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PARTIALLY SYMMETRIC SOLUTIONS

OF THE GENERALIZED HÉNON EQUATION

IN SYMMETRIC DOMAINS

Ryuji Kajikiya

Abstract. We study the generalized Hénon equation in a symmetric do-

main Ω. Let H and G be closed subgroups of the orthogonal group such

that H  G and Ω is G invariant. Then we show the existence of a positive
solution which is H invariant but G non-invariant under suitable assump-

tions of H, G and the coefficient function of the equation.

1. Introduction

We study the existence of partially symmetric positive solutions of the gen-

eralized Hénon equation

(1.1) −∆u = f(x)up, u > 0 in Ω, u = 0 on ∂Ω.

Here Ω is a bounded domain in RN with piecewise smooth boundary ∂Ω, 1 < p <

∞ when N = 2, 1 < p < (N+2)/(N−2) when N ≥ 3, f ∈ L∞(Ω) and f(x) may

be positive or may change its sign. Let G be a closed subgroup of the orthogonal

group O(N). We call Ω a G invariant domain if g(Ω) = Ω for all g ∈ G. We call

f(x) a G invariant function if f(gx) = f(x) for all g ∈ G and x ∈ Ω. In the same

manner, we define a G invariant solution of (1.1). Throughout the paper, we
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assume that the set of x ∈ Ω satisfying f(x) > 0 has positive Lebesgue measure.

Otherwise, f(x) ≤ 0 almost everywhere in Ω and no positive solution exists by

the maximum principle. If Ω and f are G invariant, (1.1) has a G invariant

positive solution, which will be proved in this section. However, we are looking

for a positive solution without G invariance. In particular, we investigate the

existence of an H invariant G non-invariant solution for closed subgroups H and

G such that H  G ⊂ O(N). This solution has a partial symmetry, that is, it is

invariant under the H action, but not invariant under the G action.

To get such a solution, we define a least energy solution in the following.

First, we introduce the Rayleigh quotient

R(u) :=

(∫
Ω

|∇u|2 dx
)(∫

Ω

f(x)|u|p+1 dx

)−2/(p+1)

,

with the definition domain

D(R) :=

{
u ∈ H1

0 (Ω) :

∫
Ω

f(x)|u|p+1 dx > 0

}
.

Here H1
0 (Ω) denotes the Sobolev space. Second, we define the Nehari manifold

by

N :=

{
u ∈ H1

0 (Ω) \ {0} :

∫
Ω

(|∇u|2 − f(x)|u|p+1) dx = 0

}
.

Last, we define the least energy R0 by

R0 := inf{R(u) : u ∈ D(R)} = inf{R(u) : u ∈ N}.

The equality of the two infimums above can be proved by using two facts that

R(λu) = R(u) for any λ > 0 and u ∈ D(R); for any u ∈ D(R) there exists a

λ > 0 such that λu ∈ N . Because of the Sobolev embedding theorem, R(u) has

a positive lower bound. Hence R0 is well defined and positive. We call R0 a least

energy and u a least energy solution if u ∈ N and R(u) = R0. Such a minimizer

exists and becomes a solution of (1.1). Note that R(u) = R(|u|). Thus, if u

is a least energy solution, so is |u|. Then |u| also satisfies (1.1). By the strong

maximum principle, u is positive or negative in Ω. Throughout the paper, we

choose a positive solution as a least energy solution. A least energy solution is

not necessarily unique.

To explain our problem and motivation, we introduce the original Hénon

equation

(1.2) −∆u = |x|λup, u > 0 in B, u = 0, on ∂B,

where B is a unit ball in RN . Smets, Willem and Su [49] have proved that if

λ > 0 is large enough, a least energy solution of (1.2) is non-radial. Therefore the

equation has at least two positive solutions: a non-radial solution and a radial

solution. There are many contributions which have studied the Hénon equation

([4], [7], [10], [12]–[15], [18], [25], [27], [46], [48]).
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The result [49] by Smets, Willem and Su means that if λ is large enough,

then a least energy solution breaks its radial symmetry. In this case, the weight

function |x|λ has a thicker density near the boundary |x| = 1 than the value in

the interior. We study the problem above with B replaced by Ω and |x|λ by f(x),

where f(x) is a G invariant function and Ω is a G invariant domain with a closed

subgroup G of O(N). Moreover, we look for an H invariant G non-invariant

solution. To find such a solution, we define a G invariant least energy solution

as below. When Ω is G invariant, we set

(1.3)

H1
0 (Ω, G) := {u ∈ H1

0 (Ω) : u is G invariant},

D(R,G) := D(R) ∩H1
0 (Ω, G), N (G) := N ∩H1

0 (Ω, G),

RG := inf{R(u) : u ∈ D(R,G)} = inf{R(u) : u ∈ N (G)}.

We call RG a G invariant least energy and u a G invariant least energy solution

if u ∈ N (G) and R(u) = RG. There exists a G invariant least energy solution

and it solves (1.1). To avoid confusion, a usual least energy solution is called

a global least energy solution.

When Ω is a hollow thin symmetric domain, we proved in [32] the existence

of an H invariant G non-invariant solution. To state this result, we begin with

the annulus

AN (a, b) := {x ∈ RN : a < |x| < b}.

Coffman [19], Li [34] and Byeon [9] considered the Emden-Fowler equation

(1.4) −∆u = up, u > 0 in Ω, u = 0 on ∂Ω,

with Ω = AN (a, b) annulus. They proved that the number of non-equivalent

positive solutions diverges to infinity as (b− a)/a→ 0. Moreover, a least energy

solution is not radially symmetric when (b−a)/a is small enough. Here solutions

u and v are said to be equivalent if u(gx) = v(x) with some g ∈ O(N). For the

related results to the annulus, we refer the readers to [2], [16], [17], [21]–[23], [35]–

[40], [45], [50], [51]. Even if Ω is not an exact annulus but it is like an annular

domain without O(N) invariance, the existence of multiple positive solutions was

proved by Byeon and Tanaka [11]. For the related results, we refer the readers

to [1], [5], [24].

More general equations than (1.4) were studied by papers [6], [33], [43].

Indeed, the existence of a sequence of sign-changing solutions for the critical

polyharmonic equation was proved by Bartch, Schneider and Weth [6]. For the

p-Laplace equation in RN , Kristály and Marzantowicz [33] proved the existence

of multiple sequences of sign-changing solutions. Musso, Pacard and Wei [43]

proved the existence of a sequence of nonradial sign-changing solutions for a semi-

linear elliptic equation.
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We shall state our earlier result. Let Ω be a hollow regular polygon, which is

defined as below. Let P be an interior of a regular n polygon with center origin.

We define

(1 + ε)P := {(1 + ε)x : x ∈ P}, with ε > 0,

which is a regular polygon larger than P . We remove P from (1+ε)P and define

Ω := (1 + ε)P \ P . Then Ω is a hollow polygon. We define

r(θ) :=

(
cos θ − sin θ

sin θ cos θ

)
,

(1.5) Gn := {r(2jπ/n) : j = 0, 1, . . . , n− 1}.

Then Ω is Gn invariant. Let 1 = n1 < . . . < nd = n be all divisors of n and let

ui be a Gni
invariant least energy solution of (1.4). Then we proved in [32] that

for ε > 0 small enough, ui is not equivalent to uj if i 6= j. This is caused by the

assumption that Ω is a hollow thin domain.

Replace (1.4) by (1.1). In this case, we do not need Ω to have a hole. Instead

of a hole, we assume that the ratio of the density of f(x) near ∂Ω to that of the

interior of Ω is large enough. Then we shall prove the same result as above in

Example 3.3.

For a closed subgroup G of O(N) and x ∈ RN , we define the orbit of G

through x by

(1.6) G(x) := {gx : g ∈ G}.

Let H and G be closed subgroups of O(N) satisfying H  G. The purpose of

this paper is to prove that no H invariant least energy solution is G invariant

if H(x)  G(x) for all x ∈ Γ. Here H(x) and G(x) are the orbits of H and

G, respectively, and Γ is the set of points farthest in Ω from the fixed point set

of G. By choosing several pairs of H and G, we obtain multiple positive solutions

of (1.1).

This paper is organized into six sections. In Section 2, we state the main

results. In Section 3, we give several examples of symmetric domains Ω and

groups H, G and explain how to apply our theorem to the problem. In Section 4,

we give a few lemmas to prove the main results. In Section 5, we give an a priori

L∞(Ω) estimate of a G invariant least energy solution and investigate the L2(Ω)

norm. In Section 6, we prove the main theorems.

2. Main results

In this section, we state the main results. We define the fixed point set of G

by F = Fix(G) := {x ∈ RN : gx = x for all g ∈ G}. Then F is a linear subspace

of RN . Let F⊥ denote the orthogonal complement of F in RN . Hereafter, the
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notation x = x′ + x′′ stands for the orthogonal decomposition of x ∈ RN with

x′ ∈ F and x′′ ∈ F⊥. We define a notation

Ω(s < |x′′| < t) := {x′ + x′′ ∈ Ω : s < |x′′| < t}.

