
h

i
∇−A(x)

)2

u+ V (x)u = f(|u|2)u, x ∈ Ω,

where V (x) = U(x)−E. Assuming that V ≡ 1, it follows immediately that u is

a solution of 2 if, and only if, the function v(x) = u(hx) solves

(1.3)

(
1

i
∇−Aλ(x)

)2

v + v = f(|v|2)v, x ∈ Ωλ,

where λ = h−1, Aλ(x) = A(λ−1x) and Ωλ
.
= λΩ. The case with no magnetic

vector field, namely A = 0, has been widely studied in the literature. We re-

fer to [3], [4], [7], [8], [20], [23], [27], [33], [34], and references in these papers.

Existence results for the magnetic case were established in [1], [2], [5], [12]–[18],

[22], [24]–[26], [28], [30]–[32]. In [2], the authors have proved that if f is a su-

perlinear function with subcritical growth, then for large values of λ > 0, the

equation (1.3) with boundary Dirichlet condition has at least catΩλ(Ωλ) non-

trivial weak solutions, where catΩλ(Ωλ) denotes the the Lusternik–Schnirelman

category of Ωλ in Ωλ. In the seminal works [7], [8], Benci and Cerami used

Lusternik–Schnirelman category and Morse theory to estimate the number of

positive solutions of the problem

(1.4) −ε∆u+ u = f(u), in Ω, u = 0, on ∂Ω,

where Ω is a bounded domain. In [8], it is proved that for ε sufficiently small

the number of positive solutions is at least catΩ(Ω). In [7], the authors proved

via Morse theory that the number of solutions depends on the topology of Ω,

actually on Pt(Ω), the Poincaré polynomial of Ω. In [11], Candela and Lazzo

have considered this same equation with mixed Dirichlet–Neumann boundary

conditions with f(t) = |t|p−2t. It was proved that the number of positive solu-

tions is influenced by the topology of the part Γ1 of the boundary ∂Ω where the

Neumann condition is assumed, more precisely, if (N − 1)-dimensional Lebesgue

measure in RN is positive, then the respective problem has at least category of

a set Γ1, provided ε is sufficiently small.
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Motivated by the results just described, a natural question is whether same

kind of result holds for the mixed boundary problem with magnetic field

(1.5)


(−i∇−Aλ)2u+ u = f(|u|2)u in Ωλ,

u = 0 on Γ0λ,

∂u

∂ν
= 0, on Γ1λ,

where λ is a positive real parameter, Ωλ = λΩ is an expanding set, Ω ⊂ RN

(N ≥ 3) is a bounded domain with smooth boundary ∂Ω = Γ0∪Γ1, where Γ0,Γ1

are smooth disjoint submanifolds with positive (N − 1)-dimensional Lebesgue

measure in RN , Γ0λ
.
= λΓ0, Γ1λ

.
= λΓ1, A ∈ C(Ω,RN ) and f ∈ C1(R+) satisfies:

(f1) f(s) = o(1) and f ′(s) = o(1/s), as s→ 0+.

(f2) There exists q ∈ (2, 2∗) such that

lim
s→∞

f(s)

s(q−2)/2
= 0 and lim

s→∞

f ′(s)

s(q−4)/2
= 0,

where 2∗ = 2N/(N − 2).

(f3) There exists θ > 2 such that

0 <
θ

2
F (s) ≤ sf(s), for s > 0,

where F (s) =
∫ s

0
f(t) dt.

(f4) f ′(s) > 0, for all s > 0.

(f5) There exist q ∈ (2, 2∗) and a constant C > 0 such that

sf(s)− F (s) ≥ C|s|q/2, for all s ≥ 0.

We state that the magnetic field does not play any role on the number of

solutions of (1) and therefore a result in the same spirit of [7] and [11] holds.

More precisely, our main results are the following:

Theorem 1.1. Suppose that f satisfies (f1)–(f5). There exist λ∗ > 0 such

that for any λ > λ∗ problem (1.5) has at least catΓ1λ
(Γ1λ) nontrivial weak solu-

tions.

To established the result in terms of Morse theory, we introduce some nota-

tion. For any λ > 0, let H1
Aλ

(Ωλ,Γ0λ) be the Hilbert space

H1
Aλ

(Ωλ,Γ0λ)
.
= {u ∈ L2(Ωλ,C); |∇Aλu| ∈ L2(Ωλ), trace of u = 0 on Γ0λ},

endowed with the norm

〈u, v〉Aλ
.
= Re

{∫
Ωλ

(∇Aλu∇Aλv + uv) dx

}
,

where

∇Aλu
.
= (Dj

Aλ
u)Nj=1, Dj

Aλ
u
.
= −i∂ju−Ajλu
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and Re(w) is the real part of w ∈ C and w is its complex conjugate. The norm

induced by this inner product is given by

‖u‖Aλ =

(∫
Ωλ

(|∇Aλu|2 + |u|2) dx

)1/2

.

By [22], we can state a version of diamagnetic inequality for the space

H1
Aλ

(Ωλ,Γ0λ): For any u ∈ H1
Aλ

(Ωλ,Γ0λ),

(1.6) |∇Aλu| ≥ |∇|u||.

As a consequence, the embedding H1
Aλ

(Ωλ,Γ0λ) ↪→ Lp(Ωλ,R) is continuous for

1 ≤ p ≤ 2∗ and it is compact for 1 ≤ p < 2∗. It is worth pointing out that

the embedding constants do not depend on λ, because of the assumption that

Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω. We also

emphasize that the regularity on ∂Ω assumed here must be sufficient to obtain

r0 > 0 such that

(1.7) Br0(y + r0νy) ⊂ Ω and Br0(y − r0νy) ⊂ RN \ Ω,

uniformly for y ∈ ∂Ω, where νy is the inward unitary normal vector to ∂Ω in y

and Br(z) denotes the ball of radius r centered at z.

The functional associated with (1.5) Iλ : H1
Aλ

(Ωλ,Γ0λ)→ R is given by

(1.8) Iλ(u)
.
=

1

2

∫
Ωλ

(|∇Aλu|2 + |u|2) dx− 1

2

∫
Ωλ

F (|u|2) dx.

From conditions (f1)–(f2), the functional Iλ is well defined and belongs to

C2(H1
Aλ

(Ωλ,Γ0λ),R). Furthermore,

I ′λ(u)v
.
= Re

{∫
Ωλ

∇Aλu∇Aλv + uv dx−
∫

Ωλ

f(|u|2)uv dx

}
,

for all u, v ∈ H1
Aλ

(Ωλ,Γ0λ). Thus, every critical point of Iλ is a weak solution of

problem (1.5).

In the notation of [7], we have if u is an isolated critical point of Iλ and

Iλ(u) = c, the polynomial Morse index it(u) of u is defined by

it(u) =
∑
k

dim[Hk(Icλ ∩ U, (Icλ \ {u}) ∩ U)]tk,

where Hk( · , · ) denotes the kth group de homology with coefficients in some

field K, U is a neighbourhood of u and

Icλ = {v ∈ H1
Aλ

(Ωλ,Γ0λ); Iλ(v) ≤ c}.

As is proved in [6, Theorem I.5.8], if u is a non-degenerate critical point, then

it(u) = tµ(t), where µ(u) denotes the numeric Morse index of u.
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Let X be a topological space. The Poincaré polynomial of X is defined by

Pt(X) =
∑
k

dim [Hk(X)]tk.

Following [7], we can prove the ensuing multiplicity result:

Theorem 1.2. Suppose that f satisfies (f1)–(f5) and the set K of nontrivial

solutions of problem (1.5) is discrete. Then, there exists λ∗ > 0 such that∑
u∈K

it(u) = tPt(Γ1λ) + t2[Pt(Γ1λ)− 1] + (t+ 1)Q(t),

for every λ > λ∗, where Q(t) is a polynomial with non-negative integer coeffi-

cients.

In the non-degenerate case, we have:

Corollary 1.1. Suppose that f satisfies (f1)–(f5) and the solutions of prob-

lem (1.5) are non-degenerate. Then, there exists λ∗ > 0 such that∑
u∈K

tµ(u) = tPt(Γ1λ) + t2[Pt(Γ1λ)− 1] + (t+ 1)Q(t),

for every λ > λ∗, where Q(t) is a polynomial with non-negative integer coeffi-

cients.

As observed in [7] (see also [19]), the application of the Morse theory can give

better information than the use of the Lusternik–Schnirelman theorem. Theo-

rem 1.2 shows that the problem (1.5) possesses at least 2P1(Γ1λ)− 1 nontrivial

weak solutions. In the case of Γ1λ is topologically trivial, we have P1(Γ1λ) = 1

and this theorem does not provide any additional information about multiplicity

of solutions. On the other hand, when Γ1λ is a topologically rich domain, for

example, if Γ1λ is obtained by contractible submanifold cutting off k contractible

open non-empty sets in ∂Ω, we obtain that the number of nontrivial solutions

of (1.5) is affected by k, even if the category of Γ1λ is 2.

In order to prove Theorems 1.1 and 1.2, we combine the Benci and Cerami

approach [7] with a variation of the arguments of Candela and Lazzo [11]. The

major steps in Benci and Cerami approach are the analysis of the behavior of

some critical levels related to problem (3) and the comparison of the topology

of Ω with some sublevel sets of the functional associated with (3). Although

we use this machinery, we have to make a detailed analysis of the behavior

of the minimax levels associated with the problem (1.5) and a more involved

proof that the barycenter function maps suitable sublevel sets of the functional

associated with (1.5) in a neighbourhood of the portion of the boundary where

the Neumann condition is prescribed. This is because the equation (1.5) involves

a magnetic field and mixed Dirichlet–Neumann boundary conditions. Moreover,
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as the nonlinearity is not necessarily homogeneous, our arguments are different

from what can already be found in [11]. Once these crucial steps are verified,

we can employ the Morse theory developed in [7, Section 5] to estimate the

number of nontrivial solutions to (1.5) in terms of the topology of the part of

the boundary where the Neumann condition is assumed.

