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POSITIVE SOLUTIONS FOR NONLINEAR

NONHOMOGENEOUS PARAMETRIC EQUATIONS

Nikolaos S. Papageorgiou — George Smyrlis

Abstract. We consider a nonlinear parametric Dirichlet problem driven

by a nonhomogeneous differential operator which includes as special cases
the p-Laplacian, the (p, q)-Laplacian and the generalized p-mean curvature

operator. Using variational methods, we prove a bifurcation-type theorem

describing the dependence of positive solutions on the parameter.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper,

we study the following nonlinear Dirichlet eigenvalue problem

(P)λ −div a(Du(z)) = λf(z, u(z)) in Ω, u |∂Ω= 0, u > 0, λ > 0.

In (P)λ the map a : RN → RN is strictly monotone and satisfies certain other

regularity conditions. The precise conditions on a( · ) are stated in hypotheses

H(a) below. They provide a unifying framework to treat equations driven by the

p-Laplacian, the (p, q)-Laplacian differential operator and the generalized p-mean

curvature differential operator. Also, λ > 0 is a parameter and f : Ω × R → R
is a Caratheodory function (i.e. for all x ∈ R, z → f(z, x) is measurable and for

almost all z∈Ω, x→f(z, x) is continuous), which is strictly (p−1)-sublinear in

the x-variable near +∞. We prove a bifurcation-type result describing precisely

the dependence of positive solutions of (P)λ on the parameter λ > 0. Recently
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positive solutions for nonlinear eigenvalue problems driven by the p-Laplacian,

were obtained by Brock, Itturiaga and Ubilla [5], Hu and Papageorgiou [13]

and Perera [18]. In contrast to our differential operator here, the p-Laplacian is

(p−1)-homogeneous and this is a feature that helps the analysis of the equation.

Finally we should mention the recent work of Cardinali, Papageorgiou, Rub-

bioni [6], where an analogous result was proved for a Neumann logistic equation

driven by the p-Laplacian.

2. Hypotheses – auxiliary results

Let ϑ ∈ C1(0,∞) be such that

(2.1)
0 < ĉ ≤ tϑ′(t)

ϑ(t)
≤ c0 for all t > 0,

c1t
p−1 ≤ϑ(t) ≤ c2(tq−1 + tp−1) for all t > 0

and some c1, c2 > 0, 1 < q < p. The hypotheses on the map a( · ) are the

following:

H(a) a(y) = a0(||y||)y for all y ∈ RN with a0(t) > 0 for all t > 0, a(0) = 0 and

(i) a0 ∈ C1(R \ {0}) ∩ C(R) and lim
s→0+

sa′(s)

a(s)
> −1;

(ii) ||∇a(y)|| ≤ c3
ϑ(||y||)
||y||

for all y ∈ RN \ {0} and some c3 > 0;

(iii) (∇a(y)ξ, ξ)RN ≥
ϑ(||y||)
||y||

||ξ||2 for all y ∈ RN \ {0}, all ξ ∈ RN .

Remark 2.1. Let

G0(t) =

∫ t

0

a0(s)s ds, t ≥ 0.

Evidently G0( · ) is strictly convex and strictly increasing. For all y ∈ RN we set

G(y) = G0(||y||). Then G( · ) is convex, G(0) = 0 and for all y ∈ RN \ {0}, we

have

∇G(y) = G′0(||y||) y

||y||
= a0(||y||)y = a(y).

Hence G( · ) is the primitive of a( · ). Since G( · ) is convex and G(0) = 0, we have

(2.2) G(y) ≤ (a(y), y)RN for all y ∈ RN .

From hypotheses H(a) and (2.2), (2.3), we easily deduce the following pro-

perties of the map a( · ).

Lemma 2.2. If hypotheses H(a) hold, then:

(a) y → a(y) is maximal monotone and strictly monotone;

(b) ||a(y)|| ≤ c4(1 + ||y||p−1) for all y ∈ RN and some c4 > 0;

(c) (a(y), y)RN ≥ c1||y||p/(p− 1) for all y ∈ RN (see (2.2)).
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From this lemma and the integral form of the mean value theorem, we obtain

the following growth conditions on G( · ).

