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ON NONHOMOGENEOUS BOUNDARY VALUE PROBLEM

FOR THE STEADY NAVIER–STOKES SYSTEM

IN DOMAIN WITH PARABOLOIDAL AND LAYER TYPE

OUTLETS TO INFINITY

Kristina Kaulakytė

Abstract. The nonhomogeneous boundary value problem for the steady
Navier–Stokes system is studied in a domain Ω with two layer type and one

paraboloidal outlets to infinity. The boundary ∂Ω is multiply connected and

consists of the outer boundary S and the inner boundary Γ. The boundary
value a is assumed to have a compact support. The flux of a over the

inner boundary Γ is supposed to be sufficiently small. We do not impose

any restrictions on fluxes of a over the unbounded components of the outer
boundary S. The existence of at least one weak solution is proved.

1. Introduction

In this paper we study the nonhomogeneous boundary value problem for the

steady Navier–Stokes equations

(1.1)


−ν∆u + (u · ∇)u +∇p = 0 in Ω,

div u = 0 in Ω,

u = a on ∂Ω,
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836 K. Kaulakytė

in a domain Ω ⊂ R3 having layer type and paraboloidal outlets to infinity.

Here the vector-valued function u = u(x) =
(
u1(x), u2(x), u3(x)

)
and the scalar

function p = p(x) are the unknown velocity field and the pressure of the fluid,

while a(x) = (a1(x), a2(x), a3(x)) is the given boundary value; ν > 0 is the

constant coefficient of the viscosity.

In bounded domains Ω with the multiply connected boundaries ∂Ω, consisting

of N disjoint components Γj , problem (1.1) was studied first by J. Leray in 1933

(see [24]), and thereafter by many authors (see [1]–[9], [12], [15]–[19], [26], [25],

[27]–[29], [44], [45], etc.). In case of a bounded domain Ω continuity equation

(1.12) implies the necessary compatibility condition for the solvability of problem

(1.1):

(1.2)

∫
∂Ω

a · n dS =

N∑
j=1

∫
Γj

a · n dS = 0,

where n is a unit vector of the outward (with respect to Ω) normal to ∂Ω.

However, for a long time the existence of a weak solution u ∈W 1,2(Ω) to problem

(1.1) was proved either under the condition of zero fluxes

(1.3) Fj =

∫
Γj

a · n dS = 0, j = 1, . . . , N,

(e.g. [24], [19], [20], [45]), or assuming the fluxes Fj to be sufficiently small (e.g.

[2], [5], [6], [9], [18]), or under the certain symmetry assumptions on the domain

Ω and the boundary value a (e.g. [1], [7], [8], [26], [34]–[36], [16]), or assuming

that the arbitrary large flux F has the “correct” sign (see [15]). Condition (1.3)

requires the fluxes Fj of the boundary value a to be zero separately on each

connected component Γj of the boundary ∂Ω, while the compatibility condi-

tion (1.2) means only that the total flux is equal to zero. Obviously, condition

(1.3) is stronger than (1.2), and (1.3) does not allow the presence of sinks and

sources. In [24] J. Leray formulated a question whether problem (1.1) is solvable

only under the necessary compatibility condition (1.2). In general case this so

called Leray’s problem was an open problem for 80 years. Fortunately, recently

Leray’s problem was solved for a 2-dimensional bounded multiply connected do-

main (see [17]).

In domains with noncompact boundaries problem (1.1) with the homoge-

neous boundary conditions was exhaustively studied during the last 35 years

(e.g. [10], [13], [21]–[23], [33], [37]–[42]). However, not much is known about the

nonhomogeneous boundary value problem (1.1) in the domain with noncompact

boundaries. To the best of our knowledge problem (1.1) with nonhomogeneous

boundary condition for the first time was solved without prescribing a “smallness

condition” in 1999 in [30]. Later H. Fujita and H. Morimoto [25]–[27] studied

problem (1.1) in the symmetric two-dimensional multiply connected domains Ω
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with channel-like outlets to infinity containing a finite number of “holes”. As-

suming that the boundary value a is zero on the “outer” boundary and that

a satisfies the symmetry assumptions on the bounded connected components of

∂Ω, it is proved in [25]–[27] that problem (1.1) admits at least one solution which

tends in every channel to a corresponding Poiseuille flow. Notice that the fluxes

of Poiseuille flows are assumed to be sufficiently small. In 2010 J. Neustupa [31],

[32] studied problem (1.1) in unbounded domains Ω with the multiply connected

boundaries. He supposed that the fluxes of a over bounded components of the

boundary are “small”, but did not impose any conditions on the fluxes over the

unbounded parts of ∂Ω (of course, the total flux is supposed to be equal to zero).

In [32] the existence of at least one solution to (1.1) is proved assuming that the

boundary value a admits a solenoidal extension A with A ∈ L3(Ω), ∇A ∈ L2(Ω),

and the found solutions have finite Dirichlet integrals. This imposes a restriction

on the domain Ω: it should expand at infinity sufficiently rapidly, in order to

have enough place to “transfer” a flux of the fluid from a bounded part of Ω to

infinity.