Similarly, we define Ω(|x′′| < t). We put

dist(x, F ) := inf{|x− y| : y ∈ F},

A := max
x∈Ω

dist(x, F ) = max
x∈∂Ω

dist(x, F ).(2.1)

We denote the set of points farthest in Ω from F by Γ, i.e.

(2.2) Γ := {x ∈ ∂Ω : dist(x, F ) = A},

where A is given by (2.1).

If f ≥ 0, 6≡ 0 in Ω, we define, for N ≥ 3 and A0 ∈ (0, A),

µ(f,A0) := ‖f‖N+2−(N−2)p
L∞(Ω(|x′′|<A0))‖f‖

(N−2)(p−1)
L∞(Ω)

(∫
Ω

f(x)dist(x, ∂Ω)p+1 dx

)−4

,

and for N = 2 with θ ∈ (0, 1),

µ(f,A0, θ) := ‖f‖L∞(Ω(|x′′|<A0))‖f‖
(1−θ)/θ
L∞(Ω)

(∫
Ω

f(x)dist(x, ∂Ω)p+1 dx

)−1/θ

.

Here ‖ · ‖Lq(Ω) denotes the Lq(Ω) norm and dist(x, ∂Ω) is the distance function

from x to ∂Ω.

Let G and H be closed subgroups of O(N) such that Ω is G invariant and

H  G. We introduce an assumption

(2.3) H(x)  G(x) for all x ∈ Γ.

Here H(x) and G(x) denote the orbits defined by (1.6) and Γ is defined by

(2.2). Define f+(x) := max(f(x), 0). We consider the following two conditions

separately.

(A) f(x) ≤ 0 in Ω(|x′′| < A0) and f+(x) 6≡ 0 in Ω(A0 < |x′′| < A).

(B) f(x) ≥ 0, 6≡ 0 in Ω and µ(f,A0) is small enough when N ≥ 3 and

µ(f,A0, θ) with a certain θ ∈ (0, 1) is small enough when N = 2.

Recall that RG is defined by (1.3). We state the first main result.

Theorem 2.1. Let G and H be closed subgroups of O(N) such that Ω is

G invariant, H  G and they satisfy (2.3). Then there exists an ε ∈ (0, A)

independent of f(x) such that if either (A) or (B) holds at some A0 ∈ (A−ε,A),

then RH < RG. Therefore if u is an H invariant least energy solution, it is not G

invariant. Thus (1.1) has at least two positive solutions: one is an H invariant

G non-invariant positive solution and another is a G invariant positive solution.
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Denote the set of G invariant continuous functions on Ω by C(Ω, G). Instead

of assumption (B), we consider the next one.

(B)’ f(x) := f0(x)λ with λ > 0, where f0 ∈ C(Ω, G) satisfies

(2.4) 0 ≤ f0(x) < max
y∈Γ

f0(y) for x ∈ Ω \ Γ.

Then we have the next corollary.

Corollary 2.2. Let G, H and Ω be as in Theorem 2.1. Let f ∈ C(Ω, G)

satisfy either assumption (A) with A0 sufficiently close to A or assumption (B)’

with λ > 0 large enough. Then no H invariant least energy solution of (1.1) can

be G invariant.

Now, we consider the case where Fix(G) = {0}. This condition is satisfied

if, for example, G = {I,−I} with the unit matrix I, G = Gn defined by (1.5)

or G = O(N), etc. Then A defined by (2.1) is the radius of the circumscribed

sphere of Ω and Γ is the intersection of this sphere and ∂Ω. Let f(r) with r = |x|
be radially symmetric. Then assumption (A) is rewritten as

(2.5) f(r) ≤ 0 in (0, A0), f+(r) 6≡ 0 in (A0, A).

Condition (2.4) is reduced to

(2.6) 0 ≤ f0(r) < f0(A) for 0 ≤ r < A,

where f(r) = f0(r)λ and f0 ∈ C[0, A]. Then Corollary 2.2 leads to the next one.

Corollary 2.3. Let G, H and Ω be as in Theorem 2.1. Moreover, as-

sume that Fix(G) = {0}. Let f(r) with r = |x| be a radial continuous function

satisfying either (2.5) with A0 ∈ (0, A) sufficiently close to A or (2.6) with

f(r) := f0(r)λ and λ large enough. Then no H invariant least energy solution

of (1.1) is G invariant.

There are various functions f(|x|) satisfying (2.6), e.g. f(|x|) = |x|λ (the

original Hénon equation), f(|x|) = eλ|x|, (|x|/(1 + |x|))λ and (sin(π|x|/2A))λ,

etc. The simplest example satisfying (2.5) is f(|x|) = |x| −A0.

Remark 2.4. We mention that (2.3) is related to the necessary condition

for the existence of an H invariant G non-invariant solution. Suppose that

H(x) = G(x) for all x ∈ Ω.

Under this condition, any H invariant function coincides with a G invariant

function. Therefore the existence of an H invariant G non-invariant solution

needs the condition,

H(x)  G(x) at some x ∈ Ω.

This is a necessary condition and (2.3) is stronger than this condition.
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Since G is an isometric transformation group on RN , it becomes that on the

unit sphere SN−1,

SN−1 := {x ∈ RN : |x| = 1}.

If G(x) = SN−1 for x ∈ SN−1, G is said to be transitive on SN−1. If G is

transitive, then a G invariant solution becomes radially symmetric. If G is not

transitive, then G(x)  SN−1 = O(N)(x) for x ∈ SN−1, which implies that

G(x)  O(N)(x) for all x 6= 0. This condition means that the pair (G,O(N))

satisfies (2.3). Then Corollary 2.3 implies the next result.

Corollary 2.5. Let Ω be an annulus or a ball, i.e.

(2.7) Ω := {x ∈ RN : a < |x| < A} or Ω := {x ∈ RN : |x| < A}.

Let f(|x|) be a radial continuous function satisfying either (2.5) with A0 close to

A or (2.6) with λ > 0 large enough. Let G be a closed subgroup of O(N). Then

the following two assertions are equivalent.

(a) G is not transitive on SN−1.

(b) No G invariant least energy solution can be radially symmetric.

Remark 2.6. In our paper [28], we studied sign-changing solutions of (1.1) in

a ball and an annulus, where we took f(x) ≡ 1 and replaced up by |u|p−1u. Then

we proved that (a) in Corollary 2.5 is equivalent to the existence of a sequence uk
of sign-changing solutions which are G invariant but non-radial and the H1

0 (Ω)

norm of uk diverges to infinity as k →∞.

All transitive Lie groups have been classified by Montgomery and Samel-

son [41] and Borel [8] as below (see also [26, p. 186, Theorem 2.6] and [44,

p. 267, Theorem 3]).

Theorem 2.7 (Montgomery and Samelson [41], Borel [8]). Let N ≥ 2 and G

be a connected closed subgroup of SO(N). Here SO(N) is the special orthogonal

group (rotation group). Then G is transitive on SN−1 if and only if G is locally

isomorphic to one of the following groups: SO(N); SU(m), U(m) if N = 2m;

Sp(m), Sp(m)Sp(1), Sp(m)U(1) if N = 4m; Spin(9) if N = 16; Spin(7) if

N = 8; G2 if N = 7.

When G is not necessarily connected, we denote by G0 the connected com-

ponent of G which has the unit matrix. Then G0 becomes a closed subgroup of

G. Moreover, G is transitive if and only if so is G0. Therefore a closed subgroup

G of O(N) is transitive if and only if G0 is O(N) locally isomorphic to one of

the groups listed in the theorem above. Since a finite subgroup of O(N) is not

transitive, we have the following result.
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Corollary 2.8. Let Ω and f be as in Corollary 2.5 and let G be a finite

subgroup of O(N). Then no G invariant least energy solution can be radially

symmetric.

Example 2.9. Let Ω and f be as in the corollary above. Then an even least

energy solution is not radially symmetric. Indeed, we choose G = {I,−I} with

the unit matrix I. Then a G invariant function is even. Therefore Corollary 2.8

shows the conclusion.

3. Examples

In this section, we give several examples of G, H and Ω and demonstrate

how to apply our theorem to the problem. Then we obtain multiple positive

solutions.

Example 3.1. Let Ω be a bounded and point symmetric domain, i.e., x ∈ Ω

implies −x ∈ Ω. Put A := maxx∈Ω |x|. Let f(x) be a continuous even function

on Ω satisfying either (A) or (B) below.

(A) f(x) ≤ 0 in Ω(0 < |x| < A0) and f+(x) 6≡ 0 in Ω(A0 < |x| < A).

(B) f(x) = f0(x)λ, where f0(x) is a continuous even function satisfying 0 ≤
f0(x) < max|y|=A f0(y) for 0 ≤ |x| < A.