Corollary 2.3. If hypotheses H(a) hold, then

c1
p(p− 1)

||y||p ≤ G(y) ≤ c5(1 + ||y||p) for all y ∈ RN and some c5 > 0.

Examples 2.4. The following maps satisfy hypotheses H(a):

(a) a(y) = ||y||p−2y with 1 < p <∞.

This map corresponds to the p-Laplace differential operator

∆pu = div(||Du||p−2Du) for all u ∈W 1,p
0 (Ω).

(b) a(y) = ||y||p−2y + ||y||q−2y with 1 < q < p <∞.

This map corresponds to the (p, q)-differential operator

∆pu+ ∆qu for all u ∈W 1,p
0 (Ω).

This differential operator is important in quantum physics (see Benci, D’Ave-

nia, Fortunato and Pisani [3]) and in reaction diffusion equations and plasma

physics (see Cherfils and Ilyasov [7]). Recently such equations were studied by

Cingolani and Degiovanni [8], Li and Guo [16], Sun [20].

(c) a(y) = (1 + ||y||2)(p−2)/2y with 1 < p <∞.

This map corresponds to the generalized p-mean curvature differential oper-

ator

div((1 + ||Du||2)(p−2)/2Du) for all u ∈W 1,p
0 (Ω).

Such equations can be found in Pucci and Serrin [19].

(d) a(y) = ||y||p−2y + ||y||p−2y/(1 + ||y||p) with 1 < p <∞.

(e) a(y) = ||y||p−2y + ln(1 + ||y||p)y with 1 < p <∞.

Let f0 : Ω× R→ R be a Caratheodory function such that

|f0(z, x)| ≤ α(z) + c|x|r−1 for a.a. z ∈ Ω, all x ∈ R,

with α ∈ L∞(Ω)+, c > 0 and

1 < r < p∗ =


Np

N − p
if p < N,

+∞ if p ≥ N.

We set

F0(z, x) =

∫ x

0

f0(z, s) ds
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and consider the C1-functional ϕ0 : W 1,p
0 (Ω)→ R defined by

ϕ0(u) =

∫
Ω

G(Du(z)) dz −
∫

Ω

F0(z, u(z)) dz for all u ∈W 1,p
0 (Ω).

The next result can be found in Gasinski and Papageorgiou [13].

Proposition 2.5. If u0 ∈ W 1,p
0 (Ω) is a local C1

0 (Ω)-minimizer of ϕ0, i.e.

there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1
0 (Ω), ||h||C1

0 (Ω) ≤ ρ0,

then u0 ∈ C1,β(Ω) for some β ∈ (0, 1) and u0 is also a local W 1,p
0 (Ω)-minimizer

of ϕ0, i.e. there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈W 1,p
0 (Ω), ||h|| ≤ ρ1.

Remark 2.6. The first such result was proved by Brezis and Nirenberg [4]

for the case when G(y) = ||y||2/2 for all y ∈ RN . It was extended to the case

G(y) = ||y||p/p for all y ∈ RN with 1 < p <∞ by Garcia Azorero, Manfredi and

Peral Alonso [9]. The proof of [13] differs from the proofs in [4], [9].

In the analysis of problem (P)λ, we will use the ordered Banach space

C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

The order cone of this space is

C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0, for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
,

where n( · ) is the outward unit normal on ∂Ω.

Also throughout this work by || · || we denote the norm of the Sobolev space

W 1,p
0 (Ω). By virtue of the Poincare inequality, we have ||u|| = ||Du||p for all

u ∈ W 1,p
0 (Ω). By | · |N we denote the Lebesgue measure on RN . For x ∈ R, we

set x± = max{±x, 0}. If u ∈W 1,p
0 (Ω) then

u±( · ) = u( · )± ∈W 1,p
0 (Ω) and |u| = u+ + u−, u = u+ − u−.

If h : Ω × R → R is a measurable function (for example a Carathéodory

function), then

Nh(u)( · ) = h(·u( · )) for all u ∈W 1,p
0 (Ω).

