
Topological Methods in Nonlinear Analysis
Volume 46, No. 1, 2015, 135–163

c© 2015 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

EIGENVALUE, BIFURCATION, CONVEX SOLUTIONS

FOR MONGE–AMPÈRE EQUATIONS
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Abstract. In this paper we study the following eigenvalue boundary value

problem for Monge-Ampère equations{
det(D2u) = λNf(−u) in Ω,

u = 0 on ∂Ω.

We establish global bifurcation results for the problem with f(u) = uN +
g(u) and Ω being the unit ball of RN . More precisely, under some natural

hypotheses on the perturbation function g : [0,+∞) → [0,+∞), we show

that (λ1, 0) is a bifurcation point of the problem and there exists an un-
bounded continuum of convex solutions, where λ1 is the first eigenvalue

of the problem with f(u) = uN . As the applications of the above results,

we consider with determining interval of λ, in which there exist convex so-
lutions for this problem in unit ball. Moreover, we also get some results

about the existence and nonexistence of convex solutions for this problem

on general domain by domain comparison method.
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1. Introduction

The Monge-Ampère equations are a type of important fully nonlinear elliptic

equations [10], [25]. The study of Monge–Ampère equations has been received

considerable attentions in recent years. Historically, the study of Monge–Ampère

equations is motivated by Minkowski problem and Weyl problem. Existence and

regularity results may be found in [3]–[5], [10], [14], [16], [20]–[22], [27] and the

reference therein.

We consider the following real Monge–Ampère equations

(1.1)

det(D2u) = λNf(−u) in B,

u = 0 on ∂B,

where D2u = (∂2u/(∂xi∂xj)) is the Hessian matrix of u, B is the unit ball

of RN , λ is a positive parameter and f : [0,+∞) → [0,+∞) is a continuous

function. The study of problem (1.1) in general domains of RN may be found

in [3] and [10]. Kutev [15] investigated the existence of strictly convex radial

solutions of problem (1.1) when f(s) = sp. Delano [8] treated the existence of

convex radial solutions of problem (1.1) for a class of more general functions,

namely λ exp f(|x|, u, |∇u|).
In [11], [15], the authors have showed that problem (1.1) can reduce to the

following boundary value problem

(1.2)

((u′)N )′ = λNNrN−1f(−u), r ∈ (0, 1),

u′(0) = u(1) = 0.

By a solution of problem (1.2) we understand that it is a function which belongs

to C2[0, 1] and satisfies (1.2). It has been known that any negative solution of

problem (1.2) is strictly convex in (0, 1) so long as f does not vanish on any entire

interval (see [11]). Wang [26], Hu-Wang [11] also established several criteria

for the existence, multiplicity and nonexistence of strictly convex solutions for

problem (1.2) by using fixed index theorem. However, there is no any information

on the bifurcation points and the optimal intervals for the parameter λ so as to

ensure existence of single or multiple convex solutions. Fortunately, Lions [17]

have proved the existence of the first eigenvalue λ1 of problem (1.1) with f(u) =

uN via constructive proof.

Motivated by above, we shall establish a global bifurcation theorem for prob-

lem (1.2) with f(u) = uN + g(u), i.e.

(1.3)

((u′)N )′ = λNNrN−1((−u)N + g(−u)), r ∈ (0, 1),

u′(0) = u(1) = 0,
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where g : [0,+∞) → [0,+∞) satisfies lim
s→0+

g(s)/sN = 0. Concretely, we shall

show that (λ1, 0) is a bifurcation point of problem (1.3) and there exists an

unbounded continuum of convex solutions.

In global bifurcation theory of differential equations, it is well known that

a change of the index of the trivial solution implies the existence of a branch

of nontrivial solutions, bifurcating from the set of trivial solutions and which

is either unbounded or returns to the set of trivial solution. Hence, the index

formula of an isolated zero is very important in the study of the bifurcation phe-

nomena for semi-linear differential equations. However, problem (1.3) is a type

of nonlinear equation. Hence, the common index formula involving linear map

cannot be used here. In order to overcome this difficulty, we shall study an aux-

iliary eigenvalue problem, which has an independent interest, and establish an

index formula for it. Then by use of the index formula of the auxiliary problem,

we prove an index formula involving problem (1.3) which guarantees (λ1, 0) is

a bifurcation point of nontrivial solutions of problem (1.3).

Based on the above global bifurcation results, we investigate the existence

of strictly convex solutions of problem (1.2). We shall give the optimal intervals

for the parameter λ so as to ensure existence of single or multiple strictly convex

solutions. In order to study the exact multiplicity of convex solutions for problem

(1.2), we introduce the concept of stable solution. Then by Implicit Function

Theorem and stability properties, under some more strict assumptions of f , we

can show that the convex solution branch of problem (1.2) can be a smooth

curve. Our results extend the corresponding results of [11], [17], [26].

On the basis of results on unit ball, we also study problem (1.1) on a general

domain Ω, i.e.

(1.4)

det(D2u) = λNf(−u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded convex domain of RN with smooth boundary and 0 ∈ Int Ω.

It is well known [10] that problem (1.4) is elliptic only when the Hessian

matrix D2u is positive definite and it is therefore natural to confine our atten-

tion to convex solutions and nonnegative functions f with f(s) > 0 for s > 0.

Obviously, any convex solution of problem (1.4) is negative and strictly convex.

In [27], the authors have proved a lemma concerning the comparison between

domains for problem (1.4) with f(s) = es by sub-supersolution method. We

shall show that this lemma is also valid for problem (1.4). Using this domain

comparison lemma and the results on unit ball, we can prove some existence and

nonexistence of convex solutions for problem (1.4).

The rest of this paper is arranged as follows. In Section 2, we study an

auxiliary problem and prove a key index formula. In Section 3, we establish
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a global bifurcation theorem for problem (1.3). In Section 4, we give the intervals

for the parameter λ which ensure existence of single or multiple strictly convex

solutions for problem (1.2) under some suitable assumptions of nonlinearity f .

In Section 5, under some more strict assumptions of f , we prove the exact

multiplicity of convex solutions for problem (1.2). In Section 6, we prove some

existence and nonexistence of convex solutions for problem (1.4).

2. A key preliminary result

In this section, we shall study an auxiliary eigenvalue problem and prove

a key index formula that will be used in the next section.

Let p ∈ [2,+∞). Consider the following auxiliary problem

(2.1)

−(|v′(r)|p−2v′(r))′ = µp−1(p− 1)rp−2|v(r)|p−2v(r), r ∈ (0, 1),

v′(0) = v(1) = 0.

Let X be the Banach space C[0, 1] with the norm

‖v‖ = sup
r∈[0,1]

|v(r)|.

Define the map T pµ : X → X by

T pµv =

∫ r

1

ϕp′

(∫ 0

s

µp−1(p− 1)τp−2ϕp(v) dτ

)
ds, 0 ≤ r ≤ 1,

where ϕp(s) = |s|p−2s, p′ = p/(p − 1). It is not difficult to verify that T pµ
is continuous and compact. Clearly, problem (2.1) can be equivalently written

as v = T pµv.

Firstly, we show that the existence and uniqueness theorem is valid for prob-

lem (2.1).

Lemma 2.1. If (µ, v) is a solution of (2.1) and v has a double zero, then

v ≡ 0.

Proof. Let v be a solution of problem (2.1) and r∗ ∈ [0, 1] be a double zero.

We note that v satisfies

v(r) =

∫ r

r∗

ϕp′

(∫ r∗

s

(p− 1)µp−1τp−2ϕp(v) dτ

)
ds.

Firstly, we consider r ∈ [0, r∗]. Then we have

|v(r)| ≤ ϕp′
(∫ r∗

r

(p− 1)µp−1τp−2ϕp(|v|) dτ
)
.

Furthermore, it follows from above that

ϕp(|v|) ≤ µp−1
∫ r∗

r

(p− 1)τp−2ϕp(|v|) dτ.
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By the modification of Gronwall–Bellman inequality [13, Lemma 2.2], we get v ≡
0 on [0, r∗]. Similarly, we can get v ≡ 0 on [r∗, 1] and the proof is completed. �

Set W 1,p
c (0, 1) := {v ∈W 1,p(0, 1) | v′(0) = v(1) = 0} with the norm

‖v‖w =

(∫ 1

0

|v′|p dr
)1/p

+

(∫ 1

0

(p− 1)rp−2|v|p dr
)1/p

.

Then it is easy to verify that W 1,p
c (0, 1) is a real Banach space.