If (A) holds with A0 sufficiently close to A or if (B) holds with λ > 0 large

enough, then a global least energy solution is not even. Therefore (1.1) has

both an even positive solution and a non-even positive solution. We shall show

this claim. Put H := {I} and G := {I,−I} with the unit matrix I. Then

Fix(G) = {0} and (2.3) holds. In this case, an H invariant least energy solution

coincides with a global least energy solution. Corollary 2.2 shows that a global

least energy solution is not even.

Example 3.2. Let N = 2 and Ω be a square defined by

Ω := {(x1, x2) ∈ R2 : |x1| < 1, |x2| < 1}.

Let f(r) with r = |x| be a radial continuous function defined for r ∈ [0,
√

2] and

hence it is defined on the whole Ω. Assume that f(r) satisfies either (2.5) with

A0 slightly less than
√

2 or (2.6) with λ > 0 large enough. Let H := {I,−I}
with the unit matrix I and define

G :=

{(
1 0

0 1

)
,

(
−1 0

0 1

)
,

(
1 0

0 −1

)
,

(
−1 0

0 −1

)}
.

Then G is a reflection group with respect to the x-axis and the y-axis. H is

a point reflection with respect to the origin. Clearly, H is a subgroup of G. It

holds that Fix(G) = {0} and Γ consists of four vertices of Ω, i.e.

(3.1) Γ = {(1, 1), (1,−1), (−1, 1), (−1,−1)},
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The constant A defined by (2.1) is equal to
√

2, the radius of the circumscribed

circle of Ω. From the definition of the orbit, it follows that

H(x) = {x,−x}, G(x) = Γ for x ∈ Γ,

which means that H(x)  G(x) for all x ∈ Γ. Thus (H,G,Ω) satisfies (2.3).

By Corollary 2.2, a point symmetric (i.e. even) least energy solution has no

reflective symmetry with respect to either the x-axis or the y-axis. Observe that

a combination of a point symmetry and the x-axis reflective symmetry yields

the y-axis reflective symmetry. This claim is still valid by exchanging x with

y. Therefore our theorem says that a point symmetric least energy solution has

neither the x-axis reflective symmetry nor the y-axis reflective symmetry.

In the following, we consider various groups G. Note that Γ defined by (2.2)

depends only on Ω and G. Since Ω is fixed, we denote Γ by Γ(G). Let G4 and

H be as in (1.5) and as above, respectively. Then H is a subgroup of G4. It is

easy to compute that Fix(G4) = {0} and Γ(G4) is equal to Γ in (3.1). Hence

(H,G4,Ω) satisfies (2.3). Accordingly, a point symmetric least energy solution

is not invariant under the rotation by angle π/4.

Define

K :=

{(
1 0

0 1

)
,

(
0 1

1 0

)
,

(
0 −1

−1 0

)
,

(
−1 0

0 −1

)}
.

Then K is the reflection with respect to the lines y = x and y = −x. H is

a subgroup of K and Γ(K) is equal to Γ in (3.1). In this case, (H,K,Ω) does

not satisfy (2.3). Indeed, we have

H(x) = K(x) = {x,−x} for x ∈ Γ.

The square Ω has four lines of symmetry: x-axis, y-axis, y = x and y = −x.

Our theorem ensures that a point symmetric least energy solution does not have

any symmetries of the x-axis reflection, the y-axis reflection and the rotation by

π/4. However our theorem says nothing about whether a point symmetric least

energy solution has no reflective symmetry with respect to the line y = x or

y = −x.

We consider a global least energy solution. Let H = {I} and G = {I,−I}.
Then an H invariant least energy solution is a global least energy solution. For

this G, Γ(G) coincides with Γ in (3.1). Since H(x)  G(x) for x ∈ Γ, a global

least energy solution is not even. We shall show that a global least energy

solution is not symmetric with respect to the x-axis reflection. Let H := {I}
and define

G :=

{(
1 0

0 1

)
,

(
1 0

0 −1

)}
.
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Then G is the reflection group of the x-axis. Then Fix(G) is the x-axis and hence

Γ(G) = {(x1, x2) : −1 ≤ x1 ≤ 1, x2 = ±1}.

We compute

H(x) = {x}, G(x) = {(x1, x2), (x1,−x2)} for x = (x1, x2) ∈ Γ(G).

Therefore (H,G) satisfies (2.3). Since Fix(G) is the x-axis, we compute

Ω(|x′′| < A0) = {(x1, x2) ∈ Ω : |x2| < A0}.

At the beginning of the example, we defined a radial continuous function f(r).

For G above, f(r) still satisfies (A) or (B)’, which can be proved by using the

expression of Ω(|x′′| < A0) above. Hence a global least energy solution is not

symmetric with respect to the x-axis reflection. In the same way, we see that

a global least energy solution does not have any symmetries of the x-axis reflec-

tion, the y-axis reflection and the rotation by π/4.

We have already stated in Introduction that when Ω is a hollow thin polygon,

(1.4) has an H invariant G non-invariant solution. We consider the usual polygon

without a hole in the next example.

Example 3.3. Let Ω be a regular n polygon with center origin. Let 1 =

n1 < . . . < nd = n be all the divisors of n and ui be a Gni
invariant least energy

solution. Here Gn is defined by (1.5). Let A be the distance between the center

and a vertex of Ω, i.e., the radius of the circumscribed circle of Ω. Let f(x) be

a Gn invariant function satisfying either (A) in Example 3.1 with A0 sufficiently

close to A or (B) with λ > 0 large enough. Then ui is not equivalent to uj for

i 6= j. For example, consider the regular hexagon Ω. Then it is G6 invariant. All

subgroups of G6 are G1, G2, G3 and G6. Let ui be a Gi invariant least energy

solution. Then u1, u2, u3 and u6 are not equivalent to each other.

The above example and the next one will be proved in the last section.

Example 3.4. Let Ω be a cylinder in R3, which is defined by

Ω := {(x1, x2, x3) : x2
1 + x2

2 < α2, |x3| < β},

with α, β > 0. Let f(x) be a continuous function which is rotationally symmetric

around the x3 axis and satisfies either (A) or (B) below.

(A) f(x) ≤ 0 in Ω(|(x1, x2)| < a) and f+(x) 6≡ 0 in Ω(a < |(x1, x2)| < α).

(B) f(x1, x2, x3) = f0(|(x1, x2)|)λ, where f0(|(x1, x2)|) is a radial function

satisfying 0 ≤ f0(t) < f0(α) for 0 ≤ t = |(x1, x2)| < α.

Then the number of non-equivalent positive solutions diverges to infinity as a→
α in Case (A) or λ→∞ in Case (B).
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Example 3.5. Let Ω be an interior of a regular tetrahedron centered at the

coordinate origin O in R3. Let A be the radius of the circumscribed sphere of

Ω. Let f(r) with r = |x| be a radial continuous function defined on r ∈ [0, A].

Hence it is well defined on the whole Ω. Suppose that f(r) satisfies either (2.5)

with A0 sufficiently close to A or (2.6) with λ > 0 large enough. Then (1.1)

has at least 3 non-equivalent positive solutions. We shall show this claim. We

denote the symmetry group of Ω by O(Ω) and the rotational symmetry group

by SO(Ω), which are defined by

O(Ω) := {g ∈ O(3) : g(Ω) = Ω)}, SO(Ω) := {g ∈ SO(3) : g(Ω) = Ω)}.

Then it is known that SO(Ω) is isomorphic to the alternating group A4, and

O(Ω) to the symmetric group S4 (for the proof, see [20, p. 49] or [3, pp. 37–38]).

Denote the unit element in S4 by e. Then all subgroups of S4 which are not

conjugate to each other are listed below.

G1 := {e},

G2 := {e, (1 2)},

G3 := {e, (1 2)(3 4)},

G4 := {e, (1 2 3), (1 3 2)},

G5 := {e, (1 3 2 4), (1 2)(3 4), (1 4 2 3)},

G6 := {e, (1 2), (3 4), (1 2)(3 4)},

G7 := {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)},

G8 :=S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)},

G9 := {e, (1 2), (3 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)},

G10 :=A4,

G11 :=O(Ω) = S4.

Let O be the center of the tetrahedron Ω and Vi with 1 ≤ i ≤ 4 be vertices of Ω.

Let Vij be the middle point of the edge connecting Vi with Vj . Let L12 denote

the reflection matrix with respect to the plane through three points V12, V3 and

V4. This reflection leaves the tetrahedron Ω invariant and interchanges V1 with

V2, but leaves V3 and V4 invariant. Thus L12 corresponds to the transposition

(1 2). For simplicity, we write L12 = (1 2). Similarly, we can define Lij = (i j).