Recently problem (1.1) was studied in a class of domains Ω ⊂ Rn, n = 2, 3,

having paraboloidal outlets to infinity (see [14]). Assuming, as in [32], that the

fluxes of a over the bounded connected components of the inner boundary are

sufficiently small, we do not impose any restrictions on the fluxes of the bound-

ary value a over the noncompact connected components of the outer boundary.

Under these conditions in [14] the existence of at least one weak solution to prob-

lem (1.1) which has, additionally, the prescribed fluxes over the cross-sections of

outlets to infinity, was proved. This solution can have finite or infinite Dirich-

let integral depending on the geometrical properties of the outlets. The proofs

in [14] are based on a special construction of the extension A of the boundary

value a which satisfies the Leray–Hopf inequality and allows to get the effective

estimates of the solution.

In this paper the results obtained in [14] are extended to a class of the non-

compact domains Ω ⊂ R3 having paraboloidal and layer type outlets to infinity

(see Subsection 2.2 for the exact definitions). Under the same assumptions as

in [14] it is proved the existence of at least one weak solution of problem (1.1).

2. Preliminaries

2.1. Notation and function spaces. Let V be a Banach space. The

norm of an element u in the function space V is denoted by ‖u‖V . Vector-valued

functions are denoted by bold letters; spaces of scalar and vector-valued functions

are not distinguished in notation. The vector-valued function u = (u1, . . . , un)

belongs to the space V , if ui ∈ V, i = 1, . . . , n, and ‖u‖V =
n∑
i=1

‖ui‖V .
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Let Ω be a domain in Rn. As usual, denote by C∞(Ω) the set of all infinitely

differentiable functions defined on Ω and let C∞0 (Ω) be the subset of all functions

from C∞(Ω) with compact support in Ω. For a given nonnegative integer k and

q > 1, Lq(Ω) and W k,q(Ω) indicate the usual Lebesgue and Sobolev spaces;

W k−1/q,q(∂Ω) is the trace space on ∂Ω of functions from W k,q(Ω); W̊ k,q(Ω) is

the closure of C∞0 (Ω) in the norm of W k,q(Ω); we shall write u ∈ W k,q
loc (Ω) if

u ∈W k,q(Ω′) for any bounded subdomain Ω′ with Ω′ ⊂ Ω.

Let D(Ω) be the Hilbert space of vector functions formed as the closure of

C∞0 (Ω) in the Dirichlet norm ‖u‖D(Ω) = ‖∇u‖L2(Ω) generated by the scalar

product

(u,v) =

∫
Ω

∇u : ∇v dx,

where

∇u : ∇v =

n∑
j=1

∇uj · ∇vj =

n∑
j=1

n∑
k=1

∂uj
∂xk

∂vj
∂xk

.

Denote by J∞0 (Ω) the set of all solenoidal (div u = 0) vector fields u from C∞0 (Ω).

By Ĥ(Ω) we indicate the subspace of D(Ω) consisting of solenoidal vector fields,

and by H(Ω) – the space formed as the closure of J∞0 (Ω) in the Dirichlet norm.

Obviously, H(Ω) ⊂ Ĥ(Ω). In general, the spaces Ĥ(Ω) and H(Ω) do not coincide

(see, for example, [10], [21], [42], [13], [38]). However, if Ω is a bounded domain

with Lipschitz boundary, then H(Ω) = Ĥ(Ω) (see [21]).

Let M be a closed set in Rn, n = 2, 3. Denote by ∆M(x) a regularized

distance from the point x to a setM. Notice that ∆M(x) is an infinitely differ-

entiable function in Rn \M and the following inequalities

(2.1) a1dM(x) ≤ ∆M(x) ≤ a2dM(x), |Dα∆M(x)| ≤ a3d
1−|α|
M (x)

hold. Here dM = dist(x,M) is the real distance from x to M, the positive

constants a1, a2 depend only on the dimension n, while a3 depends on n and on

the order of differentiation |α| (see [43]).

2.2. Domains with outlets to infinity. Let Ω ⊂ R3 be an unbounded

domain which splits outside the ball BR0
(0) = {x ∈ R3 : |x| < R0} into three

noncompact disjoint components (1), i.e.

Ω = Ω0 ∪D1 ∪D2 ∪D3,

where Ω0 = Ω ∩ BR0(0) and the unbounded components D1, D2 are layer type

outlets to infinity, while D3 is a paraboloidal outlet.

