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EXISTENCE AND NONEXISTENCE

OF LEAST ENERGY NODAL SOLUTIONS

FOR A CLASS OF ELLIPTIC PROBLEM IN R2

Claudianor O. Alves — Denilson S. Pereira

Abstract. In this work, we prove the existence of least energy nodal solu-

tions for a class of elliptic problem in both cases, bounded and unbounded
domain, when the nonlinearity has exponential critical growth in R2. More-

over, we also prove a nonexistence result of least energy nodal solution for

the autonomous case in whole R2.

1. Introduction

This paper concerns with the existence of least energy nodal solutions for

the following class of elliptic problem

(P)

−∆u+ V (x)u = f(u) in Ω,

u ∈ H1
0 (Ω),

where Ω ⊂ R2 is a smooth bounded domain or Ω = R2, V : Ω→ R is a continuous

function verifying some hypotheses which will be fix later on. Concerning the

nonlinearity, we assume that f : R → R is a C1-function, which can have an

exponential critical growth at both +∞ and −∞, that is, it behaves like eα0s
2

,
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as |s| → ∞, for some α0 > 0. More precisely,

(1.1)

lim
|s|→∞

f(s)

eα|s|2
= 0 for all α > α0,

lim
|s|→∞

f(s)

eα|s|2
=∞ for all α < α0,

(see [20]). In the last years, we have observed that the existence of nodal solution

has received a special attention of a lot of researches. In Cerami, Solimini and

Struwe [19], the authors showed the existence of multiple nodal solutions for the

following class of elliptic problem with critical growth

(P1)

−∆u− λu = |u|2∗−2u in Ω,

u = 0 on ∂Ω,

where Ω = BR(0) ⊂ RN , N ≥ 7, 2∗ = 2N/(N − 2) and λ ∈ [0, λ1], with λ1 being

the first eigenvalue of (−∆, H1
0 (Ω)). In Bartsch and Willem [12], the existence

of infinitely many radial nodal solutions was proved for the problem

(P2)

−∆u+ u = f(|x|, u) in RN ,
u ∈ H1(RN ),

where f is a continuous function with subcritical growth and verifying some

hypotheses. In Cao and Noussair [17], the authors studied the existence and

multiplicity of positive and nodal solutions for the following class of problems

(P2)

−∆u+ u = Q(x)|u|p−2u in RN ,
u ∈ H1(RN )

by supposing 2 < p < (N + 2)/(N − 2), N ≥ 3 and some technical conditions

on Q. In that paper, the main result connects the number of positive and nodal

solutions with the number of maximum points of function Q.

In Castro, Cossio and Neuberger [18] and Bartsch and Wang [13], the authors

studied the existence of nodal solution for a problem like

(P3)

−∆u = f(u) in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain and f verifies some hypotheses. In [18], it

was assumed that f is superlinear, while in [10] that f is asymptotically linear

at infinity. In Bartsch and Weth [10], existence of multiple nodal solutions was

also considered for problem (P3).
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In Noussai and Wei [23], [24], existence and concentration of nodal solutions

were proved for the problem

(P4)

−ε2∆u+ u = f(u) in Ω,

Bu = 0 on ∂Ω,

when ε → 0, where Ω is smooth bounded domain, Bu = u in [23] and Bu =

∂u/∂η in [24].

In Bartsch and Wang [14], the authors have considered the existence and

concentration of nodal solutions for the following class of problem

(P5)

−∆u+ (λa(x) + 1)u = f(u) in RN ,
u ∈ H1(RN ),

when λ→ +∞, by supposing that f has a subcritical growth and a : RN → R is

a nonnegative continuous function with a−1({0}) being nonempty and verifying

µ({x ∈ RN : a(x) ≤M0}) < +∞ for some M0 > 0,

where µ denotes the Lebesgue measure.

In [8], Bartsch, Liu and Weth have showed the existence of nodal solutions

with exactly two nodal regions for the problem

(P6)

−∆u+ a(x)u = f(u) in RN ,
u ∈ H1(RN ),

where a is a nonnegative function verifying some conditions, among which we

highlight

µ({x ∈ Br(y) : a(x) ≤M})→ 0 as |y| → +∞ for any M, r > 0.

The reader can found more results involving nodal solutions in the papers

of Bartsch, Weth and Willem [11], Alves and Soares [5], Bartsch, Clapp and

Weth [7], Zou [27] and their references.

After a literature review, we have observed that there are few papers in the

literature where existence of nodal solution has been considered for the case

where the nonlinearity has an exponential critical growth. The authors know

only the references Adimurthi and Yadava [1], Alves [2] and Alves and Soares [6].

In [1], the authors have proved the existence of infinitely many radial solutions

for problem (P3) when Ω = BR(0) ⊂ R2. In [2], the author has proved the

existence of a nodal solution for a class of problems in exterior domains with

Neumann boundary conditions, and in [6], the existence of a nodal solution has

been established for a problem like−ε2∆u+ V (x)u = f(u) in R2,

u ∈ H1(R2),
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for ε small enough and V verifying some technical conditions.

Motivated by this fact, our goal in the present paper is proving the existence

of least energy nodal solution for problem (P) when Ω is a smooth bounded

domain or Ω = R2. Here, we also show a nonexistence result of least energy

solution for (P) when the potential V is constant. Since we will work with

exponential critical growth in whole R2, a key inequality in our arguments is

the Trudinger–Moser inequality for bounded domains, see [22] and [25], which

claims that for any u ∈ H1
0 (Ω),

(1.2)

∫
Ω

eαu
2

dx < +∞, for every α > 0.

Moreover, there exists a positive constant C = C(α, |Ω|) such that

(1.3) sup
||u||

H1
0(Ω)
≤1

∫
Ω

eαu
2

dx ≤ C, for all α ≤ 4π.

A version of the above inequality in whole space R2 has been proved by Cao [16]

and has the following statement:

(1.4)

∫
R2

(eαu
2

− 1) dx < +∞, for all u ∈ H1(R2) and α > 0.

Furthermore, if α ≤ 4π and |u|L2(R2) ≤M , there exists a constant C1 = C1(M,α)

such that

(1.5) sup
|∇u|L2(R2)≤1

∫
R2

(eαu
2

− 1) dx ≤ C1.

Hereafter, the function f satisfies the ensuing assumptions:

(f1) There is C > 0 such that

|f(s)| ≤ Ce4π|s|2 for all s ∈ R;

(f2) lim
s→0

f(s)/s = 0;

(f3) There is θ > 2 such that

0 < θF (s) ≤ sf(s), for all s ∈ R \ {0}.

(f4) f(s)/|s| is a strictly increasing function of s on R \ {0}.
(f5) There exist constants p > 2 and Cp > 0 such that

sign(s)f(s) ≥ Cp|s|p−1 for all s ∈ R \ {0},

where

sign(s) =

 1 if s > 0,

−1 if s < 0.
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Here F (s) :=
∫ s

0
f(t) dt is a primitive of f . Clearly these assumptions hold

for

f(s) = 2αCp|s|p−2seαs
2

, 0 < α < 4π.