For each vertex Vi, let R(Vi, 2π/3) denote the rotation matrix around the line

through Vi and O by angle 2π/3. Then the action R(Vi, 2π/3) conserves Ω

invariant. Observe that R(V1, 2π/3) leaves V1 invariant and maps V2 to V3, V3

to V4 and V4 to V2. Thus we write R(V1, 2π/3) = (2 3 4) ∈ S4. Let R(Vij , π) be

the rotation matrix around the line through Vij and O by angle π. Note that
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the line through V12 and O goes through V34 also. Then we write

R(V12, π) = R(V34, π) = (1 2)(3 4) ∈ S4.

All subgroups G1 through G11 have orthogonal representations by using Lij ,

R(Vij , π) and R(Vi, 2jπ/3).

Recall that two solutions u and v are said to be equivalent if u(x) = v(gx)

with some g ∈ O(N). If H and K are subgroups of O(Ω) and they are conjugate,

then any H invariant solution is equivalent to a certain K invariant solution.

Indeed, let K = g−1Hg with some g ∈ O(Ω) and let u(x) be an H invariant

solution. Putting v(x) := u(gx), we have

v(g−1hgx) = u(hgx) = u(gx) = v(x) for h ∈ H,

which shows that v(x) is K invariant. Accordingly, the H invariant solution u is

equivalent to the g−1Hg invariant solution v. To get non-equivalent solutions, it

is enough to consider G1 through G11 only and we ignore conjugate subgroups.

Let ui be a Gi invariant least energy solution. We shall show that u1, u6

and u11 have different energy. Observe that G1 ⊂ G6 ⊂ G11. Since Γ defined

by (2.2) depends on Ω and Gi, we write it as Γ(Gi). Recall that Vij denotes the

middle point of the edge connecting Vi with Vj . It is easy to verify that Fix(G6)

is the line through the points V12 and V34. The farthest points in Ω from this

line are all vertices V1, V2, V3 and V4, i.e.

(3.2) Γ(G6) = {V1, V2, V3, V4}.

Then we see that G1(x)  G6(x) for x ∈ Γ(G6). Therefore if λ > 0 is large

enough or if A0 is sufficiently close to A, then it holds that R(u1) < R(u6).

Since Fix(G11) consists only of the center O of the tetrahedron, Γ(G11) is the

set of all vertices, i.e.

(3.3) Γ(G11) = {V1, V2, V3, V4}.

We easily compute that G6(x)  G11(x) for x ∈ Γ(G11). Thus R(u6) < R(u11).

Therefore u1, u6 and u11 have different energies and hence they are not equiva-

lent.

As long as we use Theorem 2.1 only, we cannot find more solutions. We

shall show it. Recall that Γ(G6) is given by (3.2). Since G2 ⊂ G6 but G2(V1) =

G6(V1) = {V1, V2}, our theorem does not ensure that R(u2) < R(u6), i.e. we

cannot distinguish u2 from u6. Observe the inclusions

G3 ⊂ G6, G5 ⊂ G11, G7 ⊂ G11, G9 ⊂ G11, G10 ⊂ G11.

For all these pairs Gi ⊂ Gj , by using (3.2) and (3.3), one can prove that Gi(x) =

Gj(x) at some x ∈ Γ(Gj). Therefore for these pairs i, j, it is unclear whether
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ui is not equivalent to uj . The groups G4 and G8 remain. We easily see that

Fix(G4) = Fix(G8) and it is the line through two points V4 and O. Hence

Γ(G4) = Γ(G8) = {V1, V2, V3}.

Therefore f(r) satisfy neither (A) nor (B)’ in Corollary 2.2 because in the present

example, f(r) is a radial function and so it takes the same value at all vertices.

Consequently, we have at least 3 non-equivalent positive solutions.

4. Group invariant least energy

In this section, we shall show some lemmas which will be needed for the

proof of the main results. Let Lq(Ω, G) denote the set of G invariant functions

in Lq(Ω). Define the L2(Ω) inner product and the H1
0 (Ω) inner product by

(u, v)L2 :=

∫
Ω

uv dx, (u, v)H1
0

:=

∫
Ω

∇u∇v dx.

We define the orthogonal complements of L2(Ω, G) and H1
0 (Ω, G) by

L2(Ω, G)⊥ := {u ∈ L2(Ω) : (u, v)L2 = 0 for all v ∈ L2(Ω, G)},

H1
0 (Ω, G)⊥ := {u ∈ H1

0 (Ω) : (u, v)H1
0

= 0 for all v ∈ H1
0 (Ω, G)}.

The next two lemmas have been proved in our paper [31].

Lemma 4.1 ([31]). The following assertions hold.

(a) H1
0 (Ω, G)⊥ ⊂ L2(Ω, G)⊥.

(b) Let 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1. For u ∈ Lp(Ω) ∩ L2(Ω, G)⊥ and

v ∈ Lq(Ω, G), it holds that∫
Ω

uv dx = 0.

The Rayleigh quotient R(u) belongs to C2(H1
0 (Ω)) in the sense of the Fréchet

derivative. The second derivative R′′(u)vw is a continuous bilinear form of v and

w. We give the expression of R′′(u)w2 in the next lemma.

Lemma 4.2 ([30]). Let u be a positive solution of (1.1). For w ∈ H1
0 (Ω), it

holds that

R′′(u)w2 = 2

∫
Ω

|∇w|2 dx
(∫

Ω

|∇u|2 dx
)−2/(p+1)

(4.1)

+ 2(p− 1)

(∫
Ω

∇u∇w dx
)2(∫

Ω

|∇u|2 dx
)−(p+3)/(p+1)

− 2p

∫
Ω

fup−1w2dx

(∫
Ω

|∇u|2 dx
)−2/(p+1)

.

The proofs of the main theorems are based on the next proposition, which

ensures that RH < RG. Here RH and RG have been defined by (1.3).
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Proposition 4.3. Let H and G be closed subgroups of O(N) such that H 
G. Let Ω and Ω1 be G invariant bounded domains in RN such that Ω ⊂ Ω1. Let

u be a G invariant least energy solution of (1.1) and φ be a function satisfying

(4.2) φ ∈W 1,∞(Ω1) ∩H1
0 (Ω1, G)⊥ ∩H1

0 (Ω1, H),

(4.3)

∫
Ω

|∇φ|2u2dx <
p− 1

2(2p− 1)

∫
Ω

|∇u|2φ2 dx.

Put v := (1 + εφ)u. Then R(v) < R(u) for ε > 0 small enough. Therefore

RH < RG, and no H invariant least energy solution can be G invariant.

Proof. This proposition has already been proved in our paper [30], however

we give a proof for the reader’s convenience. Since φ ∈ W 1,∞(Ω1) and u ∈
H1

0 (Ω), the functions φu and v belong to H1
0 (Ω). Since u is a solution of (1.1),

R′(u) vanishes. By the Taylor theorem, we have

(4.4) R(v) = R(u) +
ε2

2
R′′(u)(φu)2 + o(ε2),

where o(ε2)/ε2 → 0 as ε→ 0. Let us show that R′′(u)(φu)2 < 0.

We use the Schwarz inequality to get

2|uφ∇u∇φ| ≤ 2|∇φ|2u2 +
1

2
|∇u|2φ2,

which with (4.3) leads to∫
Ω

|∇φ|2u2dx− 2(p− 1)

∫
Ω

uφ∇u∇φdx < (p− 1)

∫
Ω

|∇u|2φ2dx.

This inequality is rewritten as∫
Ω

(|∇u|2φ2 + 2uφ∇u∇φ+ |∇φ|2u2) dx < p

∫
Ω

(|∇u|2φ2 + 2uφ∇u∇φ) dx.

On the other hand, multiplying (1.1) by φ2u and integrating it over Ω, we have∫
Ω

(
|∇u|2φ2 + 2uφ∇u∇φ

)
dx =

∫
Ω

fup+1φ2 dx.

Combining two expressions above, we obtain∫
Ω

(|∇u|2φ2 + 2uφ∇u∇φ+ |∇φ|2u2) dx < p

∫
Ω

fup+1φ2 dx,

or equivalently,

(4.5)

∫
Ω

|∇(φu)|2 dx < p

∫
Ω

fup+1φ2 dx.

Extend u by zero outside Ω. Since |∇u|2 ∈ L1(Ω1, G) and φ belongs to

H1
0 (Ω1, G)⊥ ∩ L∞(Ω1), Lemma 4.1 shows that∫

Ω

|∇u|2φdx =

∫
Ω1

|∇u|2φdx = 0.
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By the elliptic regularity theorem, u belongs to L∞(Ω). Since ∇(u2) = 2u∇u ∈
L2(Ω), i.e. u2 ∈ H1

0 (Ω, G), we have∫
Ω

u∇u∇φdx =
1

2

∫
Ω1

∇(u2)∇φdx = 0.

From the two identities above, it follows that∫
Ω

∇u∇(φu) dx = 0.