Theorems 1.1 and 1.2 can be seen as a complement of the studies made in

[2], [7] and [11] in the following aspects: 1) In [2] only the Dirichlet boundary

condition was considered; 2) In [7], the problem was considered for the Laplacian

operator and Dirichlet boundary condition. Here we are working with a more

general boundary condition and with a class of operators which includes the

Laplacian operator as a particular case; 3). In [11], the problem was also consid-

ered for Laplacian operator and with a homogeneous nonlinearity. In the present

paper we deal with a class of nonlinearities that has the homogeneous functions

as a particular case. As we are mainly considering a non homogeneous nonlin-

earity, our estimates are more delicate and we need to make a careful analysis

in several estimates involving different arguments from those used in [11], see

Sections 3, 4 and 5.

2. The Palais–Smale condition

In this section we establish the Palais-Smale condition for the functional Iλ,

defined by (1.8), and for the functional Iλ constrained to Mλ. As a direct

consequence of (f1)–(f3), we obtain

(f6) Given ε > 0, there exist constant Cε > 0 such that

f(s) ≤ ε+ Cεs
(q−2)/2, for all s ≥ 0,

where q ∈ (2, 2∗).

(f7) There exists θ > 2 and a constant C > 0 such that

F (s) ≥ C|s|θ/2 − C, for all s ≥ 0,

where F (s) =
∫ s

0
f(t) dt.

Proposition 2.1. The functional Iλ satisfies the Palais–Smale condition,

that is, every sequence (un) ⊂ H1
Aλ

for which sup
n∈N
|Iλ(un)| <∞ and I ′λ(un)→ 0,

as n→∞, possesses a converging subsequence.

Proof. Given a sequence (un) ⊂ H1
Aλ

(Ωλ,Γ0λ) such that sup
n∈N
|Iλ(un)| <∞

and I ′λ(un) → 0, as n → ∞, we may assume that Iλ(un) → d and I ′λ(un) → 0,

as n → ∞, for some d ∈ R. We claim that (un) is bounded. In fact, from (f3),
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we have

d+ on(1) + on(1)‖un‖Aλ = Iλ(un)− 1

θ
I ′λ(un)un

=

(
1

2
− 1

θ

)
‖un‖2Aλ +

∫
Ωλ

(
1

θ
f(|un|2)|un|2 −

1

2
F (|un|2

)
≥
(

1

2
− 1

θ

)
‖un‖2Aλ ,

where on(1) denotes a quantity going to zero zero as n → ∞. From this, we

obtain that (un) is bounded. As a consequence, we may assume that (un) has

a subsequence, still denoted by (un), and there exists u ∈ H1
Aλ

(Ωλ,Γ0λ) such

that

un ⇀ u in H1
Aλ

(Ωλ,Γ0λ),

un → u in Lp(Ωλ,C), for all p ∈ [1, 2∗),

un → u a.e. in Ωλ.

Invoking the definition of I ′λ, we obtain

‖un−u‖2Aλ = (I ′λ(un)−I ′λ(u))(un−u)−Re

{∫
Ωλ

(f(|un|2)un−f(|u|2)u)(un − u)

}
.

Thus, from (f6) and (9),

‖un − u‖2Aλ ≤ |I
′
λ(un)(un − u)|+ |I ′λ(u)(un − u)|

+

∫
Ωλ

|f(|un|2)un − f(|u|2)u||un − u| = on(1),

as n→∞. Hence, un → u in H1
Aλ

(Ωλ,Γ0λ). �

By (f6)–(f7), it is a simple matter to check that Iλ satisfies the geometric

hypotheses of the mountain pass theorem. From this and Proposition 2.1, for

any λ > 0, there exists uλ ∈ H1
Aλ

(Ωλ,Γ0λ) such that I ′λ(uλ) = 0 and Iλ(uλ)
.
= bλ,

where bλ denotes the mountain pass level of the functional Iλ. From (f4), the

level bλ satisfies (see [36])

(2.1) bλ = inf
u∈Mλ

Iλ(u),

where Mλ denotes the Nehari manifold associated with Iλ, namely

Mλ = {u ∈ H1
Aλ

(Ωλ,Γ0λ) \ {0}; I ′Ωλ(u)u = 0}.

Since we are intend to consider the functional Iλ constrained to Mλ, the next

two results are required.

Proposition 2.2. Suppose that f satisfies (f1) and (f2). Then, there exists

δ0 > 0 independent of λ > 0 such that every u ∈Mλ satisfies

‖u‖Aλ ≥ δ0 and Iλ(u) ≥ δ0.
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Proof. From (f6), given ε > 0 there exists Cε > 0 such that for every

u ∈Mλ,

‖u‖2Aλ =

∫
Ωλ

f(|u|2)|u|2 ≤ ε
∫

Ωλ

|u|2Ωλ,2 + Cε

∫
Ωλ

|u|qΩλ,q.

Since the embedding H1
Aλ

(Ωλ,Γ0λ) ↪→ Lp(Ωλ,C) is continuous for p ∈ [1, 2∗] and

the embedding constant does not depend on λ, there exists a positive constant

C independent of λ such that

(2.2) ‖u‖2Aλ ≤ C(ε‖u‖2Aλ + Cε‖u‖qAλ).

Taking ε = 1/(2C) in (2.2), we have

(2.3) ‖u‖Aλ ≥
(

1

2CCε

)1/(q−2)

=: δ1 > 0.

For any u ∈Mλ, from (f3) and (2.3), it follows that

Iλ(u) =

(
1

2
− 1

θ

)
‖u‖2Aλ +

∫
Ωλ

(
1

θ
f(|u|2)|u|2 − 1

2
F (|u|2)

)
≥
(

1

2
− 1

θ

)
‖u‖2Aλ ≥

(
1

2
− 1

θ

)
δ2
1 =: δ2.

Taking δ0
.
= min{δ1, δ2} = δ2, we conclude the proof. �

Proposition 2.3. The functional Iλ constrained to Mλ satisfies the Palais–

Smale condition.

Proof. Let (un) ⊂ Mλ be a sequence such that sup
n∈N
|Iλ(un)| < ∞ and

(Iλ|Mλ
)′(un) → 0, as n → ∞. We can assume, by taking a subsequence if

necessary, that Iλ(un) → d, for some d ∈ R. By [36, Proposition 5.12], for each

n ∈ N there exists µn ∈ R such that

(2.4) I ′λ(un)− µnG′λ(un) = (Iλ|Mλ
)′(un) = on(1),

where Gλ(v) = I ′λ(v)v, for all v ∈ H1
Aλ

(Ωλ,Γ0λ).

As in the proof of Proposition 2.1, (un) is bounded. Hence, we may sup-

pose that (un) has a subsequence, still denoted by (un), and there exists u ∈
H1
Aλ

(Ωλ,Γ0λ) such that

un ⇀ u in H1
Aλ

(Ωλ,Γ0λ),

un → u in Lp(Ωλ,C), for all p ∈ [1, 2∗),
un → u a.e. on Ωλ.

Since un ∈Mλ, the condition (f4) implies

(2.5) G′λ(un)un = −2

∫
Ωλ

f ′(|un|2)|un|4 ≤ 0.
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Moreover, by Proposition 2.2, we have∫
Ωλ

f(|un|2)|un|2 ≥ δ2
0 , for all n ∈ N.

Taking n→∞ and using the Sobolev embedding, we obtain∫
Ωλ

f(|u|2)|u|2 ≥ δ2
0 ,

and so, u 6≡ 0. From this, (2.5) and Fatou lemma, we have

lim inf
n→∞

G′λ(un)un = lim inf
n→∞

−2

∫
Ωλ

f ′(|un|2)|un|4 ≤ −2

∫
Ωλ

f ′(|u|2)|u|4 < 0.

Now, we use (2.4) to obtain that µn → 0, as n→∞. Consequently, the sequence

(un) also satisfies sup
n∈N
|Iλ(un)| <∞ and I ′λ(un)→ 0, as n→∞. Proposition 2.3

now shows that the functional Iλ constrained to Mλ satisfies the Palais–Smale

condition. �

We can proceed analogously to the proof of Proposition 2.3 to show the next

result.

Corollary 2.1. I f u is a critical of the functional Iλ constrained to Mλ,

then u is a nontrivial critical point of Iλ.

3. Preliminaries

Firstly we introduce some notation. Let RN+ = {(x1, . . . , xN ) ∈ RN : xN > 0}
and RN−1 = {(x1, . . . , xN ) ∈ RN : xN = 0}. Consider the problems

(3.1) −∆u+ u = f(u2)u in RN+ ,
∂u

∂ν
= 0 on RN−1

and

(3.2) −∆u+ u = f(u2)u in RN , u ∈ H1(RN ).

Consider now the respective functionals associated with the above problems

J∞(u)
.
=

1

2

∫
RN+

(|∇u|2 + u2)− 1

2

∫
RN+

F (u2), for all u ∈ H1(RN+ ),

and

JRN (u)
.
=

1

2

∫
RN

(|∇u|2 + u2)− 1

2

∫
RN

F (u2), for all u ∈ H1(RN ).

We define the corresponding Nehari manifolds and mountain pass levels:

N∞
.
= {u ∈ H1(RN+ ) \ {0}; J ′∞(u)u = 0} and c∞

.
= inf
N∞

J∞,
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and

NRN
.
= {u ∈ H1(RN ) \ {0}; J ′RN (u)u = 0} and cRN

.
= inf
NRN

JRN .

By [9], [29], (3.2) has a radially symmetric positive solution w ∈ H1(RN ) ∩
C2(RN ). Moreover, the restriction of w to RN+ is a solution of (3.1). As a con-

sequence,

(3.3) cRN = 2c∞.