(1) In order not to loose the main idea in the technical details, we take a domain with

three outlets to infinity. In general we can take a finite number of outlets to infinity.
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We assume that the outlet D3 is connected to the layer D2. Layers D1, D2

are connected to each other by a finite cylinder which we denote H ⊂ Ω0 (see

Figure 1). Outlets D1, D2, D3 have the forms (2):

Di = {z(i) ∈ R3 : 0 < z
(i)
3 < gi(|z(i)′|) |z(i)′| > 1}, i = 1, 2,

D3 = {z(3) ∈ R3 : |z(3)′| < g3(z
(3)
3 ), z

(3)
3 > 1},

where the functions gi(t), i = 1, 2, possess the following properties:

µ1gi(t) ≤ max
t≤t1≤2t

gi(t1) ≤ µ2gi(t), gi(t) ≥ 1, for all t,

with the certain positive constants µ1, µ2,

|gi(t1)− gi(t2)| ≤ Li(t)|t1 − t2|, t1, t2 ∈ [t, 2t],

and for Li(t) holds the inequality

Li(t) · t
gi(t)

≤ const, Li(t) ≤ const for all t, i = 1, 2;

the function g3(t) satisfies the Lipschitz condition

|g3(t1)− g3(t2)| ≤ L3|t1 − t2|, t1, t2 ≥ 1, g3(t) ≥ 1 for all t.

Figure 1. Domain Ω.

We assume that:

(i) The boundary ∂Ω is Lipschitz.

(ii) The bounded domain Ω0 has the form Ω0 = G0 \ G, where G0 and G

are bounded simply connected domains such that G ⊂ G0.

(2) Note that z(i) means the local coordinate system in the outlet Di, while x is the global

system.
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(iii) The outer boundary S = ∂Ω \ Γ, Γ = ∂G, consists of three disjoint

unbounded connected components:

S(1) =
{
z(1) ∈ ∂Ω : z

(1)
3 = g1(|z(1)′|)

}
,

S(2) =
{
z(1) ∈ ∂Ω : z

(1)
3 = 0, |z(1)′| > 1

}
∪ ∂H∗ ∪Υ(1)

∪
{
z(2) ∈ ∂Ω : z

(2)
3 = 0, |z(2)′| > 1

}
∪Υ(2),

S(3) =
{
z(2) ∈ ∂Ω : z3 = g2(|z(2)′|), |z(2)′| > 1

}
∪Υ(3) ∪ ∂D∗3 ,

where ∂H∗ is a lateral surface of the cylinder H and ∂D∗3 is a lateral

surface of the paraboloidal outlet D3, Υ(1) is a surface connecting ∂D1

and ∂H∗, Υ(2) is a surface connecting ∂D2 and ∂H∗, Υ(3) is a surface

connecting ∂D2 and ∂D∗3 .

Below we will use the following notation:

Di(τi) =
{
z(i) ∈ Di : |z(i)′| < τi

}
, i = 1, 2,

D3(τ3) =
{
z(3) ∈ D3 : z

(3)
3 < τ3

}
,

Ω(τ1, τ2, τ3) = Ω0 ∪D1(τ1) ∪D2(τ2) ∪D3(τ3),

ωi(τ) =
{
z(i) ∈ Di : τ < |z(i)′| < 2τ

}
, i = 1, 2,

ω3(τ) =

{
z(3) ∈ D3 : τ − g3(τ)

2L3
< z

(3)
3 < τ

}
,

σi(τ) = Di ∩
{
z(i) : |z(i)′| = τ

}
, i = 1, 2,

σ3(τ) = D3 ∩
{
z(3) : z

(3)
3 = τ

}
,

i.e. σj ⊂ R2 are the cross-sections of the outlets Dj , j = 1, 2, 3.

In order to prove the existence of at least one weak solution, we use the

methods proposed in [33], [23], [40]. Following these methods, we have to select

a family of the bounded domains Ω(t) such that Ω(t) exhausts the domain Ω as

t→∞. Such a family of the domains can be taken in the following form

Ω(t) = Ω(2h1(t), 2h2(t), h3(t)),

where hj(t), j = 1, 2, 3, are the functions inverse to

χi(τ) =

∫ τ

1

dr

r g
1/3
i (r)

, i = 1, 2, χ3(τ) =

∫ τ

1

dr

g
4/3
3 (r)

,

so that

t =

∫ hi(t)

1

dr

r g
1/3
i (r)

, i = 1, 2, t =

∫ h3(t)

1

dr

g
4/3
3 (r)

.

If the integrals ∫ 2hi(t)

1

dr

r g3
i (r)

, i = 1, 2, and

∫ h3(t)

1

dr

g4
3(r)



Boundary Value Problem for Steady Navier–Stokes System 841

diverge, then the functions χj(τ), hj(t), j = 1, 2, 3, increase monotonically and

tend to infinity as t, τ run through the interval [1,∞). Moreover, the following

relations

(2.2) h′i(t) = hi(t) · g1/3
i (hi(t)), i = 1, 2, h′3(t) = g

4/3
3 (h3(t))

hold.

Remark 2.1. In case that the integrals∫ 2hi(t)

1

dr

r g3
i (r)

, i = 1, 2, and

∫ h3(t)

1

dr

g4
3(r)

are bounded, we get the existence of at least one weak solution from the Leray–

Schauder Theorem and we do not need to control the corresponding Dirichlet

integral (see the proof of existence).