Our main result related to the case where Ω is a bounded domain is the

following:

Theorem 1.1. Let Ω be a bounded domain and V : Ω→ R be a nonnegative

continuous function. If (f1)–(f5) occur, then problem (P) possesses a least energy

nodal solution, provided that

(1.6) Cp >

[
βp

2θ

θ − 2

](p−2)/2

,

where βp = inf
Mp

Ω

Ip, Mp
Ω = {u ∈ H1

0 (Ω) : u± 6= 0 and I ′p(u
±)u± = 0} and

Ip(u) =
1

2

∫
Ω

(|∇u|2 + V (x)|u|2) dx− 1

p

∫
Ω

|u|p dx.

For the case where Ω = R2, we have two results. The first one is a nonexis-

tence result of least energy nodal solution whose statement is the following:

Theorem 1.2. Suppose that V (x) = V0 > 0 for all x ∈ R2 and f satisfies

(f1)–(f5). Then, the autonomous problem

(P)

−∆u+ V0u = f(u) in R2,

u ∈ H1(R2),

does not have a least energy nodal solution, provided that

(1.7) Cp >

[
χp

2θ

θ − 2

](p−2)/2

,

where χp = inf
MB1(0)

Jp, MB1(0) = {u ∈ H1
0 (B1(0)) : u± 6= 0 and J ′p(u

±)u± = 0}

and

Jp(u) =
1

2

∫
B1(0)

(|∇u|2 + V0|u|2) dx− 1

p

∫
B1(0)

|u|p dx.

Our second result is related to the existence of least energy nodal solution

for a non-autonomous problem. For this case, we will assume that f is an odd

function and the ensuing hypotheses on function V :

(V1) There exists a constant V0 > 0 such that V0 ≤ V (x) for all x ∈ R2;

(V2) There exists a continuous Z2-periodic function V∞ : R2 → R satisfying

V (x) ≤ V∞(x) for all x ∈ R2 and lim
|x|→∞

|V (x)− V∞(x)| = 0.

We recall that a function h : R2 → R is Z2-periodic when

h(x) = h(x+ y), for all x ∈ R2 and y ∈ Z2.
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(V3) There exist µ < 1/2 and C > 0 such that

V (x) ≤ V∞(x)− Ce−µ|x|, for all x ∈ R2.

Our main result involving the above hypotheses is the following:

Theorem 1.3. Suppose that (V1)–(V3) and (f1)–(f5) hold with f being an

odd function. If (1.7) occurs replacing V0 by V , the elliptic problem

(P)

−∆u+ V (x)u = f(u) in R2,

u ∈ H1(R2),

possesses a least energy nodal solution with exactly two nodal domains.

We conclude this section by giving a sketch of the proofs. The basic idea

goes as follows. To prove Theorem 1.1 we will use the Nehari method and the

deformation lemma. Our inspiration comes from [19], however in that paper

the authors used a deformation lemma in cones together with the fact that the

nonlinearity is odd. Here, we develop a new approach to get a Palais–Smale

sequence of nodal functions associated to the least energy nodal level, for details

see Section 2. In order to prove Theorem 1.3, we invoke Theorem 1.1 to obtain

a sequence (un) of least energy nodal solutions to problem (P) when Ω = Bn(0).

Then, we prove that (un) is weakly convergent in H1(R2), and its weak limit is

a least energy nodal solution of the problem (P).

2. Bounded domain

In this section, we consider the existence of least energy nodal solution for

problem (P) when Ω is a smooth bounded domain. Let us denote by E the

Sobolev space H1
0 (Ω) endowed with the norm

‖u‖2 =

∫
Ω

(|∇u|2 + V (x)|u|2) dx.

It is easy to check that the above norm is equivalent to usual norm in H1
0 (Ω).

Hereafter, we will be denoted by ‖ · ‖∗ the usual norm in H1
0 (Ω).

From assumptions (f1) and (f2), given ε > 0, q ≥ 1 and α > 4, there exists

a positive constant C = C(ε, q, α) such that

(2.1) |sf(s)|, |F (s)| ≤ εs
2

2
+ C|s|qeαπs

2

, for all s ∈ R.

Thus, by Trudinger–Moser inequality (1.2), F (u) ∈ L1(R2) for all u ∈ E, from

where it follows that Euler–Lagrange functional associated with (P) I : E → R
given by

I(u) =
1

2
‖u‖2 −

∫
Ω

F (u) dx
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is well defined. Furthermore, using standard arguments, we see that I is a C1

functional on E with

I ′(u)v =

∫
Ω

[∇u∇v + V (x)uv] dx−
∫

Ω

f(u)v dx, for all v ∈ E.

Consequently, critical points of I are precisely the weak solutions of problem (P).

We know that every nontrivial critical point of I is contained in the Nehari

manifold NΩ = {u ∈ E \ {0} : I ′(u)u = 0}. Since we are interested in least

energy nodal solution, we define the nodal Nehari set MΩ = {u ∈ E : u± 6= 0,

I ′(u±)u± = 0} and c∗Ω = inf
u∈MΩ

I(u).

By a least energy nodal solution, we understand as being a function u ∈MΩ

such that

I(u) = c∗Ω and I ′(u) = 0.

Next, we state some necessary results to prove Theorem 1.1. The proofs of some

of them are in Section 5.

Lemma 2.1. There exists A > 0 such that

c∗Ω ≤ A <

(
1

2
− 1

θ

)
.

Proof. Let ũ ∈Mp
Ω ⊂ H1

0 (Ω) verifying

(2.2) Ip(ũ) = βp and I ′p(ũ) = 0.

The reader can find the proof of the above claim in Bartsch and Weth [9]. Once

ũ± 6= 0 there exist 0 < s, t such that sũ+, tũ− ∈ NΩ and sũ+ + tũ− ∈ MΩ.

Then,

c∗Ω ≤ I(sũ+ + tũ−) = I(sũ+) + I(tũ−),

leading to

c∗Ω ≤
s2

2

∫
Ω

(|∇ũ+|2 + V (x)|ũ+|2) dx−
∫

Ω

F (sũ+) dx

+
t2

2

∫
Ω

(|∇ũ−|2 + V (x)|ũ−|2) dx−
∫

Ω

F (tũ−) dx.

By (f5),

c∗Ω ≤
(
s2

2
− Cps

p

p

)∫
Ω

|ũ+|p dx+

(
t2

2
− Cpt

p

p

)∫
Ω

|ũ−|p dx,

and so,

c∗Ω ≤ max
r≥0

{
r2

2
− Cpr

p

p

}∫
Ω

|ũ|p dx.

A direct computation gives

max
r≥0

{
r2

2
− Cpr

p

p

}
= C2/(2−p)

p

(
1

2
− 1

p

)
,



874 C.O. Alves — D.S. Pereira

then

c∗Ω ≤ C2/(2−p)
p

(
1

2
− 1

p

)∫
Ω

|ũ|p dx.

Using (2.2) in the above inequality, we get

(2.3) c∗Ω ≤ C2/(2−p)
p βp := A.