Let r > 0 be such that the sets

Γ+
1
.
= {x ∈ RN ; dist(x,Γ1) < r}, Γ−1

.
= {x ∈ Γ1; dist(x,Γ0) ≥ r}

are homotopically equivalent to Γ1. Let η ∈ C∞(R+) be a non-increasing func-

tion such that η = 1 on [0, r/2], η = 0 on [r,+∞), |η′| ∈ L∞(R+). We will

denote by (Γ−1 )λ the set λΓ−1 . For any y ∈ (Γ−1 )λ, we define the function

x ∈ Ωλ 7→ eiτλ,y(x)η

(
|x− y|
λ

)
w(x− y), where τλ,y(x)

.
=

N∑
j=1

Ajλ(y)xj .

By definition of η, this function belongs to H1
Aλ

(Ωλ,Γ0λ). From (f1)–(f4), there

exists tλ,y > 0 such that

tλ,ye
iτλ,yη

(
| · −y|
λ

)
w( · − y) ∈Mλ.

Hence, y ∈ (Γ−1 )λ, and so we are able to define the function Φλ: (Γ−1 )λ →Mλ by

(3.4) Φλ(y)(x) = tλ,ye
iτλ,y(x)η

(
|x− y|
λ

)
w(x− y), for all x ∈ Ωλ.

Proposition 3.1. Suppose that f satisfies (f1) and (f2). Then, the limit

holds:

lim
λ→+∞

max
y∈Γ−1λ

|Iλ(Φλ(y))− c∞| = 0.

Proof. Let (λn) be any sequence such that λn → ∞, as n → ∞. Since

(Γ−1 )λn is a compact set and Iλn(Φλn) ∈ C((Γ−1 )λn), it suffices to prove that

lim
n→∞

Iλn(Φλn(yn)) = c∞,

for yn ∈ (Γ−1 )λn where the function |Iλn(Φλn( · ))− c∞| attains its maximum on

(Γ−1 )λn . By definition of ∇Aλn , for any y ∈ (Γ−1 )λn , we have

|∇AλnΦλn(y)|2 =

N∑
j=1

|Dj
Aλn

(Φλn(y))|2,
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where Dj
Aλn

(Φλn(y)(x)) are defined for x ∈ Ωλ by

Dj
Aλn

(Φλn(y)(x)) = − i∂jΦλn(y)(x)−Aj
(
x

λn

)
Φλn(y)(x)

= tλn,ye
iτλn,y(x)

[
η

(
|x− y|
λn

)
w(x− y)

(
Aj
(
y

λn

)
−Aj

(
x

λn

))
− i∂j

(
η

(
|x− y|
λn

)
w(x− y)

)]
.

Hence,

|∇AλΦλn(y)(x)|2 = t2λn,y

[
η2

(
|x− y|
λn

)
w2(x− y)

∣∣∣∣A( y

λn

)
−A

(
x

λn

)∣∣∣∣2
+

∣∣∣∣∇(η( |x− y|λn

)
w(x− y)

)∣∣∣∣2].
Thereby, for any y ∈ (Γ−1 )λn ,

Iλn(Φλn(y)) =
t2λn,y

2

∫
Ωλn

{
η2

(
|x− y|
λn

)
w2(x− y)

∣∣∣∣A( y

λn

)
−A

(
x

λn

)∣∣∣∣2
+

∣∣∣∣∇(η( |x− y|λn

)
w(x− y)

)∣∣∣∣2 + η2

(
|x− y|
λn

)
w2(x− y)

}
dx

−
∫

Ωλn

F

(
t2λn,y|η

(
|x− y|
λn

)
w(x− y)|2

)
dx.

Let Ty be an orthogonal operator on RN which represents a rotation such that the

unitary normal vector to Ty(Ωλn−y) is eN = (0, . . . , 1). Set Ω̃λn,y
.
= Ty(Ωλn−y).

After the change of variable z = x−y and using that η(| · |/λn) and w are radially

symmetric and Ty is a rotation, we find

Iλn(Φλn(y)) =
t2λn,y

2

∫
Ω̃λn,y

[
η2

(
|z|
λn

)
[w2(z) + |(∇w)(z)|2]

]
dz

− 1

2

∫
Ω̃λn,y

F

(
t2λn,yη

2

(
|z|
λn

)
w2(z)

)
dz

+
t2λn,y

2

∫
Ω̃λn,y

∣∣∣∣A( y

λn

)
−A

(
T−1
y z + y

λn

)∣∣∣∣2η2

(
|z|
λn

)
w2(z) dz(3.5)

+
t2λn,y

2

∫
Ω̃λn,y

1

λn
2

∣∣∣∣η′( |z|λn
)∣∣∣∣2w2(z) dz(3.6)

+
t2λn,y

2

∫
Ω̃λn,y

2

λn

∣∣∣∣η′( |z|λn
)∣∣∣∣w(z)η

(
|z|
λn

)
|∇w(z)| dz.(3.7)

We claim that the respective integrals in (3.5), (3.6) and (3.7) go to zero as

n→ +∞. Indeed, we first examine (3.5). Since w ∈ L2(RN ), there exists M > 0
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such that

(3.8)

∫
Ω̃λn,y∩BcM (0)

∣∣∣∣A( y

λn

)
−A

(
T−1
y z + y

λn

)∣∣∣∣2η2

(
|z|
λn

)
w2(z) dz < ε.

On the other hand, since A in uniformly continuous on the compact set Ω, there

exists γ > 0 such that

(3.9) |A(x+ v)−A(x)| < ε, for all |v| ≤ γ, for all x ∈ Ω.

Since |T−1
y z| ≤ M for all z ∈ Ω̃λn,y ∩ BM (0), there exists λn > 0 sufficiently

large such that |T−1
y z/λn| ≤ γ, hence that, by (3.9), we have∣∣∣∣A(y + T−1

y z

λn

)
−A

(
y

λn

)∣∣∣∣ < ε, for all y ∈ (Γ−1 )λn ,

for every λn > 0 sufficiently large. Thus, for every z ∈ BM (0),

η2

(
|z|
λn

)
w2

∣∣∣∣A(y + T−1
y z

λn

)
−A

(
y

λn

)∣∣∣∣2χΩ̃λn,y
∩BM (0)

(z) ≤ ε2|w|2∞,RN ,

and so

(3.10) lim
λn→∞

∫
Ω̃λn,y∩BM (0)

∣∣∣∣A( y

λn

)
−A

(
T−1
y z + y

λn

)∣∣∣∣2η2

(
|z|
λn

)
w2(z) dz = 0.

Combining (3.8) with (3.10), gives that the integral in (3.5) goes to zero as

λn →∞. In order to analyze the integrals in (3.6)-(3.7), take a constant C > 0

such that

χΩ̃λn,y

1

λn

(
1

2λn

∣∣∣∣ η′( | · |λn
)∣∣∣∣2w2 +

∣∣∣∣ η′( | · |λn
)∣∣∣∣ η( | · |λn

)
w|∇w|

)
≤ C[w2 + w|∇w|] ∈ L1(RN )

and

χΩ̃λn,y
(z)

1

λn

(
1

2λn

∣∣∣∣ η′( |z|λn
)∣∣∣∣2w2(z) +

∣∣∣∣ η′( |z|λn
)∣∣∣∣ η( |z|λn

)
w(z)|∇w(z)|

)
≤ C

λn
[|w(z)|2 + |w(z)||∇w(z)|]→ 0,

almost everywhere z ∈ RN , as n → ∞. By Lebesgue’s dominated converge

theorem, it follows that the integrals in (3.6) and (3.7) go to zero as λn → +∞.

Consequently,

Iλn(Φλn(y)) =
t2λn,y

2

∫
Ω̃λn,y

η2

(
|z|
λn

)
[|w|2 + |∇w|2] dz

− 1

2

∫
Ω̃λn,y

F

(
t2λn,yη

2

(
|z|
λn

)
|w|2

)
dz + t2λn,yoλn(1),
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where oλn(1) denotes a quantity going to zero as n → ∞. Taking y = yn and

using the notation, Ωn = Ωλn , Ω̃n = Ω̃λn,yn , tn = tλn,yn , we get

Iλn(Φλn(yn)) =
t2n
2

∫
Ω̃n

η2

(
|z|
λn

)
[|(∇w)(z)|2 + w2(z)] dz(3.11)

− 1

2

∫
Ω̃n

F

(
t2nη

2

(
|z|
λn

)
w2(z)

)
dz + on(1)t2n.

We claim that tn → 1, as n → ∞. In fact, combining the definition of tn with

the argument used in the study of the integrals (3.5)–(3.7), yields

(3.12) on(1) +

∫
Ω̃n

η2

(
|z|
λn

)
[|∇w|2 + w2] dz

=

∫
Ω̃n

f

(
t2nη

2

(
|z|
λn

)
w2

)
η2

(
|z|
λn

)
w2 dz.

To establish the boundedness of (tn), suppose by contradiction that there exists

a subsequence tni → +∞. Using (f3)–(f5), (1.7), Fatou lemma, w > 0 in RN and

(3.12), we have

+∞ >

∫
RN

(|∇w|2 + w2) = lim
i→∞

∫
Ω̃ni

η2

(
|z|
λni

)
(|∇w(z)|2 + w2(z)) dz

≥ lim
i→∞

∫
Br0 (r0eN )

f

(
t2nη

2

(
|z|
λni

)
w2(z)

)
η2

(
|z|
λni

)
w2(z) dz

= lim
i→∞

∫
Br0 (r0eN )

f

(
t2niw

2(z)

)
w2(z) dz = +∞,

which is impossible. Hence, (tn) is a bounded sequence. We can clearly assume

that tn → t0, as n → ∞. To verify that t0 > 0, suppose by contradiction that

t0 = 0. By (f1)–(f2) and Lebesgue’s dominated convergence, we obtain

(3.13) lim
n→∞

∫
Ω̃n

f

(
t2nη

2

(
|z|
λn

)
w2(z)

)
η2

(
|z|
λn

)
w2(z) dz = 0.

