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LOCAL STRONG SOLUTIONS

OF THE NONHOMOGENEOUS NAVIER–STOKES SYSTEM

WITH CONTROL OF THE INTERVAL OF EXISTENCE

Reinhard Farwig — Hermann Sohr — Werner Varnhorn

Abstract. Consider a bounded domain Ω ⊆ R3 with smooth boundary
∂Ω, a time interval [0, T ), 0 < T ≤ ∞, and in [0, T )×Ω the nonhomogeneous

Navier-Stokes system ut −∆u + u · ∇u +∇p = f , u|t=0 = v0, divu = k,

u|∂Ω = g, with sufficiently smooth data f, v0, k, g. In this general case there
are mainly known two classes of weak solutions, the class of global weak

solutions, similar as in the well known case k = 0, g = 0 which need not

be unique, see [5], and the class of local very weak solutions, see [1], [2],
[3], which are uniquely determined but have no differentiability properties

and need not satisfy an energy inequality. Our aim is to introduce the

new class of local strong solutions in the usual sense for k 6= 0, g 6= 0
satisfying similar regularity and uniqueness properties as in the well known

case k = 0, g = 0. Further, we obtain precise information through the

given data on the interval of existence [0, T ∗), 0 < T ∗ ≤ T . Our proof is
essentially based on a detailed analysis of the corresponding linear system.

1. Introduction

Let Ω ⊆ R3 be a bounded domain with boundary ∂Ω of class C2,1 and let

[0, T ), 0 < T ≤ ∞, be the time interval. Then we consider in [0, T ) × Ω the

general nonhomogeneous Navier–Stokes system

(1.1) ut −∆u+ u · ∇u+∇p = f, u|t=0 = v0, divu = k, u|∂Ω = g,
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where the vector u denotes the velocity and ∇p the associated pressure gradient.

In the physical model the divergence k = divu is assumed to vanish. However,

for mathematical reasons it will be convenient, in particular for linear problems,

to consider also the more general case of a prescribed divergence k 6= 0, compare

[4, Remark 1.9(1)]. We refer to [3] and [5] for very weak and weak solutions of

this system, respectively. In particular, a counterpart of this paper on the level

of very weak solutions can be found in [3], see also [4] for a general review on

very weak solutions. However, the focus of this paper is put on the existence of

local in time strong solutions.

For simplicity we use for weak and strong solutions the same data class to

exploit both theories simultaneously; see [5] for a more general theory of weak

solutions.

Next we describe the general assumptions on the data f , v0, k and g; here

N(x) denotes the outward normal vector at x ∈ ∂Ω.

Assumptions 1.1.

(a) f = divF , F ∈ Ls/2(0, T ;Lq/2(Ω)), with 4 ≤ s ≤ 8, 4 ≤ q ≤ 6, 2/s +

3/q = 1,

(b) for v0 ∈ L2
σ(Ω), ‖v0‖Bq,sT (Ω) :=

(∫ T

0

‖e−tAv0‖sq dt
)1/s

<∞,

(c) k ∈ Ls(0, T ;Lq(Ω)), g ∈ Ls(0, T ;W−1/q,q(∂Ω)) with compatibility con-

dition ∫
Ω

k(t) dx = 〈g(t), N〉∂Ω, t-a.e.

Here Lr(Ω) denotes the usual Lebesgue space of functions (or vector or matrix

fields) with norm ‖ ·‖r and pairing 〈 · , · 〉Ω with its dual Lr
′
(Ω), 1 < r <∞, r′ =

r/(r − 1). Moreover, L2
σ(Ω) = C∞0,σ(Ω)

‖·‖2
where C∞0,σ(Ω) := {v = (v1, v2, v3) ∈

C∞0 (Ω); div v = 0}. Usual Bochner spaces are denoted by Ls(0, T ;Lq(Ω)) with

norm ‖ · ‖q,s,T , 1 < q, s <∞, and with pairing 〈 · , · 〉Ω,T .

The nonlinear term u · ∇u, defined by u · ∇u = (u · ∇u1, u · ∇u2, u · ∇u3),

can be written, when divu = 0, also as u · ∇u = div (uu) = ∇ · (uu) where uu =

(uiuj)i,j=1,2,3. Here we note that the divergence of a matrix-valued function

F = (Fij)i,j=1,2,3 is defined columnwise.

The initial value norm ‖v0‖Bq,sT (Ω) is a so-called Besov space norm, see [3],

[6]–[9], and Section 3 for details. The space W−1/q,q(∂Ω) is a Sobolev trace space

of negative order −1/q, namely the dual of the trace space W 1/q,q′(∂Ω).