From (1.6), A < (1/2− 1/θ), finishing the proof. �

The next lemma shows two important limits involving the function.

Lemma 2.2. Let (un) be a sequence in E satisfying:

(a) b := sup
n∈N
‖un‖2 < 1;

(b) un ⇀ u in H1
0 (Ω), and

(c) un(x)→ u(x) almost everywhere in Ω.

Then,

lim
n

∫
Ω

f(un)un dx =

∫
Ω

f(u)u dx,(2.4)

lim
n

∫
Ω

f(un)v dx =

∫
Ω

f(u)v dx,(2.5)

for any v ∈ E.

Proof. See Section 5. �

The result below is well known for problems in RN with N ≥ 3. Here,

we decide to write its proof, because we are working with exponential critical

growth.

Lemma 2.3. There exists m0 > 0 such that 0 < m0 ≤ ‖u‖2 for all u ∈ NΩ.

Proof. We start by fixing q > 2 in (2.1). Suppose by contradiction that

above inequality is false. Then, there exists a sequence (un) ⊂ NΩ such that

‖un‖2 → 0, as n→∞. Since un ∈ NΩ,

‖un‖2 =

∫
Ω

f(un)un dx.

Then, from (2.1),

‖un‖2 ≤ ε|un|22 + C

∫
Ω

|un|qeα|un|
2

, dx, for some α > 4π.

By Sobolev imbedding and Hölder inequality,

‖un‖2 ≤ C1ε‖un‖2 + C|un|q2q
(∫

Ω

e2α|un|2 dx

)1/2

.

Using again Sobolev imbedding,

(1− C1ε)‖un‖2 ≤ C2‖un‖q
(∫

Ω

e2α|un|2 dx

)1/2

.
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Choosing ε > 0 sufficiently small such that C3 := (1− C1ε)/C2 > 0, we find

that

(2.6) 0 < C3 ≤ ‖un‖q−2

(∫
Ω

e2α|un|2 dx

)1/2

.

Since ‖un‖2 → 0, as n → ∞, there is n0 ∈ N such that 2α‖un‖2 ≤ 4π, for all

n ≥ n0. From Trudinger–Moser inequality (1.3), it follows that∫
Ω

e2α|un|2 dx =

∫
Ω

e2α‖un‖2∗(|un|/‖un‖∗)
2

dx ≤
∫

Ω

e4π(|un|/‖un‖∗)2

dx ≤ C

for all n ≥ n0. Here, we have used that ‖u‖∗ ≤ ‖u‖ for all u ∈ H1
0 (Ω). Thereby,

from (2.6),

0 <

(
C3√
C

)1/(q−2)

≤ ‖un‖, for all n ≥ n0,

which contradicts the fact that ‖un‖ → 0, as n→∞. �

Corollary 2.4. For all u ∈MΩ, 0 < m0 ≤ ‖u±‖2 ≤ ‖u‖2.

Corollary 2.5. There exists δ2 > 0 such that I(u±), I(u) ≥ 2δ2 for all

u ∈MΩ.

Proof. Firstly, observe that if u ∈ NΩ,

I(u) = I(u)− 1

θ
I ′(u)u =

(
1

2
− 1

θ

)
‖u‖2 −

∫
Ω

(
F (u)− 1

θ
f(u)u

)
dx.

Then, from (f3) and Lemma 2.3,

I(u) ≥
(

1

2
− 1

θ

)
‖u‖2 ≥

(
1

2
− 1

θ

)
m0 := 2δ2 for all u ∈ NΩ.

Now, the result follows by observing that u ∈MΩ implies that u, u± ∈ NΩ. �

Now, we prove some results related to the following set

S̃λ := {u ∈MΩ : I(u) < c∗Ω + λ}.

The above set will be crucial to show the existence of a (PS) sequence of nodal

functions associated with c∗Ω.

Lemma 2.6. For all u ∈ S̃λ, we have 0 < m0 ≤ ‖u±‖2 ≤ ‖u‖2 ≤ mλ < 1,

for λ > 0 sufficiently small.

Proof. See Section 5. �

Lemma 2.7. For each q > 1, there exists δq > 0 such that

0 < δq ≤
∫

Ω

|u±|q dx ≤
∫

Ω

|u|q dx, for all u ∈ S̃λ.

Proof. See Section 5. �
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Lemma 2.8. There exists R > 0 such that

I

(
1

R
u±
)
, I(Ru±) <

1

2
I(u±), for all u ∈ S̃λ.

Proof. Let u ∈ S̃λ and R > 0. By definition of I and (f3),

I

(
1

R
u±
)

=
1

2R2
‖u±‖2 −

∫
Ω

F

(
1

R
u±
)
dx ≤ 1

2R2
‖u±‖2.

Hence, by Lemma 2.6

I

(
1

R
u±
)
≤ mλ

2R2
.

From this, we can fix R > 0 large enough such that mλ/(2R
2) < δ2, which

implies, by Corollary 2.5,

I

(
1

R
u±
)
< δ2 ≤

1

2
I(u±), for all u ∈ S̃λ.

By (f3), there are constants b1, b2 > 0 verifying F (t) ≥ b1|t|θ − b2, for all t ∈ R.

Then,

I(Ru±) =
R2

2
‖u±‖2 −

∫
Ω

F (Ru±) dx ≤ R2mλ

2
− b1Rθ

∫
Ω

|u±|θ dx+ b2|Ω|.

By Lemma 2.7, there is δθ > 0 such that∫
Ω

|u±|θ dx ≥ δθ.

Thus,

I(Ru±) =
R2

2
‖u±‖2 −

∫
Ω

F (Ru±) dx ≤ R2mλ

2
− b1Rθδθ + b2|Ω|.

Since θ > 2, we conclude that I(Ru±) < 0 < δ2 ≤ I(u±)/2, for all u ∈ S̃λ, for

R > 0 large enough. �

From now on, we consider the following sets

S = {sRu+ + tRu− : u ∈ S̃λ and s, t ∈ [1/R2, 1]},

P = {u ∈ E : u ≥ 0 a.e. in Ω}

and Λ = P ∪ (−P ).

In what follows, for a subset Θ ⊂ H1
0 (Ω) and r > 0 we denote by Θr the set

Θr = {u ∈ H1
0 (Ω) : dist(u,Θ) ≤ r}, and by dist(A,B) the distance between sets

of H1
0 (Ω).

Lemma 2.9. d0 := dist(S,Λ) > 0.

Proof. The lemma follows by using contradiction argument combined with

Rellich Imbedding and Lemma 2.7. �
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Proposition 2.10 (Main Proposition). Given ε, δ > 0, there exists u ∈
I−1([c∗Ω − 2ε, c∗Ω + 2ε]) ∩ S2δ verifying ‖I ′(u)‖ < 4ε/δ.

Proof. In fact, otherwise, there exist εo, δo > 0 such that

‖I ′(u)‖ ≥ 4εo
δo
, for all u ∈ I−1([c∗Ω − 2εo, c

∗
Ω + 2εo]) ∩ S2δo .