Definition 2.2. We call that v ∈W 1,p
c (0, 1) is the weak solution of problem

(2.1), if ∫ 1

0

|v′|p−2v′φ′ dr = (p− 1)µp−1
∫ 1

0

rp−2|v|p−2vφ dr

for any φ ∈W 1,p
c (0, 1).

For the regularity of weak solution, we have the following result.

Lemma 2.3. Let v be a weak solution of problem (2.1), then v satisfies prob-

lem (2.1).

In order to prove Lemma 2.3, we need the following technical result.

Proposition 2.4. Let f : R→ R be a function. For a given x0 ∈ R, if f is

continuous in some neighbourhood U of x0, differential in U \{x0} and lim
x→x0

f ′(x)

exists, then f is differential at x0 and f ′(x0) = lim
x→x0

f ′(x).

Proof. The conclusion is a direct corollary of Lagrange Mean Theorem, we

omit its proof here. �

Proof of Lemma 2.3. According to Definition 2.2, we have

−(|v′(r)|p−2v′(r))′ = µp−1(p− 1)rp−2|v(r)|p−2v(r) in (0, 1)

in the sense of distribution, i.e.

−(|v′(r)|p−2v′(r))′ = µp−1(p− 1)rp−2|v(r)|p−2v(r) in (0, 1) \ I,

for some I ⊂ (0, 1), which satisfies meas{I} = 0. Furthermore, by virtue of the

compact embedding of W 1,p
c (0, 1) ↪→ Cα[0, 1] with some α ∈ (0, 1) (see [9]), we

obtain that v ∈ Cα[0, 1]. Thus, we have that lim
r→r0

µp−1(p− 1)rp−2|v(r)|p−2v(r)

exists for any r0 ∈ I. Letting u := −ϕp(v′), we have

lim
r→r0

u′(r) = lim
r→r0

µp−1(p− 1)rp−2|v(r)|p−2v(r).

The above relation follows that lim
r→r0

u′(r) exists for any r0 ∈ I. Thus, Proposi-

tion 2.4 follows that u ∈ C1(0, 1), which implies that v satisfies problem (2.1).�
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Define the functional J on W 1,p
c (0, 1) by

J(v) =

∫ 1

0

1

p
|v′(r)|p dr − µp−1 p− 1

p

∫ 1

0

rp−2|v|p dr.

It is not difficult to verify that the critical points of J are the weak solutions of

problem (2.1). Taking

f1(v) :=

∫ 1

0

1

p
|v′(r)|p dr and f2(v) :=

p− 1

p

∫ 1

0

rp−2|v|p dr,

consider the following eigenvalue problem

(2.2) A(v) = ηB(v),

where A = ∂f1 and B = ∂f2 denote the sub-differential of f1 and f2, respectively

(refer to [6] for the details of sub-differential).

By some simple computations, we can show that

(2.3)
f1(v)

f2(v)
≥ 1

(p− 1)

for any v ∈W 1,p
c (0, 1) and v 6≡ 0. Moreover, we have the following result.

Lemma 2.5. Put η1(p) = inf
v∈W 1,p

c (0,1), v 6≡0
f1(v)/f2(v). Then we have that:

(a) (2.2) has no nontrivial solution for η ∈ (0, η1(p));

(b) η1(p) is simple, i.e. (2.2) has a positive solution and the set of all solu-

tions of (2.2) is an one dimensional linear subspace of W 1,p
c (0, 1);

(c) (2.2) has a positive solution if and only if η = η1(p).

Proof. Let W 1,p
c (0, 1) =: V . We denote by Φ(V ) the family of all proper

lower semi-continuous convex functions ϕ from V into (−∞,+∞], where “proper”

means that the effective domain D(ϕ) = {x ∈ V | ϕ(x) < +∞} of ϕ is not empty.

Next, we verify the conditions (A0)–(A4) of [12]. Clearly, we have that

f1, f2 ∈ Φ(V ), D(f1) = D(f2) = V and V ⊂ L1
loc(0, 1), i.e. condition (Al)

is satisfied (by taking Ω = (0, 1)). Let R(v) := f2(v)/f1(v). Then we have

R(|v|) ≥ R(v) for all v ∈ V . It is easy to see that f1(v) ≥ 0 for all v ∈ V and

f1(v) = 0 if and only if v = 0. Note that (2.3) implies that there exists u ∈ V
such that u 6= 0 and R(u) = sup{R(v) | v ∈ V, v 6= 0}. So condition (A2) is

verified. Taking α = p, we have fi(tv) = tαfi(v) for all v ∈ V + = {w ∈ V |
w(r) ≥ 0 for almost every r ∈ (0, 1)}, for all t > 0, i = 1, 2. Thus, condition

(A3) is satisfied. For any u, v ∈ V +, we define (u ∨ w)(r) = max(u(r), w(r)),

(u ∧ w)(r) = min(u(r), w(r)), I1 = {r ∈ [0, 1] | u(r) ≥ w(r)} and I2 = {r ∈
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[0, 1] | u(r) < w(r)}. Then we have

f1(u ∨ w) + f1(u ∧ w) =

∫ 1

0

1

p
|(u ∨ w)′(r)|p dr +

∫ 1

0

1

p
|(u ∧ w)′(r)|p dr

=

∫
I1

1

p
|u′|p dr +

∫
I2

1

p
|w′|p dr +

∫
I1

1

p
|w′|p dr +

∫
I2

1

p
|u′|p dr

=

∫ 1

0

1

p
|u′|p dr +

∫ 1

0

1

p
|w′|p dr = f1(u) + f1(w).

Similarly, we can also show that f2(u ∨ w) + f2(u ∧ w) = f2(u) + f2(w). Hence,

condition (A4) is verified. Finally, Lemmas 2.1 and 2.3 imply that every non-

negative nontrivial solution u of (2.2) belongs to C(0, 1)∩L∞(0, 1) and satisfies

u(r) > 0 for all r ∈ (0, 1). So condition (A0) is verified.

Now, by Theorem I of [12], we can obtain (a) and (b). Finally, we prove (c).

Suppose now that (2.2) with η > η1 has a positive solution v, and let u be

a positive solution of (2.2) corresponding to η1(p). Lemmas 2.1 and 2.3 imply

that every positive solution w of (2.2) satisfies w ∈ C1[0, 1] and w′(1) < 0.

By virtue of this fact and the fact that tv is also a solution of (2.2) for any real

number t, we may assume without loss of generality that u ≤ v. It is not difficult

to verify that A and B are monotone operators. The rest of proof is similar to

that of [12, Theorem II]. �

Let η = µp−1, Lemma 2.5 shows the following result.

Lemma 2.6. Put µ1(p) = (η1(p))1/(p−1). Then we have that:

(a) (2.1) has no nontrivial solution for µ ∈ (0, µ1(p));

(b) µ1(p) is simple;

(c) (2.1) has a positive solution if and only if µ = µ1(p).

Moreover, we have the following result.

Lemma 2.7. If (µ, u) satisfies (2.1) with µ 6= µ1(p) and u 6≡ 0, then u must

change sign.

Proof. Suppose that u is not changing-sign. Without loss of generality, we

can assume that u ≥ 0 in (0, 1). Lemmas 2.1 and 2.3 imply that u > 0 in (0, 1).

Lemma 2.6 implies µ = µ1(p) and u = cv1 for some positive constant c, where

v1 is the positive eigenfunction corresponding to µ1(p) with ‖v1‖ = 1. This is

a contradiction. �

In addition, we also have that µ1(p) is also isolated.

Lemma 2.8. µ1(p) is the unique eigenvalue in (0, δp) for some δp > µ1(p).

Proof. Lemma 2.6 has shown that µ1(p) is left-isolated. Assume by con-

tradiction that there exists a sequence of eigenvalues λn ∈ (µ1(p), δp) which
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converge to µ1(p). Let vn be the corresponding eigenfunctions. Define

ψn :=
vn(

(p− 1)

∫ 1

0

rp−2|vn|p dr
)1/p

.

Clearly, ψn are bounded in W 1,p
c (0, 1) so there exists a subsequence, denoted

again by ψn, and ψ ∈ W 1,p
c (0, 1) such that ψn ⇀ ψ in W 1,p

c (0, 1) and ψn → ψ

in Cα[0, 1]. Since functional f1 is sequentially weakly lower semi-continuous, we

have that ∫ 1

0

|ψ′|p dr ≤ lim inf
n→+∞

∫ 1

0

|ψ′n|
p
dr = µp−11 (p).