Let P = P2 : L2(Ω)→ L2
σ(Ω) denote the Helmholtz projection and A = A2 =

−P∆ in Assumption 1.1(b) the Stokes operator on L2
σ(Ω). Since A2 = Aq on

C∞0,σ(Ω), we simply write A for any Stokes operator Aq, 1 < q <∞; by analogy,

since P2 = Pq on C∞0 (Ω), we also write P for Pq.
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To obtain a precise definition of weak and strong solutions u for (1.1), we

use in [0, T )× Ω a fixed very weak solution

(1.2) E = Ek,g ∈ Ls(0, T ;Lq(Ω))

of the linear Stokes system

(1.3) Et −∆E +∇h = 0, E|t=0 = 0, divE = k, E|∂Ω = g

with associated pressure∇h. To be more precise, E is called a very weak solution

to (1.3) if for all test functions w ∈ C∞0 ([0, T );C∞0,σ(Ω)) where C∞0,σ(Ω) = {v ∈
C∞(Ω); v|∂Ω = 0, div v = 0},

−〈E,wt〉Ω,T − 〈E,∆w〉Ω,T + 〈g,N · ∇w〉∂Ω,T = 0,(1.4)

divE = k, E|∂Ω = g.(1.5)

By [3, Theorem 4] we know that there exists a unique very weak solution E =

Ek,g of (1.3) satisfying

(A−1PE)t ∈ Ls(0, T ;Lqσ(Ω)),

A−1PE ∈ C([0, T );Lqσ(Ω)), A−1PE|t=0 = 0,(1.6)

‖(A−1PE)t‖q,s,T + ‖E‖q,s,T ≤ C(‖k‖q,s,T + ‖g‖−1/q,q,T )

with C = C(Ω, q) > 0. The condition E|∂Ω = g is well defined in the sense of

boundary distributions, see [3, Remarks 3, (2)]. Using (1.6) we see that

(1.7) PE : [0, T )→ Lqσ(Ω) is weakly continuous,

and E|t=0 = 0 means (in a generalized sense) that PE|t=0 = 0, i.e. E|t=0 = 0

holds modulo a gradient.

To give the system (1.1) a precise meaning we set

(1.8) u = v + E, E = Ek,g

and choose a vector field v satisfying in [0, T )× Ω the system

(1.9) vt−∆v+(v+E)·∇(v+E)+∇p∗ = f, v|t=0 = v0, v|∂Ω = 0, div v = 0

which is called the perturbed Navier–Stokes system, see [5], with associated pres-

sure ∇p∗. This yields the following definition.

Definition 1.2 (Weak and strong solutions for (1.1).). Suppose f , v0, k, g

satisfy Assumptions 1.1, and let E = Ek,g be as in (1.2)–(1.3).

(1) A vector field v in [0, T ) × Ω is called a weak solution of the perturbed

system (1.9) with data f, v0, and u := v+E is called a weak solution of the general

system (1.1) with data f , v0, k, g, if the following conditions are satisfied:

(a) v ∈ L∞loc([0, T );L2
σ(Ω)) ∩ L2

loc([0, T );W 1,2
0 (Ω)),

(b) v : [0, T )→ L2
σ(Ω) is weakly continuous and v|t=0 = v0,
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(c) for each w ∈ C∞0 ([0, T );C∞0,σ(Ω)),

(1.10) − 〈v, wt〉Ω,T + 〈∇v,∇w〉Ω,T − 〈(v + E)(v + E),∇w〉Ω,T
− 〈k(v + E), w〉Ω,T = 〈v0, w(0)〉Ω − 〈F,∇w〉Ω,T ,

(d) for each t ∈ [0, T ),

1

2
‖v(t)‖22 +

∫ t

0

‖∇v‖22 dτ ≤
1

2
‖v0‖22 −

∫ t

0

〈F,∇v〉Ω dτ

+

∫ t

0

〈(v + E)E,∇v〉Ω dτ +
1

2

∫ t

0

〈k(v + 2E), v〉Ω dτ.

(2) Let v be a weak solution of (1.9) with data f , v0 and let

(1.11) v ∈ Ls(0, T ;Lq(Ω)).

Then v is called a strong solution of the perturbed system (1.9) with data f , v0,

and

(1.12) u = v + Ek,g

is called a strong solution of the general system (1.1) with data f , v0, k, g.

We see that in the well known case Ek,g = 0, the weak solution v is the Hopf

type weak solution, and u = v is the usual strong solution. Condition (1.11) with

2/s+ 3/q = 1 is the so-called Serrin condition ([10]–[12]) which is important to

prove regularity and uniqueness of solutions in the nonlinear case.

In the following we will see that the strong solutions v and u = v+Ek,g have

similar uniqueness and regularity properties as in the case Ek,g = 0.