Thus, for each n ∈ N∗,

‖I ′(u)‖ ≥ 4εo/n

δo/n
, for all u ∈ I−1([c∗Ω − 2εo, c

∗
Ω + 2εo]) ∩ S2δo .

Since

I−1([c∗Ω − 2εo/n, c
∗
Ω + 2εo/n]) ∩ S2δo/n ⊂ I

−1([c∗Ω − 2εo, c
∗
Ω + 2εo]) ∩ S2δo ,

we get

‖I ′(u)‖ ≥ 4εo/n

δo/n
, for all u ∈ I−1([c∗Ω − 2εo/n, c

∗
Ω + 2εo/n]) ∩ S2δo/n.

Then, we can fix n ∈ N large enough such that

(2.7) ε :=
εo
n
< min

{
2δ2
5
, λ

}
, δ :=

δo
n
<
d0

2

and

‖I ′(u)‖ ≥ 4ε

δ
, for all u ∈ I−1([c∗Ω − 2ε, c∗Ω + 2ε]) ∩ S2δ.

In view of the above hypotheses, [26, Lemma 2.3] yields a continuous map η : E →
E satisfying:

(1) η(u) = u, for all u /∈ I−1([c∗Ω − 2ε, c∗Ω + 2ε]) ∩ S2δ;

(2) ‖η(u)− u‖ ≤ δ for all u ∈ E;

(3) η(Ic
∗
Ω+ε ∩ S) ⊂ Ic∗Ω−ε ∩ Sδ;

(4) η is a homeomorphism.

From the definition of c∗Ω, for such ε > 0, there exists u∗ ∈MΩ such that

(2.8) I(u∗) < c∗Ω + ε/2.

Now, consider γ : [1/R2, 1]2 → E given by

γ(s, t) = η(sRu+
∗ + tRu−∗ ).

Once u±∗ ∈ NΩ, in view of (f4) we have the following classical result

I(u±∗ ) = max
s>0

I(su±∗ ),

see e.g. [26, Lemma 4.1]. Thus

I(sRu+
∗ + tRu−∗ ) = I(sRu+

∗ ) + I(tRu−∗ ) ≤ I(u+
∗ ) + I(u−∗ ) = I(u∗).

Thereby, (2.7) and (2.8) give

I(sRu+
∗ + tRu−∗ ) ≤ I(u∗) < c∗Ω +

ε

2
< c∗Ω + ε < c∗Ω + λ,
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for all s, t ∈ [1/R2, 1]. Then, u∗ ∈ S̃λ and sRu+
∗ + tRu−∗ ∈ Ic

∗
Ω+ε ∩ S, which

implies, by item (3),

(2.9) I(γ(s, t)) = I(η(sRu∗
+ + tRu∗

−)) < c∗Ω − ε, for all (s, t) ∈ [1/R2, 1]2.

From item (2), ‖γ(s, t)− (sRu+
∗ + tRu−∗ )‖ ≤ δ, then by the choice of δ made in

(2.7), for v ∈ Λ, we have

‖γ(s, t)− v‖ = ‖γ(s, t)− (sRu+
∗ + tRu−∗ ) + (sRu+

∗ + tRu−∗ )− v‖

≥ ‖(sRu+
∗ + tRu−∗ )− v‖ − ‖γ(s, t)− (sRu+

∗ + tRu−∗ )‖

≥ d0 − δ > d0 −
d0

2
=
d0

2
> 0,

for all s, t ∈ [1/R2, 1]. Therefore,

(2.10) γ(s, t)± 6= 0, for all (s, t) ∈ [1/R2, 1]2.

Claim 2.11. There exists (s0, t0) ∈ [1/R2, 1]2 such that

I ′(γ(s0, t0)±)(γ(s0, t0)±) = 0.

Suppose, for a moment, that this claim is true. From (2.10), γ(s0, t0) ∈MΩ,

and so, I(γ(s0, t0)) ≥ c∗Ω, which contradicts (2.9), proving the proposition. �

Proof of Claim 2.11. Let us define Q := [1/R2, 1]2 and the functions

H,G : Q→ R2 by

H(s, t) := (I ′(γ(s, t)+)(γ(s, t)+), I ′(γ(s, t)−)(γ(s, t)−)),

G(s, t) := (I ′(sRu∗
+)(sRu+

∗ ), I ′(tRu−∗ )(tRu−∗ )).

Since

(2.11) γ(s, t) = η(sRu+
∗ + tRu−∗ ) = sRu+

∗ + tRu−∗ , for all (s, t) ∈ ∂Q,

we have γ(s, t)+ = sRu+
∗ and γ(s, t)− = tRu−∗ ,for all (s, t) ∈ ∂Q, and H ≡ G

on ∂Q.

To see (2.11), let s = 1/R2 and t ∈ [1/R2, 1]. By Lemma 2.8,

I(sRu∗
+ + tRu∗

−) = I

(
1

R
u∗

+

)
+ I(tRu∗

−)

<
I(u∗

+)

2
+ I(u∗

−) = I(u∗)−
I(u∗

+)

2
.

From (2.8), Corollary 2.5 and the choice of ε > 0 made in (2.7), we obtain

I(sRu∗
+ + tRu∗

−) < c∗Ω +
ε

2
− δ2 < c∗Ω − 2ε,

i.e.
1

R
u∗

+ + tRu∗
− /∈ I−1([c∗Ω − 2ε, c∗Ω + 2ε]) ∩ S2δ,
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for all t ∈ [1/R2, 1]. From this, item (1) yields

γ

(
1

R2
, t

)
= η

(
1

R
u∗

+ + tRu∗
−
)

=
1

R
u∗

+ + tRu∗
−.

The other cases are similar. Then, d(H, Q̇, (0, 0)) = d(G, Q̇, (0, 0)) and in

view of (f4), we have d(G, Q̇, (0, 0)) = 1 6= 0. From Brouwer’s degree property,

there exists (s0, t0)∈Q such that H(s0, t0)=0, i.e. I ′(γ(s0, t0)±)(γ(s0, t0)±)=0,

and the proof is complete. �

Proof of Theorem 1.1. For each n ∈ N, consider ε = 1/(4n) and δ =

1/
√
n. From Proposition 2.10, there exists un ∈ S2/

√
n with

un ∈ I−1

([
c∗Ω −

1

2n
, c∗Ω +

1

2n

])
and ‖I ′(un)‖ ≤ 1√

n
.

Thus, there is (vn) ⊂ S satisfying I(vn) → c∗Ω and I ′(vn) → 0, in other words,

(vn) is a (PS)c∗Ω of nodal functions for I.

Claim 2.12. The sequence (vn) is bounded in E and for a subsequence of

(vn), still denoted by (vn),

lim sup
n∈N

‖vn‖2 < 1.