Substituting w = φu into (4.1) and using the identity above, we obtain

R′′(u)(φu)2 = 2

∫
Ω

|∇(φu)|2 dx
(∫

Ω

|∇u|2 dx
)−2/(p+1)

− 2p

∫
Ω

fup+1φ2 dx

(∫
Ω

|∇u|2 dx
)−2/(p+1)

.

By (4.5), the right hand side is negative and hence R′′(u)(φu)2 < 0. From (4.4),

it follows that R(v) < R(u) for ε > 0 small enough. Since v ∈ H1
0 (Ω, H), it

holds that RH ≤ R(v) < R(u) = RG. Consequently, no H invariant least energy

solution can be G invariant. �

5. Estimate of G invariant solutions

In this section, we give an a priori L∞(Ω) estimate of a G invariant least

energy solution. Furthermore, we investigate the L2(Ω) norm of solutions in

detail. If Ω is a G invariant domain, then dist(x, ∂Ω) is a G invariant function.

Using this function with the same method as in our paper [29], we have the next

result.

Lemma 5.1 ([29, Lemma 4.2]). Suppose that f(x) ≥ 0, 6≡ 0 in Ω. Let u be

a G invariant least energy solution. Then for N ≥ 3, there exists a constant

C > 0 independent of u and f such that

‖u‖∞ ≤ C‖f‖α∞
(∫

Ω

f(x)dist(x, ∂Ω)p+1dx

)β
,

where ‖ · ‖∞ denotes the L∞(Ω) norm and α and β are given by

α :=
N − 2

N + 2− (N − 2)p
, β :=

−4

(p− 1)(N + 2− (N − 2)p)
.

When N = 2, for any θ ∈ (0, 1) there exists a Cθ > 0 independent of u and f

such that

‖u‖∞ ≤ Cθ‖f‖(1−θ)/θ(p−1)
∞

(∫
Ω

f(x)dist(x, ∂Ω)p+1 dx

)−1/θ(p−1)

.
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Hereafter we denote Fix(G) by F . When n := dimF ≥ 1, we can assume

without loss of generality that

(5.1) F = {(x1, . . . , xn, 0, . . . , 0) : xi ∈ R}.

Indeed, choose an orthogonal matrix h satisfying

h(F ) = {(x1, . . . , xn, 0, . . . , 0) : xi ∈ R},

and put ũ(x) := u(h−1x), f̃(x) := f(h−1x) and Ω̃ := h(Ω). Then (1.1) is

rewritten as

−∆ũ = f̃(x)ũp, ũ > 0 in Ω̃, ũ = 0 on ∂Ω̃.

Put G̃ := hGh−1. Then u is a G invariant solution of (1.1) if and only if ũ

is a G̃ invariant solution of the equation above. Furthermore, it holds that

Fix(G̃) = h(Fix(G)). Therefore we can assume either (a) or (b) below.

(a) F = {(x1, . . . , xn, 0, . . . , 0) : xi ∈ R} when dimF = n ≥ 1.

(b) F = {0} when dimF = 0.

Some lemmas below have already been proved in our paper [31], however it

has not been published yet. Therefore we shall prove them for the reader’s

convenience.

Lemma 5.2 ([31]). If dimF = N − 1, then G takes the form

(5.2) G =

{(
I ′ 0

0 1

)
,

(
I ′ 0

0 −1

)}
,

where I ′ denotes the (N − 1)× (N − 1) unit matrix. Therefore any G invariant

function u is even with respect to xN , i.e.

(5.3) u(x1, . . . , xN−1, xN ) = u(x1, . . . , xN−1,−xN ).

Proof. Since dimF = N − 1, it holds that

F = Fix(G) = {(x1, . . . , xN−1, 0) : xi ∈ R},

which implies that gx = x for all x = (x1, . . . , xN−1, 0) and g ∈ G. Hence each

g ∈ G has the form

g =

(
I ′ ∗
0 ∗

)
.

Since g is orthogonal, it is equal to(
I ′ 0

0 1

)
or

(
I ′ 0

0 −1

)
.

Since dimF = N − 1, it holds that {I}  G. Therefore G takes the form

of (5.2). �
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By (a) before Lemma 5.2, the orthogonal complement F⊥ of F is written as

F⊥ := {(0, . . . , 0, xn+1, . . . , xN ) : xi ∈ R (1 ≤ i ≤ n)}.

Any point x ∈ RN is decomposed into x = x′ + x′′ with x′ ∈ F and x′′ ∈ F⊥.

Moreover, in the space F⊥, we introduce polar coordinates

x′′ = rσ, where r = |x′′|, σ = x′′/|x′′| ∈ SN−n−1.

Here SN−n−1 denotes the unit sphere in F⊥. Then any function u(x) is repre-

sented as u(x) = u(x′, x′′) = u(x′, σ, r). For any u ∈ H1
0 (Ω), we extend u by 0

outside Ω. Then u ∈ H1(RN ). For r > 0, we define

Fr := {x ∈ RN : dist(x, F ) = r} = {x′ + x′′ : |x′′| = r}.

Definition 5.3. We put n := dimF . For a G invariant positive solution u,

we define

(5.4) U(r) :=
1

rN−n−1

∫
Fr

u(x)2dsr,

where dsr is the standard measure on Fr, i.e.,

dsr = rN−n−1 dx′ dσ = rN−n−1 dx1 . . . dxn dσ.

Here dσ denotes the usual measure on the unit sphere SN−n−1 in F⊥.

We rewrite U in the following form.

(i) If 1 ≤ n ≤ N − 2, then

(5.5) U(r) =

∫
SN−n−1

(∫
Rn

u(x′, σ, r)2 dx′
)
dσ.

(ii) If n = 0, then F = {0}, F⊥ = RN and we have

(5.6) U(r) =

∫
SN−1

u(σ, r)2 dσ.

(iii) If n = N − 1, Fr consists of two hyperplanes parallel to F . By (5.3), we

get

U(r) =

∫
RN−1

u(x′, r)2 dx′ +

∫
RN−1

u(x′,−r)2 dx′(5.7)

= 2

∫
RN−1

u(x′, r)2 dx′.

For a > 0, we define the weighted Lebesgue and Sobolev spaces:

L1(0,∞; ra) :=

{
v :

∫ ∞
0

|v(r)|ra dr <∞
}
,

W 1,1(0,∞; ra) :=

{
v :

∫ ∞
0

(|v(r)|+ |vr(r)|)ra dr <∞
}
,

where vr(r) denotes the derivative of v(r).



208 R. Kajikiya

Lemma 5.4 ([31]). Let u be a G invariant positive solution. Then the follow-

ing assertions hold.

(a) U belongs to L∞(0,∞) ∩W 1,1(0,∞; rN−n−1) ∩ C[0,∞) ∩ C1(0,∞).

(b) When 1 ≤ n ≤ N − 2,

(5.8) Ur(r) = 2

∫
SN−n−1

(∫
Rn

uur dx
′
)
dσ.

(c) When n = 0,

(5.9) Ur(r) = 2

∫
SN−1

uur dσ.

(d) When n = N − 1,

(5.10) Ur(r) = 4

∫
RN−1

u(x′, r)uxN
(x′, r) dx′.

(e) For any 0 ≤ n ≤ N − 1 and 0 < s < t < A, we have

(5.11) tN−n−1Ur(t)− sN−n−1Ur(s) = 2

∫
Ω(s<|x′′|<t)

(
|∇u|2 − fup+1

)
dx.

Proof. It is easy to verify (a)–(d). We shall show (e). Let 0 < s < t < A

and put D := Ω(s < |x′′| < t) = {x′ + x′′ ∈ Ω : s < |x′′| < t}. Multiplying (1.1)

by u and integrating it over D, we have

(5.12)

∫
D

(
|∇u|2 − fup+1

)
dx =

∫
∂D

∂u

∂n
u dµ,

where dµ is the standard measure on ∂D and ∂u/∂n denotes the outward normal

derivative. We divide ∂D into ∂D = S ∪ Ω(|x′′| = s) ∪ Ω(|x′′| = t), where

S := ∂Ω ∩ {x′ + x′′ : s < |x′′| < t}, Ω(|x′′| = r) := {x′ + x′′ ∈ Ω : |x′′| = r} with

r = s, t.

Let n ≤ N − 2. Note that u = 0 on S. Since ∂/∂n is the outward normal

derivative on ∂D, it is computed as

∂u

∂n
=
∂u

∂r
on Ω(|x′′| = t),

∂u

∂n
= −∂u

∂r
on Ω(|x′′| = s).