On the other hand, from (3.13), (3.12) and (1.7), we have

0 <

∫
RN

(|∇w|2 + w2) dz = lim
n→∞

∫
Ω̃n

η2

(
|z|
λn

)
(|∇w(z)|2 + w2(z)) dz

= lim
n→∞

∫
Ω̃n

f

(
t2nη

2

(
|z|
λn

)
w2(z)

)
η2

(
|z|
λn

)
w2(z) dz = 0,
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which is a contradiction. Hence, tn → t0 > 0, as n→∞. Now observe that∫
RN

(|∇w|2 + w2) dz = lim
n→∞

∫
Ω̃n

η2

(
t2n
|z|
λn

)
[|∇w(z)|2 + w2(z)] dz

= lim
n→∞

∫
Ω̃n

f

(
t2nη

2

(
|z|
λn

)
w2(z)

)
η2

(
|z|
λn

)
w2(z) dz

=

∫
RN

f(t20w
2)w2 dz.

Using this, (f4) and the properties on w, we conclude that t0 = 1. Therefore, the

proposition follows from (3.11) and the Lebesgue’s dominated convergence. �

Finally, we establish a version of Lions lemma, whose proof proceeds along

the same lines as in [35, Lemma 2.1] combined with interpolation of the Lp

spaces.

Lemma 2.1. Let l > 0, 2 ≤ s < 2∗ and λn → +∞. Let {un} ⊂ H1(Ωλn) be

a sequence such that

lim
n→∞

sup
y∈RN

∫
Bl(y)∩Ωλn

|un|s dx = 0.

Then, for every m ∈ (2, 2∗),

lim
n→∞

∫
Ωλn

|un|m dx = 0.

4. The behavior of the minimax levels

Taking bλ given by (2.1), we have:

Proposition 4.1. lim
λ→∞

bλ = c∞.

The proof of Proposition 4.1 is long and will be carried out in a series of

steps. First, by definition of Φλ(y) and Proposition 3.1,

(4.1) bλ ≤ Iλ(Φλ(y)) = oλ(1) + c∞.

We now consider the auxiliary problems:

(4.2)


−∆u+ u = f(u2)u in Ωλ,

∂u

∂ν
= 0 on Γ1λ,

u = 0 on Γ0λ

and

(4.3)

{ −∆u+ u = f(u2)u in Ωλ,

∂u

∂ν
= 0 on ∂Ωλ.



Mixed Boundary Problem for Schrödinger Equations 343

We will denote by H1(Ωλ,Γ0λ) be the Hilbert space

H1(Ωλ,Γ0λ)
.
= {u ∈ H1(Ωλ); trace of u = 0 on Γ0λ},

endowed with the norm

‖u‖Ωλ =

(∫
Ωλ

(|∇Aλu|2 + |u|2) dx

)1/2

.

Let Jλ:H1(Ωλ,Γ0λ)→ R be the functional associated with (4.2) and given by

Jλ(u) =
1

2

∫
Ωλ

(|∇u|2 + u2) dx− 1

2

∫
Ωλ

F (u2) dx, for all u ∈ H1(Ωλ,Γ0λ).

We define the functional Jλ:H1(Ωλ)→ R associated with (4.3) by

Jλ(u) =
1

2

∫
Ωλ

(|∇u|2 + u2) dx− 1

2

∫
Ωλ

F (u2) dx, for all u ∈ H1(Ωλ),

with corresponding Nehari manifold and mountain pass level given by

Nλ
.
= {u ∈ H1(Ωλ) \ {0}; J ′λ(u)u = 0} and cλ

.
= inf

Nλ

Jλ.

We will also denote by cλ the mountain pass level associated with the prob-

lem (4.2). By the definition of these levels and from (1.6), we find

(4.4) bλ ≥ cλ ≥ cλ > 0.

From (4.1)–(4.4), we deduce that it suffices to show that

(4.5) lim
λ→∞

cλ = c∞.

In order to prove (4.5), we begin by observing that the mountain pass theorem

combined with a similar argument employed in the proof of Proposition 2.1

implies that there is a solution uλ ∈ H1(Ωλ) of (4.3) satisfying

(4.6) Jλ(uλ) = cλ = inf
Nλ

Jλ, J
′
λ(uλ) = 0,

for every λ > 0. Combining (4.4) with (4.6), gives that supλ>0 Jλ(uλ) <∞ and

J
′
λ(uλ)uλ = 0 for all λ > 0. By (f3),

(4.7) sup
λ>0
‖uλ‖Ωλ <∞

(where ‖ · ‖Ωλ denotes the norm of H1(Ωλ)). Exploiting similar argument used

in the proof of Proposition 2.2, we may assume that

(4.8) ‖uλ‖2Ωλ ≥ δ0 and Jλ(uλ) = cλ ≥ δ0, for all λ > 0,
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for some constant δ0 > 0 independent of λ. From (4.8) and Lemma 3.1, there

exist (yλ)λ ⊂ RN , l > 0 and γ > 0 such that

(4.9) lim inf
λ→∞

∫
Ωλ∩Bl(yλ)

|uλ|2 dx ≥ γ > 0.

Moreover, by increasing l if necessary, we may assume that yλ ∈ Ωλ for every

λ > 0, because (4.9) yileds Ωλ ∩Bl(yλ) 6= ∅, for every λ.

Lemma 4.1. There exists a constant C > 0 such that dist(yλ, ∂Ωλ) ≤ C, for

every λ > 0.

Proof. Suppose the lemma were false. Then, we could find a sequence (λn)

such that λn → ∞ and dist(yλn , ∂Ωλn) → ∞, as n → ∞. Let R > l be an

arbitrary number. For n sufficiently large, we have B2R(yλn) ⊂ Ωλn . Define

wλn,R(x)
.
= η

(
|x|
R

)
uλn(x+ yλn), for all x ∈ Ωλn − {yλn},

where η ∈ C∞(R) is such that η = 1, on [0, 1], η = 0, on (2,+∞), 0 ≤ η ≤ 1

and η′ ∈ L∞(R). Hence, suppwλn,R ⊂ B2R(0). We can assume that wλn,R ∈
H1(RN ) and also supn ‖wλn,R‖ ≤ C, for some constant C > 0 independent R.

Observing that∫
Bl(0)

|wλn,R|2 dx =

∫
Bl(0)

|uλn(x+ yλn)|2 dx =

∫
Bl(yλn )

|uλn |2 dx ≥ γ > 0,

we get a nontrivial function wR ∈ H1(RN ) such that

wλn,R ⇀ wR, weakly in H1(RN ), as n→∞,
wλn,R → wR, strongly in Lploc(RN ), p ∈ [1, 2∗), as n→∞,∫
Bl(0)

|wR|2 ≥ γ > 0.

Let ‖ · ‖ denote the norm in of H1(RN ). Since ‖wR‖ ≤ lim inf
n→∞

‖wλn,R‖, the

family (wR)R ⊂ H1(RN ) is bounded. Hence, there exists v ∈ H1(RN ) such that

wR ⇀ v, weakly in H1(RN ), as R→∞,
wR → v, strongly in Lploc(RN ), p ∈ [1, 2∗), as R→∞,∫
Bl(0)

|v|2 ≥ γ > 0.

In particular, v 6≡ 0. We assert that v is a solution of (3.2). In fact, given

φ ∈ C∞c (RN ), we take t > 0 such that suppφ ⊂ Bt(0) and Bt(yλn) ⊂ Ωλn for n
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sufficiently large. As uλn is a weak solution of (4.3) for λ = λn, we have∫
Bt(0)

[∇uλn(x + yλn)∇φ+ uλn(x+ yλn)φ]

=

∫
Ωλn

[∇uλn(x+ yλn)∇φ+ uλn(x+ yλn)φ]

=

∫
Ωλn

f(u2
λn(x+ yλn))uλn(x+ yλn)φ

=

∫
Bt(0)

f(u2
λn(x+ yλn))uλn(x+ yλn)φ.

For n sufficiently large and R > t, we obtain∫
Bt(0)

[∇wλn,R∇φ+ wλn,Rφ] dx =

∫
Bt(0)

f(w2
λn,R)wλn,Rφdx.

Taking n→∞, we have∫
Bt(0)

[∇wR∇φ+ wRφ] dx =

∫
Bt(0)

f(w2
R)wRφdx.

Using that suppφ ⊂ Bt(0) and R > t, we find after taking R→∞∫
RN

[∇v∇φ+ vφ] =

∫
Bt(0)

[∇v∇φ+ vφ] =

∫
Bt(0)

f(v2)vφ =

∫
RN

f(v2)vφ.

Since φ ∈ C∞c (RN ) is arbitrary, we conclude that v is a nontrivial solution of

(3.2). Given M > R, we take n sufficiently large such that BM (yλn) ⊂ Ωλn . By

(4.1)–(4.4),

oλn(1) + c∞ ≥ cλn = Jλn(uλn)− 1

2
J
′
λn(uλn)uλn

=
1

2

∫
Ωλn

[f(u2
λn)u2

λn − F (u2
λn)] dx

≥ 1

2

∫
BM (yλn )

[f(u2
λn)u2

λn − F (u2
λn)] dx

=
1

2

∫
BM (0)

[f(w2
λn,R)w2

λn,R − F (w2
λn,R)] dx.

By Fatou’s lemma and (3.3), we obtain, after taking n → ∞, R → ∞ and

M →∞,

c∞ ≥
1

2

∫
RN

[f(v2)v2 − F (v2)] dx = JRN (v) ≥ cRN = 2c∞,

which is a contradiction. Lemma 4.1 is proved. �

From Lemma 4.1, by increasing l if necessary, we may assume that yλ ∈ ∂Ωλ

in (4.9). Let Tyλ be an orthogonal operator on RN which represents a rotation
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such that the inward unitary normal vector to Ω̃λ
.
= Tyλ(Ωλ − yλ) is eN =

(0, . . . , 1). We define

vλ(x) = uλ(T−1
yλ
x+ yλ), for all x ∈ Ω̃λ.