Indeed, since (vn) ⊂ S, it is easy to see that (vn) is bounded in E. Thus,

I ′(vn)vn = on(1) and

c∗Ω + on(1) = I(vn)− 1

θ
I ′(vn)vn =

(
1

2
− 1

θ

)
‖vn‖2 −

∫
Ω

[F (vn)− 1

θ
f(vn)vn] dx

The above equality together with (f3) and Lemma 2.1 gives

lim sup
n
‖vn‖ ≤

c∗Ω
(1/2− 1/θ)

< 1.

Now, let v0 ∈ E the weak limit of (vn). Combining Claim 2.12 with Lemma 2.2,

we deduce that v0 is a weak solution to problem (P). Finally, to conclude the

proof, we must prove that v±0 6= 0. We know that vn ⇀ v0 in H1
0 (Ω); vn(x) →

v0(x) almost everywhere in Ω and vn → v0 in Lq(Ω), for all q ≥ 1.

On the other hand, using that vn ∈ S, there are sn, tn ∈ [1/R2, 1] and

un ∈ S̃λ, such that

vn = snRu
+
n + tnRu

−
n ⇀ s0Ru

+
0 + t0Ru

−
0 in E,

vn(x) = snRu
+
n (x) + tnRu

−
n (x)→ s0Ru

+
0 (x) + t0Ru

−
0 (x) a.e. in Ω,

for some s0, t0 ∈ [1/R2, 1], where u0 ∈ E is the weak limit of the sequence (un) ⊂
MΩ. By uniqueness of limit, we have v0 = s0Ru

+
0 + t0Ru

−
0 . From Lemma 2.7,

we obtain u±0 6= 0, which implies that v+
0 = s0Ru

+
0 6= 0 and v−0 = s0Ru

−
0 6= 0

and the proof of Theorem 1.1 is complete. �
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3. Unbounded domain

From now on, we consider the problem (P) with Ω = R2. From (V1), it is

possible to show that

‖u‖ =

(∫
R2

(|∇u|2 + V (x)|u|2) dx

)1/2

is a norm on H1(R2), which is equivalent to the usual norm in H1(R2). Hereafter,

E denotes H1(R2) endowed with the above norm.

From assumptions (f1) and (f2), given ε > 0, q ≥ 1 and β > 4, there exists

a positive constant C = C(ε, q, β) such that

|sf(s)|, |F (s)| ≤ εs
2

2
+ C|s|q(eβπs

2

− 1), for all s ∈ R.

Thus, by the Trudinger–Moser inequality (1.4), we have F (u) ∈ L1(R2) for

all u ∈ H1(R2). Therefore, the Euler–Lagrange functional associated with (P)

given by

I(u) =
1

2
‖u‖2 −

∫
R2

F (u) dx, u ∈ E

is well defined. Furthermore, using standard arguments, we see that I is a C1

functional on E with

I ′(u)v =

∫
R2

[
∇u∇v + V (x)uv

]
dx−

∫
R2

f(u)v dx, for all v ∈ E.

Consequently, critical points of I are precisely the weak solutions of problem (P).

Every nontrivial critical point of I is contained in the Nehari manifold

N = {u ∈ E \ {0} : I ′(u)u = 0}.

A critical point u 6= 0 of I is a ground state if I(u) = c1, where c1 = infu∈N I(u).

Since we are interested in least energy nodal solution, we define the nodal

Nehari set M = {u ∈ E : u± 6= 0, I ′(u±)u± = 0} and c∗ = inf
u∈M

I(u). Here, it

is important to observe that every nodal solution of (P) lies in M.

Next, we state some necessary results to prove Theorem 1.3. The proofs of

some of them are in Section 5. The first one can be found in Alves, Carrião and

Medeiros [3].

Lemma 3.1. Let F ∈ C2(R,R+) be a convex and even function such that

F (0) = 0 and f(s) = F ′(s) ≥ 0, for all s ∈ [0,+∞). Then, for all t, s ≥ 0,

|F (t− s)− F (t)− F (s)| ≤ 2(f(t)s+ f(s)t).

Remark 3.2. Notice that, if f is an odd function satisfying the hypotheses

(f1)–(f4), then the primitive F of f verifies the hypotheses from Lemma 3.1.

The following two results are essentially due to Alves, do Ó and Miyagaki

and its proof can be found in [4].
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Theorem 3.3. Suppose that (V1)–(V2) and (f1)–(f5) hold. Then

(P∞)

−∆u+ V∞(x)u = f(u) in R2,

u ∈ H1(R2),

possesses a positive ground state solution, i.e. there exists u ∈ H1(R2) such that

u > 0, I∞(u) = c∞ and I ′∞(u) = 0, where

I∞(u) =
1

2

∫
R2

(
|∇u|2 + V∞(x)u2

)
dx−

∫
R2

F (u) dx, u ∈ H1(R2),

c∞ = inf
u∈N∞

I∞(u) and N∞ denotes the Nehari manifold

N∞ = {u ∈ H1(R2) \ {0} : I ′∞(u)u = 0}.

The second result deal with the asymptotically periodic case.

Theorem 3.4. Suppose that (V1)–(V2) and (f1)–(f5) hold. Then, prob-

lem (P) possesses a positive ground state solution, i.e. there exists u1 ∈ H1(R2)

such that u1 > 0, I(u1) = c1 and I ′(u1) = 0.

Employing the same arguments explored by Alves [2], it is possible to prove

the following result:

Theorem 3.5. Assume that (f1) and (f2) hold. Then, any positive solution

u of problem rom(P∞) with ‖u‖H1(R2) < 1 satifies:

(a) lim
|x|→∞

u(x) = 0, and

(b) C1e
−a|x| ≤ u ≤ C2e

−b|x| in R2, where C1 and C2 are positive constants

and 0 < b < 1 < a. Moreover, we choose a = 1 + δ, b = 1− δ for δ > 0.

The same result hold for u1 > 0 given in Theorem 3.4.

The next proposition is a key point in our arguments to get nodal solutions,

because it gives an estimate from above of c∗.

Proposition 3.6. Suppose that (V1)–(V3), (f1)–(f5) and (1.7) hold. Then

c∗ < c1 + c∞.

Proof. See Section 5. �

The below lemma establishes a condition to conclude when the weak limit of

a (PS) sequence is nontrivial.

Lemma 3.7. Assume that (V1)–(V3) and (f1)–(f5) hold. If (un) ⊂ E is such

that I(un)→ σ, un ⇀ u, I ′(un)un → 0 and

lim inf
n→∞

∫
R2

f(un)un dx > 0,

then u 6= 0, provided that 0 < σ < c∞.



882 C.O. Alves — D.S. Pereira

Proof. See Section 5. �

Proof of Theorem 1.3. Applying Theorem 1.1 with Ω = Bn(0) and

n ∈ N, there is a nodal solution un ∈ H1
0 (Bn(0)) for (P) satisfying

I(un) = c∗n and I ′(un) = 0, where c∗n = c∗Bn(0).

Here, we also denote by I the functional associated with (P), because its restric-

tion to H1
0 (Bn) coincides with the functional associated with (P).

Claim 3.8. The limit lim
n→∞

c∗n = c∗ holds.