2. Main results

We are mainly interested in strong solutions v and u + v, given in Defini-

tion 1.2, which are also weak solutions. Therefore, for simplicity, we used the

same data class in Definition 1.2 for weak and strong solutions. Indeed, the data

class in [5, Theorem 1.4], for (global) weak solutions is slightly more general than

that in Definition 1.2.

An important aspect in the main Theorem 2.1 below is that the existence of

a strong solution in a given interval [0, T ) can be precisely determined if the norm

b(T ) of the data, see (2.1) below or [3, (4.23)] for a similar condition, satisfies

a smallness condition b(T ) ≤ ε∗(Ω, q). Since b(T ) tends to zero for T → 0, we

can determine some interval [0, T ∗), 0 < T ∗ ≤ T , satisfying b(T ∗) ≤ ε∗(Ω, q) and

yielding precisely the existence interval for the strong solution, see Corollary 2.2

below. Usually, in the well known case k = 0, g = 0, the existence of a strong

solution has been shown only in some “sufficiently small” subinterval of [0, T ).
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Theorem 2.1 (Existence of a strong solution in [0, T )). Let f = divF , v0,

k, g be given as in Assumptions 1.1(a)–(c), let E = Ek,g be as in (1.2), and let

(2.1) b(T ) := ‖v0‖Bq,sT (Ω) + ‖F‖q/2,s/2,T + ‖k‖q,s,T + ‖g‖−1/q,q,s,T

be the data norm in [0, T ). There exists a constant ε∗ = ε∗(Ω, q) > 0 such that if

(2.2) b(T ) ≤ ε∗,

then there exists a uniquely determined strong solution v of the perturbed sys-

tem (1.9) and a uniquely determined strong solution u = v + E of the general

system (1.1).

Corollary 2.2 (Interval of existence of strong solutions). Let f = divF ,

v0, k, g be given as in Assumptions 1.1 and let E = Ek,g be as in (1.2). Then

[0, T ∗), 0 < T ∗ ≤ T , defined by b(T ∗) ≤ ε∗, is an interval of existence of

a uniquely determined strong solution v of (1.9) and of a uniquely determined

strong solution u = v + E of (1.1).

Since Theorem 2.1 allows for T = ∞, the above mentioned results are not

only results local in time but also global in time results if the data are small

enough.

The next result yields the regularity of strong solutions.

Theorem 2.3 (Regularity result for strong solutions). Let f = divF , v0, k,

g satisfy Assumptions 1.1, and let E = Ek,g be as in (1.2). Assume the following

additional regularity properties of the data,

(2.3)
F ∈ Ls(0, T ;W 1,q(Ω)), k ∈ Ls(0, T ;W 1,q(Ω)), kt ∈ Ls(0, T ;Lq(Ω)),

g ∈ Ls(0, T ;W 2−1/q,q(∂Ω)), gt ∈ Ls(0, T ;W−1/q,q(∂Ω)), v0 ∈W 2,q(Ω),

and assume that v and u = v+E are strong solutions in [0, T ∗), 0 < T ∗ ≤ T , as

given in Corollary 2.2. Then v, E satisfy, additionally to Definition 1.2(a)–(d)

and (1.4)–(1.7), respectively, the following regularity properties

v ∈ L∞loc([0, T );W 1,2
0 (Ω)) ∩ L2

loc([0, T );W 2,2(Ω)),(2.4)

vt ∈ L2
loc([0, T );L2

σ(Ω)),(2.5)

E ∈ Ls(0, T ;W 2,q(Ω)), Et ∈ Ls(0, T ;Lq(Ω)),(2.6)

and u = v + E satisfies corresponding additional regularity properties. In parti-

cular,

(2.7) u ∈ L2
loc([0, T );W 2,2(Ω)), ut ∈ L2

loc([0, T );L2(Ω)).

Remark 2.4. (a) In order to compare the class of strong solutions in Defini-

tion 1.2 with the class of very weak solutions (for its definition cf. (1.4) with an
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additional term due to the nonlinear expression div(uu)) let us restrict, for sim-

plicity, the condition for F in Assumption 1.1(a) and for v0 in Assumption 1.1(b)

as follows:

(2.8) F ∈ Ls(0, T ;Lq(Ω)), 0 < T <∞, v0 = 0.

Then the data class in Assumptions 1.1, restricted by (2.8), is contained in the

data class of very weak solutions in [3, Theorem 1]. Let D denote this restricted

data class, let VT ′D be the solution class of very weak solutions for data from D

according to [3, Theorem 1] where [0, T ′) with T ′ ≤ T denotes the corresponding

existence interval, and let STD be the solution class of our strong solutions for

data from D. Then, by Theorem 2.1, we have VT ′D = ST ′D.