In the following, we gather the properties satisfied by vλ:

(a) Since ‖vλ‖Ω̃λ = ‖uλ‖Ωλ , (4.7) shows that supλ>0 ‖vλ‖Ω̃λ <∞;

(b)

∫
Ω̃λ

F (v2
λ) dx =

∫
Ωλ

F (u2
λ) dx;

(c) Since uλ is a solution of (4.3), vλ is a solution of

(4.10) −∆u+ u = f(u2)u in Ω̃λ,
∂u

∂ν
= 0 on ∂Ω̃λ;

(d) JΩ̃λ
(vλ) = cΩ̃λ = cλ, where JΩ̃λ

is the functional associated with (4.10)

and cΩ̃λ is the corresponding mountain pass level;

(e) From (4.9),

lim inf
λ→∞

∫
Bl(0)∩Ω̃λ

|vλ|2 ≥ γ.

Given ρ > h > 0, we define

Dρ,h
.
= {(x1, . . . , xN ) ∈ RN ; xN > h} ∩Bρ(0).

From (1.7), χΩ̃λ
→ χRN+ almost everywhere in RN , as λ→∞. Hence, Dρ,h ⊂ Ω̃λ

for every λ sufficiently large. Thus, vλ ∈ H1(Dρ,h) for every λ sufficiently large.

By (a), we may assume that there exists vρ,h ∈ H1(Dρ,h) such that
vλ ⇀ vρ,h weakly in H1(Dρ,h), as λ→∞,
vλ → vρ,h strongly in Lp(Dρ,h), p ∈ [1, 2∗), as λ→∞,
vλ(x)→ vρ,h(x) a.e. in Dρ,h, as λ→∞.

Using (a) one more time and the Banach–Steinhaus theorem, we find a constant

K > 0 such that

‖vρ,h‖Dρ,h ≤ K, for all ρ, h > 0

(where ‖ · ‖Dρ,h denotes the norm of H1(Dρ,h)). Let ρn → ∞ and hn → 0 be

monotone sequences. Thus,

Dn
.
= Dρn,hn ⊂ Dρn+1,hn+1

.
= Dn+1, for all n ≥ 1.

This allows us to apply a diagonal type argument to obtain a bounded subse-

quence (vk) in H1(RN+ ) and a function v ∈ H1(RN+ ) such that

(4.11)


vk ⇀ v weakly in H1(RN+ ), as k →∞,
vk → v strongly in Lploc(RN+ ), for all p ∈ [1, 2∗), as k →∞,
vk(x)→ v(x) a.e. in RN+ , as k →∞.
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Lemma 4.2. The function v is a nontrivial weak solution of (3.1).

Proof. We first show that v 6≡ 0. In fact, from (e),

(4.12) lim inf
k→∞

∫
Bl(0)∩Ω̃k

v2
k ≥ γ > 0.

Given t ∈ (0, l), define At = {x ∈ Bl(0) ∩ Ω̃k; 0 ≤ xN ≤ t} and Λk = (Bl(0) ∩
Ω̃k) \At. Thus, ∫

Bl(0)∩Ω̃k

v2
k =

(∫
At

+

∫
Λk

)
v2
k.

As sup
k
‖vk‖Dk < ∞, using Hölder’s inequality and the Sobolev embedding the-

orem, we get ∫
At

v2
k ≤

(∫
At

v2∗

k

)2/2∗(∫
At

1

)2/N

≤ K|At|2/N ,

for some constant K > 0. Now choose a t ∈ (0, l) such that∫
At

v2
k ≤

(∫
At

v2∗

k

)2/2∗(∫
At

1

)2/N

≤ K|At|2/N <
γ

4
.

Consequently, from (4.12), for all sufficiently large k, we have

γ

2
≤
∫
Bl(0)∩Ω̃k

v2
k ≤

γ

4
+

∫
Λk

v2
k ≤

γ

4
+

∫
D

v2
k,

for every compact set D ⊂ RN with Λk ⊂ D ⊂ Dk. Hence, for all sufficiently

large k, ∫
D

v2
k ≥

γ

4

and consequently ∫
D

v2 = lim
k→∞

∫
D

v2
k ≥

γ

4
> 0,

which implies v 6≡ 0. In order to prove that v is a weak solution of (3.1), we

first show that ∇vk → ∇v, strongly in (L2(K))N , for any compact set K ⊂ RN+ .

Effectively, let K ⊂ RN+ be a compact set. Taking ψ ∈ C∞c (RN+ ) such that ψ ≡ 1,

on K, and 0 ≤ ψ ≤ 1, we have suppψ ⊂ Ω̃k, for every k sufficiently large. As

vkψ, vψ ∈ H1(Ω̃k) and vk is a weak solution of (4.10), we have

(4.13) J
′
Ω̃k

(vk)(vkψ) =

∫
Ω̃k

[|∇vk|2ψ + vk∇vk∇ψ + v2
kψ]−

∫
Ω̃k

f(v2
k)v2

kψ = 0,

(4.14) J
′
Ω̃k

(vk)(vψ) =

∫
Ω̃k

[ψ∇vk∇v + v∇vk∇ψ + vkvψ]−
∫

Ω̃k

f(v2
k)vkvψ = 0,
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where J Ω̃k
:H1(Ω̃k) → R is the functional associated with (4.10). Combining

(4.13)–(4.14), we obtain∫
K

|∇vk −∇v|2 ≤
∫
RN

ψ
[
|∇vk|2 − 2∇vk∇v + |∇v|2

]
=

∫
RN+

[ψ|∇vk|2 − ψ∇vk∇v + ψ∇v∇(v − vk)]

=

∫
RN+

[f(v2
k)v2

kψ − vk∇vk∇ψ − v2
kψ] +

∫
RN+

[v∇vk∇ψ + vkvψ]

−
∫
RN+

f(v2
k)vkvψ +

∫
RN+

ψ∇v∇(v − vk)

=

∫
RN+

[f(v2
k)ψvk(vk − v)− (vk − v)∇vk∇ψ − vkψ(vk − v)]

+

∫
RN+

ψ∇v∇(vk − v).

This and the fact that (vk) is bounded in L2(RN+ ) combined with (f6), (4.11) and

Hölder’s inequality show that∫
K

|∇vk −∇v|2 ≤ ok(1), as k →∞,

that is ∇vk → ∇v, strongly in (L2(K))N , as desired. As a consequence,

(4.15) ∇vk(x)→ ∇v(x), for almost every x ∈ RN .

In order to conclude the proof of Lemma 4.2, it remains to prove that

(4.16)

∫
RN+

[∇v∇φ+ vφ]−
∫
RN+

f(v2)vφ = 0, for all φ ∈ H1(RN+ ).

Since the set of restrictions of the functions of C∞c (RN ) to RN+ is a dense subspace

of H1(RN+ ) (see [10, Corollaire IX.8]), it suffices to show that relation (4.16)

holds for every φ ∈ C∞c (RN ). Given φ ∈ C∞c (RN ), let t > 0 be such that

Bt(0) ⊃ suppφ. From (1.7), χΩ̃k∩Bt(0) → χB+
t

almost everywhere in RN , as

k → ∞, where B+
t
.
= Bt(0) ∩ RN+ and where χB+

t
is the characteristic function

related to the set B+
t . This and (4.15) imply that χΩ̃k∩Bt(0)∇vk→χB+

t
∇v, almost

everywhere in RN , as k → ∞. Furthermore, (χΩ̃k∩Bt(0)∇vk)k is bounded in

(L2(RN+ ))N . Hence, χΩ̃k∩Bt(0)∇vk⇀χB+
t
∇v weakly in (L2(RN+ ))N , as k → ∞,

and so

lim
k→∞

∫
Ω̃k

∇vk∇φ = lim
k→∞

∫
RN+

χΩ̃k∩Bt(0)∇vk∇φ(4.17)

=

∫
RN+

χB+
t
∇v∇φ =

∫
RN+
∇v∇φ.
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Since (vk) is bounded in H1(RN+ ), by (f6), there exists M1 > 0 such that

(4.18)

∫
Bt(0)

|f(v2
k)vk|q/(q−1) ≤M1.

Given η > 0, from (4.11) and Egoroff’s theorem, there exists E ⊂ Bt(0) such

that |E| < η and vk(x)→ v(x) uniformly on Bt(0)\E. Using Hölder’s inequality,

(4.18) and (f6), we get M2 > 0 such that∣∣∣∣ ∫
Bt(0)

(f(v2
k)vk − f(v2)v)φ

∣∣∣∣ ≤ ∫
Bt(0)\E

|f(v2
k)vk − f(v2)v||φ|+M2η

q.

As η > 0 can be chosen arbitrarily small, f(v2
k)vk → f(v2)v uniformly on Bt(0)\

E and suppφ ⊂ Bt(0), we obtain

(4.19) lim
k→∞

∫
Ω̃k

f(v2
k)vkφ =

∫
RN+

f(v2)vφ.

Using (4.11), similar arguments to those above show that

(4.20) lim
k→∞

∫
Ω̃k

vkφ =

∫
RN+

vφ.

Combing (4.17)–(4.20) with the fact that vk satisfies (4.10), yields

0 = lim
k→∞

∫
Ω̃k

(∇vk∇φ+ vkφ− f(v2
k)vkφ) =

∫
RN+

(∇v∇φ+ vφ− f(v2)vφ),

for every φ ∈ C∞c (RN ), and the proof Lemma 4.2 is complete. �

In the following, we conclude the proof of Propostion 4.1. From (4.1) and (4.4),

c∞ + ok(1) ≥ cΩk = cΩ̃k = J Ω̃k
(vk)

= J Ω̃k
(vk)− 1

2
J
′
Ω̃k

(vk)vk =
1

2

∫
Ω̃k

[f(v2
k)v2

k − F (v2
k)].

Using Fatou’s lemma and (4.11), we have

c∞ ≥ lim sup
k→∞

cΩ̃k ≥ lim inf
k→∞

cΩ̃k = lim inf
k→∞

1

2

∫
Ω̃k

[f(v2
k)v2

k − F (v2
k)]

≥ 1

2

∫
RN+

[f(v2)v2 − F (v2)] = J∞(v) ≥ c∞.