Indeed, we begin recalling that (c∗n) is a non-increasing sequence and bounded

from bellow by c∗. If lim c∗n = ĉ > c∗, then there exists φ ∈M such that I(φ) < ĉ.

Take (ωn) ⊂ C∞0 (R2) and t±n > 0 such that ω±n 6= 0, ωn → φ in H1(R2) and

t±nω
±
n ∈ N . Thereby, I(ωn) = I(ω+

n ) + I(ω−n )→ I(φ) ≥ c∗ > 0, I(ω±n )→ I(φ±)

and I ′(ω±n )ω±n → I ′(φ±)φ± = 0.

Then, if we define φn := t+nω
+
n +t−nω

−
n ∈M, by using similar arguments as in

the proof of Lemma 3.7, it is possible to prove that t±n → 1 and I(t±nω
±
n )→ I(φ±),

leading to, I(φn)→ I(φ). Therefore, we can fix n0 ∈ N such that I(φn0
) < ĉ, for

all n ≥ n0. On the other hand, fixing n1 ∈ N such that φn0
∈ MBn1

, it follows

that cn1
≤ I(φn0

) < ĉ, which contradicts the definition of ĉ.

From (f3), we know that (un) is a bounded sequence in E. Thus, we can

assume that (un) is weakly convergent to u, for some u ∈ E. Once

c∗ = lim
n
c∗n = lim

n
I(un) and I ′(un)v = 0, for all v ∈ H1

0 (Bn),

a direct computation gives that u is a weak solution for (P).

Now, our goal is proving that u ∈M and I(u) = c∗. In fact, taking a subse-

quence if necessary, we can assume that I(u±n )→ σ±, where c∗ = σ+ + σ−.

Using that u+
n , u

−
n ∈ N , we derive σ± ≥ c1 > 0. From Proposition 3.6, it

follows that σ± < c∞. Since

lim inf
n→∞

∫
R2

f(u±n )u±n > 0,

Lemma 3.7 yields u± 6= 0. Therefore, u ∈ M and I(u) ≥ c∗. To complete the

proof, by Fatou’s Lemma, we see that

2c∗ = lim inf
n→∞

[2I(un)− I ′(un)un] = lim inf
n→∞

∫
R2

(f(un)un − 2F (un)) dx

≥
∫
R2

(f(u)u− 2F (u)) dx = 2I(u)− I ′(u)u = 2I(u) ≥ 2c∗.

Hence, I(u) = c∗, which proves that (P) has a nodal solution. In order to

establish that the nodal solution has exactly two nodal domains, we refer the

reader to [9, Theorem 2.3]. �
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4. Nonexistence result

In this section, we prove a nonexistence result of least energy nodal solution

for the following autonomous problem

(Q)

−∆u+ V0u = f(u) in R2,

u ∈ H1(R2),

that is, we prove that ĉ := infM J is not attained, where J is the energy func-

tional defined on H1(R2) associated with (Q) and M is the nodal Nehari set

M := {u ∈ H1(R2) : u± 6= 0 and J ′(u±)u± = 0}.

For this, we define

f+(t) =

f(t) for t ≥ 0,

0 for t ≤ 0,

and the functional J+ defined on H1(R2) by

J+(u) :=

∫
R2

(|∇u|2 + V0|u|2) dx−
∫
R2

F+(u) dx,

where F+ is the primitive of f+ with F+(0) = 0. From [4, Theorem 1.1], the

number c+ = infN+ J+ where N+ := {u ∈ H1(R2) \ {0} : J ′+(u)u = 0}, is

a critical value of J+. Let v be the corresponding critical point. It is easy to see

that v− = 0. Thus, v is a nonnegative function and by the maximum principle,

v > 0 on R2. In particular, v is a positive critical point of J .

Analogously, if we define

f−(t) =

0 for t ≥ 0,

f(t) for t < 0,

and denote by J− the corresponding functional and by N− the Nehari manifold,

then c− := inf
N−

J− is a critical value of J−.

The next proposition is a key point in our argument to prove the nonexistence

result, because it gives an exact estimate of ĉ.

Proposition 4.1. Under assumptions (f1)–(f5), we have ĉ = c+ + c−.

Proof. Let v, w ∈ H1(R2) verifying

J+(v) = c+, J ′+(v) = 0, v(x) > 0, for all x ∈ R2,

J−(w) = c−, J ′−(w) = 0, w(x) < 0, for all x ∈ R2,

and consider ϕ ∈ C∞0 (R2) be a cut-off function satisfying

suppϕ ⊂ B2(0), 0 ≤ ϕ ≤ 1, ϕ = 1 on B1(0) and |∇ϕ|∞ ≤ C.
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Using the above function, for each R > 0 fixed, we set ϕR(x) = ϕ(x/R). Then,

suppϕR ⊂ B2R(0), 0 ≤ ϕR ≤ 1, ϕR = 1 on BR(0) and |∇ϕR|∞ ≤ C/R.

Now, we consider the functions:

vR(x) := ϕR(x)v(x), wR(x) := ϕR(x)w(x) and wR,n := wR(x− xn),

where xn = (n, 0). Clearly, for n large enough, supp vR ∩ suppwR,n = ∅.
Let tR, sR be the positive real numbers such that

J ′(tRvR)tRvR = 0 and J ′(sRwR,n)sRwR,n = 0.

Since

t2R

∫
R2

(|∇vR|2 + V0|vR|2) dx =

∫
R2

f+(tRvR)tRvR

and vR → v in H1(R2) as R → +∞, it is possible to show, by using similar

arguments given in the proof of Lemma 3.7, that tR → 1, as R→ +∞. Similarly,

s2
R

∫
R2

(|∇wR,n|2 + V0|wR,n|2) dx =

∫
R2

f+(sRwR,n)sRwR,n.

Since wR → w in H1(R2) as R → +∞, we derive that sR → 1, as R → +∞.

Now, note that uR := tRvR + sRwR,n ∈ M with u+
R = tRvR and u−R = sRwR,n

for n ∈ N large enough. Then,

ĉ ≤ J(tRvR + sRwR,n) = J(tRvR) + J(sRwR,n)

Using the invariance of R2 under translations, by taking R → +∞, we obtain

ĉ ≤ J(v) + J(w). Since J(v) = J+(v) = c+ and J(w) = J−(w) = c−, it follows

that ĉ ≤ c+ + c−.

On the other hand, it is obvious that ĉ ≥ c++c−. Therefore, we can conclude

that ĉ = c+ + c−. �

Proof of Theorem 1.2. Suppose by contradiction that there exists u ∈M
such that J(u) = ĉ. Thus, u+ ∈ N+ and u− ∈ N−, from where it follows that

c+ + c− ≤ J+(u+) + J−(u−) = J(u) = ĉ = c+ + c−,

and so, J+(u+) = c+ and J−(u−) = c−. Thereby, u+ is a critical point of J+

and u− is a critical point of J−.Then, by maximum principle, we must have

u+(x) > 0, for all x ∈ R2 and u−(x) < 0, for all x ∈ R2,

which is impossible. �

Remark 4.2. A version of Theorem 1.2 can be made for N ≥ 3, by supposing

that f has a subcritical growth.
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Remark 4.3. We can define H1
r (R2) := {u ∈ H : u is a radial function},

Mr := M∩ H1
r (R2) and c∗r = inf

Mr

J . Under the assumptions of Theorem 1.2,

there exist a minimizer u ∈ Mr which is a critical point of I on H1(R2). To

prove this, we combine the symmetric criticality principle with arguments as in

the proof of Theorem 1.1. It is clear that c∗ ≤ c∗r , and so, as a consequence of our

nonexistence result, we have c∗ < c∗r . A similar inequality in bounded domain

like annulus for N ≥ 3 was proved in [11] .