2.3. Formulation of the problem. We consider the following problem

(2.3)



−ν∆u + (u · ∇)u +∇p = 0 in Ω,

div u = 0 in Ω,

u = a on ∂Ω,∫
σj(t)

u · n dS = Fj for j = 1, 2, 3,

where n is the unit vector of the normal to σj , j = 1, 2, 3.

We suppose that the boundary value a ∈ W 1/2,2(∂Ω) has a compact sup-

port (3) and Λ = supp a ∩ S ⊂ S(3) (see Figure 1). Let∫
Γ

a · n dS = F(inn),

∫
Λ

a · n dS = F(out)

be the fluxes of the boundary value a over the inner and the outer boundaries,

respectively. Then the necessary flux compatibility condition can be written as

(2.4) F(inn) + F(out) + F1 + F2 + F3 = 0

(the total flux is equal to zero).

The main purpose of the paper is to construct an appropriate extension of

the boundary data which gives the possibility to reduce the nonhomogeneous

boundary conditions to the homogeneous ones. This extension is constructed as

the sum

A = B(inn) + B(out) + B(flux),

where B(inn) extends the boundary value a from the inner boundary Γ, B(out)

extends a from the connected component S(3) of the noncompact outer bound-

ary S, and B(flux) has zero boundary value and “removes” the fluxes over the

(3) As in the paper [14], this assumption is made to insure that the flux F(out) of the

boundary value a over the unbounded parts of the boundary has sense.
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cross-sections σj , j = 1, 2, 3. The vector fields B(out) and B(flux) are constructed

to satisfy so called Leray–Hopf inequality (see (2.8) below) which allows to obtain

the a priori estimates of the solution for the arbitrary large fluxes F(out) and Fj ,
j = 1, 2, 3. The construction of the vector fields B(out) and B(flux) is based on

the methods proposed in [22], [42], [38] (see also [14] where such extensions are

constructed in the domains having only paraboloidal outlets to infinity). Notice

that in general Leray–Hopf inequality cannot be true for the vector field B(inn).

There are counterexamples of a bounded domain (see [44], [11], [3]), showing

that for nonzero fluxes of the boundary value a over the connected components

of the boundary Leray–Hopf inequality may be false whatever the choice of the

solenoidal extension is taken. Therefore, we suppose that the flux F(inn) of a

over the inner boundary Γ is “sufficiently small”. After the extension A with

the above properties is constructed, the proof of the existence of a weak so-

lution to problem (1.1) is based on the methods developed in [23], [33]. The

construction of a suitable extension depends on the form of the outlet to infinity

to which we “drain” the fluxes. In this paper we analyse in details the case,

when we “transport” the fluxes from the bounded parts of ∂Ω to the layer-type

outlet to infinity.

2.4. Weak solutions. The weak solution of problem (2.3) is a solenoidal

vector field u ∈ W 1,2
loc (Ω) satisfying the boundary condition u|∂Ω = a, the flux

conditions

(2.5)

∫
σj(t)

u · n dS = Fj , j = 1, 2, 3,

and the integral identity

(2.6) ν

∫
Ω

∇u : ∇η dx−
∫

Ω

(u · ∇)η · u dx = 0 for all η ∈ J∞0 (Ω).

Assume that the necessary compatibility condition (2.4) is valid. Let A ∈
W 1,2

loc (Ω) be a solenoidal extension of the boundary value a satisfying the flux

conditions (2.5):

div A = 0, A|∂Ω = a,

∫
σj(t)

A · n dS = Fj , j = 1, 2, 3.

We reduce problem (2.6) to the problem with the homogeneous boundary con-

ditions and zero fluxes. After substituting u = v + A into (2.6), we look for the

new unknown velocity field v ∈W 1,2
loc (Ω) satisfying the conditions

div v = 0, v|∂Ω = 0,

∫
σj(t)

v · n dS = 0, j = 1, 2, 3,

and the integral identity

(2.7) ν

∫
Ω

∇v : ∇η dx−
∫

Ω

(v · ∇)η · v dx−
∫

Ω

(A · ∇)η · v dx
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−
∫

Ω

(v · ∇)η ·A dx =

∫
Ω

(A · ∇)η ·A dx− ν
∫

Ω

∇A : ∇η dx,

for all η ∈ J∞0 (Ω). We construct the extension A which satisfies Leray–Hopf

type inequalities

(2.8)

∫
Ω(t)

|A|2|w|2 dx ≤ ε
∫

Ω(t)

|∇w|2 dx,∫
ωj(hj(t))

|A|2|w|2 dx ≤ ε
∫
ωj(hj(t))

|∇w|2 dx,

where w ∈W 1,2
loc (Ω) is an arbitrary solenoidal function with w|∂Ω = 0 and ε can

be chosen arbitrary small.