Consequently, lim
λ→∞

cΩλ = c∞, that is, (4.5) holds, and the proof of Proposi-

tion 4.1 is complete.
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5. The barycenter map

This section is devoted to establish a key relation between some subsets

of RN and Mλ. For q ∈ (2, 2∗) given by (f5) and λ > 0, define the barycenter

map βλ:Mλ → RN by

βλ(u) =

∫
Ωλ

x|u|q dx∫
Ωλ

|u|q dx
.

Proposition 5.1. Let (Γ+
1 )λ be the expanding set λΓ+

1 . Then, there exist

ε∗ > 0 and λ1 > 0 such that βλ(u) ∈ (Γ+
1 )λ, provided that λ > λ1, u ∈ Mλ and

Iλ(u) ≤ b∗λ, where b∗λ = bλ + ε∗.

Proof. It suffices to show that if (εn) and (λn) are arbitrary sequences,

with εn → 0 and λn →∞, and if un ∈Mλn is a sequence such that

(5.1) bλn ≤ Iλn(un) ≤ bλn + εn,

then

(5.2) dist(βλn(un),Γ1λn) ≤ λnr,

for every n sufficiently large. In fact, by (5.1) and Proposition 4.1,

(5.3) Iλn(un)→ c∞, as n→∞.

Using that un ∈Mλn and (1.6), there exists tn > 0 such that

on(1) + c∞ = Iλn(un) ≥ max
t≥0

Iλn(tun)(5.4)

≥ max
t≥0

Jλn(t|un|) = Jλn(tn|un|) ≥ cλn ,

where Jλn is the functional associated with (4.2) with λ = λn, cλn and Nλn
are the corresponding mountain pass level and the Nehari manifold. Combining

(4.4)–(4.5) with (5.4) and Proposition 4.1, we have

(5.5) lim
n→∞

cλn = lim
n→∞

Jλn(tn|un|) = c∞.

Set εn = bλn − cλn . By Proposition 4.1 and (5.5), εn → 0, as n→∞. Thus,

εn + cλn ≥ Jλn(tn|un|) ≥ cλn .

Applying the variational principle [21, Corollary 3.4], for every n ∈ N, there

exists vn ∈ Nλn such that

(5.6) ‖tn|un| − vn‖Ωn ≤ 2
√
εn, cλn ≤ Jλn(vn) ≤ cλn + 2εn

and

‖(Jλn
∣∣
Nλn

)′(vn)‖(H1(Ωλn ,Γ0λn ))′ ≤ 8
√
εn.
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As in the proof of Proposition 2.3, we find that vn ∈ H1(Ωλn ,Γ0λn) satisfies

(5.7) Jλn(vn)→ c∞, J ′λn(vn)→ 0.

From (5.7) and (f3), the sequence (‖vn‖Ωλn )n is bounded. Consequently, from

Lemma 3.1 and (5.7), there exist l > 0, γ > 0 and yn ∈ RN such that

lim inf
n→∞

∫
Bl(yn)∩Ωλn

|vn|2 ≥ γ > 0.

Proceeding as in the proof of Lemma 4.1, with (5.7) replacing (4.6), we get

a positive constant C > 0 such that dist(yn, ∂Ωλn) ≤ C. Thus, by increasing l

if necessary, we may assume that yn ∈ ∂Ωλn . Following the same argument in

the proof of Proposition 4.1, we define

ṽn(x) = vn(T−1
yn x+ yn), for all x ∈ Ω̃n

.
= Tyn(Ωλn − {yn}), for all n ∈ N,

to obtain a subsequence of ṽn ∈ H1(Ω̃n, Γ̃0λn) (still denoted by ṽn) and a function

v ∈ H1(RN+ ) such that

ṽn ⇀ v in H1(RN+ ), ṽn → v in Lploc(RN+ ), for all p ∈ [1, 2∗),(5.8)

ṽn(x)→ v(x), ∇ṽn(x)→ ∇v(x) for almost every x ∈ RN+ .(5.9)

Claim 1. There exits a constant C > 0 such that dist(yn,Γ1λn) ≤ C.

In fact, suppose Claim I were false. Then we could find subsequences (not

renamed) such that

(5.10) αn
.
= dist(yn,Γ1λn)→∞, as n→∞.

We next show that v ∈ H1(RN+ ) is a weak solution of

(5.11) −∆v + v = f(v2)v in RN+ , v = 0 on RN−1.

Effectively, set

wn(x)
.
= ξ

(
|x|
αn

)
ṽn(x), for all x ∈ Ω̃n,

where αn > 0 is given in (5.10) and ξ ∈ C∞c (R+) is such that ξ(t) = 1, t ∈
[0, 1/2], ξ(t) = 0, t ≥ 2/3. Thus, wn ∈ H1

0 (Ω̃n) ⊂ H1
0 (RN+ ) and wn(x) → v(x)

almost every x ∈ RN+ , as n → ∞. Since (wn) ⊂ H1
0 (RN+ ) is bounded, there is

w ∈ H1
0 (RN+ ) such that wn ⇀ w weakly in H1

0 (RN+ ). By the Sobolev imbedding

theorem, wn(x) → w(x) almost every x ∈ RN+ , as n → ∞. As the limit is

unique, v ≡ w in H1
0 (RN+ ). Taking φ ∈ C∞c (RN+ ), gives suppφ ⊂ Ω̃n for every n

sufficiently large. By (5.7) and the definition of ṽn, we have

(5.12)

∫
Ω̃n

(∇ṽn∇φ+ ṽnφ− f(ṽ2
n)ṽnφ) = o1(n),
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for every n sufficiently large. From (5.8), after taking n→∞ in (5.12), we find∫
RN+

(∇v∇φ+ vφ− f(v2)vφ) = 0.

Since φ is arbitrary, the function v is a weak solution of (5.11).

Let JΩ̃n
:H1(Ω̃n, Γ̃λn0)→ R be the functional associated with the problem

(5.13)


−∆v + v = f(v2)v in Ω̃n,

∂v

∂ν
= 0 on Γ̃1λn ,

v = 0 on Γ̃0λn .

Using that v is a weak solution of (5.11), Fatou lemma and (5.7), we have

c∞ = lim inf
n→∞

JΩ̃n
(ṽn) = lim inf

n→∞

1

2

∫
Ω̃n

(f(ṽ2
n)ṽ2

n − F (ṽ2
n))

= lim inf
n→∞

1

2

∫
RN+

χΩ̃n
(f(ṽ2

n)ṽ2
n − F (ṽ2

n))

≥ 1

2

∫
RN+

(f(v2)v2 − F (v2)) ≥ cRN+ ≥ c∞,

that is c∞ = cRN+ . However, c∞ = cRN+ ≥ cRN = 2c∞, which is impossible, and

Claim I is proved.

Claim II. Given any ε > 0, there exists R = R(ε) > 0 such that

(5.14) lim
n→∞

∫
Ωλn∩BR(yn)

[
f(v2

n)v2
n − F (v2

n)
]
≥ c∞ − ε.

Indeed, we first show that the function v given by (5.8)–(5.9) satisfies J∞(v) =

c∞ and v is a solution of (3.1). Consider φ ∈ C∞0 (RN ) such that φ = 1, on B1(0),

φ = 0, on Bc2(0), 0 ≤ φ ≤ 1, and define

φT (x) = φ

(
x

T

)
, for all x ∈ RN , T > 0.

Hence, the sequence φT ṽn is bounded in H1(Ω̃n, Γ̃0λn) and φT v → v in H1(RN+ ),

as T →∞. By (5.7), we have∫
Ω̃n

∇ṽn∇(φT ṽn) +

∫
Ω̃n

|ṽn|2φT =

∫
Ω̃n

f(ṽ2
n)ṽ2

nφT + on(1),

that is,

(5.15)

∫
Ω̃n

|∇ṽn|2φT +

∫
Ω̃n

ṽn∇ṽn∇φT +

∫
Ω̃n

|ṽn|2φT =

∫
Ω̃n

f(ṽ2
n)ṽ2

nφT +on(1).
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We now proceed to verify that∫
Ω̃n

ṽn∇ṽn∇φT →
∫
RN+

v∇v∇φT ,(5.16) ∫
Ω̃n

|ṽn|2φT →
∫
RN+
|v|2φT ,(5.17) ∫

Ω̃n

f(ṽ2
n)ṽ2

nφT →
∫
RN+

f(v2)v2φT ,(5.18)

as n → ∞. Let ε > 0 and T > 1 be arbitrary numbers. Fix t > 0 to be

appropriately chosen and define

Et
.
= {x ∈ B2T (0); 0 ≤ xN ≤ t}.

Using that (‖ṽn‖Ω̃n)n is bounded and Hölder inequality, we obtain

∫
Et

|ṽn|2 ≤
(∫

Et

|ṽn|2
∗
)2/2∗(∫

Et

|1|N
)2/N

≤M |Et|2/N ≤MT 2(N−1)/N t2/N ,∫
Et

|ṽn|q ≤
(∫

Et

|ṽn|2
∗
)q/2∗(∫

Et

|1|α
)q/α

≤M |Et|2/N ≤MT (N−1)q/αtq/α,

for some positive constant M , where α = 2∗/(2∗ − q). Set κ
.
= max{α/q,N/2}

and take t
.
= εκT 1−N . Thus, T (N−1)2/N t2/N = ε2κ/N and T (N−1)q/αtq/α =

εκq/α, with min{2κ/N, κq/α} = 1 > 0, and consequently

(5.19) lim
ε→0

εκq/α = lim
ε→0

ε2κ/N = 0.

By choice of t, we have

(5.20)

∫
Et

|ṽn|2 ≤ ε2κ/NM and

∫
Et

|ṽn|q ≤ εκq/αM.