5. Proofs of lemmas and propositions

Proof of Lemma 2.2. From (f1), |f(un)un| ≤ C|un|e4π|un|2 , for all n ∈ N.

We claim that ∫
Ω

|un|e4π|un|2 dx→
∫

Ω

|u|e4π|u|2 dx, as n→∞.

Effectively, consider t > 1 with t ≈ 1. Note that∫
Ω

(e4π|un|2)t dx =

∫
Ω

e4πt‖un‖2(|un|/‖un‖)2

dx ≤
∫

Ω

e4πtb(|un|/‖un‖)2

dx.

Now, since b < 1, we can fix t > 1 with t ≈ 1, such that tb < 1. Consequently,

by Trudinger–Moser inequality,

sup
n

∫
Ω

(e4π|un|2)t dx ≤ sup
‖v‖≤1

∫
Ω

e4πtb|v|2 dx <∞.

Thus, the sequence (e4π|un|2) is bounded in Lt(Ω) and e4π|un(x)|2 → e4π|u(x)|2

almost everywhere in Ω. This implies that,

(5.1) e4π|un|2 ⇀ e4π|u|2 in Lt(Ω).

On the other hand,

(5.2) |un| → |u| in Lt
′
(Ω)

where 1/t+ 1/t′ = 1. Now, (5.1) combined with (5.2) gives∫
Ω

|un|e4π|un|2 dx→
∫

Ω

|u|e4π|u|2 dx.

Hence, |un|e4π|un|2 → |u|e4π|u|2 in L1(Ω). Thus, from [15, Theorem IV.9], there

are a subsequence of (un) and h ∈ L1(Ω) such that |un|e4π|un|2 ≤ h almost

everywhere in Ω. Thereby, |f(un)un| ≤ h almost everywhere in Ω. By Lebesgue’s

Theorem, it follows that ∫
Ω

f(un)un dx→
∫

Ω

f(u)u dx.

The proof of (2.5) follows by using the same type of arguments. �
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Proof of Lemma 2.6. Since S̃λ ⊂ MΩ, in view of Corollary 2.4, we only

need to prove that there exist mλ > 0 such that ‖u‖2 ≤ mλ < 1 for all u ∈ S̃λ.

For each u ∈ S̃λ, we have

c∗Ω + λ ≥ I(u) = I(u)− 1

θ
I ′(u)u =

(
1

2
− 1

θ

)
‖u‖2 −

∫
Ω

(
F (u)− 1

θ
f(u)u

)
dx.

From Ambrosetti–Rabinowitz condition (f3),

c∗Ω + λ ≥
(

1

2
− 1

θ

)
‖u‖2.

On the other hand, by Lemma 2.1, we can fix λ > 0 sufficiently small such that

A+ λ <

(
1

2
− 1

θ

)
,

where A was given in (2.3). Therefore

‖u‖2 ≤ c∗Ω + λ(
1

2
− 1

θ

) ≤ mλ < 1, where mλ :=
A+ λ(
1

2
− 1

θ

) . �

Proof of Lemma 2.7. Since u ∈ S̃λ ⊂MΩ,

‖u±‖2 =

∫
Ω

f(u±)u± dx.

Then, from (f1),

‖u±‖2 ≤ C
∫

Ω

|u±|e4π|u±|2 dx.

Using Sobolev imbedding and Höder inequality, for 1 < t1 and 1 < t2 ≈ 1 such

that 1/t1 + 1/t2 = 1, we obtain

‖u±‖2 ≤ |u±|Lt1
(∫

Ω

e4πt2|u±|2 dx

)1/t2

.

From Corollary 2.4,

m0 ≤ |u±|Lt1
(∫

Ω

e4πt2‖u±‖2(|u±|/‖u±‖)2

dx

)1/t2

,

and, by Lemma 2.6, it follows that

m0 ≤ |u±|Lt1
(∫

Ω

e4πt2mλ(|u±|/‖u±‖)2

dx)1/t2 .

Since mλ < 1, we can fix 1 < t2 near 1 such that t2mλ < 1. From Trudinger–

Moser inequality (1.3), there exists a constant C > 0 such that∫
Ω

e4πt2mλ(|u±|/‖u±‖)2

dx ≤ C for all u ∈ S̃λ.

Thereby, for some C1 > 0, C1 ≤ |u±|Lt1 for all u ∈ S̃λ. Now, the lemma follows

applying interpolation. �
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Proof of Proposition 3.6. Let u be a positive ground state solution of

(P∞) and u1 is a positive ground state of (P) given by Theorems 3.3 and 3.4,

respectively. Let us define un(x) = u(x−xn), where xn = (0, n) and for α, β > 0

(5.3) h±(α, β, n) =

∫
R2

(
|∇(αu1 − βun)±|2 + V (x)|(αu1 − βun)±|2

)
dx

−
∫
R2

f((αu1 − βun)±)(αu1 − βun)± dx.

Recalling that I ′(u1)u1 = 0 and using (f4), we get

(5.4)

∫
R2

(|∇(u1/2)|2 + V (x)(u1/2)2) dx−
∫
R2

f(u1/2)(u1/2)

=

∫
R2

(
f(u1)

u1
− f(u1/2)

(u1/2)

)(
u1

2

)2

dx > 0.

and

(5.5)

∫
R2

(|∇(2u1)|2 + V (x)|2u1|2) dx−
∫
R2

f(2u1)(2u1)

=

∫
R2

(
f(u1)

u1
− f(2u1)

2u1

)
(2u1)2 dx < 0.

By (V2), for n large enough, there holds

(5.6)

∫
R2

(|∇(un/2)|2 + V (x)(un/2)2) dx−
∫
R2

f(un/2)(un/2) > 0

and

(5.7)

∫
R2

(|∇(2un)|2 + V (x)(2un)2) dx−
∫
R2

f(2un)(2un) < 0.

Hence, from (5.4)–(5.7), there exists n0 > 0 such that

(5.8)

h+(1/2, β, n) > 0,

h+(2, β, n) < 0

for n ≥ n0 and β ∈ [1/2, 2]. Now, for all α ∈ [1/2, 2] we have

(5.9)

h−(α, 1/2, n) > 0,

h−(α, 2, n) < 0.

From this, we can apply a variant of the Mean Value Theorem due to Mi-

randa [21], to obtain α∗, β∗ ∈ [1/2, 2], which depend on n and verify h±(α∗, β∗, n)

= 0, for any n ≥ n0. Thus, α∗u1 − β∗un ∈M, for n ≥ n0.