On the other hand, (p − 1)
∫ 1

0
rp−2 |ψn|p dr = 1 and ψn → ψ in Cα[0, 1] imply

that (p−1)
∫ 1

0
rp−2|ψ|p dr = 1. Hence,

∫ 1

0
|ψ′|p dr = η1(p) via Lemma 2.5. Then

Lemmas 2.1 and 2.5 show that ψ > 0 in (0, 1). Thus ψn ≥ 0 for n large enough

which contradicts the conclusion of Lemma 2.7. �

Next, we show that the principle eigenvalue function µ1 : [2,+∞) → R is

continuous.

Lemma 2.9. The eigenvalue function µ1 : [2,+∞)→ R is continuous.

Proof. It is sufficient to show that η1(p) : [2,+∞) → R is continuous be-

cause of µ1(p) = (η1(p))1/(p−1).

From the variational characterization of η1(p) it follows that

(2.4) η1(p) = sup

{
λ > 0

∣∣∣∣ λ(p− 1)

∫ 1

0

rp−2|v|p dr ≤
∫ 1

0

|v′|p dr

for all v ∈ C∞c [0, 1]

}
,

where C∞c [0, 1] = {v ∈ C∞[0, 1] | v′(0) = v(1) = 0}, as C∞c [0, 1] is dense in

W 1,p
c (0, 1) (see [1]).

Let {pj}∞j=1 be a sequence in [2,+∞) which converge to p ≥ 2. We shall

show that

(2.5) lim
j→+∞

η1(pj) = η1(p).

To do this, let v ∈ C∞c [0, 1]. Then, due to (2.4), we get that

η1(pj)(pj − 1)

∫ 1

0

rpj−2|v|pj dr ≤
∫ 1

0

|v′|pj dr.

On applying the Dominated Convergence Theorem we find that

(2.6) lim sup
j→+∞

η1(pj)(p− 1)

∫ 1

0

rp−2|v|p dr ≤
∫ 1

0

|v′|p dr.
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Relation (2.6), the fact that v is arbitrary and (2.4) yield

lim sup
j→+∞

η1(pj) ≤ η1(p).

Thus, to prove (2.5) it suffices to show that

(2.7) lim inf
j→+∞

η1(pj) ≥ η1(p).

Let {pk}∞k=1 be a subsequence of {pj}∞j=1 such that lim
k→+∞

η1(pk) = lim inf
j→+∞

η1(pj).

Let us fix ε0 > 0 so that p− ε0 > 1 and for each 0 < ε < ε0 and k ∈ N large

enough, p− ε < pk < p+ ε. For k ∈ N, let us choose vk ∈W 1,pk
c (0, 1) such that

vk > 0 in (0, 1),

(2.8)

∫ 1

0

|v′k|pk dr = 1

and

(2.9)

∫ 1

0

|v′k|pk dr = η1(pk)(pk − 1)

∫ 1

0

rpk−2|vk|pk dr.

For 0 < ε < ε0 and k ∈ N large enough, (2.7), (2.8) and (2.9) imply that

(2.10) ‖vk‖W 1,pk
c (0,1)

≤ 1 + max


(

1

lim
k→+∞

η1(pk)

)1/(p+ε)

,

(
1

lim
k→+∞

η1(pk)

)1/(p−ε)
 .

This shows that {vk}∞k=1 is a bounded sequence in W 1,pk
c (0, 1), hence, also in

W 1,p−ε
c (0, 1). Passing to a subsequence if necessary, we can assume that vk ⇀ v

in W 1,p−ε
c (0, 1) and hence that vk → v in Cα[0, 1] with α = 1−1/(p−ε) because

the embedding of W 1,p−ε(0, 1) ↪→ Cα[0, 1] is compact. Thus,

(2.11) |vk|pk → |v|p.

We note that (2.9) implies that

(2.12) η1(pk)(pk − 1)

∫ 1

0

rpk−2|vk|pk dr = 1

for all k ∈ N. Thus letting k → +∞ in (2.12) and using (2.11), we find that

(2.13) lim inf
j→+∞

η1(pj)(p− 1)

∫ 1

0

rp−2|v|p dr = 1.

On the other hand, since vk ⇀ v in W 1,p−ε
c (0, 1), from (2.8) and the Hölder’s

inequality we obtain that

‖v′‖p−εp−ε ≤ lim inf
k→+∞

‖v′k‖
p−ε
p−ε ≤ 1,

where ‖ · ‖p denotes the normal of Lp(0, 1). Now, letting ε→ 0+, we find

(2.14) ‖v′‖p ≤ 1.
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Clearly, (2.13), (2.14) and v ∈W 1,p−ε
c (0, 1) follow that v ∈W 1,p

c (0, 1).

Consequently, combining (2.13) with (2.14) we obtain that

lim inf
j→+∞

η1(pj)(p− 1)

∫ 1

0

rp−2|v|p dr ≥
∫ 1

0

|v′|p dr.

This together with the variational characterization of η1(p) implies (2.7) and

hence (2.5). This concludes the proof of the lemma. �

We have known that I−T pµ is a completely continuous vector field inX. Thus,

the Leray–Schauder degree deg(I − T pµ , Br(0), 0) is well defined for arbitrary r-

ball Br(0) and µ ∈ (0, δp) \ {µ1(p)}, where δp comes from Lemma 2.8. By an

argument similar to that of Lemma 4.3 of [7], we can get the following theorem.

Theorem 2.10. For fixed p ≥ 2 and all r > 0, we have that

deg(I − T pµ , Br(0), 0) =

 1 if µ ∈ (0, µ1(p)),

−1 if µ ∈ (µ1(p), δp).

3. Global bifurcation result

With a simple transformation v = −u, problem (1.3) can be written as

(3.1)

((−v′)N )′ = λNNrN−1(vN + g(v)), r ∈ (0, 1),

v′(0) = v(1) = 0.

LetX+ :={v ∈ X | v(r) ≥ 0} with the norm ofX. Define the map Tg : X+→X+

by

Tgv(r) =

∫ 1

r

(∫ s

0

NτN−1((v(τ))N + g(v(τ))) dτ

)1/N

ds, 0 ≤ r ≤ 1.

It is not difficult to verify that Tg is continuous and compact. Clearly, problem

(3.1) can be equivalently written as

v = λTgv.

Now, we show that the existence and uniqueness theorem is valid for prob-

lem (3.1).

Lemma 3.1. If (λ, v) is a solution of (3.1) in R × X+ and v has a double

zero, then v ≡ 0.

Proof. Let v be a solution of problem (3.1) and r∗ ∈ [0, 1] be a double zero.

We note that

v(r) = λ

∫ r∗

r

(∫ s

r∗

NτN−1((v(τ))N + g(v(τ))) dτ

)1/N

ds.
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Firstly, we consider r ∈ [0, r∗]. Then we have that

|v(r)| ≤ λ
(∫ r∗

r

NτN−1|((v(τ))N + g(v(τ)))| dτ
)1/N

,

furthermore,

|v(r)|N ≤λN
∫ r∗

r

NτN−1|((v(τ))N + g(v(τ)))| dτ

≤λN
∫ r∗

r

NτN−1
∣∣∣∣1 +

g(v(τ))

(v(τ))N

∣∣∣∣ |v(τ)|N dτ.

According to the assumptions on g, for any ε > 0, there exists a constant δ > 0

such that

|g(s)| ≤ εsN for any s ∈ [0, δ].

Hence, we have that

|v(r)|N ≤ λN
∫ r∗

r

N

(
1 + ε+ max

s∈[δ,‖v‖]

∣∣∣∣g(s)

sN

∣∣∣∣ )|v(τ)|N dτ.

By the modification of the Gronwall–Bellman inequality [13, Lemma 2.2], we get

v ≡ 0 on [0, r∗]. Similarly, using the Gronwall–Bellman inequality [2], [9], we

can get v ≡ 0 on [r∗, 1] and the proof is completed. �

Now, we consider the following eigenvalue problem

(3.2)

((−v′)N )′ = λNNrN−1vN , r ∈ (0, 1),

v′(0) = v(1) = 0.

As Lions [17] showed, the first eigenvalue λ1 is positive, simple and the corre-

sponding eigenfunctions are positive in (0, 1) and concave on [0, 1]. Moreover,

we also have the following result.

Lemma 3.2. If (µ, ϕ) ∈ (0,+∞)× (C2[0, 1] \ {0}) satisfies and µ 6= λ1, then

ϕ must change sign.