In both cases we obtain the existence of a unique solution in [0, T ′) if the data

in [0, T ′) satisfy a smallness condition, see (2.1) for strong solutions (T = T ′)

and [3, (4.23)] for very weak solutions. However, the very weak solutions of

VT ′D need not have any differentiability property in space and time, and need

not satisfy any energy inequality. These are weaker conditions as for the usual

(possibly non uniquely determined) weak solutions – this is the reason for the

notion “very weak”.

Since VT ′D = ST ′D at least for the slightly restricted data set D, our result

shows that the very weak solution class VT ′D has the regularity properties of

the class of strong solutions ST ′D. Thus in this case the notion “very weak” is

no longer justified.

(b) Let u be a strong solution as in Theorem 2.1. Then we can use similar

arguments as in [13, V. Theorem 1.8.2] and obtain for smooth data f, k, g, v0 ∈
C∞ that v and u = v + Ek,g satisfy v, u ∈ C∞((0, T )× Ω).

3. Preliminaries

In Assumptions 1.1 we define for 0 < T ≤ ∞ the Besov-type space

(3.1) Bq,sT (Ω) :=

{
v ∈ L2

σ(Ω); ‖v‖Bq,sT :=

(∫ T

0

‖e−τAv‖sq dτ
)1/s

<∞
}

with norm ‖v‖Bq,sT = ‖v‖Bq,sT (Ω). This normed space, which has been introduced

in [6]–[8], is important for our results. Equipped with the norm v 7→ ‖v‖Bq,sT +

‖v‖L2
σ

it is a Banach space.

In (3.1) A = Aq denotes the Stokes operator, and S(τ) = e−τA, 0 ≤ τ < ∞
the exponentially decaying analytic semi-group generated by −A. Using the

fractional powers Aα we will exploit for v ∈ L2
σ(Ω) the estimates

‖A−αv‖q ≤ C‖v‖2,(3.2)

‖S(τ)v‖q ≤ Cτ−αe−δτ‖A−αv‖q ≤ Cτ−αe−δτ‖v‖2,(3.3)
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with 0 < α < 3/4, 2α + 3/q = 3/2, δ = δ(Ω, q) > 0, C = C(Ω, q, α, δ) > 0, see

[6, (1.14)]. By (3.3) we conclude that the function τ 7→ ‖S(τ)v‖sq is well defined

on (0, T ). Therefore, v ∈ Bq,sT (Ω) ⊆ L2
σ(Ω) simply means that this function is

Lebesgue integrable on (0, T ).

Moreover, let W 1,2
0,σ (Ω) = C∞0,σ(Ω)

‖·‖W1,2
. Then we define the Banach space

(3.4) X :=
{
v ∈ L2

loc([0, T );W 1,2
0,σ (Ω));

(A−1/2v)t, A
1/2v ∈ Ls/2(0, T ;Lq/2(Ω)), A−1/2v|t=0 = 0

}
equipped with the norm

(3.5) ‖v‖X := ‖(A−1/2v)t‖q/2,s/2,T + ‖A1/2v‖q/2,s/2,T .

Additionally to the data given in Assumptions 1.1, in the following proposi-

tions we need a vector field

(3.6) f0 ∈ Ls/2(0, T ;Lq/2(Ω)) with q, s as in Assumption 1.1(a).

Note that f = divF , f0 in Assumption 1.1(a), (3.6), respectively, satisfy

(3.7) F ∈ L2
loc([0, T );L2(Ω)), f0 ∈ L2

loc([0, T );L2(Ω)).

Next we consider several well known results on the linear nonstationary

Stokes system in [0, T )× Ω given by

(3.8) vt −∆v +∇h = f + f0, div v = 0, v|∂Ω = 0, v|t=0 = v0

with associated pressure ∇h.

Proposition 3.1. Let f = divF , f0, v0 be as in Assumptions 1.1 and (3.6),

and let Ef,f0,v0 := v ∈ L2
loc([0, T );W 1,2

0,σ (Ω)) be a weak solution of the system

(3.8) in the usual sense, defined by the relation

(3.9) −〈v, wt〉Ω,T + 〈∇v,∇w〉Ω,T = 〈v0, w(0)〉Ω − 〈F,∇w〉Ω,T + 〈f0, w〉Ω,T

for each w ∈ C∞0 ([0, T );C∞0,σ(Ω)). Then we obtain the following properties:

(a) The function

(3.10) v = Ef,f0,v0 : [0, T )→ L2
σ(Ω)

is strongly continuous, after redefinition on a null set of [0, T ), and it

holds the energy equality

(3.11)
1

2
‖v(t)‖22 +

∫ t

0

‖∇v‖22 dτ =
1

2
‖v0‖22 + 〈f0, v〉Ω,t − 〈F,∇v〉Ω,t

for each t ∈ [0, T ). Further, v is uniquely determined by f , f0, v0.
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(b) Let S(t) := e−tA, t ∈ [0, T ). Then v = Ef,f0,v0 has the representation

v(t) =S(t)v0 +

∫ t

0

S(t− τ)Pf0(τ) dτ(3.12)

+A1/2

∫ t

0

S(t− τ)A−1/2P divF (τ) dτ

for each t ∈ [0, T ), and it holds Ef,f0,v0 = S( · )v0 + Ef,f0,0.