We observe that by (5.8)–(5.9), v also satisfies (5.20). Furthermore, B2T \Et ⊂
Ω̃n, provided that n is sufficiently large. Applying Hölder inequality, (5.8), (5.9)

and (5.20), for every n sufficiently large, we get∣∣∣∣ ∫
Ω̃n

ṽn∇φT∇ṽn −
∫
RN+

v∇φT∇v
∣∣∣∣

≤
∣∣∣∣ ∫
B2T \Et

ṽn∇φT∇ṽn − v∇φT∇v
∣∣∣∣+

∣∣∣∣ ∫
Et

ṽn∇φT∇ṽn
∣∣∣∣+

∣∣∣∣ ∫
Et

v∇φT∇v
∣∣∣∣

≤
∣∣∣∣ ∫
B2T \Et

∇φT∇ṽn(ṽn − v)

∣∣∣∣+

∣∣∣∣ ∫
B2T \Et

v∇φT (∇ṽn −∇v)

∣∣∣∣
+M

∫
Et

(|ṽn|2 + |v|2) ≤ on(1) + 2Mε2κ/N .
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From (5.19) and the fact that ε can be chosen arbitrarily small, we obtain that

(5.16) holds for every T > 0. We can proceed analogously to proof of (5.17). In

order to verify (5.18), we combine (f6) with (5.20), to obtain

(5.21)

∫
Et

f(ṽ2
n)ṽ2

n ≤ ε
∫
Et

ṽ2
n + Cε

∫
Et

ṽqn ≤M(εκq/α + ε2κ/N ).

From (5.8) and (5.21), we have∣∣∣∣ ∫
Ω̃n

f(ṽ2
n)ṽ2

nφT −
∫
RN+

f(v2)v2φT

∣∣∣∣
≤
∣∣∣∣ ∫
B2T \Et

(f(ṽ2
n)ṽ2

n − f(v2)v2)φT

∣∣∣∣+

∣∣∣∣ ∫
Et

f(ṽ2
n)ṽ2

n

∣∣∣∣+

∣∣∣∣ ∫
Et

f(v2)v2

∣∣∣∣
≤ on(1) +M(εκq/α + ε2κ/N ).

From (5.19) and the fact that ε can be chosen arbitrarily small, we obtain that

(5.18) holds for every T > 0. Combining (5.15)–(5.18) with Fatou lemma, we

get ∫
RN+
|∇v|2φT +

∫
RN+

v∇v∇φT +

∫
RN+
|v|2φT ≤

∫
RN+

f(v2)v2φT ,

for every T > 0. Finally, taking T → +∞, we find

(5.22)

∫
RN+

[|∇v|2 + v2] ≤
∫
RN+

f(v2)v2.

From (f1)–(f4), there exists t0 > 0 such that t0v ∈ N∞. By (5.22), we have

0 < t0 ≤ 1. Suppose that t0 < 1. In this case, using that the function s →
f(s)s− F (s) is increasing in [0,+∞), by (f4), Fatou lemma and (5.9), we have

c∞ = lim inf
n→∞

[
JΩ̃n

(ṽn)− 1

2
J ′

Ω̃n
(ṽn)ṽn

]
= lim inf

n→∞

1

2

∫
Ω̃n

[f(ṽ2
n)ṽ2

n − F (ṽ2
n)] ≥ 1

2

∫
RN+

[f(v2)v2 − F (v2)]

>
1

2

∫
RN+

[f(t20v
2)t20v

2 − F (t20v
2)] = J∞(t0v)− 1

2
J ′∞(t0v)t0v ≥ c∞,

which is impossible. Hence, t0 = 1, and consequently v ∈ N∞. Furthermore, v

satisfies

(5.23) c∞ ≥
1

2

∫
RN+

[f(v2)v2 − F (v2)] = J∞(v)− 1

2
J ′∞(v)v = J∞(v) ≥ c∞.

We conclude that J∞(v) = c∞ and v is a solution of (3.1). By (5.23), given any

ε > 0, there exists R > 0 such that

1

2

∫
RN+∩BR(0)

[f(v2)v2 − F (v2)] ≥ c∞ − ε.
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Since χBR∩Ω̃n
(x)ṽn(x)→ χB+

R
(x)v(x) almost every x ∈ RN+ , as n→∞, by Fatou

lemma we have

lim inf
n→∞

1

2

∫
BR(yn)∩Ωn

[f(v2
n)v2

n − F (v2
n)] = lim inf

n→∞

1

2

∫
BR∩Ω̃n

[f(ṽ2
n)ṽ2

n − F (ṽ2
n)]

≥ 1

2

∫
RN+∩BR(0)

[f(v2)v2 − F (v2)] ≥ c∞ − ε,

which completes the proof of Claim II.

We are now ready to show (5.2). By (5.6) and the Sobolev embedding theo-

rem, the sequences {tn|un|} ⊂ H1(Ωn,Γ0λn) and {vn} ⊂ H1(Ωn,Γ0λn) have the

same limit. Hence, Claim II is also valid for {tn|un|}n, that is,

lim inf
n→∞

1

2

∫
BR(yn)∩Ωλn

[f(|tnun|2)|tnun|2 − F (|tnun|2)] ≥ c∞ − ε.

From this, (5.5) and (f5), we have

(5.24) lim inf
n→∞

∫
Ωλn\BR(yn)

C|tnun|q ≤ ε.

By Claim I, we can assume that yn ∈ Γ1λn , i.e. yn/λn ∈ Γ1 and yn/λn → x0 ∈ Γ1,

as n→∞, because Γ1 is a compact set. Take j ∈ {1, . . . , N}. From the definition

of the barycenter, we have

∣∣∣∣βjλn(un)

λn
− xj0

∣∣∣∣ ≤
∫

Ωλn

∣∣∣∣ xjλn − xj0
∣∣∣∣|tnun|q∫

Ωλn

|tnun|q
.

Using Lemma 2.1 and the fact that tn|un| ∈Mλn , we may assume that∫
Ωλn

|tnun|q ≥ γ > 0, for all n ∈ N.

As a consequence,

γ

∣∣∣∣βjλn(un)

λn
− xj0

∣∣∣∣ ≤ ∫
Ωλn

∣∣∣∣ xjλn − xj0
∣∣∣∣|tnun|q

=

∫
Ωλn∩BR(yn)

∣∣∣∣ xjλn − xj0
∣∣∣∣|tnun|q +

∫
Ωλn\BR(yn)

∣∣∣∣ xjλn − xj0
∣∣∣∣|tnun|q

≤
∫

Ωλn∩BR(yn)

∣∣∣∣ xjλn − yjn
λn

∣∣∣∣|tnun|q +

∫
Ωλn∩BR(yn)

∣∣∣∣ yjnλn − xj0
∣∣∣∣|tnun|q

+

∫
Ωλn\BR(yn)

∣∣∣∣ xjλn − xj0
∣∣∣∣|tnun|q
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≤ R

λn

∫
Ωλn

|tnun|q +

∣∣∣∣ ynλn − x0

∣∣∣∣ ∫
Ωλn

|tnun|q + diam(Ω)

∫
Ωλn\BR(yn)

|tnun|q

=

(
R

λn
+

∣∣∣∣ ynλn − x0

∣∣∣∣) ∫
Ωn

|tnun|q + diam(Ω)

∫
Ωλn\BR(yn)

|tnun|q.

From (5.24) and the fact that the sequence (‖tnun‖Aλn )n is bounded and yn/λn →
x0, we find

0 ≤ lim inf
n→∞

∣∣∣∣βjλn(un)

λn
− xj0

∣∣∣∣ ≤ diam(Ω)
ε

γC
, for all j ∈ {1, . . . , N}.

Since ε > 0 is arbitrary, we can find a subsequence (not renamed) such that

dist

(
βλn(un)

λn
,Γ1

)
→ 0, as n→∞.

We conclude that dist(βλn(un),Γ1λn) ≤ λnr, for every n sufficiently large, hence

that (5.2) holds, and Proposition 5.1 follows. �

Taking ε∗ > 0 given by Proposition 5.1, we define b∗λ = bλ + ε∗. As a

consequence of Propositions 3.1, 4.1 and 5.1, we obtain the following result which

is the key point in the comparison of the topology of the sublevel sets of the

functional Iλ with that of Γ1λ.

Lemma 5.1. There exists λ∗ > 0 such that

Φλ((Γ−1 )λ) ⊂M b∗λ
λ and βλ(M

b∗λ
λ ) ⊂ (Γ+

1 )λ,

for every λ > λ∗, where M
b∗λ
λ

.
= I

b∗λ
λ ∩Mλ.

Proof. By Proposition 5.1, there exists λ1 > 0 such that βλ(M
b∗λ
λ ) ⊂ (Γ+

1 )λ.

From Propositions 3.1 and 4.1, we have

lim
λ→∞

(Iλ(Φλ(y))− bλ) = 0,

independent of y ∈ Γ−1λ. Thus, for this ε∗ > 0 there exits λ2 = λ2(ε∗) > 0 such

that Iλ(Φλ(y)) ≤ bλ+ε∗, for every λ > λ2 and y ∈ (Γ−1 )λ. Set λ∗
.
= max{λ1, λ2}.

Hence, Φλ((Γ−1 )λ) ⊂M b∗λ
λ and βλ(M

b∗λ
λ ) ⊂ (Γ+

1 )λ, for all λ > λ∗. �

6. Proof of Theorem 1.1

We begin by stating a comparison of the topology of the sublevel M
b∗λ
λ with

that of Γ1λ.

Lemma 6.1. Let λ∗ > 0 be as in Lemma 5.1. Then

cat
M
b∗
λ
λ

(M
b∗λ
λ ) ≥ catΓ1λ

(Γ1λ), for every λ > λ∗.
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Proof. The proof proceeds along the same lines as the proof of [7, Lem-

ma 4.3]. Suppose that cat
M
b∗
λ
λ

(M
b∗λ
λ ) = m. Thus, M

b∗λ
λ = Υ1 ∪ . . . ∪ Υm, where

Υj is closed and contractible in M
b∗λ
λ , for j = 1, . . . ,m. Hence, there exists

hj ∈ C([0, 1] × Υj ,M
b∗λ
λ ) such that hj(0, u) = u, hj(1, u) = uj ∈ M

b∗λ
λ for every

u ∈ Υj and j = 1, . . . ,m, for some uj ∈ M
b∗λ
λ fixed. Set Bj := Φ−1

λ (Υj),

j = 1, . . . ,m, which are closed in Γ−1λ. By Proposition 5.1, we have

Γ−1λ =

m⋃
j=1

Bj .