3. Construction of the extension of the boundary value

3.1. Construction of the extension B(inn). We start with the construc-

tion of the “virtual drain” function b(inn) which “transforms” the flux F(inn)

from the inner boundary Γ to infinity. Constructing the vector field b(inn) (also

b(out) in the next subsection) one can arbitrary choose the outlet where the

virtual drain function has nonzero flux. Generally speaking, choosing different

outlets, different solutions of problem (2.3) may be obtained (a solution is unique

only for small data). A solenoidal vector field with nonzero flux can have finite

Dirichlet integral over the outlet only if it is “sufficiently wide” (see [33], [42]).

Moreover, if the Dirichlet integral is infinite, growth of it over D1(τ) depends on

how fast the outlet D1 is expanding at infinity. Therefore, constructing b(inn)

(and b(out)), we “drain” the flux to the “widest” outlet in order to minimize the

dissipation of energy (Dirichlet integral). In this paper we suppose that such an

outlet is of the layer type, say D1.

First, we construct in D1 a solenoidal vector field b
(inn)
1 such that

b
(inn)
1 (x)|∂D1∩∂Ω = 0,

∫
σ1(t)

b
(inn)
1 · n dS = F(inn).

Introduce the infinite layer L = {y ∈ R3 : 0 < y3 < g1(|y′|), y′ ∈ R2} which for

|y′| > 1 coincides with the outlet D1. Let γ1 = {y ∈ L : |y′| = 0} (i.e. one can

take y = z(1)). Define in L a cut–off function

(3.1) ζ1(y) = Ψ

(
ln

(
ρ(δ(y))

∆(y)

))
,

where δ(y) = ∆γ1∪{y3=g1(|y′|)}(y), ∆(y) = ∆∂L\{y3=g1(|y′|)}(y), Ψ is a smooth

monotone function, 0 ≤ Ψ(t) ≤ 1,

(3.2) Ψ(t) =

0 for t ≤ 0,

1 for t ≥ 1,
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ρ(τ) is a smooth monotone function with ρ(τ) = a1d0/2 for τ ≤ a2d0/2, ρ(τ) = τ

for τ ≥ a2d0, where a1, a2 are the constants from inequality (2.1), d0 is a small

positive number.

Lemma 3.1. The function ζ1(y) is equal to zero at those points of L\γ1 where

ρ(δ(y)) ≤ ∆(y) and ζ1(y) = 1 if ∆(y) ≤ e−1ρ(δ(y)). The following estimates

(3.3)
∣∣∣∂ζ1(y)

∂yk

∣∣∣ ≤ c

∆(y)
,

∣∣∣∂2ζ1(y)

∂yk∂yl

∣∣∣ ≤ c

∆2(y)

hold.

Proof. The proof follows directly from the definition of the function ζ1, the

properties of the regularized distance and the fact that supp∇ζ1 is contained in

the set where ∆(y) ≤ ρ(δ(y)) (see Lemma 2 in [42] for the details). �

Define

b̂
(inn)
1 (y) = F(inn)curl (ζ1(y)b0(y)) = F(inn)∇ζ1(y)× b0(y), y ∈ L,

where

b0(y) =
1

2π

(
− y2

|y′|2
,
y1

|y′|2
, 0

)
.

Lemma 3.2. The solenoidal vector field b̂
(inn)
1 is infinitely differentiable for

y ∈ L \ {y : |y′| = 0}, vanishes near the set ∂L ∪ {y : |y′| = 0} and satisfies the

conditions:∫
σL
1

b̂
(inn)
1 · n dS = F(inn),(3.4)

|b̂(inn)
1 (y)| ≤ c|F(inn)|

d(y)
,(3.5)

|b̂(inn)
1 (y)| ≤ C|F(inn)|

g1(|y′|) |y′|
,(3.6)

|∇b̂
(inn)
1 (y)| ≤ C|F(inn)|

g2
1(|y′|) |y′|

+
C|F(inn)|

g1(|y′|) |y′|2
, y ∈ L \ Ω0.(3.7)

Here d(y) = dist(y, ∂L ∩ ∂Ω \ {y ∈ ∂Ω : y3 = g1(|y′|)}).

Proof. Since

(∇ζ1 × b0) · n|σL
1(|y′|) = − 1

2π
· ∂ζ1
∂y3
· 1

|y′|
,

we get∫
σL
1(t)

b̂
(inn)
1 · n dS = F(inn)

∫
σL
1(t)

(∇ζ1 × b0) · n dS

= −F(inn) t

2π

∫ 2π

0

dφ

∫ g1(t)

0

∂ζ1
∂y3
· 1

t
dy3 = −F(inn)

∫ g1(t)

0

∂ζ1
∂y3

dy3
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= −F(inn)(ζ1(y1, y2, g1(t))− ζ1(y1, y2, 0)) = F(inn),

where σL
1 (t) is a cross section of the layer L. From the definition of b̂

(inn)
1 and

(3.3) it follows that

(3.8)

|b̂(inn)
1 (y)| ≤ |F(inn)||∇ζ1(y)||b0(y)| ≤ c|F(inn)|

∆(y) |y′|
,

|∇b̂
(inn)
1 (y)| ≤ |F(inn)|(|∇(∇ζ1(y))||b0(y)|+ |∇ζ1(y)||∇b0(y)|)

≤ c|F(inn)|
(

1

∆2(y)|y′|
+

1

|∆(y)||y′|2

)
.