Proof. By way of contradiction, we may suppose that ϕ is not changing-

sign. Without loss of generality, we can assume that ϕ ≥ 0 in (0, 1). Lemma 3.1

follows that ϕ > 0 in (0, 1). Theorem 1 of [17] implies µ = λ1 and ϕ = θψ1 for

some positive constant θ, where ψ1 is the positive eigenfunction corresponding

to λ1 with ‖ψ1‖ = 1. We have a contradiction. �

Next, we show that λ1 is also isolated.

Lemma 3.3. λ1 is isolated; that is to say, λ1 is the unique eigenvalue in (0, δ)

for some δ > λ1.
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Proof. Theorem 1 of [17] has shown that λ1 is left-isolated. Assume by con-

tradiction that there exists a sequence of eigenvalues λn ∈ (λ1, δ) which converge

to λ1. Let vn be the corresponding eigenfunctions. Let wn := vn/‖vn‖C1[0,1],

then wn should be the solutions of the following problem

w = λn

∫ 1

r

(∫ s

0

NτN−1wN dτ

)1/N

ds.

Clearly, wn are bounded in C1[0, 1] so there exists a subsequence, denoted again

by wn, and ψ ∈ X such that wn → ψ in X. It follows that

ψ = λ1

∫ 1

r

(∫ s

0

NτN−1ψN dτ

)1/N

ds.

Then Theorem 1 of [17] follows that ψ = θψ1 for some positive constant θ in

(0, 1). Thus wn ≥ 0 for n large enough contradicts vn changing-sign in (0, 1)

which is implied by Lemma 3.2. �

Define TN : X+ → X+ by

TNv :=

∫ 1

r

(∫ s

0

NτN−1vN dτ

)1/N

ds, 0 ≤ r ≤ 1.

Clearly, I − TN is a completely continuous vector field in X+. Thus, the Leray–

Schauder degree deg(I − TN , Br(0), 0) is well defined for arbitrary r-ball Br(0)

of X+ and µ ∈ (0, δ) \ {λ1}, where δ comes from Lemma 3.3.

Lemma 3.4. Let λ be a constant with λ ∈ (0, δ). Then, for arbitrary r > 0,

deg(I − λTN , Br(0), 0) =

 1 if λ ∈ (0, λ1),

−1 if λ ∈ (λ1, δ).

Proof. Taking p = N + 1 and µ = λ in T pµ , we can see that λ1 = µ1(p).

Furthermore, it is not difficult to verify that λTN (v) = T pµ(v) for any v ∈ X+.

By Theorem 2.10, we can deduce this lemma. �

Theorem 3.5. (λ1, 0) is a bifurcation point of (3.1) and the associated bi-

furcation branch C in R×X+ whose closure contains (λ1, 0) is either unbounded

or contains a pair (λ, 0) where λ is an eigenvalue of (3.2) and λ 6= λ1.

Proof. Suppose that (λ1, 0) is not a bifurcation point of problem (3.1).

Then there exist ε > 0, ρ0 > 0 such that for |λ − λ1| ≤ ε and 0 < ρ < ρ0 there

is no nontrivial solution of the equation

v − λTgv = 0

with ‖v‖ = ρ. From the invariance of the degree under a compact homotopy we

obtain that

(3.3) deg(I − λTg, Bρ(0), 0) ≡ constant for λ ∈ [λ1 − ε, λ1 + ε].
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By taking ε smaller if necessary, in view of Lemma 3.3, we can assume that

there is no eigenvalue of (3.2) in (λ1, λ1 + ε]. Fix λ ∈ (λ1, λ1 + ε]. We claim that

the equation

(3.4) v − λ
∫ 1

r

(∫ s

0

NτN−1(vN + tg(v)) dτ

)1/N

ds = 0

has no solution v with ‖v‖ = ρ for every t ∈ [0, 1] and ρ sufficiently small.

Suppose on the contrary, let {vn} be the nontrivial solutions of equation (3.4)

with ‖vn‖ → 0 as n→ +∞.

Let wn := vn/‖vn‖, then wn should be the solutions of the following problem

(3.5) w(t) = λ

∫ 1

r

(∫ s

0

NτN−1
(
wN + t

g(v)

‖vn‖N

)
dτ

)1/N

ds.

Let g̃(v) = max
0≤s≤v

|g(s)|, then g̃ is nondecreasing with respect to v and

(3.6) lim
v→0+

g̃(v)

vN
= 0.

Further it follows from (3.6) that

(3.7)
|g(v)|
‖v‖N

≤ g̃(v)

‖v‖N
≤ g̃(‖v‖)
‖v‖N

→ 0 as ‖v‖ → 0.

By (3.5), (3.7) and the compactness of Tg, we obtain that for some convenient

subsequence wn → w0 as n → +∞. Now (λ,w0) verifies problem (3.2) and

‖w0‖ = 1. This implies that λ is an eigenvalue of (3.2). This is a contradiction.

From the invariance of the degree under homotopies and Lemma 3.4 we then

obtain that

(3.8) deg(I − λTg( · ), Br(0), 0) = deg(I − λTN ( · ), Br(0), 0) = −1.

Similarly, for λ ∈ [λ1 − ε, λ1) we find that

(3.9) deg(I − λTg( · ), Br(0), 0) = 1.

Relations (3.8) and (3.9) contradict (3.3) and hence (λ1, 0) is a bifurcation point

of problem (3.1).

By standard arguments in global bifurcation theory (see [23]), we can show

the existence of a global branch of solutions of problem (3.1) emanating from

(λ1, 0). Our conclusion is proved. �

Next, we shall prove that the first choice of the alternative of Theorem 3.5

in X+ which are positive in (0,1). Set K+ = R×P+ under the product topology.

Theorem 3.6. There exists an unbounded continuum C ⊆ (K+ ∪ {(λ1, 0)})
of solutions to problem (3.1) emanating from (λ1, 0).
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Proof. For any (λ, v) ∈ C, Lemma 3.1 implies that either v ≡ 0 or v > 0 in

(0,1). Thus, we have C ⊆ (K+ ∪ {(λ1, 0)}).
Now, we prove that the first choice of the alternative of Theorem 3.5 when

n → +∞ with (λn, vn) ∈ C, vn 6≡ 0 and λ is another eigenvalue of (3.2). Let

wn := vn/‖vn‖, then wn should be the solutions of the following problem

(3.10) w = λn

∫ 1

r

(∫ s

0

NτN−1
(
wN +

g(v)

‖vn‖N

)
dτ

)1/N

ds.

By an argument similar to that of Theorem 3.5, we obtain that for some conve-

nient subsequence wn → w0 as n → +∞. It is easy to see that (λ,w0) verifies

problem (3.2) and ‖w0‖ = 1. Lemma 3.2 follows w0 must change sign, and

as a consequence for some n large enough, wn must change sign, and this is

a contradiction. �

Remark 3.7. Clearly, the proof of Theorem 3.6 also shows that (λ1, 0) is the

unique bifurcation point from (λ, 0) of the positive solutions of problem (3.1).

Finally, we give a key lemma that will be used later.

Lemma 3.8. Let b2(r) ≥ b1(r) > 0 for r ∈ (0, 1) and bi(r) ∈ C([0, 1]), i = 1, 2.

Also let u1, u2 be solutions of the following differential problems((−u′)N )′ = bi(r)u
N , i = 1, 2,

u′(0) = u(1) = 0,

respectively. If u1(r) 6= 0 in (0, 1), then either there exists τ ∈ (0, 1) such that

u2(τ) = 0 or b2 = b1 and u2(r) = µu1(r) for some constant µ 6= 0 and almost

every r ∈ (0, 1).

Proof. If u2(r) 6= 0 in (0, 1), then we can assume without loss of generality

that u1(r) > 0, u2(r) > 0 in (0, 1). Then from problem (3.11), we can easily show

that u1 and u2 are strictly decreasing concave functions in (0, 1). Moreover, it is

easy to check that the conclusion of Lemma 3.1 is also valid for problem (3.11).

So we have u′1(r) < 0 and u′2(r) < 0 for r ∈ (0, 1].