Note that dµ = rN−n−1 dx′ dσ on Ω(|x′′| = r), where dσ is a standard measure

on SN−n−1. Using (5.8) or (5.9), we obtain∫
∂D

∂u

∂n
u dµ =

∫
Ω(|x′′|=t)

∂u

∂r
u dµ−

∫
Ω(|x′′|=s)

∂u

∂r
u dµ(5.13)

= tN−n−1

∫
Ω(|x′′|=t)

∂u

∂r
u dx′ dσ

− sN−n−1

∫
Ω(|x′′|=s)

∂u

∂r
u dx′ dσ

= tN−n−1Ur(t)/2− sN−n−1Ur(s)/2.
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Let n = N−1. Then Ω(|x′′| = r) = {(x′, xN ) ∈ Ω : xN = r,−r}. Since u(x′, xN )

is even in xN by Lemma 5.2, we use (5.10) to get∫
Ω(|x′′|=t)

∂u

∂r
u dx′ = 2

∫
RN−1

∂u

∂xN
(x′, t)u(x′, t) dx′ = Ur(t)/2.

Therefore (5.13) is valid for n = N − 1 also. Substituting (5.13) into (5.12), we

obtain (5.11). The proof is complete. �

We study the relation between the L∞ norm of U(r) and the L2 norm of ∇u.

Lemma 5.5. ([31]) Let u(x) and U(r) be as in Lemma 5.4. Put m := N−n−1.

Then for any a ∈ (0, A), it holds that

(5.14) max
a≤r≤A

U(r) ≤ 4(A− a)a−m
∫

Ω(a<|x′′|<A)

|∇u|2 dx.

Proof. Let b be a maximum point of U(r) on [a,A]. Let 1 ≤ n ≤ N − 2

and set D := Sm × Rn. Then (5.5) and (5.8) are rewritten as

U(r) =

∫
D

u2 dx′dσ, Ur(r) = 2

∫
D

uur dx
′ dσ.

Applying the Schwarz inequality to the second equation above, we have

|Ur(r)| ≤ 2

(∫
D

u2 dx′ dσ

)1/2(∫
D

u2
r dx

′ dσ

)1/2

(5.15)

≤ 2U(b)1/2

(∫
D

u2
r dx

′ dσ

)1/2

,

for r ∈ [a,A]. Using the inequality above and U(A) = 0, we get

0 ≤ U(b) ≤
∫ A

b

|Ur(r)| dr(5.16)

≤
(∫ A

b

|Ur(r)|2rm dr
)1/2(∫ A

b

r−m dr

)1/2

≤ 2((A− b)b−m)1/2U(b)1/2

(∫ A

b

∫
D

u2
rr
m dx′ dσ dr

)1/2

≤ 2((A− b)b−m)1/2U(b)1/2‖∇u‖L2(Ω(b≤|x′′|≤A)).

Since a ≤ b, we have

U(b) ≤ 4(A− a)a−m‖∇u‖2L2(Ω(a≤|x′′|≤A)).

This proves (5.14). Let n = N − 1. Then m = 0 and

U(r) = 2

∫
RN−1

u2 dx′, Ur(r) = 4

∫
RN−1

uuxN
dx′.

Instead of (5.15), we have

|Ur(r)| ≤ (4/
√

2)U(b)1/2

(∫
RN−1

u2
xN

dx′
)1/2

.
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In the same way as in (5.16) with the inequality above, we obtain

0 ≤ U(b) ≤ (4/
√

2)(A− b)1/2U(b)1/2

(∫ A

b

∫
RN−1

u2
xN

dx′ dr

)1/2

.

Note that∫ A

b

∫
RN−1

u2
xN

dx′ dr = ‖∇u‖2L2(Ω(b<r<A)) = (1/2)‖∇u‖2L2(Ω(b<|xN |<A)).

Therefore we obtain (5.16) for n = N − 1. The method above is still valid for

n = 0 also. �

Lemma 5.6 ([31]). If f(x) ≤ 0 in Ω(|x′′| < a), then U(r) is nondecreasing

in (0, a).

Proof. Multiplying (1.1) by u and integrating it over Ω, we have

(5.17)

∫
Ω

(|∇u|2 − fup+1) dx = 0.

We set m := N − n− 1. Then (5.11) is reduced to

(5.18) tmUr(t)− smUr(s) = 2

∫
Ω(s<|x′′|<t)

(|∇u|2 − fup+1) dx.

Since u is extended by 0 outside Ω, it belongs to H1
0 (RN ). Since U(t) = 0 for

t ≥ A, we substitute t = A to obtain

−smUr(s) = 2

∫
Ω(s<|x′′|<A)

(|∇u|2 − fup+1) dx.

As s→ 0, the right hand side converges to

2

∫
Ω

(|∇u|2 − fup+1) dx = 0,

because of (5.17). Thus smUr(s) converges to zero. Letting s→ 0 in (5.18), we

find

tmUr(t) = 2

∫
Ω(|x′′|<t)

(|∇u|2 − fup+1) dx ≥ 0,

for 0 < t < a. Therefore U(t) is nondecreasing in (0, a). �

6. Proof of the main results

In this section, we prove the main theorems. Our idea is based on the methods

used in our papers [30], [31] and [32]. Since a closed subgroup G of O(N) is a

compact Lie group, it has a unique Haar measure dg. It is a positive Lebesgue

measure which satisfies

(6.1)

∫
G

f(hg) dg =

∫
G

f(gh) dg =

∫
G

f(g−1) dg =

∫
G

f(g) dg,∫
G

f(g) dg > 0 if f ≥ 0, 6≡ 0,
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(6.2)

∫
G

1 dg = 1,

for any h ∈ G and any real valued integrable function f on G (see [47] or [42,

Chapter 2] for more details of the Haar measure).

Let M(N) denote a linear space consisting of all N ×N real matrices, which

is equipped with the norm

‖g‖ := max
|x|≤1

|gx| for g ∈M(N).

Here |x| is the usual Euclidean norm in RN . For g0 ∈ G and r > 0, we define

a ball B(g0, r;G) in G by

(6.3) B(g0, r;G) := {g ∈ G : ‖g − g0‖ < r}.

Then the volume of B(g0, r;G) is defined by

|B(g0, r;G)| :=
∫
B(g0,r;G)

1 dg.

The invariance of the Haar measure implies the next lemma.

Lemma 6.1 ([32]). Let G be a closed subgroup of O(N). Then the volume

|B(g0, r;G)| is independent of g0 ∈ G but depends only on r.

Proof. Put χ(g) := 1 if g ∈ B(g0, r;G) and χ(g) := 0 if g 6∈ B(g0, r;G).

Then

|B(g0, r;G)| =
∫
G

χ(g) dg.

Let g, g1 ∈ G. Since g, g1, g0 are isometric in RN , it holds that

‖g0g
−1
1 g − g0‖ = max

|x|≤1
|g0g

−1
1 gx− g0x| = max

|x|≤1
|gx− g1x| = ‖g − g1‖.

Therefore χ(g0g
−1
1 g) = 1 if ‖g − g1‖ < r and χ(g0g

−1
1 g) = 0 if ‖g − g1‖ ≥ r. By

the invariance of the Haar measure, we get∫
G

χ(g) dg =

∫
G

χ(g0g
−1
1 g) dg =

∫
B(g1,r;G)

1 dg. �

For closed subgroups G and H of O(N), we define

(6.4) Q(x, g) := min
h∈H
|gx− hx|, P (x) := max

g∈G
Q(x, g).

Lemma 6.2. ([32]) It holds that |P (x)− P (y)| ≤ 2|x− y| for x, y ∈ RN .

Proof. Let x, y ∈ RN , g ∈ G and h ∈ H. Since g and h are orthogonal

matrices, we have

Q(x, g) ≤ |gx− hx| ≤ |gx− gy|+ |gy − hy|+ |hy − hx| = 2|x− y|+ |gy − hy|.
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Taking the minimum on h ∈ H, we obtain Q(x, g) ≤ 2|x− y|+Q(y, g). By the

definition of P , Q(x, g) ≤ 2|x − y| + P (y). Taking the maximum on g ∈ G, we

get P (x) ≤ 2|x− y|+ P (y). Exchanging x with y implies the conclusion. �

By Lemma 6.2, P (x) is continuous. Assumption (2.3) implies that P (x) > 0

for x ∈ Γ, and so the minimum of P (x) on Γ is positive. We define

(6.5) δ := (1/8) min
Γ
P (x) > 0.

We choose A1 ∈ (0, A) slightly less than A such that

(6.6) P (x) > 4δ for x ∈ Ω(A1 ≤ |x′′| ≤ A).

Define

(6.7) Ω0 := Ω(A1 < |x′′| < A).

By (6.4) and (6.6), for any x ∈ Ω0 there is a g ∈ G such that

(6.8) |gx− hx| > 4δ > 0 for all h ∈ H.

Let Φ ∈ C∞0 (RN ) be a radial function such that 0 ≤ Φ(|x|) ≤ 1 in RN and

Φ(|x|) = 1 when |x| ≤ δ and Φ(|x|) = 0 when |x| ≥ 2δ. We denote the Haar

measures on H and G by dh and dg, respectively. We define

(6.9) φ(x) :=

∫
G

Φ(|x− gx0|) dg −
∫
H

Φ(|x− hx0|) dh,

where x0 ∈ Ω will be determined later on. Moreover, we define

dist(x,Ω) := inf{|x− y| : y ∈ Ω}, Ω1 := {x ∈ RN : dist(x,Ω) < 2δ}.