Let A : W 1,p
0 (Ω)→W−1,p′(Ω) = W 1,p

0 (Ω)∗ (1/p+ 1/p′ = 1) be the nonlinear

map defined by

(2.3) 〈A(u), y〉 =

∫
Ω

(a(Du), Dy)RN dz for all u, y ∈W 1,p
0 (Ω).
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Here by 〈 · , · 〉 we denote the duality brackets for the pair (W 1,p
0 (Ω),W−1,p′(Ω)).

From Gasinski and Papageorgiou [10], we have

Proposition 2.7. If hypotheses H(a) hold and A : W 1,p
0 (Ω)→W−1,p′(Ω) is

the nonlinear map defined by (2.3), then A is monotone continuous bounded (i.e.

maps bounded sets to bounded sets) hence maximal monotone too and of type

(S)+, i.e. if un
w−→ u in W 1,p

0 (Ω) and lim sup
n→+∞

〈A(un), un − u〉 ≤ 0, then un → u

in W 1,p
0 (Ω).

Let h1, h2 ∈ L∞(Ω). We write h1 ≺ h2, if for any K ⊆ Ω compact, we can

find ε > 0 suth that

h1(z) + ε ≤ h2(z) for a.a. z ∈ K.

Evidently, if h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω, then h1 ≺ h2.

The next strong comparison principle extends Proposition 2.6 of Arcoya and

Ruiz [2] which was proved for the particular case of the p-Laplacian.

Proposition 2.8. If ξ ≥ 0, h1, h2 ∈ L∞(Ω), h1 ≺ h2 and u ∈ C1
0 (Ω),

v ∈ intC+ are solutions of

−div a(Du(z)) + ξ|u(z)|p−2u(z)∗ = h1(z) in Ω,

−div a(Dv(z)) + ξ|v(z)|p−2v(z) = h2(z) in Ω,

then v − u ∈ intC+.

Proof. We have

A(u) + ξ|u|p−2u ≤ A(v) + ξ|v|p−2v in W−1,p′(Ω).

Acting with (u− v)+ ∈W 1,p
0 (Ω), we obtain

〈A(u)−A(v), (u− v)+〉 +

∫
Ω

ξ(|u|p−2u− |v|p−2v)(u− v)+ dz ≤ 0,

⇒
∫
{u>v}

(a(Du)− a(Dv), Du−Dv)RN dz

+

∫
{u>v}

ξ(|u|p−2u− |v|p−2v)(u− v) dz ≤ 0,

⇒|{u > v}|N = 0, hence u ≤ v (see Lemma 2.2).

Next we show that u(z) < v(z) for all z ∈ Ω. To this end, we introduce the

sets

E0 = {z ∈ Ω : u(z) = v(z)} and E = {z ∈ Ω : Du(z) = Dv(z) = 0}.

Claim. E0 ⊆ E.
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Let z0 ∈ E0. Then the function w = v − u attains its minimum at z0 and

so Du(z0) = Dv(z0). If Du(z0) 6= 0, then we can find ρ > 0 small such that

Bρ(z0) ⊆ Ω and

||Du(z)|| > 0, ||Dv(z)|| > 0, (Du(z), Dv(z))RN > 0 for all z ∈ Bρ(z0).

We have w = v − u ∈ C+ \ {0} and w( · ) satisfies the following linear elliptic

equation in Bρ(z0) (see Arcoya and Ruiz [2]):

(2.4) −
N∑

i,j=1

∂

∂zi

(
ϑij(z)

∂w

∂zj

)
= −ξ(|v|p−2v − |u|p−2u) + h2 − h1 in Bρ(z0).

In (2.4) the coefficients ϑij( · ) are given by

ϑij(z) =

∫ 1

0

∂ai
∂yj

((1− t)Du(z) + tDv(z)) dt.

We have ϑij ∈ C(Bρ(z0)) and by choosing ρ > 0 even smaller if necessary in (2.4),

we can have the differential operator uniformly elliptic and the forcing term (i.e.

right hand side) positive. Then the maximum principle of Vazquez [21] implies

that u(z) < v(z) for all z ∈ Bρ(z0), which contradicts the fact that z0 ∈ E0.

This proves the Claim.

Since v ∈ intC+, we have that E is compact and E0 being a closed subset

of E (see the Claim), itself is also compact. Therefore we can find Ω1 ⊆ Ω

a smooth open set such that

E0 ⊆ Ω1 ⊆ Ω1 ⊆ Ω.