It is easy to see that for the points y ∈ supp b̂
(inn)
1 the inequalities

(3.9) c1g1(|y′|) ≤ ∆(y) ≤ c2g1(|y′|)

hold (see [33] for the details). Therefore, estimates (3.5)–(3.7) follow from

(3.8), (3.9). �

Define

(3.10) b
(inn)
1 (z(1)) = b̂

(inn)
1 (z(1))|D1

.

Lemma 3.3. For any vector field w ∈ W 1,2
loc (D1) with w|∂D1∩∂Ω = 0 the

following inequalities:

(3.11)

∫
Ω(t)

|b(inn)
1 |2|w|2 dx ≤ c |F(inn)|2

∫
Ω(t)

|∇w|2 dx,∫
ω1(h1(t))

|b(inn)
1 |2|w|2 dx ≤ c |F(inn)|2

∫
ω1(h1(t))

|∇w|2 dx

hold. The constant c is independent of t.

Proof. It is well known (see [20]) that the following inequality

(3.12)

∫
Π

|w|2 dx
dist2(x,L)

≤ c
∫

Π

|∇w|2 dx

holds in a bounded domain Π and for any w ∈ W 1,2(Π) with w|L = 0, where

L ⊆ ∂Π has a positive surface measure. Therefore, estimates (3.11) follow from

(3.5) and (3.12). For the detailed proof see [33] and [42]. �

Let us briefly describe the construction of the virtual drain function, which

“removes” non-zero flux from inner component Γ (this construction is similar to

that of the paper [14]). Let x(1) ∈ G, be the point lying inside the “hole” G.

Denote q1(x) = q(x− x(1)), where q(x) = 1/(4π|x|) is the fundamental solution

of the Laplace operator in R3, and let

b
(inn)
] (x) = F(inn)∇q1(x).
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Then

div b
(inn)
] = 0,

∫
Γ

b
(inn)
] · n dS = F(inn),

∫
∂Ω0

b
(inn)
] · n dS = −F(inn)

Set

β1 =


0 for x ∈ Γ,

b
(inn)
1 |∂Ω0∩D1

+ b
(inn)
]

∣∣
∂Ω0∩D1

for x ∈ ∂Ω0 ∩D1,

b
(inn)
]

∣∣
∂Ω0\D1

for x ∈ ∂Ω0 \ (D1 ∪ Γ).

We have∫
∂Ω0

β1 · n dS =

∫
∂Ω0∩D1

b
(inn)
1 · n dS +

∫
∂Ω0

b
(inn)
] · n dS = F(inn) − F(inn) = 0.

Therefore, the function β1 can be extended inside the domain Ω0 as a solenoidal

vector field b
(inn)
01 ∈W 1,2(Ω0) and

‖b(inn)
01 ‖W 1,2(Ω0) ≤ c‖β1‖W 1/2,2(∂Ω0)

≤ c(‖b(inn)
] ‖W 1/2,2(∂Ω0) + ‖b(inn)

1 ‖W 1/2,2(∂Ω0∩D1)) ≤ c|F
(inn)|,

where the constant c depends only on the domain Ω0 (see, for example, [20],

[21]). Now, define the virtual drain function

b(inn) =


b

(inn)
] + b

(inn)
01 for x ∈ Ω0,

b
(inn)
1 for x ∈ D1,

0 for x ∈ D2, D3.

Set

β0 =

a− b
(inn)
]

∣∣
Γ

for x ∈ Γ,

0 for x ∈ ∂Ω0 \ Γ.

Then ∫
Γ

β0 · n dS =

∫
Γ

a · n dS −
∫

Γ

b
(inn)
] · n dS = F(inn) − F(inn) = 0,

and, therefore, the function β0 can be extended inside Ω0 in the form (see [20])

b
(inn)
0 (x) = curl (χ(x)E(x)),

where E ∈ W 2,2(Ω0), curl E|∂Ω0 = β0 and χ is a smooth cut-off function with

χ(x) = 1 on Γ, suppχ is contained in a small neighbourhood of Γ and

|∇χm(x)| ≤ c

dist(x,Γ)
.

Moreover, for any w ∈W 1,2
loc (Ω) with w|∂Ω = 0 the following estimate

(3.13)

∫
Ω0

|b(inn)
0 (x)|2|w(x)|2 dx ≤ c|F(inn)|2

∫
Ω0

|∇w(x)|2 dx
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holds. Finally, we put

(3.14) B(inn) = b(inn) + b
(inn)
0 .