In view of the definition of c∗, it suffices to show that

sup
1/2≤α,β≤2

I(αu1 − βun) < c1 + c∞ for n ≥ n0.
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In order to do this, first we use Lemma 3.1 to get the ensuing estimate

I(αu1 − βun) ≤ 1

2

∫
R2

(|∇(αu1)|2 + |∇(βun)|2) dx

+
1

2

∫
R2

V (x)(|αu1|2 + |βun|2) dx− αβ
∫
R2

(∇u1∇un + V (x)u1un)dx−A1,

where

A1 =

∫
R2

F (αu1) dx+

∫
R2

F (βun) dx− 2

∫
R2

[f(αu1)βun + f(βun)αu1] dx

Since u1 is a positive solution of (P), we know that∫
R2

(∇u1∇un + V (x)u1un) dx ≥ 0.

Therefore

(5.10) I(αu1 − βun) ≤ I(αu1) + I∞(βun) + 2α

∫
R2

f(βun)u1 dx

+ 2β

∫
R2

f(αu1)un dx+
β2

2

∫
R2

(V (x)− V∞(x))u2
n dx.

From (V3), ∫
R2

(V (x)− V∞(x))u2
n dx ≤ −Ce−µn

and, by (f1)–(f2),∫
R2

f(αu1)un dx ≤ εα
∫
R2

u1un dx+ Cα

∫
R2

(eτα
2u2

1 − 1)u1un dx, for τ > 4π.

Notice that from Theorem 3.5,∫
Bn/2

u1un dx ≤ C2

∫
Bn/2

u1e
−b|x−xn| dx.

Once |x− xn| ≥ |xn| − |x| = n− |x| and |x| ≤ n/2, we find that |x− xn| ≥ n/2,

from where it follows that∫
Bn/2

u1un dx ≤ C2

∫
Bn/2

u1e
−bn/2 dx = Ce−bn/2

and ∫
R2\Bn/2

u1un dx ≤C2

∫
R2\Bn/2

e−b|x|un dx

≤C2e
−bn/2

∫
R2

un dx = C2e
−bn/2

∫
R2

u dx.

Therefore ∫
R2

u1un dx ≤ Ce−bn/2.

Moreover, since u1 ∈ L∞(R2),∫
R2

(eτα
2u2

1 − 1)u1un dx ≤ C
∫
R2

u1un ≤ Ce−bn/2.
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Therefore∫
R2

f(αu1)un dx ≤ Ce−bn/2 and

∫
R2

f(βun)u1 dx ≤ Ce−bn/2.

Then, from (5.10),

I(αu1 − βun) ≤ sup
α≥0

I(αu1) + sup
β≥0

I∞(βun) + C(e−bn/2 − e−µn).

Since µ < 1/2, for n large enough, we know that e−bn/2 − e−µn < 0, from where

it follows that sup
1/2≤α,β≤2

I(αu1 − βun) < c1 + c∞. Consequently, c∗ < c1 + c∞,

finishing the proof of the proposition. �

Proof of Lemma 3.7. Suppose, by contradiction that u ≡ 0. From (V2),

given ε > 0 there exists R = R(ε) > 0 such that |V (x)−V∞(x)| < ε, for |x| ≥ R.

As a consequence of u ≡ 0, we get∫
BR

|V (x)− V∞(x)||un|2 dx→ 0.

The inequality∫
R2

|V (x)− V∞(x)||un|2 dx ≤
∫
BR

|V (x)− V∞(x)||un|2 dx+ ε

∫
R2\BR

|un|2 dx,

together with the boundedness of (un) in H1(R2) yields |I(un) − I∞(un)| → 0

as n→∞.

A similar argument shows that |I ′(un)un − I ′∞(un)un| → 0 as n → ∞.

Consequently,

(5.11) I∞(un) = σ + on(1) and I ′∞(un)un = on(1).

In what follows, we fix sn > 0 verifying snun ∈ N∞. We claim that (sn)

converges to 1 as n→∞. Effectivelly, we start proving that

(5.12) lim sup sn ≤ 1.

Suppose by contradiction that there exists a subsequence of (sn), still denoted

by (sn), such that sn ≥ 1 + δ for all n ∈ N , for some δ > 0. From (5.11),

(5.13)

∫
R2

(|∇un|2 + V∞(x)|un|2) dx =

∫
R2

f(un)un dx+ on(1)

On the other hand, since snun ∈ N∞,

(5.14) sn

∫
R2

(|∇un|2 + V∞(x)|un|2) dx =

∫
R2

f(snun)un dx.

Consequently

(5.15)

∫
R2

(
f(snun)

snun
− f(un)

un

)
|un|2 dx = on(1).
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We claim that there exist (yn) ⊂ Z2 with |yn| → ∞, r > 0 and β > 0 such

that ∫
Br(yn)

u2
n dx ≥ β > 0.

Indeed, in the contrary case, using a version of Lions’ results for critical growth

in R2 due to Alves, do Ó and Miyagaki [4], we derive

lim
n→+∞

∫
R2

f(un)un dx = 0,

which is contrary to our assumption.

Now, let vn(x) := un(x+yn). Once that (un) is bounded in H1(R2), it is easy

to show that (vn) is also bounded in H1(R2). Therefore, for some subsequence,

we can assume that (vn) is weakly convergent, and we will denote by ṽ its weak

limit in H1(R2). Observing that∫
Br(0)

|vn|2 dx =

∫
Br(yn)

|un|2 dx ≥ β > 0,

we deduce that ṽ 6= 0 in H1(R2). Now, (5.15), (f4) and Fatou’s Lemma lead to

0 <

∫
R2

(
f((1 + δ)ṽ)

(1 + δ)ṽ
− f(ṽ)

ṽ

)
ṽ2 dx ≤ 0,

which is impossible. Hence lim sup
n→∞

sn ≤ 1.

If s0 = lim sup
n→∞

sn < 1, we can assume that sn < 1 for n large enough. Then,

by Fatou’s Lemma

0 <

∫
R2

(
f(ṽ)

ṽ
− f(soṽ)

soṽ

)
ṽ2 dx ≤ 0 if so > 0,

0 <

∫
R2

f(ṽ)ṽ ≤ 0 if so = 0,

which are impossible. Hence, lim sup
n→∞

sn = 1, and so, for some subsequence,

(5.16) lim
n→∞

sn = 1.

As a consequence of (5.13), (5.14), (5.16) and the fact that f is odd, we have∫
R2

F (snun) dx−
∫
R2

F (un) dx = on(1)

and

(s2
n − 1)

∫
R2

(|∇un|2 + V∞(x)|un|2) dx = on(1),

from where it follows that I∞(snun) = I∞(un) + on(1). Then

c∞ ≤ I∞(snun) = σ + on(1).

Taking n → +∞, we find c∞ ≤ σ, which is impossible because σ < c∞. This

contradiction comes from the assumption that u ≡ 0. �
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