We can find ε ∈ (0, 1) such that

(2.5) u(z) + ε ≤ v(z) for all z ∈ ∂Ω1 and h1(z) + ε ≤ h2(z)

for almost all z ∈ Ω1.

We choose δ ∈ (0, ε) small such that

(2.6) ξ||s|p−2s− |s′|p−2s′| ≤ ε

for all s, s′ ∈ [−||v||∞, ||u||∞], with |s− s′| ≤ δ. Then we have

−div a(D(u+ δ)) + ξ|u+ δ|p−2(u+ δ) = −div a(Du) + ξ|u+ δ|p−2(u+ δ)

= ξ[|u+ δ|p−2(u+ δ)− |u|p−2u] + h1

≤h1 + ε ≤ h2 (see (2.5) and (3.3))

= − div a(Dv) + ξ|v|p−2v in Ω1,

⇒u+ δ ≤ v in Ω1 (see Pucci, Serrin [19]).

Since E0 ⊆ Ω1, it follows that E0 = ∅ and so u(z) < v(z) for all z ∈ Ω.
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Next, let z0 ∈ ∂Ω. Since ∂Ω is by hypothesis a C2 -manifold, we can find

ρ > 0 small such that

B2ρ(ẑ) ⊆ Ω and z0 ∈ ∂B2ρ(ẑ) ∩ ∂Ω (with ẑ ∈ Ω).

Invoking Lemma 2 of Lewis [15], we can find ŵ ∈ C1(B2ρ(ẑ)) such that

−div (Θ(z)Dŵ(z)) = 0 in B2ρ(ẑ) \Bρ(ẑ)(Θ(z) = (ϑij(z))
N
i,j=1),(2.7)

ŵ |∂Bρ(ẑ) = 1, ŵ|∂B2ρ(ẑ) = 0, 0 < ŵ < 1 in B2ρ(ẑ) \Bρ(ẑ),(2.8)

and ||Dŵ(z)|| ≥ ĉ > 0 for all z ∈ B2ρ(ẑ) \Bρ(ẑ).
From the previous part of the proof we have w(z) > 0 for all z ∈ Ω. Hence

mρ = min[w(z) : z ∈ ∂Bρ(ẑ)] > 0.

We set w̃ = mρŵ. Then from (3.4) we have

−div (Θ(z)Dw̃(z)) = 0 in B2ρ(ẑ) \Bρ(ẑ),

w̃|∂Bρ(ẑ) = mρ, w̃|∂B2ρ(ẑ) = 0.

The weak comparison principle (see Pucci and Serrin [19]), implies w̃ ≤ w in

B2ρ(ẑ) \Bρ(ẑ). Moreover, w̃(z0) = w(z0) = 0. Hence

∂w

∂n
(z0) ≤ ∂w̃

∂n
(z0) = mρ

∂ŵ

∂n
(z0) < 0 (see (3.4)),

⇒ w = v − u ∈ intC+. �

Finally by λ̂1 we denote the first eigenvalue of the Dirichlet p- Laplacian. We

know (see, for example, Gasinski and Papageorgiou [12]) that λ̂1 > 0 and

(2.9) λ̂1 = inf

[ ||Du||pp
||u||pp

: u ∈W 1,p
0 (Ω), u 6= 0

]
.

3. Positive solutions

In this section we prove the bifurcation-type theorem describing the depen-

dence of the positive solutions of (P)λ on the parameter λ > 0.

The hypotheses on the reaction f(z, x) of (P)λ, are the following:

H(f) f : Ω × R → R is a Caratheodory function such that f(z, 0) = 0, for

almost all z ∈ Ω and

(i) for every ρ > 0, there exists αρ ∈ L∞(Ω)+ such that

f(z, x) ≤ αρ(z) for a.a. z ∈ Ω, all x ∈ [0, ρ];

(ii) lim
x→+∞

f(z, x)

xp−1
= 0 uniformly for almost all z ∈ Ω;

(iii) lim
x→0+

f(z, x)

xp−1
= 0 uniformly for almost all z ∈ Ω;

(iv) for every ρ > 0, there exists ξρ > 0 such that for almost all z ∈ Ω,

x→ f(z, x) + ξρx
p−1 is nondecreasing on [0, ρ];
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(v) f(z, x) > 0 for almost all z ∈ Ω and all x > 0.