Lemma 3.4. The vector field B(inn) is solenoidal, B(inn)|Γ =a|Γ, B(inn)|S(m) =

0, m = 1, 2, 3, B(inn) ∈ W 1,2
loc (Ω), B(inn)(x) = 0, x ∈ D2, x ∈ D3, |x| � 1. For

any w ∈W 1,2
loc (Ω) with w|∂Ω = 0 the following estimates:

(3.15)

∫
ωj(hj(t))

|B(inn)|2|w|2 dx ≤ c |F(inn)|2
∫
ωj(hj(t))

|∇w|2 dx,∫
Ω(t)

|B(inn)|2|w|2 dx ≤ c |F(inn)|2
∫

Ω(t)

|∇w|2 dx,

hold. Moreover,

(3.16)

|B(inn)(x)| ≤ C|F(inn)|
g1(|z(1)′|)|z(1)′|

, x ∈ D1,

|∇B(inn)(x)| ≤ C|F(inn)|
g2

1(|z(1)′|)|z(1)′|
+

C|F(inn)|
g1(|z(1)′|)|z(1)′|2

, x ∈ D1,

|B(inn)(x)|+ |∇B(inn)(x)| ≤ C|F(inn)|, x ∈ supp B(inn).

The proof of this lemma follows directly from the construction of B(inn) and

from estimates (3.11), (3.13), (3.6) and (3.7)

3.2. Construction of the extension B(out). In this subsection we con-

struct the vector field B(out), extending the boundary value a from the outer

boundary S. We start with the construction of the “flux carrier” b(out) which

“drains” the flux F(out) from the bounded part Λ ⊂ S(3) to infinity.

Let γ be a smooth simple contour which intersects ∂Ω at the points x(Λ) ∈
Λ ⊂ S(3) and x(1) ∈ S(1) and have the form

γ = γ1 ∪ l1 ∪ γ̂ ∪ lΛ,

where γ1 is a finite curve lying in D1 and intersecting boundary S(1) at the point

x(1), γ̂ ⊂ Ω0 is a finite curve connecting γ1 and the point x(Λ), l1, lΛ ⊂ R3 \ Ω

are the semi-infinite curves which begin at the points x(1) and x(Λ), respectively

(see Figure 2).

Assume that the direction of γ coincides with the direction of increase of the

coordinate z
(1)
3 and that the dist(γ, S(3) \Λ) ≥ d0 > 0, where d0 is a sufficiently

small number. Denote by

b̂(x) =
1

4π

∮
γ

x− y
|x− y|3

× dly

a magnetic field generating, upon passage through γ, an electric flow of unit

intensity. We take b(x) = b̂(x)|Ω.
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Figure 2. Contour γ.

Lemma 3.5. The vector field b is solenoidal in R3 \ γ, curl b = 0, and the

circulation of b along any closed contour, enveloping γ, is equal to −1, if the

direction of the integration along this contour and along γ are connected by the

gimlet rule. If this contour does not envelop γ, then the circulation of b along it

is equal to zero. At the points whose distance from γ is not less than d0, we have

(3.17) |Dα
xb(x)| ≤ c(α, d0)

d
1+|α|
γ (x)

,

where dγ(x) = dist(x, γ).

The proof of estimate (3.17) repeats the corresponding arguments from Lem-

ma 1 in [42].

In the domain Ω we introduce the virtual drain function

(3.18) b(out)(x, ε) = F(out)curl(ζ(x, ε) · b(x)) = F(out)∇ζ(x, ε)× b(x),

where

(3.19) ζ(x, ε) = Ψ

(
ε ln

δ(x)

∆∂Ω\(Λ∪S(1))(x)

)
,

δ(x) =



ρ1(x)∆γ1∪S(1)(x) +

3∑
j=2

ρi(x)|x− x0|

+

(
1−

3∑
j=1

ρj(x)

)
∆γ∪S(1)(x) if x ∈ Ω \ (γ ∪ S(1)), x0 ∈ γ̂,

0 if x ∈ γ ∪ S(1),

ρj(x) =

1 for x ∈ Dj \Dj(3),

0 for x ∈ (Ω \Dj) ∪Dj(2), j = 1, 2, 3.
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The function δ(x) is continuous in the domain Ω and infinitely differentiable in

Ω \ (γ ∪ S(1)), |∇δ(x)| is bounded. It is easy to see that

δ(x) =


∆γ1∪S(1)(x) for x ∈ D1 \D1(3),

|x− x0|, |x| � 1 for x ∈ Di, i = 2, 3,

∆γ∪S(1)(x) for x ∈ Ω0,

the function ζ is equal to zero on S(1) and ζ = 1 on ∂Ω \ (Λ ∪ S(1)).