Using Proposition 5.1 again, the maps gj : [0, 1]×Bj → Γ+
1λ given by

gj(t, y) := βλ(hj(t,Φλ(y))), for all j ∈ {1, . . . ,m},

are well defined. In addition, gj ∈ C([0, 1]×Bj ,Γ+
1λ) and

gj(0, y) = y, gj(1, y) = yj ∈ Γ+
1λ, for every y ∈ Bj , j = 1, . . . ,m,

and yj ∈ Γ+
1λ fixed, and so catΓ+

1λ
Γ−1λ ≤ m. Recalling that Γ+

1λ and Γ−1λ are

homotopically equivalent to Γ1λ, it follows that catΓ1λ
Γ1λ = catΓ+

1λ
Γ−1λ, and

hence catΓ1λ
Γ1λ ≤ m, which completes the proof. �

Proof of Theorem 1.1. Take ε∗ > 0 given by Proposition 5.1, λ∗ > 0

given by Proposition 5.1, and suppose λ ≥ λ∗. If b∗λ = bλ + ε is a critical value

for every ε ∈ (0, ε∗] then Iλ has infinitely many critical values and the proof is

complete. Otherwise, we can assume that b∗λ is a regular value of Iλ. Since M
b∗λ
λ

is a closed set in Mλ, by Proposition 2.3, the restriction of Iλ to M
b∗λ
λ satisfies

the (PS)d condition for every d ∈ R. Hence, by the Lusternik–Schnirelman

theory and Lemma 6.1, we obtain catΓ1λ
(Γ1λ) critical points of Iλ|

M
b∗
λ
λ

. By

Corollary 2.1, each of these critical points is a critical point of Iλ. �

7. Morse theory for Iλ

In this section we see how the homology groups of the sets Γ1λ, (Γ−1 )λ, (Γ+
1 )λ

and M
b∗λ
λ are related. For the convenience of the reader, we repeat the relevant

material from [7, Section 5] adapted to our case, thus making the exposition

self-contained.

Lemma 7.1. Let λ∗ > 0 be as in Lemma 5.1. Then

Pt(M
b∗λ
λ ) = Pt(Γ1λ) +Q(t),

for every λ ≥ λ∗, where Q is a polynomial with non-negative coefficients.

Proof. Setting λ ≥ λ∗, the function Φλ: (Γ−1 )λ → Mλ given by (3.4) in-

duces the homomorphism (Φλ)k:Hk(Γ−1λ) → Hk(M
b∗λ
λ ) between the k-th ho-

mology groups. Since Φλ is a injective function, so also is (Φλ)k. Hence,
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dimHk(Γ−1λ) ≥ dimHk(M
b∗λ
λ ), and the result follows from the definition of the

Poincaré polynomials and the fact that Γ−1λ and Γ1λ are homotopically equiva-

lent. �

Lemma 7.2. Let λ∗ > 0 be as in Lemma 5.1, λ ≥ λ∗, δ ∈ (0, δ0), for δ0

given by Proposition 2.2, and b ∈ (δ,∞] a noncritical level of Iλ. Then

Pt(Ibλ, Iδλ) = tPt(M b
λ).

Proof. The proof proceeds along the same lines as the proof of [7, Lem-

ma 5.2]. �

Lemma 7.3. Let λ∗, λ and δ be as in Lemma 7.2. Then

(7.1) Pt(I
b∗λ
λ , Iδλ) = tPt(Γ1λ) + tQ(t)

and

(7.2) Pt(H1
Aλ

(Ωλ,Γ0λ), Iδλ) = tPt(Mλ) = t,

where Q is a polynomial with non-negative coefficients.

Proof. As in the proof of Theorem 1.1, we can assume that b∗λ is a regular

value. Applying Lemma 7.2, for b = b∗λ, and Lemma 7.1, we get (7.1). Using

that Mλ is homeomorphic to the unit sphere in H1
Aλ

(Ωλ,Γ0λ), which is con-

tractible, we have that Mλ is contractible. Hence, dimHk(Mλ) = 1 if k = 0

and dimHk(Mλ) = 0 if k 6= 0. Finally, (7.2) is obtained by again invoking

Lemma 7.2, for b =∞. �

Lemma 7.4. Let λ∗, λ and δ be as in Lemma 7.2. Then

(7.3) Pt(H1
Aλ

(Ωλ,Γ0λ), I
b∗λ
λ ) = t2[Pt(Γ1λ) +Q(t)− 1],

where Q is a polynomial with non-negative coefficients.

Proof. We follow Benci and Cerami [7] in considering the exact sequence:

· · · −→ Hk(H1
Aλ

(Ωλ,Γ0λ), Iδλ)
jk−→ Hk(H1

Aλ
(Ωλ,Γ0λ), I

b∗λ
λ )

∂k−→
∂k−→ Hk−1(I

b∗λ
λ , Iδλ)

ik−1−−−→ Hk−1(H1
Aλ

(Ωλ,Γ0λ), Iδλ) −→ · · ·

From (7.2), we obtain dimHk(H1
Aλ

(Ωλ,Γ0λ), Iδλ) = 0, for all k 6= 1. If we combine

this with the fact that the sequence is exact , we see that ∂k is a isomorphism

for every k ≥ 3. Hence,

(7.4) dimHk(H1
Aλ

(Ωλ,Γ0λ), I
b∗λ
λ ) = dimHk−1(I

b∗λ
λ , Iδλ), for all k ≥ 3.

For k = 2, we have

· · · −→ H2(H1
Aλ

(Ωλ,Γ0λ), Iδλ)
j2−→ H2(H1

Aλ
(Ωλ,Γ0λ), I

b∗λ
λ )

∂2−→
∂2−→ H1(I

b∗λ
λ , Iδλ)

i1−→ H1(H1
Aλ

(Ωλ,Γ0λ), Iδλ) −→ · · ·
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Since j2 is sobrejective (j2 is the homomorphism induced by the canonic projec-

tion) and dimH2(H1
Aλ

(Ωλ,Γ0λ), Iδλ) = 0, by (7.2), we have

(7.5) H2(H1
Aλ

(Ωλ,Γ0λ), I
b∗λ
λ ) = j2(H2(H1

Aλ
(Ωλ,Γ0λ), Iδλ)) = {0}.

For k = 1,

· · · −→ H1(I
b∗λ
λ , Iδλ)

i1−→ H1(H1
Aλ

(Ωλ,Γ0λ), Iδλ)
j1−→

j1−→ H1(H1
Aλ

(Ωλ,Γ0λ), I
b∗λ
λ )

∂1−→ H0(I
b∗λ
λ , Iδλ) −→ · · ·

Using that H1
Aλ

(Ωλ,Γ0λ) is a connected set, we have

(7.6) H0(H1
Aλ

(Ωλ,Γ0λ), I
b∗λ
λ ) = 0.

We now claim that i1 is a isomorphism. Indeed, as Γ1λ 6= ∅ and dimH0(Γ1λ)

is the number of connected components of the set Γ1λ, we have H0(Γ1λ) 6= {0}.
By (7.1), H1(I

b∗λ
λ , Iδλ) 6= {0}.

From (7.2), we obtain dimH1(H1
Aλ

(Ωλ,Γ0λ), Iδλ) = 1. Using that i1 is injec-

tive, we have dimH1(I
b∗λ
λ , Iδλ) = 1, and so i1 is a isomorphism. Using that i1 is

a isomorphism and j1 is sobrejective, we get

(7.7) dimH1(H1
AAλ

(Ωλ,Γ0λ), I
b∗λ
λ ) = 0.

Combining Lemma 7.3 with (7.4)–(7.7), we have

Pt(H1
Aλ

(Ωλ,Γ0λ), I
b∗λ
λ ) =

∑
k≥3

tkdimHk(H1
Aλ

(Ωλ,Γ0λ), I
b∗λ
λ )

=
∑
k≥3

tkdimHk−1(I
b∗λ
λ , Iδλ) = t

∑
k≥3

tk−1dimHk−1(I
b∗λ
λ , Iδλ)

= t[Pt(I
b∗λ
λ , Iδλ)− tdimH1(I

b∗λ
λ , Iδλ)− dimH0(I

b∗λ
λ , Iδλ)]

= t2[Pt(Γ1λ) +Q(t)− 1].

Lemma 7.5. Let λ∗, λ and δ be as in Lemma 7.2. Suppose that the set K of

nontrivial solutions of problem (1.5) is discrete. Then∑
u∈C1

it(u) = tPt(Γ1λ) + tQ(t) + (1 + t)Q1(t),(7.8)

∑
u∈C2

it(u) = t2[Pt(Γ1λ) +Q(t)− 1] + (1 + t)Q2(t),(7.9)

where C1
.
= {u ∈ K; δ < Iλ(u) ≤ b∗λ} and C2

.
= {u ∈ K; b∗λ < Iλ(u)}, and Qi,

i = 1, 2, is a polynomial with non-negative coefficients.



360 C.O. Alves — R.C.M. Nemer — S.H.M. Soares

Proof. Using that Iλ satisfies (PS) condition and applying [6, Theorem I.5.9],

there exists a polynomial Q1 with non-negative coefficients such that∑
u∈C1

it(u) = Pt(I
b∗λ
λ , Iδλ) + (1 + t)Q1(t).

Hence, (7.8) is a consequence of (7.1) and (7.9) follows from (7.3). �

Proof of Theorem 1.2. Let λ∗, λ and δ be as in Lemma 7.2. Since Iλ

does not have nontrivial solution below the level δ0, we have K = C1 + C2, for C1
and C2 as in Lemma 7.5. Hence∑

u∈K
it(u) =

∑
u∈C1

it(u) +
∑
u∈C2

it(u).

Using Lemma 7.5, we conclude the proof. �

Proof of Corollary 1.1. This is a direct consequence of Theorem 1.2

and the fact that it(u) = tµ(u) in the non-degenerate case. �
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