Remark 3.1. Since we are looking for positive solutions and the hypotheses

concern only the positive semiaxis R+ = [0,+∞), we may (and will) assume that

f(z, x) = 0 for a.a. z ∈ Ω and all x ≤ 0.

Hypothesis H(f)(ii) implies that for aalmost all z ∈ Ω, f(z, · ) is strictly (p− 1)-

sublinear near +∞.

Example 3.2. Let

g(x) =

xr−1 if x ∈ [0, 1],

xq−1 if x > 1,

with 1 < q < p < r < ∞, α ∈ L∞(Ω)+, α(z) > 0 for almost all z ∈ Ω and let

f(z, x) = α(z)g(x). Then f(z, x) satisfies hypotheses H(f).

Let S = {λ > 0 : problem (P)λ has a nontrivial positive solution} and let

S(λ) be the corresponding solution set of (P)λ. We set λ∗ = inf S (if S = ∅,
then λ∗ = +∞).

Proposition 3.3. If hypotheses H(a), H(f) hold, then

S(λ) ⊆ intC+ and λ∗ > 0.

Proof. Suppose that S 6= ∅ and let λ ∈ S. Then we can find u ∈W 1,p
0 (Ω),

u ≥ 0, u 6= 0 such that

−div a(Du(z)) = λf(z, u(z)) in Ω, u |∂Ω= 0.

From Ladyzhenskaya and Ural’tseva [14, p. 286], we have that u ∈ L∞(Ω). Then

invoking the regularity result of Lieberman [17, p. 320], we have that u ∈ C+\{0}.
Let ρ = ||u||∞ and let ξρ > 0 be as postulated by hypothesis H(f)(iv). We have

−diva(Du(z)) + λξρu(z)p−1 = λf(z, u(z)) + λξρu(z)p−1 ≥ 0 a.e. in Ω,

⇒ div a(Du(z)) ≤ λξρu(z)p−1 a.e. in Ω,

⇒ u ∈ intC+ (see Pucci–Serrin [19, p. 120]).

So, we have proved that S(λ) ⊆ intC+.

Hypotheses H(f)(i), (ii) imply that we can find c6 > 0 such that

(3.1) f(z, x) ≤ c6xp−1 for a.a. z ∈ Ω, all x ≥ 0.

Let λ0 < c1λ̂1/((p− 1)c6) (see (2.2)) and η ∈ (0, λ0]. Suppose that η ∈ S. Then

by virtue of the first part of the proof, we can find uη ∈ S(η) ⊆ intC+. We have

A(uη) = ηNf (uη), ⇒ c1
p− 1

||Duη||pp ≤
∫

Ω

ηf(z, uη)uη dz (see Lemma 2.2)

≤ ηc6||uη||pp <
c1

p− 1
λ̂1||uη||pp,
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which contradicts (3.5). Therefore η 6∈ S and so λ∗ ≥ λ0 > 0. �

For λ > 0, let ϕλ : W 1,p
0 (Ω) → R be the energy functional for problem (P)λ

defined by

ϕλ(u) =

∫
Ω

G(Du) dz − λ
∫

Ω

F (z, u) dz for all u ∈W 1,p
0 (Ω),

where F (z, x) =
∫ x

0
f(z, s) ds. Clearly, ϕλ ∈ C1(W 1,p

0 (Ω)).

Proposition 3.4. If hypotheses H(a), H(f) hold, then S 6= ∅.

Proof. Hypotheses H(f)(i), (ii), imply that given ε > 0, we can find c7 =

c7(ε) > 0 such that

(3.2) F (z, x) ≤ ε

p
xp + c7 for a.a. z ∈ Ω, all x ≥ 0.

Therefore for u ∈W 1,p
0 (Ω), we have

ϕλ(u) ≥ c1
p(p− 1)

||Du||pp −
ε

p
||u+||pp − c7|Ω|N (see Corollary 2 and (3.7))

≥ 1

p

[
c1

p− 1
− ε

λ̂1

]
||u||p − c7|Ω|N (see (3.5)).