Clearly Ω ⊂ Ω1. The function φ defined by (6.9) satisfies

Lemma 6.3. φ ∈ C∞0 (Ω1) ∩H1
0 (Ω1, G)⊥ ∩H1

0 (Ω1, H).

Proof. Since x0 ∈ Ω and Φ(|x|) = 0 for |x| ≥ 2δ, the support of φ is in Ω1.

Give ψ ∈ H1
0 (Ω1, G) arbitrarily. Let g ∈ G. Since ψ is G invariant, the change

of variables x = gy yields∫
|x−gx0|<2δ

∇Φ(|x− gx0|)∇ψ dx =

∫
|gy−gx0|<2δ

∇Φ(|gy − gx0|)∇ψ(gy) dy

=

∫
B(x0,2δ)

∇Φ(|y − x0|)∇ψ(y) dy.

Since the support of Φ(|x− gx0|) is in the ball B(gx0, 2δ), the identity above is

rewritten as ∫
Ω1

∇Φ(|x− gx0|)∇ψ dx =

∫
Ω1

∇Φ(|x− x0|)∇ψ(x) dx,
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for any g ∈ G. Using this relation with the Fubini theorem and employing (6.2),

we obtain∫
Ω1

∇
(∫

G

Φ(|x− gx0|) dg
)
∇ψ dx =

∫
G

(∫
Ω1

∇Φ(|x− gx0|)∇ψ dx
)
dg

=

∫
Ω1

∇Φ(|x− x0|)∇ψ dx.

Similarly, we get∫
Ω1

∇
(∫

H

Φ(|x− hx0|) dh
)
∇ψ dx =

∫
Ω1

∇Φ(|x− x0|)∇ψ dx.

Subtracting the latter equation from the former one, we obtain∫
Ω1

∇φ∇ψ dx = 0,

which means that φ ∈ H1
0 (Ω1, G)⊥.

We shall show that φ ∈ H1
0 (Ω1, H). Give k ∈ H arbitrarily. By the invariance

of the Haar measure, we have

φ(kx) =

∫
G

Φ(|kx− gx0|) dg −
∫
H

Φ(|kx− hx0|) dh

=

∫
G

Φ(|x− k−1 gx0|) dg −
∫
H

Φ(|x− k−1hx0|) dh

=

∫
G

Φ(|x− gx0|) dg −
∫
H

Φ(|x− hx0|) dh = φ(x).

Thus φ ∈ H1
0 (Ω1, H) and the proof is complete. �

Hereafter B(x, r) denotes the ball in RN which is centered at x with radius r

and |B(x, r)| stands for its Lebesgue measure. Recall that B(g, r;G) defined by

(6.3) denotes a ball in G and its volume |B(g, r;G)| depends only on r. Since

Ω is bounded, we choose a constant M > 0 such that |x| ≤ M for x ∈ Ω. Put

ν := δ/(2M) and define cν := |B(g, ν;G)|. Let Ω0 be defined by (6.7). Then we

have

Lemma 6.4. For any x0 ∈ Ω0, there exists a g0 ∈ G such that

(6.10) φ(x) ≥ cν > 0 for x ∈ B(g0x0, δ/2).

In particular, φ 6≡ 0 in Ω.

Proof. Let x0 ∈ Ω0. By (6.8), we choose a g0 ∈ G such that

|g0x0 − hx0| > 4δ for all h ∈ H.

Then B(g0x0, 2δ) ∩B(hx0, 2δ) = ∅ for h ∈ H, which shows that

Φ(|x− hx0|) = 0 for x ∈ B(g0x0, 2δ), h ∈ H.
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The definition of φ implies

(6.11) φ(x) =

∫
G

Φ(|x− gx0|)dg for x ∈ B(g0x0, 2δ).

For x ∈ B(g0x0, δ/2) and g ∈ B(g0, ν;G), it holds that

|x− gx0| ≤ |x− g0x0|+ |g0x0 − gx0| < δ/2 + νM = δ.

Hence we have

Φ(|x− gx0|) = 1 for x ∈ B(g0x0, δ/2), g ∈ B(g0, ν;G).

Consequently, (6.11) implies

φ(x) ≥
∫
B(g0,ν;G)

Φ(|x− gx0|)dg = |B(g0, ν;G)| = cν > 0,

for x ∈ B(g0x0, δ/2). This completes the proof.

For Ω0 defined by (6.7), we determine k ∈ N by the smallest positive integer

such that

(6.12) Ω0 ⊂
k⋃
i=1

B(yi, δ/2),

with some y1, . . . , yk ∈ Ω0.

Lemma 6.5. Let u be a G invariant least energy solution and k be as above.

Then there exist x0 ∈ Ω0 and g0 ∈ G such that∫
Ω0

|∇u|2 dx ≤ kc−2
ν

∫
B(g0x0,δ/2)

|∇u|2φ2 dx.

Proof. Choose x0 ∈ Ω0 which satisfies

max
y∈Ω0

∫
B(y,δ/2)

|∇u|2 dx =

∫
B(x0,δ/2)

|∇u|2 dx.

By (6.12), we have ∫
Ω0

|∇u|2 dx ≤ k
∫
B(x0,δ/2)

|∇u|2 dx.

By Lemma 6.4, we choose g0 ∈ G satisfying (6.10). Since u is G invariant, we

have ∫
Ω0

|∇u|2 dx ≤ k
∫
B(g0x0,δ/2)

|∇u|2 dx ≤ kc−2
ν

∫
B(g0x0,δ/2)

|∇u|2φ2 dx. �

We give the definition of φ(x) strictly. First, we define δ > 0 by (6.5). Second,

we define A1 by (6.6) and then Ω0 by (6.7). Third, we fix x0 by Lemma 6.5.

Last, φ(x) is well defined by (6.9).
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Lemma 6.6. Let u be a G invariant least energy solution. Let g0, x0, k, cν
be as in Lemma 6.5 and put m := N −n− 1. Then for any a ∈ [A1, A], we have

(6.13) max
a≤r≤A

U(r) ≤ 4k(A− a)a−mc−2
ν

∫
B(g0x0,δ/2)

|∇u|2φ2 dx.

Proof. Since Ω0 = Ω(A1 < |x′′| < A), we use Lemma 6.5 to get∫
Ω(a<|x′′|<A)

|∇u|2 dx ≤
∫

Ω(A1<|x′′|<A)

|∇u|2 dx ≤ kc−2
ν

∫
B(g0x0,δ/2)

|∇u|2φ2 dx.

Combining the inequality above with (5.14), we get the conclusion. �

We note that δ, Ω0, cν , k and m depend only on G, H, Ω and not on f(x).

Choose A0 ∈ (A1, A) sufficiently close to A such that

32k(m+ 1)−1Am+1(A−A0)A−m0 c−2
ν ‖∇Φ‖2∞ <

p− 1

2(2p− 1)
.

Observe that Φ depends only on δ, which is determined by G, H and Ω. Conse-

quently, A0 depends only on G, H, Ω and does not on u(x) and f(x). By (6.9),

we have

‖∇φ‖L∞(RN ) ≤ 2‖∇Φ‖L∞(RN ).

Combining two inequalities above, we obtain

(6.14) 8k(m+ 1)−1Am+1(A−A0)A−m0 c−2
ν ‖∇φ‖2∞ <

p− 1

2(2p− 1)
.

To prove Theorem 2.1, it is enough to show that φ satisfies (4.2) and (4.3).

Lemma 6.3 proves (4.2). Let us verify (4.3).

Lemma 6.7. Let u be a G invariant least energy solution. If the maximum

of U(r) on [0, A] is achieved at a point in [A0, A], then (4.3) holds.

Proof. Denote the maximum point of U(r) on [A0, A] by a. By assumption,

max
0≤r≤A

U(r) = max
A0≤r≤A

U(r) = U(a).

By Lemma 6.6, we have

(6.15) U(a) = max
A0≤r≤A

U(r) ≤ 4k(A−A0)A−m0 c−2
ν

∫
B(g0x0,δ/2)

|∇u|2φ2 dx.

Put D := Sm × RN . Then it holds clearly that∫
Ω

u2dx =

∫ A

0

(∫
D

u2rm dx′ dσ

)
dr ≤ (m+ 1)−1Am+1U(a),

which implies∫
Ω

|∇φ|2u2 dx ≤ ‖∇φ‖2∞
∫

Ω

u2 dx ≤ ‖∇φ‖2∞(m+ 1)−1Am+1U(a).

Substituting (6.15) into the right hand side of the inequality above and using

(6.14), we obtain (4.3). �
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The next lemma shows that if assumption (A) before Theorem 2.1 is valid,

then (4.3) holds.