By some simple calculations, we have that∫ 1

0

(
uN+1
1 (−u′2)N

uN2
− u1(−u′1)N

)′
dr

=

∫ 1

0

(
wuN+1

1 +

(
(−u′1)N+1+N

(
−u1u′2
u2

)N+1

−(N+1)uN1 u
′
1

(
−u′2
u2

)N))
dr,

where w = b2 − b1. The left-hand side of (3.12) equals

lim
r→1−

uN+1
1 (−u′2)N

uN2
:= H.
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We prove that H = 0. By L’Hospital rule, we have that

H = lim
r→1−

uN+1
1 (−u′2)N

uN2
= lim
r→1−

(N + 1)uN1 u
′
1(−u′2)N + uN+1

1 ((−u′2)N )′

NuN−12 u′2

= lim
r→1−

(N + 1)uN1 u
′
1(−u′2)N + uN+1

1 b2u
N
2

NuN−12 u′2

= lim
r→1−

(N + 1)uN1 u
′
1(−u′2)N

NuN−12 u′2
+ lim
r→1−

uN+1
1 b2u

N
2

NuN−12 u′2

= lim
r→1−

(N + 1)u′1(−u′2)N

Nu′2
lim
r→1−

uN1
uN−12

.

If N = 1, then H = 0. If 1 < N ≤ 2, applying the L’Hospital rule again, we

obtain that

lim
r→1−

uN1
uN−12

= lim
r→1−

Nu′1
(N − 1)u′2

lim
r→1−

uN−11

uN−22

.

This implies that H = 0. If k − 1 < N ≤ k, then we continue this process k

times to obtain H = 0.

Therefore, the left-hand side of (3.12) equals zero. Hence the right-hand side

of (3.12) also equals zero. The Young’s inequality implies that

(−u′1)N+1 +N

(
−u1u′2
u2

)N+1

− (N + 1)uN1 u
′
1

(
−u′2
u2

)N
≥ 0,

and the equality holds if and only if(
−u′1
u1

)N+1

=

(
−u′2
u2

)N+1

.

It follows that there exists a constant µ 6= 0 such that u2 = µu1 and b2 = b1. �

As an immediate consequence, we obtain the following Sturm type compari-

son lemma.

Lemma 3.9. Let bi(r) ∈ C([0, 1]), i = 1, 2 such that b2(r) ≥ b1(r) > 0 for

r ∈ (0, 1) and the inequality is strict on some subset of positive measure in (0, 1).

Also let u1, u2 are solutions of (3.11) with i = 1, 2, respectively. If u1 6= 0 in

(0, 1), then u2 has at least one zero in (0, 1).

4. Convex solutions

In this section, we shall investigate the existence and multiplicity of convex

solutions of problem (1.2). With a simple transformation v = −u, problem (1.2)

can be written as

(4.1)

((−v′(r))N )′ = λNNrN−1f(v(r)), r ∈ (0, 1),

v′(0) = v(1) = 0.
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Define the map Tf : X+ → X+ by

Tfv(r) =

∫ 1

r

(∫ s

0

NτN−1f(v(r)) dτ

)1/N

ds, 0 ≤ r ≤ 1.

Similar to Tg, Tf is continuous and compact. Clearly, problem (4.1) can be

equivalently written as

v = λTfv.

Let f0, f∞ ∈ R \ R− be such that

fN0 = lim
s→0+

f(s)

sN
and fN∞ = lim

s→+∞

f(s)

sN
.

Throughout this section, we always suppose that f satisfies the following signum

condition

(f1) f ∈ C(R \ R−,R \ R−) with f(s)sN > 0 for s > 0.

Applying Theorem 3.6, we shall establish the existence of convex solutions

of (1.2) as follows.

Theorem 4.1. If f0 ∈ (0,+∞) and f∞ ∈ (0,+∞), then for any λ ∈
(λ1/f∞, λ1/f0) or λ ∈ (λ1/f0, λ1/f∞), (1.2) has at least one solution u such

that it is negative, strictly convex in (0, 1).

Proof. It suffices to prove that (4.1) has at least one solution v such that

it is positive, strictly concave in (0, 1).

Clearly, f0 ∈ (0,+∞) implies f(0) = 0. Hence, v = 0 is always the solution

of problem (4.1). Let ζ ∈ C(R \ R−,R \ R−) be such that f(s) = fN0 s
N + ζ(s)

with lims→0+ ζ(s)/sN = 0. Applying Theorem 3.6 to (4.1), we have that there

exists an unbounded continuum C emanating from (λ1/f0, 0), such that

C ⊆ ({(λ1, 0)} ∪ (R× P+)).

To complete this theorem, it will be enough to show that C joins (λ1/f0, 0)

to (λ1/f∞,+∞). Let (µn, vn) ∈ C satisfy µn + ‖vn‖ → +∞. We note that

µn > 0 for all n ∈ N since (0,0) is the only solution of (4.1) for λ = 0 and

C ∩ ({0} ×X+) = ∅.
We divide the rest of proofs into two steps.

Step 1. We show that there exists a constant M such that µn ∈ (0,M ] for

n ∈ N large enough.

On the contrary, we suppose that lim
n→+∞

µn = +∞. On the other hand, we

note that

((−v′n(r))N )′ = µNn Nr
N−1f̃n(r)vNn ,

where

f̃n(r) =


f(vn)

vNn
if vn 6= 0,

fN0 if vn = 0.
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The signum condition (f1) implies that there exists a positive constant % such

that f̃n(r) ≥ % for any r ∈ [0, 1]. By Lemma 3.9, we get vn must change sign in

(0, 1) for n large enough, and this contradicts the fact that vn ∈ C.

Step 2. We show that C joins (λ1/f0, 0) to (λ1/f∞,+∞).

It follows from Step 1 that ‖vn‖ → +∞. Let ξ ∈ C(R \ R−,R \ R−) be such

that f(s) = fN∞s
N + ξ(s). Then lim

s→+∞
ξ(s)/sN = 0. Let ξ̃(v) = max

0≤s≤v
|ξ(s)|.

Then ξ̃ is nondecreasing. Set ξ(v) = max
v/2≤s≤v

|ξ(s)|. Then we have

lim
v→+∞

ξ(v)

vN
= 0 and ξ̃(v) ≤ ξ̃

(
v

2

)
+ ξ(v).

It follows that

(4.2) lim
v→+∞

ξ̃(v)

vN
= 0.

We divide the equation

((−v′n)N )′ − µNn fN∞rN−1vNn = µNn r
N−1ξ(vn)

by ‖vn‖N and set vn = vn/‖vn‖. Since vn are bounded in X+, after taking a

subsequence if necessary, we have that vn ⇀ v for some v ∈ X+. Moreover, from

(4.2) and the fact that ξ̃ is nondecreasing, we have that

(4.3) lim
n→+∞

ξ(vn(r))

‖vn‖N
= 0

since

|ξ(vn(r))|
‖vn‖N

≤ ξ̃(|vn(r)|)
‖vn‖N

≤ ξ̃(‖vn(r)‖)
‖vn‖N

.

By the continuity and compactness of Tf , it follows that

((−v′)N )′ − λNfN∞rN−1vN = 0,

where λ = lim
n→+∞

λn, again choosing a subsequence and relabeling it if necessary.

It is clear that ‖v‖ = 1 and v ∈ C ⊆ C since C is closed in R×X+. Therefore,

λf∞ = λ1, so λ = λ1/f∞. Therefore, C joins (λ1/f0, 0) to (λ1/f∞,+∞). �

Remark 4.2. From the proof of Theorem 4.1, we can see that if f0, f∞ ∈
(0,+∞) then there exist λ2 > 0 and λ3 > 0 such that (1.2) has at least one

strictly convex solution for all λ ∈ (λ2, λ3) and has no convex solution for all

λ ∈ (0, λ2) ∪ (λ3,+∞).

Proof. Clearly, f0, f∞ ∈ (0,+∞) implies that there exists a positive con-

stant M such that ∣∣∣∣f(s)

sN

∣∣∣∣ ≤M for any s > 0.
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It is sufficient to show that there exists λ2 > 0 such that (1.2) has no convex

solution for all λ ∈ (0, λ2). Suppose on the contrary that there exists one pair

(µ, v) ∈ C such that µ ∈ (0, 1/M1/N ). Let w = v/‖v‖. Obviously, one has that

1 = ‖w‖ =

∥∥∥∥µ∫ 1

r

(∫ s

0

NτN−1
(
f(v)

‖v‖N

)
dτ

)1/N

ds

∥∥∥∥ ≤M1/Nµ < 1.

This is a contradiction. �

From the proof of Theorem 4.1 and Remark 4.2, we can deduce the following

two corollaries.

Corollary 4.3. Assume that there exists a positive constant ρ > 0 such

that
f(s)

sN
≥ ρ for any s > 0.

Then there exists ζ∗ > 0 such that problem (1.2) has no convex solution for any

λ ∈ (ζ∗,+∞).