Choosing ε ∈ (0, λ̂1c1/(p− 1)), we see that ϕλ is coercive. Also, exploiting the

compact embedding of W 1,p
0 (Ω) into Lp(Ω), we check that ϕλ is sequentially

weakly lower semicontinuous. So, by the Weierstrass theorem, we can find û ∈
W 1,p

0 (Ω) such that

(3.3) ϕλ(û) = inf[ϕλ(u) : u ∈W 1,p
0 (Ω)].

Let L : Lp(Ω)→ R be the integral functional defined by

L(v) =

∫
Ω

F (z, v(z)) dz for all v ∈ Lp(Ω).

By virtue of hypothesis H(f)(v) we see that for every v ∈ Lp(Ω) such that v ≥ 0

and v 6= 0, we have that L(v) > 0. Since the space W 1,p
0 (Ω) is dense in Lp(Ω),

we can find v̂ ∈ W 1,p
0 (Ω), v̂ ≥ 0 such that L(v̂) > 0. Then we can choose λ > 0

large such that

λL(v̂) >

∫
Ω

G(Dv̂) dz ⇒ ϕλ(v̂) < 0 ⇒ ϕλ(û) < 0 = ϕλ(0)

(see (3.8)), hence û 6= 0. From (3.8), we have

(3.4) ϕ′λ(û) = 0 ⇒ A(û) = λNf (û).

Acting on (3.4) with −û− ∈ W 1,p
0 (Ω) and using Lemma 2.2, we obtain û ≥ 0,

û 6= 0. Therefore û ∈ S(λ) ⊆ intC+ for λ > 0 large. Hence S 6= ∅. �

Proposition 3.5. If hypotheses H(a), H(f) hold and λ ∈ S, then

[λ,+∞) ⊆ S.
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Proof. Let uλ ∈ S(λ) ⊆ intC+ (see Proposition 3.3). Also let θ > λ and

consider the following Caratheodory function:

(3.5) hθ(z, x) =

θf(z, uλ(z)) if x ≤ uλ(z),

θf(z, x) if uλ(z) < x.

We set

Hθ(z, x) =

∫ x

0

hθ(z, s) ds

and then introduce the C1-functional ψθ : W 1,p
0 (Ω)→ R defined by

ψθ(u) =

∫
Ω

G(Du) dz −
∫

Ω

Hθ(z, u) dz for all u ∈W 1,p
0 (Ω).

As we did for the functional ϕλ in the proof of Proposition 3.4, we show that

ψθ is coercive and sequentially weakly lower semicontinuous. So, we can find

uθ ∈W 1,p
0 (Ω) such that

ψθ(uθ) = inf[ψθ(u) : u ∈W 1,p
0 (Ω)] ⇒ ψ′θ(uθ) = 0

⇒ A(uθ) = Nhθ (uθ).(3.6)

On (3.6) we act with (uλ − uθ)+ ∈W 1,p
0 (Ω). Then

〈A(uθ), (uλ − uθ)+〉 =

∫
Ω

hθ(z, uθ)(uλ − uθ)+ dz

=

∫
Ω

θf(z, uλ)(uλ − uθ)+ dz (see (3.5))

≥
∫

Ω

λf(z, uλ)(uλ − uθ)+ dz (since λ < θ, f ≥ 0)

= 〈A(uλ), (uλ − uθ)+〉

⇒
∫
{uλ>uθ}

(a(Duλ)− a(Duθ), Duλ −Duθ)RN dz ≤ 0

⇒|{uλ > uθ}|N = 0

(see Lemma 2.2), hence uλ ≤ uθ. Then from (3.5) and (3.6) we have

A(uθ) = θNf (uθ) ⇒ uθ ∈ S(θ) ⊆ intC+ and so θ ∈ S,

⇒ [λ,+∞) ⊆ S. �

From this proposition it follows that (λ∗,+∞) ⊆ S.

Proposition 3.6. If hypotheses H(a), H(f) hold and λ > λ∗, then problem

(P)λ has at least two nontrivial positive solutions u0, û ∈ intC+.