Lemma 6.8. Let u be a G invariant least energy solution. If f(x) ≤ 0 in

Ω(|x′′| < A0)), then (4.3) holds.

Proof. Under the assumption of the lemma, U(r) is nondecreasing in (0, A0)

by Lemma 5.6. Thus the maximum of U(r) on [0, A] is achieved at a point in

[A0, A]. Therefore Lemma 6.7 ensures the conclusion. �

By Lemma 6.7, inequality (4.3) holds if the maximum of U(r) on [0, A] is

achieved at a point in [A0, A]. In particular, if f ≤ 0 in Ω(|x′′| < A0), i.e.

assumption (A) is valid, then (4.3) holds. We consider the remained case where

assumption (B) holds and the maximum of U(r) on [0, A] is achieved at a point

in [0, A0).

Lemma 6.9. Assume that f ≥ 0, 6≡ 0 in Ω. Let u be a G invariant least

energy solution. Suppose that the maximum of U(r) on [0, A] is achieved at

a point a ∈ [0, A0). If µ(f,A0) is small enough with N = 3 or µ(f,A0, θ) is

small enough with N = 2, then (4.3) holds.

Proof. Since U(r) has a maximum at a, Ur(a) vanishes when a > 0. We

substitute s = a in (5.18) to get

tmUr(t) = 2

∫
Ω(a<|x′′|<t)

(|∇u|2 − fup+1) dx.

As proved in Lemma 5.6, smUr(s) converges to 0 as s→ 0. Hence, even if a = 0,

the identity above holds. We estimate it as

−tmUr(t) ≤ 2

∫
Ω(a<|x′′|<t)

fup+1 dx = 2

∫ t

a

(∫
D

fup+1rmdx′dσ

)
dr,

with D := Sm × Rn. For t ∈ [a,A0], we compute∫ t

a

(∫
D

fup+1rm dx′dσ

)
dr

≤‖f‖L∞(Ω(|x′′|<A0))‖u‖p−1
L∞(Ω)

∫ t

a

(∫
D

u2rmdx′dσ

)
dr

≤ tm(t− a)‖f‖L∞(Ω(|x′′|<A0))‖u‖p−1
L∞(Ω)U(a).

Therefore we have

−Ur(t) ≤ 2(t− a)‖f‖L∞(Ω(|x′′|<A0))‖u‖p−1
L∞(Ω)U(a).

Integrating both sides over (a,A0), we obtain

(6.16) 0 ≤ U(a)− U(A0) ≤ A2
0‖f‖L∞(Ω(|x′′|<A0))‖u‖p−1

L∞(Ω)U(a).

We shall show that A2
0‖f‖L∞(Ω(|x′′|<A0))‖u‖p−1

L∞(Ω) ≤ 1/2.
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Let N ≥ 3. Then Lemma 5.1 implies that

A2
0‖f‖L∞(Ω(|x′′|<A0))‖u‖p−1

L∞(Ω)

≤ A2
0C

p−1‖f‖L∞(Ω(|x′′|<A0))‖f‖
α(p−1)
L∞(Ω)

(∫
Ω

f(x)dist(x, ∂Ω)p+1 dx

)β(p−1)

= A2
0C

p−1µ(f,A0)1/(N+2−(N−2)p) ≤ 1/2,

provided that µ(f,A0) is small enough. Here α and β have been defined by

Lemma 5.1 and C > 0 is independent of a, f(x) and u(x).

Let N = 2. By Lemma 5.1, we have

A2
0‖f‖L∞(Ω(|x′′|<A0))‖u‖p−1

L∞(Ω)

≤ A2
0‖f‖L∞(Ω(|x′′|<A0))C

p−1
θ ‖f‖(1−θ)/θL∞(Ω)

(∫
Ω

f(x)dist(x, ∂Ω)p+1 dx

)−1/θ

= A2
0C

p−1
θ µ(f,A0, θ) ≤ 1/2,

provided that µ(f,A0, θ) is small enough. Consequently, if µ(f,A0) and µ(f,A0, θ)

are small enough, we have

A2
0‖f‖L∞(Ω(|x′′|<A0))‖u‖p−1

L∞(Ω) ≤ 1/2.

This inequality with (6.16) implies that U(a) ≤ 2U(A0). By Lemma 6.6 and

(6.14), we obtain∫
Ω

|∇φ|2u(x)2 dx ≤ ‖∇φ‖2∞
∫ A

0

(∫
D

u2rm dx′ dσ

)
dr

≤‖∇φ‖2∞(m+ 1)−1Am+1U(a) ≤ 2‖∇φ‖2∞(m+ 1)−1Am+1U(A0)

≤ 8k(A−A0)A−m0 c−2
ν ‖∇φ‖2∞(m+ 1)−1Am+1

∫
B(g0x0,δ/2)

|∇u|2φ2 dx

<
p− 1

2(2p− 1)

∫
Ω

|∇u|2φ2 dx. �

We are now in a position to prove Theorem 2.1. Because of Proposition 4.3,

it is enough to show (4.3).

Proof of Theorem 2.1. If (A) holds, then Lemma 6.8 ensures (4.3). If

(B) holds, then Lemmas 6.7 and 6.9 imply (4.3). �

Proof of Corollary 2.2. We shall show that (B)’ implies (B). We deal

with N ≥ 3 only because the method below is valid for N = 2 also. We fix A0

so close to A that Theorem 2.1 is valid under assumption (B) with A0. Define

M := max
x∈Γ

f0(x), m := ‖f0‖L∞(Ω(|x′′|≤A0)).

Since m < M by assumption, we can choose M1 ∈ (0,M) sufficiently close to M

such that

mN+2−(N−2)pM (N−2)(p−1)M−4
1 < 1.
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Choose x0 ∈ Γ satisfying f0(x0) = M . Take an ε > 0 such that f0(x) > M1 for

x ∈ Ω ∩B(x0, ε). Then we have∫
Ω

f(x) dist(x, ∂Ω)p+1 dx ≥
∫

Ω∩B(x0,ε)

f(x) dist(x, ∂Ω)p+1 dx ≥ CMλ
1 ,

where C > 0 is independent of λ. Therefore we obtain

µ(f,A0) ≤ C(mN+2−(N−2)pM (N−2)(p−1)M−4
1 )λ → 0 as λ→∞.

Hence (B) holds for λ > 0 large enough and the proof is complete. �

We shall show Examples 3.3 and 3.4

Proof of Example 3.3. Let Gn be as in (1.5). Then it is easy to see that

(6.17) g−1Gng = Gn for g ∈ O(2).

For a subset A of O(2), let 〈A〉 denote the group generated by A. Let 1 < n <

m < k be integers such that k is the least common multiple of n and m. Then

it holds that

(6.18) 〈Gn ∪Gm〉 = Gk.

Indeed, using r(θ) before (1.5), we get

〈Gn ∪Gm〉 = {r(2iπ/n+ 2jπ/m) : i, j ∈ Z}.

Since k is the least common multiple, there exist i, j ∈ Z such that i/n+ j/m =

1/k. Hence (6.18) holds.

Let Gni and ui be as in Example 3.3. We shall show that ui is not equivalent

to uj if i 6= j. Let i < j. If nj is a multiple of ni, Gni is a subgroup of Gnj and

Gni(x)  Gnj (x) for x ∈ Γ(Gnj ). Therefore R(ui) < R(uj).

Let nj be not a multiple of ni. The least common multiple of them is equal

to an nk with a certain k ≤ d. Then R(ui), R(uj) < R(uk). In contradiction to

our claim, we assume that ui is equivalent to uj , i.e. ui(gx) = uj(x) with some

g ∈ O(2). Then uj is g−1Gni
g invariant because

uj(g
−1hgx) = ui(hgx) = ui(gx) = uj(x) for h ∈ Gni .

Thus uj is invariant under both Gnj
and g−1Gni

g. From (6.17) and (6.18), it

follows that

〈Gnj
∪ g−1Gni

g〉 = 〈Gnj
∪Gni

〉 = Gnk
.

Hence uj is Gnk
invariant. However this contradicts R(uj) < R(uk). Therefore

ui is not equivalent to uj . �

Proof of Example 3.4. Let Gn be as in (1.5). We define a subgroup Hn

of O(3) by

Hn :=

{(
g 0

0 1

)
: g ∈ Gn

}
.
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Then Hn is a subgroup of H2n and Hn(x)  H2n(x) for x ∈ Γ(H2n). Let un be

an Hn invariant least energy solution. Fix n arbitrary. Assume either (A) with

a sufficiently close to α or (B) with λ > 0 large enough. Then

R(u1) < R(u2) < R(u4) < . . . < R(u2n).

Therefore the assertion of Example 3.4 holds. �
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critical Hénon equation, J. Math. Anal. Appl. 341 (2008), 720–728.

[8] A. Borel, Le plan projectif des octaves et les sphères comme espaces homogènes, C.R.
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