Corollary 4.4. Assume that there exists a positive constant % > 0 such

that ∣∣∣∣f(s)

sN

∣∣∣∣ ≤ % for any s > 0.

Then there exists η∗ > 0 such that problem (1.2) has no convex solution for any

λ ∈ (0, η∗).

Theorem 4.5. If f0 ∈ (0,+∞) and f∞ = 0, then for any λ ∈ (λ1/f0,+∞),

(1.2) has at least one solution u such that it is negative, strictly convex in (0, 1).

Proof. In view of Theorem 4.1, we only need to show that C joins (λ1/f0, 0)

to (+∞,+∞). Suppose on the contrary that there exists µM such that (µM , 0)

is a blow up point (see Definition 1.1 of [24]) and µM < +∞. Then there exists a

sequence {µn, vn} such that lim
n→+∞

µn = µM and lim
n→+∞

‖vn‖ = +∞ as n→ +∞.

Let wn = vn/‖vn‖ and wn should be the solutions of the following problem

w = µn

∫ 1

r

(∫ s

0

NτN−1
(
f(vn)

‖vn‖N

)
dτ

)1/N

ds.

Similar to (4.3), we can show that

lim
n→+∞

f(vn(r))

‖vn‖N
= 0.

By the compactness of Tf , we obtain that for some convenient subsequence

wn → w0 as n → +∞. Letting n → +∞, we obtain that w0 ≡ 0. This

contradicts ‖w0‖ = 1. �
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Remark 4.6. Under the assumptions of Theorem 4.5, in view of Corol-

lary 4.4, we can see that there exists λ4 > 0 such that problem (1.2) has at least

one strictly convex solution for all λ ∈ (λ4,+∞) and has no convex solution for

all λ ∈ (0, λ4).

Theorem 4.7. If f0 ∈ (0,+∞) and f∞ = ∞, then for any λ ∈ (0, λ1/f0),

(1.2) has at least one solution u such that it is negative, strictly convex in (0, 1).

Proof. Considering of the proof of Theorem 4.1, we only need to show that

C joins (λ1/f0, 0) to (0,+∞). Clearly, f∞ = +∞ implies that f(s) ≥MNsN for

some positive constant M and s large enough.

To complete the proof, it suffices to show that the unique blow up point of C is

λ = 0. Suppose on the contrary that there exists λ̂ > 0 such that (λ̂, 0) is a blow

up point of C. Then there exists a sequence {λn, vn} such that lim
n→+∞

λn = λ̂

and lim
n→+∞

‖vn‖ = +∞. Let wn = vn/‖vn‖. Clearly, one has that

wn = λn

∫ 1

r

(∫ s

0

NτN−1
(
f(vn)

vNn

vNn
‖vn‖N

)
dτ

)1/N

ds.

Take M = 64/λ̂+ 1. For r ∈ [1/4, 3/4], by virtue of Lemma 2.3 of [11], we have

that

|wn| ≥Mλn

∫ 1

r

(∫ s

0

NτN−1|wn|N dτ
)1/N

ds(4.4)

≥M‖wn‖λn
∫ 1

r

(∫ s

0

NτN−1(1− τ)N dτ

)1/N

ds

≥M‖wn‖λn(1− r)
(∫ r

0

NτN−1(1− τ)N dτ

)1/N

≥M‖wn‖λn(1− r)2
(∫ r

0

NτN−1 dτ

)1/N

≥M‖wn‖λnr(1− r)2 ≥
M‖wn‖λn

64
.

It is obvious that (4.4) follows Mλn ≤ 64. Thus, we get that M ≤ 64/λ̂. While,

this is impossible because of M = 64/λ̂+ 1. �

Remark 4.8. Clearly, Theorem 4.7 and Corollary 4.3 imply that if f0 ∈
(0,+∞) and f∞ = +∞ then there exists λ5 > 0 such that (1.2) has at least

one strictly convex solution for all λ ∈ (0, λ5) and has no convex solution for all

λ ∈ (λ5,+∞).

Theorem 4.9. If f0 = 0 and f∞ ∈ (0,+∞), then for any λ ∈ (λ1/f∞,+∞),

(1.2) has at least one solution u such that it is negative, strictly convex in (0, 1).
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Proof. If (λ, v) is any solution of (4.1) with ‖v‖ 6≡ 0, dividing (4.1) by

‖v‖2N and setting w = v/‖v‖2 yield

(4.5)

((−w′(r))N )′ = λNNrN−1
(
f(v)

‖v‖2N

)
, r ∈ (0, 1),

w′(0) = w(1) = 0.

Define

(4.6) f̃(w) =

‖w‖
2Nf

(
w

‖w‖2

)
if w 6= 0,

0 if w = 0.

Clearly, (4.5) is equivalent to

(4.7)

((−w′(r))N )′ = λNrN−1f̃(w), r ∈ (0, 1),

w′(0) = w(1) = 0.

It is obvious that (λ, 0) is always the solution of (4.7). By the simple computa-

tion, we can show that f̃0 = f∞ and f̃∞ = f0.

Now applying Theorem 4.5 and the inversion w → w/‖w‖2 = v, we can

achieve our conclusion. �

Remark 4.10. Under the assumptions of Theorem 4.9, we note there exists

λ6 > 0 such that (1.2) has at least one strictly convex solution for all λ ∈
(λ6,+∞) and has no convex solution for all λ ∈ (0, λ6).

Next, we shall need the following topological lemma.

Lemma 4.11 (see [19]). Let X be a Banach space and let Cn be a family of

closed connected subsets of X. Assume that:

(a) there exist zn ∈ Cn, n = 1, 2, . . ., and z∗ ∈ X, such that zn → z∗;

(b) rn = sup{‖x‖ | x ∈ Cn} = +∞;

(c) for every R > 0,
( +∞⋃
n=1

Cn

)
∩BR is a relatively compact set of X, where

BR = {x ∈ X | ‖x‖ ≤ R}.

Then there exists an unbounded component C in D = lim sup
n→+∞

Cn and z∗ ∈ C.

Theorem 4.12. If f0 = 0 and f∞ = 0, then there exists λ∗ > 0 such that

for any λ ∈ (λ∗,+∞), (1.2) has at least two solutions u1 and u2 such that they

are negative, strictly convex in (0, 1).
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Proof. Define

fn(s) =



1

nN
sN , s ∈

[
0,

1

n

]
,(

f

(
2

n

)
− 1

n2N

)
ns+

2

n2N
− f

(
2

n

)
, s ∈

(
1

n
,

2

n

)
,

f(s), s ∈
[

2

n
,+∞

)
.

Now, consider the following problem((u′(r))N )′ = λNNrN−1fn(−u(r)) in 0 < r < 1,

u′(0) = u(1) = 0.

Clearly, we can see that lim
n→+∞

fn(s) = f(s), fn0 = 1/n and fn∞ = f∞ = 0. The-

orem 4.5 implies that there exists a sequence unbounded continua Cn emanating

from (nλ1, 0) and joining to (+∞,+∞).

Taking z1n = (nλ1, 0) and z2n = (+∞,+∞), we have z1n, z
2
n ∈ Cn and z1n →

(+∞, 0), z2n → (+∞,+∞). The compactness of Tf implies that
( +∞⋃
n=1
Cn
)
∩BR is

pre-compact. So Lemma 4.11 implies that there exists an unbounded component

C of lim sup
n→+∞

Cn such that (+∞, 0) ∈ C and (+∞,+∞) ∈ C. By an argument

similar to that of Theorem 4.5, we can show that C ∩ ([0,+∞)× {0}) = ∅. �

Remark 4.13. From Theorem 4.12 and Corollary 4.4, we can also see that

there exists λ7 > 0 such that (1.2) has at least one strictly convex solution for

all λ ∈ [λ7, λ∗] and has no convex solution for all λ ∈ (0, λ7).

Theorem 4.14. If f0 = 0 and f∞ =∞, then for any λ ∈ (0,+∞), (1.2) has

at least one solution u such that it is negative, strictly convex in (0, 1).

Proof. Using an argument similar to that of Theorem 4.12, in view of the

conclusion of Theorem 4.7, we can easily get the results of this theorem. �

Theorem 4.15. If f0 =∞ and f∞ = 0, then for any λ ∈ (0,+∞), (1.2) has

at least one solution u such that it is negative, strictly convex in (0, 1).