Proof. We know that (λ∗,+∞) ⊆ S. Let λ∗ < µ < λ < θ. We can find

uµ ∈ S(µ) ⊆ intC+ and uθ ∈ S(θ) ⊆ intC+ (see Proposition 3.3) and we can

have uµ ≤ uθ (see the proof of Proposition 3.5).
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We introduce the following Caratheodory function

(3.7) γλ(z, x) =


λf(z, uµ(z)) if x < uµ(z),

λf(z, x) if uµ(z) ≤ x ≤ uθ(z),
λf(z, uθ(z)) if uθ(z) < x.

Let

Γλ(z, x) =

∫ x

0

γλ(z, s) ds

and consider the C1-functional σλ : W 1,p
0 (Ω)→ R defined by

σλ(u) =

∫
Ω

G(Du) dz −
∫

Ω

Γλ(z, u) dz for all u ∈W 1,p
0 (Ω).

Clearly σλ is coercive (see (3.7)) and sequentially weakly lower semicontinuous.

So, we can find u0 ∈W 1,p
0 (Ω) such that

σλ(u0) = inf[σλ(u) : u ∈W 1,p
0 (Ω)] ⇒ σ′λ(u0) = 0,

⇒ A(u0) = Nγλ(u0).(3.8)

Acting on (3.8) first with (uµ − u0)+ ∈ W 1,p
0 (Ω) and then with (u0 − uθ)+ ∈

W 1,p
0 (Ω) we show that

u0 ∈ [uµ, uθ] = {u ∈W 1,p
0 (Ω) : uµ(z) ≤ u(z) ≤ uθ(z) a.e. in Ω}

⇒ u0 ∈ S(λ) ⊆ intC+

(see (3.7) and (3.8)).

Let ρ = ||uθ||∞ and let ξρ > 0 be as postulated by hypothesis H(f)(iv). Then

−div a(Duµ(z)) + µξρuµ(z)p−1 = µf(z, uµ(z)) + µξρuµ(z)p−1

≤ λf(z, u0(z)) + λξρu0(z)p−1

(see H(f)(iv) and recall uµ ≤ u0, µ < λ)

= −div a(Du0(z)) + λξρu0(z)p−1 a.e. in Ω,

⇒ u0 − uµ ∈ intC+

(see Proposition 2.5).

In a similar fashion, we show that uθ−u0 ∈ intC+. So, we have proved that

(3.9) u0 ∈ intC1
0 (Ω)[uµ, uθ].

From (3.5) and (3.7) it follows that

ϕλ |[uµ,uθ] = σλ |[uµ,uθ] +β∗λ with β∗λ ∈ R,

⇒ u0 is a local C1
0 (Ω)-minimizer of ϕλ (see (3.9)),

⇒ u0 is a local W 1,p
0 (Ω)-minimizer of ϕλ (see Proposition 2.3).
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Hypothesis H(f)(iii) implies that given ε > 0, we can find δ = δ(ε) > 0 such

that

(3.10) F (z, x) ≤ ε

p
xp for a.a. z ∈ Ω, all x ∈ [0, δ].

Then, for u ∈ C1
0 (Ω) with ||u||C1

0 (Ω) ≤ δ, we have

ϕλ(u) ≥ 1

p

[
c1

p− 1
− λε

λ̂1

]
||u||p

(see Corollary 2 and (3.5), (3.10)). Choosing ε ∈ (0, c1λ̂1/((p− 1)λ)), we see that

u = 0 is a local C1
0 (Ω)-minimizer of ϕλ, hence u = 0 is a local W 1,p

0 (Ω)-minimizer

of ϕλ (see Proposition 2.3).

Therefore we have two local minimizers 0, u0 of ϕλ. Without any loss of

generality we may assume that ϕλ(0) = 0 ≤ ϕλ(u0) (the analysis is similar if the

opposite inequality holds). As in Aizicovici, Papageorgiou and Staicu [1] (see

the proof of Proposition 29), we can find ρ ∈ (0, 1) small such that ||u0|| > ρ and

(3.11) ϕλ(0) = 0 ≤ ϕλ(u0) < inf[ϕλ(u) : ||u− u0|| = ρ] = ηλρ .