(c) If v0 = 0, then ṽ = Ef,f0,0 ∈ X, i.e.

(3.13) (A−1/2ṽ)t, A
1/2ṽ ∈ Ls/2(0, T ;Lq/2(Ω)), A−1/2ṽ|t=0 = 0,

and

(A−1/2ṽ)t +A1/2ṽ = A−1/2P divF +A−1/2Pf0, t ∈ [0, T ),(3.14)

‖ṽ‖X ≤ C(‖F‖q/2,s/2,T + ‖f0‖q/2,s/2,T )(3.15)

with some constant C = C(Ω, q) > 0 independent of T .

(d) Conversely, let ṽ ∈ L2
loc([0, T );W 1,2

0,σ (Ω)) satisfy the properties (3.13)–

(3.15). Then ṽ = Ef,f0,0 is a weak solution of the system (3.8) with

v0 = 0, and Ef,f0,v0 = Ef,f0,0 + Sv0 is a weak solution of (3.8) with the

given data f , f0, v0.

(e) There holds

(3.16) ‖Ef,f0,v0‖q,s,T ≤ ‖v0‖Bq,sT (Ω) + ‖Ef,f0,0‖q,s,T <∞,

and there exists some constant C = C(Ω, q) > 0 independent of T such

that

(3.17) ‖Ef,f0,0‖q,s,T ≤ C
(
‖(A−1/2Ef,f0,0)t‖q/2,s/2,T + ‖A1/2Ef,f0,0‖q/2,s/2,T

)
.

Proof. (a) Using (3.7) and (3.8) we obtain for v = Ef,f0,v0 and 0 < T ′ < T

the strong continuity (3.10), the energy equality (3.11), and the estimate

(3.18)
1

2
‖v‖22,∞,T ′ + ‖∇v‖22,2,T ′ ≤ 2‖v0‖22 + 8‖f0‖22,1,T ′ + 4‖F‖22,2,T ′ ,

see [13, IV. Theorem 2.3.1], and v is uniquely determined by f , f0, v0.

(b) The representation (3.12) follows from [13, IV. Theorem 2.4.1]. Note that

A−1/2P div, defined by 〈A−1/2P divF,ϕ〉 = 〈−F,∇A−1/2ϕ〉 for ϕ ∈ C∞0,σ(Ω), is

a bounded operator satisfying

(3.19) ‖A−1/2P divF (t)‖q/2 ≤ C‖F (t)‖q/2 for a.a. t ∈ [0, T )

with C = C(Ω, q) > 0; see [3, Examples 3), (2.14)].

(c) Applying A−1/2 to (3.12) when v0 = 0, we obtain for ṽ := Ef,f0,0 that

A−1/2ṽ is a weak solution of the system (3.14) in [0, T ) × Ω. By the maximal

regularity estimate, see, e.g. [6, (2.7)], we obtain the estimate (3.15) and it

holds (3.13).
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(d) Let v ∈ L2
loc([0, T );W 1,2

0,σ (Ω)) satisfy (3.13)–(3.15). Testing (3.14) with

A1/2w, w ∈ C∞0 ([0, T );C∞0,σ(Ω)), we obtain the relation (3.9) for ṽ = Ef,f0,0
where v0 = 0. Here we need the properties

d

dt
〈v, w〉Ω =

d

dt
〈A−1/2v,A1/2w〉Ω ∈ L1(0, T ),

and v0 = 0, w(T ) = 0 yielding

−〈v, wt〉Ω,T = −
∫ T

0

〈A−1/2v, (A1/2w)t〉Ω dt =

∫ T

0

〈(A−1/2v)t, A
1/2w〉Ω dt.

Next we use that E0,0,v0 = Sv0 satisfies (3.9) for f = 0, f0 = 0 as weak solution.

This implies, together with (3.9) for ṽ = Ef,f0,0, that Ef,f0,v0 = E0,0,v0 +Ef,f0,0
solves (3.9) and is a weak solution of (3.8).

(e) Setting ṽ = Ef,f0,0 when v0 = 0, we obtain using (3.12), (3.14) the

representation

A−1/2ṽ(t) =

∫ t

0

S(t− τ)A−1/2Pf0 dτ +

∫ t

0

S(t− τ)A−1/2P divF dτ(3.20)

=

∫ t

0

S(t− τ)
(
(A−1/2ṽ)t +A1/2ṽ

)
dτ.