Proof. By an argument similar to that of Theorem 4.9 and the conclusions

of Theorem 4.13, we can prove it. �

Theorem 4.16. If f0 =∞ and f∞ ∈ (0,+∞), then for any λ ∈ (0, λ1/f∞),

(1.2) has at least one solution u such that it is negative, strictly convex in (0, 1).

Proof. By an argument similar to that of Theorem 4.9 and the conclusion

of Theorem 4.7, we can obtain it. �
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Remark 4.17. Similarly to Remark 4.8, there exists λ8 > 0 such that (1.2)

has at least one strictly convex solution for all λ ∈ (0, λ8) and has no convex

solution for all λ ∈ (λ8,+∞).

Theorem 4.18. If f0 =∞ and f∞ =∞, then there exists λ∗ > 0 such that

for any λ ∈ (0, λ∗), (1.2) has at least two solutions u1 and u2 such that they are

negative, strictly convex in (0, 1).

Proof. Define

fn(s) =



nNsN , s ∈
[
0,

1

n

]
,(

f

(
2

n

)
− 1

)
ns+ 2− f

(
2

n

)
, s ∈

(
1

n
,

2

n

)
,

f(s), s ∈
[

2

n
,+∞

)
.

By the conclusions of Theorem 4.7 and an argument similar to that of Theo-

rem 4.12, we can prove there exists an unbounded component C of solutions of

problem (1.2) such that (0, 0) ∈ C and (0,+∞) ∈ C. By an argument similar to

that of Theorem 4.7, we can show that C ∩ ((0,+∞)× {0}) = ∅. By arguments

similar to those of Theorems 4.7 and 4.12, we can show that there exists µ∗ > 0

such that C ∩ ((µ∗,+∞)×X+) = ∅. �

Remark 4.19. By Theorem 4.17 and Corollary 4.3, we can see that there

exists λ9 > 0 such that (1.2) has at least one strictly convex solution for all

λ ∈ [λ∗, λ9] and has no convex solution for all λ ∈ (λ9,+∞).

Remark 4.20. Clearly, the conclusions of Theorem 1.1 of [26] and Theo-

rem 5.1 of [11] are the corollaries of Theorems 4.1, 4.5, 4.7, 4.9, 4.12–4.15, 4.17.

Remark 4.21. Let f(s) = es. It can be easily verified that f0 = ∞ and

f∞ = ∞. This fact with Remark 4.18 implies that there is no solution of

problem (1.2) with λ large enough, and for sufficiently small λ there are two

strictly convex solutions. Set µ := λ1/2. Through a scaling, we can show that

problem (1.2) is equivalent to

(4.8)

det(D2u) = e−u in Bµ(0),

u = 0 on ∂Bµ(0),

where Bµ(0) denotes the set of {x ∈ RN | |x| ≤ µ}. Hence there is no solution

of problem (4.8) with µ large enough, and for sufficiently small µ there are two

strictly convex solutions. Obviously, this result improves the corresponding one

of [27, Theorem 3.1]. So Theorem 3.1 of [27] is our corollary of Theorem 4.17.

Remark 4.22. Obviously, the results of Theorems 4.1, 4.5, 4.7, 4.9, 4.12–4.15

and 4.17 are also valid on BR(0) for any R > 0.
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5. Exact multiplicity of convex solutions

In this section, under some more strict assumptions of f , we shall show

that the unbounded continuum which are obtained in Section 4 may be smooth

curves. We just show the case of f0 ∈ (0,+∞) and f∞ = 0. Other cases are

similar.

Firstly, we study the local structure of the bifurcation branch C near (λ1, 0),

which is obtained in Theorem 3.5. Let E = R×X+, Φ(λ, v) := v − λTg(v) and

S := {(λ, v) ∈ E | Φ(λ, v) = 0, v 6= 0}
E
.

In order to formulate and prove main results of this section, it is convenient to

introduce López–Gómez’s notations [18]. Given any λ ∈ R and 0 < s < +∞, we

consider an open neighbourhood of (λ1, 0) in E defined by

Bs(λ1, 0) := {(λ, v) ∈ E | ‖v‖+ |λ− λ1| < s}.

Let X0 be a closed subspace of X such that X = span{ψ1} ⊕ X0. According

to the Hahn–Banach theorem, there exists a linear functional l ∈ (X+)∗, here

(X+)∗ denotes the dual space of X+, such that

l(ψ1) = 1 and X0 = {v ∈ X+ | l(v) = 0}.

Finally, for any 0 < ε < +∞ and 0 < η < 1, we define

K+
ε,η := {(λ, v) ∈ E | |λ− λ1| < ε, l(v) > η‖v‖}.

Applying an argument similar to that of [18, Lemma 6.4.1], we may obtain the

following result, which localizes the possible solutions of (1.3) bifurcating from

(λ1, 0).

Lemma 5.1. For every η ∈ (0, 1) there exists a number δ0 > 0 such that, for

each 0 < δ < δ0,

((S \ {(λ1, 0)}) ∩ Bδ(λ1, 0)) ⊂ K+
ε,η.

Moreover, for each (λ, v) ∈ (S \ {(λ1, 0)}) ∩ (Bδ(λ1, 0)), there are s ∈ R and

unique y ∈ X0 such that

v = sψ1 + y and s > η‖v‖.

Furthermore, for these solutions (λ, v), λ = λ1 + o(1) and y = o(s) as s→ 0+.

Remark 5.2. From Lemma 5.1, we can see that C near (λ1, 0) is given by

a curve (λ(s), v(s)) = (λ1 + o(1), sψ1 + o(s)) for s near 0+.

The primary result in this section is the following theorem.

Theorem 5.3. Let f ∈ C1(R \R−,R \R−) satisfy the assumptions of Theo-

rem 4.5. Suppose f ′(s) < Nf(s)/s for any s > 0. Then for any λ ∈ (λ1/f0,+∞),

(1.2) has exactly one solution u such that it is negative, strictly convex in (0, 1).
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Remark 5.4. Clearly, the assumption f ′(s) < Nf(s)/s for s > 0 is equiva-

lent to f(s)/sN is decreasing for s > 0.

We use the stability properties to prove Theorem 5.3. Let

Y := {v ∈ C2(0, 1) | v′(0) = v(1) = 0}.

For any φ ∈ Y and convex solution u of (1.2), by some simple computations, we

can show that the linearized equation of (1.2) about u at the direction φ is

(5.1)

(−φ′(−v′)N−1)′ − λNrN−1f ′(v)φ = µφ/N in (0, 1),

φ′(0) = φ(1) = 0,

where v = −u. Hence, the linear stability of a solution u of (1.2) can be deter-

mined by the linearized eigenvalue problem (5.1). A solution u of (1.2) is stable

if all eigenvalues of (5.1) are positive, otherwise it is unstable. We define the

Morse index M(u) of a solution u of (1.2) to be the number of negative eigen-

values of (5.1). A solution u of (1.2) is degenerate if 0 is an eigenvalue of (5.1),

otherwise it is non-degenerate.

The following lemma is our main stability result for the negative steady state

solution.

Lemma 5.5. Suppose that f satisfies the conditions of Theorem 5.3.Then any

negative solution u of (1.2) is stable, hence, non-degenerate and Morse index

M(u) = 0.

Proof. Let u be a negative solution of (1.2), and let (µ1, ϕ1) be the cor-

responding principal eigen-pairs of (5.1) with ϕ1 > 0 in (0, 1). We notice that

v := −u and φ1 satisfy the equations

(5.2)

((−v′(r))N )′ − λNNrN−1f(v(r)) = 0 in (0, 1),

v′(0) = v(1) = 0

and

(5.3)

(−φ′1(−v′)N−1)′ − λNrN−1f ′(v)φ1 = µ1φ1/N in (0, 1),

φ′1(0) = φ1(1) = 0.

Multiplying (5.3) by −v and (5.2) by −ϕ1, subtracting and integrating, we obtain

µ1

∫ 1

0

ϕ1v dr = N

∫ 1

0

λNrN−1ϕ1(Nf(v)− f ′(v)v) dr.

Since v > 0 and ϕ1 > 0 in (0, 1), then µ1 > 0 and the negative steady state

solution u must be stable. �
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Proof of Theorem 5.3. Define F : R×X+ → X+ by

F (λ, v) = ((−v′(r))N )′ − λNNrN−1f(v(r)),

where v = −u. From Lemma 5.5, we know that any convex solution v of (1.2)

is stable. Therefore, at any solution (λ∗, v∗), we can apply Implicit Function

Theorem to F (λ, v) = 0, and all the solutions of F (λ, v) = 0 near (λ∗, v∗) are on

a curve (λ, v(λ)) with |λ− λ∗| ≤ ε for some small ε > 0. Furthermore, by virtue

of Remark 5.1, the unbounded continuum C is a curve, which has been obtained

from Theorem 4.5. �

From Theorem 5.3, we can see that for λ > λ1/f0 there exists a unique

negative solution uλ with M(uλ) = 0. In addition, we also have the following

result.