Since ϕλ is coercive, it satisfies the Palais–Smale condition. This fact together

with (3.11) permit the application of the mountain pass theorem (see, for exam-

ple, Gasinski and Papageorgiou [12, p. 648]). So, we can find û ∈ W 1,p
0 (Ω) such

that

ηλρ ≤ ϕλ(û),(3.12)

ϕ′λ(û) = 0.(3.13)

From (3.11), (3.12) we have û 6∈ {0, u0}. From (3.13) we have

û ∈ S(λ) ⊆ intC+. �

Proposition 3.7. If hypotheses H(a), H(f) hold, then λ∗ ∈ S.

Proof. Let {λn}n≥1 ⊆ S be a sequence such that

λn > λ∗ for all n ≥ 1 and λn ↓ λ∗ as n→∞.

We can find un ∈ S(λn) ⊆ intC+ such that

(3.14) A(un) = λnNf (un) for all n ≥ 1.

From the proof of Proposition 3.5, we know that we can have

(3.15) un ≤ u1 for all n ≥ 1.

From (3.6) we know that

(3.16) f(z, x) ≤ c6xp−1 for a.a. z ∈ Ω, all x ≥ 0.
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From (3.14)–(3.16), via Lemma 2.2, we infer that {un}n≥1 ⊆ W 1,p
0 (Ω) is boun-

ded. So, we may assume that

(3.17) un
w−→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lp(Ω).

On (3.14) we act with un − u∗ ∈ W 1,p
0 (Ω). Passing to the limit as n → ∞ and

using (3.17), we obtain

lim
n→∞

〈A(un), un − u∗〉 = 0 ⇒ un → u∗ in W 1,p
0 (Ω)

(see Proposition 2.4). So, if in (3.14) we pass to the limit as n→∞, then

A(u∗) = λ∗Nf (u∗) ⇒ u∗ ∈ C+.

We need to show that u∗ 6= 0. From (3.14) we have

−div a(Dun(z)) = λnf(z, un(z)) a.e. in Ω, un |∂Ω= 0.

From Ladyzhenskaya and Ural’tseva [14, p. 286], we know that we can find

M1 > 0 such that

||un||∞ ≤M1 for all n ≥ 1.

Then invoking the regularity result of Lieberman[17, p. 320], we can find β ∈
(0, 1) and M2 > 0 such that

un ∈ C1,β
0 (Ω) and ||un||C1,β

0 (Ω) ≤M1 for all n ≥ 1.

Since C1,β
0 (Ω) is embedded compactly in C1

0 (Ω), we may assume that un → u∗
in C1

0 (Ω). Suppose that u∗ = 0. Then

(3.18) un → 0 in C1
0 (Ω).

Hypothesis H(f)(iii) implies that given ε > 0, we can find δ = δ(ε) > 0 such that

(3.19) f(z, x) ≤ εxp−1 for a.a. z ∈ Ω, all x ∈ [0, δ].

From (3.18) we know that we can find n0 ≥ 1 such that

un(z) ∈ [0, δ] for all z ∈ Ω, all n ≥ n0,

⇒ −div a(Dun(z)) ≤ λnεun(z)p−1 for a.a. z ∈ Ω, all n ≥ n0,

(see (3.19))

⇒ c1
p− 1

||Dun||pp ≤ λnε||un||pp ≤
λn

λ̂1

ε||Dun||pp for all n ≥ n0,

(see Lemma 2.2 and (3.5))

⇒ c1λ̂1

(p− 1)ε
≤ λn for all n ≥ n0,

⇒ c1λ̂1

(p− 1)ε
≤ λ∗.



14 N.S. Papageorgiou — G. Smyrlis

Since ε > 0 is arbitrary, we let ε ↓ 0 and reach a contradiction. Hence

u∗ 6= 0⇒ λ∗ ∈ S. �

So, summarizing the situation for problem (P)λ, we can state the following

bifurcation-type result.

Theorem 3.8. If hypotheses H(a), H(f) hold, then there exists λ∗ > 0 such

that:

(a) for every λ > λ∗ problem (P)λ has at least two nontrivial positive solu-

tions u0, û ∈ intC+;

(b) for λ = λ∗ problem (P)λ has at least one positive solution u∗ ∈ intC+;

(c) for λ ∈ (0, λ∗) problem (P)λ has no nontrivial positive solution.
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