By the fractional Sobolev embedding estimate ‖w‖q ≤ c‖A3/(2q)w‖q/2 and the

Hardy–Littlewood inequality we obtain (3.17) from (3.20), cf. [6, (2.24)].

Next we obtain for Ef,f0,v0 = Ef,f0,0 + Sv0 that

‖Ef,f0,v0‖q,s,T ≤ ‖Sv0‖q,s,T + ‖Ef,f0,0‖q,s,T = ‖v0‖Bq,sT (Ω) + ‖Ef,f0,0‖q,s,T

which proves (3.16). This completes the proof of Proposition 3.1. �

4. Proof of the main results

4.1. Proof of Theorem 2.1. Let f = divF, v0, k, g, E = Ek,g, 0 < T ≤ ∞
be given as in Theorem 2.1. We will need several steps for the proof.

Preliminaries. Writing a solution u of (1.1) in the form u = v + Ek,g we

are looking for a solution v of (1.10). To work in the space X, see (3.4), we have

to turn to v̂ = v − Ef,0,v0 which is a solution of the equation

(4.1) v̂t −∆v̂ +∇h = k(v̂ + Ê)− div((v̂ + Ê)(v̂ + Ê)), Ê := Ef,0,v0 + Ek,g,

together with div v̂ = 0, v̂(0) = 0 and v̂|∂Ω = 0. Here k(v̂ + Ê) plays the role of

f0 in Proposition 3.1. To reformulate the fixed point problem (4.1) we define

F̂ (v̂) := −(v̂ + Ê)(v̂ + Ê),

f̂(v̂) := div F̂ (v̂),(4.2)

f̂0(v̂) := k(v̂ + Ê).
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By Hölder’s inequality and (3.17) we obtain that Ê, Ef,0,v0 , E = Ek,g ∈
Ls(0, T ;Lq(Ω)) as well as v̂, v ∈ Ls(0, T ;Lq(Ω)), and that

(4.3)
‖F̂ (v̂)‖q/2,s/2,T ≤ ‖v̂ + Ê‖2q,s,T ≤

(
‖v̂‖q,s,T + ‖Ê‖q,s,T

)2
<∞,

‖f̂0(v̂)‖q/2,s/2,T ≤ ‖k‖q,s,T
(
‖v̂‖q,s,T + ‖Ê‖q,s,T

)
<∞.

Correspondingly, we set

F (v) := −(v + E)(v + E) = −(v̂ + Ê)(v̂ + Ê),

f(v) := divF (v) = div F̂ (v̂) = f̂(v̂),(4.4)

f0(v) := k(v + E) = k(v̂ + Ê),

and get estimates of F (v), f0(v) in Ls/2(0, T ;Lq/2(Ω)) as those for F̂ (v̂), f̂0(v̂)

in (4.3).

Next we mention an estimate for b(T ) as given in (2.1). We obtain, using

(3.16), (3.17), (3.15) with f0 = 0 and (1.6), the estimate

‖Ê‖q,s,T ≤ ‖Ef,0,v0‖q,s,T + ‖E‖q,s,T
≤ ‖v0‖Bq,sT (Ω) + ‖Ef,0,0‖q,s,T + ‖E‖q,s,T
≤ ‖v0‖Bq,sT (Ω) + C

(
‖F‖q/2,s/2,T + ‖k‖q,s,T + ‖g‖−1/q,q,s,T

)
with constant C = C(Ω, q) > 0. We may assume that C ≥ 1. Hence

(4.5) ‖Ê‖q,s,T ≤ Cb(T ), ‖k‖q,s,T ≤ b(T )

with C = C(Ω, q) ≥ 1 independent of T .

The nonlinear operator F . Let v̂ ∈ X and let F(v̂) := w be the solution

of the system

(4.6) (A−1/2w)t +A1/2w = A−1/2P div F̂ (v̂) +A−1/2P f̂0(v̂), w ∈ X,

as in (3.14).

Using, step by step, (3.17), (3.15) and (4.3), we obtain that

‖F(v̂)‖q,s,T = ‖w‖q,s,T(4.7)

≤ C1(‖(A−1/2w)t‖q/2,s/2,T + ‖A1/2w‖q/2,s/2,T )

≤ C2(‖F̂ (v̂)‖q/2,s/2,T + ‖f̂0(v̂)‖q/2,s/2,T )

≤ C3((‖v̂‖q,s,T + ‖Ê‖q,s,T )2 + ‖k‖q,s,T (‖v̂‖q,s,T + ‖Ê‖q,s,T )).