Theorem 5.6. Under the assumptions of Theorem 5.3, we also have that uλ
decreasing with respect to λ.

Proof. Since uλ is differentiable with respect to λ (as a consequence of

Implicit Function Theorem), letting vλ = −uλ, then dvλ/dλ satisfies(((
− dvλ

dλ

)′
(r)

)
(−(vλ)′(r))N−1

)′
= λNrN−1f ′(vλ)

dvλ
dλ

+NλN−1rN−1f(vλ).

By an argument similar to that of Lemma 5.5, we can show that∫ 1

0

(λ(f ′(vλ)vλ −Nf(vλ))
dvλ
dλ

+Nf(vλ)vλ) dr = 0.

Assumptions of f imply dvλ/dλ ≥ 0. Therefore, we have duλ/dλ ≤ 0. �

Remark 5.7. From Theorem 5.6, we can also get that (1.2) has no convex

solution for all λ ∈ (0, λ1/f0] under the assumptions of Theorem 5.3. In this

sense, we get the optical interval for the parameter λ which ensures the existence

of single strictly convex solution for (1.2) under the assumptions of Theorem 5.3.

Remark 5.8. Note that the results of Theorems 5.3 and 5.6 have extended

the corresponding results to [17, Proposition 3], in the case of Ω = B.

Remark 5.9. Clearly, the results of Theorem 5.6 are better than the corre-

sponding results of [11, Theorem 3.1], if we assume f ∈ C1(R \ R−,R \ R−) in

the Theorem 3.1 of [11]. Moreover, we do not need f is increasing.

Proof. It is sufficient to show that the assumption (3.9) of [11] implies

f ′(s) < Nf(s)/s for s > 0. Luckily, for any s > 0 and t ∈ (0, 1), by the
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assumption (3.9) of [11], we have

f ′(s) = lim
t→1

f(s)− f(ts)

(1− t)s
≤ lim
t→1

f(s)− [(1 + η)t]Nf(s)

(1− t)s

< lim
t→1

f(s)− tNf(s)

(1− t)s
= lim
t→1

(1 + t+ . . .+ tN−1)f(s)

s
=
Nf(s)

s
,

where η > 0 comes from the assumption (3.9) of [11]. �

6. Convex solutions on general domain

In this section, we extend the results in Section 4 to the general domain Ω

by domain comparison method.

Through out this section, we assume that

(f2) f : [0,+∞)→ [0,+∞) is C2 and increasing;

(f3) f(s) > 0 for s > 0.

We use sub-supersolution method to construct a solution by iteration in an

arbitrary domain. Note that 0 is always a sup-solution of problem (1.4). So we

only need to find a sub-solution.

By an argument similar to that of [27, Lemma 3.2], we may obtain the

following lemma.

Lemma 6.1. If we have a strictly convex function u∗ ∈ C3(Ω), such that

det(D2u∗) ≥ λNf(−u∗) in Ω and u∗ ≤ 0 on ∂Ω, then problem (1.4) has a convex

solution u in Ω.

As an immediate consequence, we obtain the following comparison.

Lemma 6.2. Given two bounded convex domains Ω1 and Ω2 such that Ω1⊂
Ω2. If we have a convex solution u of problem (1.4) in Ω2, then there exists

a convex solution v of problem (1.4) in Ω1, or equivalently if there is no convex

solution of problem (1.4) in Ω1, then there is no convex solution of problem (1.4)

in Ω2.

Our main results are the following two theorems.

Theorem 6.3. Assume that (f2) and (f3) hold.

(a) If f0 ∈ (0,+∞) and f∞ ∈ (0,+∞), then there exist λ2 > 0 and λ3 > 0

such that (1.4) has at least one convex solution for all λ ∈ (λ2, λ3).

(b) If f0 ∈ (0,+∞) and f∞ = 0, then there exists λ4 > 0 such that (1.4) has

at least one convex solution for all λ ∈ (λ4,+∞).

(c) If f0 ∈ (0,+∞) and f∞ = +∞, then there exists λ5 > 0 such that (1.4)

has at least one convex solution for all λ ∈ (0, λ5).

(d) If f0 = 0 and f∞ ∈ (0,+∞), then there exists λ6 > 0 such that (1.4) has

at least one convex solution for all λ ∈ (λ6,+∞).
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(e) If f0 = 0 and f∞ = 0, then there exist λ7 > 0 and λ∗ > 0 such that

(1.4) has at least two convex solutions for all λ ∈ (λ∗,+∞), one convex

solution for all λ ∈ [λ7, λ∗].

(f) If f0 = 0 (or +∞) and f∞ = +∞ (or 0), then for any λ ∈ (0,+∞),

(1.4) has one convex solution.

(g) If f0 = +∞ and f∞ ∈ (0,∞), then there exists λ8 > 0 such that (1.4)

has at least one convex solution for all λ ∈ (0, λ8).

(h) If f0 = +∞ and f∞ = +∞, then there exist λ9 > 0 and λ∗ > 0 such that

(1.4) has at least two convex solutions for all λ ∈ (0, λ∗), has at least

one convex solution for all λ ∈ [λ∗, λ9].

Proof. We only give the proof of (a) since the proofs of (b)–(h) can be

given similarly. It is obvious that there exists a positive constant R1 such that

Ω ⊆ BR1
(0). Theorem 4.1, Remarks 4.2 and 4.21 that there exist λ2 > 0 and

λ3 > 0 such that problem (1.4) with Ω = BR1
(0) has at least a strictly convex

solution for all λ ∈ (λ2, λ3). Using Lemma 6.2, we have that problem (1.4) has

at least a convex solution for all λ ∈ (λ2, λ3). �

Theorem 6.4. Assume that (f2) and (f3) hold.

(a) If f0 ∈ (0,+∞) and f∞ ∈ (0,+∞), then there exist µ2 > 0 and µ3 > 0

such that (1.4) has no convex solution for all λ ∈ (0, µ2) ∪ (µ3,+∞).

(b) If f0 ∈ (0,+∞) and f∞ = 0, then there exists µ4 > 0 such that (1.4) has

no convex solution for all λ ∈ (0, µ4).

(c) If f0 ∈ (0,+∞) and f∞ = +∞, then there exists µ5 > 0 such that (1.4)

has no convex solution for all λ ∈ (µ5,+∞).

(d) If f0 = 0 and f∞ ∈ (0,+∞), then there exists µ6 > 0 such that (1.4) has

no convex solution for all λ ∈ (0, µ6).

(e) If f0 = 0 and f∞ = 0, then there exists µ7 > 0 such that (1.4) has no

convex solution for all λ ∈ (0, µ7).

(f) If f0 = +∞ and f∞ ∈ (0,∞), then there exists µ8 > 0 such that (1.4)

has no convex solution for all λ ∈ (µ8,+∞).

(g) If f0 = +∞ and f∞ = +∞, then there exists µ9 > 0 such that (1.4) has

no convex solution for all λ ∈ (µ9,+∞).

Proof. We also only give the proof of (a) since the proofs of (b)–(g) can be

given similarly. It is obvious that there exists a positive constant R2 such that

BR2
(0) ⊆ Ω. Theorem 4.1, Remarks 4.2 and 4.21 imply that there exist µ2 > 0

and µ3 > 0 such that problem (1.4) with Ω = BR2
(0) has no convex solution for

all λ ∈ (0, µ2) ∪ (µ3,+∞). Using Lemma 6.2 again, we have that problem (1.4)

has no convex solution for all λ ∈ (0, µ2) ∪ (µ3,+∞). �

Remark 6.5. From Theorems 6.3 and 6.4, we can easily see that µ9 ≥
λ9 ≥ λ∗. Set µ := λ1/2. Through a scaling, we can show that problem (1.4) is
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equivalent to

(6.1)

det(D2u) = f(−u) in µΩ,

u = 0 on ∂µΩ.

In the case of f(s) = es in (6.1), Zhang and Wang [27, Theorem 12], has shown

that µ9 = λ9 = λ∗. Unfortunately, we do not know whether this relation also

holds for the general case of f0 = +∞ and f∞ = +∞.
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