Moreover, by (3.17) for ‖v̂‖q,s,T and (4.5) for ‖Ê‖q,s,T and ‖k‖q,s,T , we get that

(4.8) ‖F(v̂)‖q,s,T ≤ C4(‖v̂‖X + b(T ))2

with constants C1, . . . , C4 > 0 depending on Ω, q. Consequently,

(4.9)
‖F(v̂)‖q,s,T ≤ C1‖F(v̂)‖X ≤ C4(‖v̂‖X + b(T ))2,

‖F(v̂)‖X ≤ a(‖v̂‖X + b)2, a = C4/C1, b = b(T )
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with constants C1, C2 > 0 depending on Ω, q.

Next we estimate the expression F(v̂)−F(ṽ) with v̂, ṽ ∈ X, using the repre-

sentation formula (3.12) with v, f0, F replaced by F(v̂)−F(ṽ) and f̂0(v̂)− f̂0(ṽ),

F̂ (v̂)− F̂ (ṽ), respectively. We obtain that

(F(v̂)−F(ṽ))(t)

=

∫ t

0

A1/2S(t− τ)A−1/2P [div(F̂ (v̂)− F̂ (ṽ)) + f̂0(v̂)− f̂0(ṽ)] dτ

=

∫ t

0

A1/2S(t− τ)A−1/2P [div((ṽ + Ê)(ṽ − v̂) + (ṽ − v̂)(v̂ + Ê)) + k(v̂ − ṽ)] dτ.

Then we apply the same arguments as in (4.7)–(4.9) to get for v̂, ṽ ∈ X the

estimate

‖F(v̂)−F(ṽ)‖X ≤ C1(‖v̂‖X + b+ ‖ṽ‖X + b+ b)‖v̂ − ṽ‖X)

≤ C2(‖v̂‖X + b+ ‖ṽ‖X + b)‖v̂ − ṽ‖X

with C1, C2 > 0 depending on Ω, q. We may assume that C2 = a with a as

in (4.9). Thus we obtain that

(4.10) ‖F(v̂)−F(ṽ)‖X ≤ a(‖v̂‖X + b+ ‖ṽ‖X + b)‖v̂ − ṽ‖X .

The fixed point problem v̂ = F(v̂). Here we use similar arguments as

in the existence proof of very weak solutions, see [3], [6], [7].

Let v̂, ṽ ∈ X. Then F(v̂), F(ṽ) satisfy the estimates (4.9), (4.10), i.e. with

a = a(Ω, q) > 0 and b = b(T )

‖F(v̂)‖X ≤ a(‖v̂‖X + b)2,(4.11)

‖F(v̂)−F(ṽ)‖X ≤ a
(
‖v̂‖X + b+ ‖ṽ‖X + b

)
‖v̂ − ṽ‖X .(4.12)

For the given data f = divF , v0, k, g as in Assumptions 1.1 and with b(T )

defined in (2.1) we suppose the smallness condition

(4.13) 4ab = 4ab(T ) = 4a(‖v0‖Bq,sT +‖F‖q/2,s/2,T+‖k‖q,s,T+‖g‖−1/q,q,s,T ) < 1.

Using 4ab < 1 we choose

0 < y1 := 2b(1 +
√

1− 4ab)−1 < 2b, y1 = ay2
1 + b > b

and B := {v ∈ X; ‖v‖X ≤ y1 − b}. Then, if v̂ ∈ B, we obtain from the estimate

‖F(v̂)‖X ≤ a(‖v̂‖X + b)2 ≤ ay2
1 = y1 − b

that F(B) ⊆ B. Further we use (4.12) and obtain with v̂, ṽ ∈ B that

‖F(v̂)−F(ṽ)‖X ≤ a(‖ṽ‖X + b+ ‖v̂‖X + b)‖v̂ − ṽ‖X
≤ 2ay1‖v̂ − ṽ‖X ≤ 4ab‖v̂ − ṽ‖X .

Thus F : B → B is a strict contraction, and Banach’s fixed point principle yields

a unique v̂ ∈ B satisfying v̂ = F(v̂).
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Uniqueness in X. Suppose that v̂1, v̂2 ∈ X are fixed points of F . Then we

conclude from (4.10) with ‖ · ‖X replaced by ‖ · ‖q;s,T that

‖v̂1 − v̂2‖q,s,T = ‖F(v̂1)−F(v̂2)‖q,s,T(4.14)

≤ a
(
‖v̂1‖q,s,T + b(T ) + ‖v̂2‖q,s,T + b(T )

)
‖v̂1 − v̂2‖q,s,T

with b = b(T ) as in (4.5), and with a = a(Ω, q) > 0 as in (4.9).

Consider any subinterval [0, T ′), 0 < T ′ < T . Then we obtain the same

estimate (4.14) with ‖ · ‖q,s,T , b(T ) replaced by ‖ · ‖q,s,T ′ , b(T ′), and choose

0 < T ′ < T such that

a(‖v̂1‖q,s,T ′ + b(T ′) + ‖v̂2‖q,s,T ′ + b(T ′)) ≤ 1

2
;

thus we conclude that ‖v̂1 − v̂2‖q,s,T ′/2 ≤ 0, v̂1 = v̂2. Finally, we continue this

argument with [0, T ′) replaced by [T ′, 2T ′) with the same constant a, and so on.

This yields v̂1 = v̂2 in [0, T ).

The condition F(v̂) = v̂, v̂ ∈ X. Assume that v̂ ∈ X satisfies the condi-

tion F(v̂) = v̂. Then we show that

(4.15) v := v̂ + Ef,0,v0 is a strong solution of (1.9)

as in Definition 1.2(b). Obviously, by (3.17) v̂ ∈ X ⊂ Ls(0, T ;Lq(Ω)), and by

(3.16) Ef,0,v0 ∈ Ls(0, T ;Lq(Ω)); hence

(4.16) v ∈ Ls(0, T ;Lq(Ω)).

Then we use Proposition 3.1(d), and conclude that v̂ is a weak solution of the

system (3.8) with f , f0 replaced by f̂(v̂), f̂0(v̂), and with v̂(0) = 0.

Now we consider Ê = Ef,0,v0 +E, E = Ek,g, as in (4.2) and use the relation

(3.9) for (v =)Ef,0,v0 with f = divF , f0 = 0 as well as for the weak solution

v̂ = F(v̂) of (3.9). We conclude that

(4.17) v = v̂ + Ef,0,v0 satisfies (1.10) with E = Ek,g.

Thus it holds (3.9) with F, f0 replaced by F (v), f0(v), see (4.4). Using Propo-

sition 3.1(a) we conclude that v = v̂ + Ef,0,v0 satisfies the properties (a)–(d) in

Definition 1.2 of the perturbed system (1.9) and, consequently, u = v + Ek,g is

a strong solution of the general system (1.1).

Finally, in view of (4.13) we may choose ε∗ = ε∗(Ω, q) = (8a)−1. This

completes the proof of Theorem 2.1. �

4.2. Proof of Corollary 2.2. Let f , v0, k, g, q, s, [0, T ), E = Ek,g,

b = b(T ) and ε∗ = ε∗(Ω, q) > 0 be given as in Corollary 2.2.

Since b(T ) → 0 as T → 0, we find some T ∗ ∈ (0, T ] satisfying b(T ∗) ≤ ε∗.

By Theorem 2.1 we get the uniquely determined solutions v, u = v + E. �
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4.3. Proof of Theorem 2.3. Assume that the given data f = divF , v0,

k, g additionally satisfy the regularity conditions (2.3). From [3, Corollary 5] we

obtain for the solution E = Ek,g of the Stokes system (1.3), in addition to (1.6),

that

(4.18) E ∈ Ls(0, T ;W 2,q(Ω)), Et ∈ Ls(0, T ;Lq(Ω)).

Then we have to prove the regularity properties (2.4) for the solution v of (1.9),

written in the form

(4.19)
vt −∆v + (v + E) · ∇v +∇p∗ = f∗ := divF − (v + E) · ∇E,

v|t=0 = v0, v|∂Ω = 0, div v = 0.

For a moment let v := v̂ be the corresponding solution for the well known

case k = 0, g = 0, E = 0. In this case the regularity properties (2.4) for

v = v̂ have been shown in [13, V. Theorem 1.8.1, p. 298], where the critical

expression, now written in the form v̂ · ∇v̂, has been treated using the Yosida

operators Jk = (I + A1/2/k)−1, k ∈ N, and v̂ · ∇v̂k with v̂k = Jkv̂, and using

v̂ ∈ Ls(0, T ;Lq(Ω)).

We can reduce our regularity problem for (4.19) to this known case. Since

v+E ∈ Ls(0, T ;Lq(Ω)), we use the approximation (v+E) · ∇vk, k ∈ N, for the

critical term (v+E) ·∇v. Furthermore, since by (4.18) E,∇E ∈ Ls(0, T ;Lq(Ω))

and v ∈ L∞loc([0, T );L2(Ω)) and since q ≥ 4, s ≥ 4, we obtain that

(4.20) v · ∇E,E · ∇E ∈ L2
loc([0, T );L2(Ω)).

Thus we obtain from (4.20), (2.3) that f∗ ∈ L2
loc([0, T );L2(Ω)). Then we get

for (4.19) - as in [13, V. Theorem 1.8.1] - the properties (2.4), (2.6), (2.7). This

completes the proof of Theorem 2.3. �
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