Lemma 3.6. The vector field b(out) is infinitely differentiable and solenoidal,

b(out) vanishes near the surface ∂Ω \ Λ, in a small neighbourhood of the curve

γ ∩ Ω and for x ∈ D2, x ∈ D3, |x| � 1. The following estimates:

|b(out)(x, ε)| ≤ cε

d∂Ω\(Λ∪S(1))(x)dγ∪S(1)(x)
, x ∈ Ω,(3.20)

|b(out)(x, ε))| ≤ c(ε)|F(out)|
g1(|z(1)′|) |z(1)′|

, x ∈ D1,(3.21)

|∇b(out)(x, ε)| ≤ c(ε)|F(out)|
g2

1(|z(1)′|) |z(1)′|
+

c(ε)|F(out)|
g1(|z(1)′|) |z(1)′|2

, x ∈ D1,(3.22)

hold. The constant c in (3.20) is independent of ε. Finally,∫
Λ

b(out) · n dS = F(out).

Proof. The first statement of the lemma follows from definitions (3.18),

(3.19) and from the properties of the regularized distance. Estimates (3.20)–

(3.22) can be proved using definitions (3.18), (3.19) just in the same way as the

analogous estimates in [33], [42], [38]. Since b(out)(x, ε)|∂Ω\Λ = 0, b(out)(x, ε) = 0

for x ∈ D2, x ∈ D3, |x| � 1, and ζ(x, ε) = 1 on ∂Ω \ (Λ ∪ S(1)) and ζ(x, ε) = 0

on S(1), the Ostrogradsky–Gauss and the Stokes formulas yield∫
Λ

b(out) · n dS = −
∫
σ1(t)

b(out) · n dS = −F(out)

∫
σ1(t)

curl(ζb) · n dS

= − F(out)

∫
∂σ1(t)

(ζb) · dl = −F(out)

(∫
α0(t)

(ζb) · dl +

∫
α1(t)

(ζb) · dl
)

= − F(out)

∫
α1(t)

b · dl = F(out),

where α0(t) = ∂σ1(t) ∩ S(1), α1(t) = ∂σ1(t) ∩ S(2) (4). �

Let β(x, ε) = a(x)|Λ − b(out)(x, ε)|Λ. Then∫
Λ

β · n dS =

∫
Λ

a · n dS −
∫

Λ

b(out) · n dS = 0.

(4) Notice that the contours α0(t) and α1(t) have the opposite directions.
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Therefore, β can be extended inside Ω in the form

b
(out)
0 (x, ε) = curl (χ(x, ε)E(x)),

where E ∈ W 2,2(Ω0), curl E|Λ = β and χ is a Hopf’s type cut-off function such

that χ(x, ε) = 1 on Λ, suppχ is contained in a small neighbourhood of Λ, and

(3.23) |∇χm(x, ε)| ≤ εc

dist(x, S(3))

(see [20]). Define

B(out)(x, ε) = b(out)(x, ε) + b
(out)
0 (x, ε).

Obviously,

div B(out) = 0, B(out)|Λ = a, B(out)|∂Ω\Λ = 0,

B(out) = 0, x ∈ D2, x ∈ D3, |x| � 1.

Lemma 3.7. The following estimates∫
ωj(hj(t))

|B(out)|2|w|2 dx ≤ εc |F(out)|2
∫
ωj(hj(t))

|∇w|2 dx, j = 1, 2, 3,(3.24) ∫
Ω(t)

|B(out)|2|w|2 dx ≤ εc |F(out)|2
∫

Ω(t)

|∇w|2 dx,(3.25)

hold for any solenoidal w ∈ W 1,2
loc (Ω) with w|∂Ω = 0. The constant c does not

depend on ε and t. Moreover,

|B(out)(x, ε)| ≤ C(ε)|F(out)|
g1(|z(1)′|) |z(1)′|

, x ∈ D1,(3.26)

|∇B(out)(x, ε)| ≤ C(ε)|F(out)|
g2

1(|z(1)′|) |z(1)′|
+

C(ε)|F(out)|
g1(|z(1)′|) |z(1)′|2

, x ∈ D1,(3.27)

|B(out)(x, ε)|+ |∇B(out)(x, ε)| ≤ C(ε)|F(out)|, x ∈ supp B(out).(3.28)

Inequalities (3.24) and (3.25) follow from (3.20) and (3.23). Estimates (3.26)–

(3.28) are the consequences of (3.21) and (3.22).

3.3. Construction of the vector field B(flux). Now we need to compen-

sate the fluxes over the cross-sections of the outlets to infinity, i.e. we have to

construct a solenoidal vector field B(flux) satisfying the flux conditions:

(3.29)

∫
σ1(t)

B(flux) · n dS =F1 + F(inn) + F(out),∫
σ2(t)

B(flux) · n dS =F2,∫
σ3(t)

B(flux) · n dS =F3.
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Note that the total flux is equal to zero:

(3.30) F1 + F2 + F3 + F(inn) + F(out) = 0.

Figure 3. Contours γ(1,2) and γ(2,3).

Constructing B(flux), first, we define the vectors

b(j,j+1)(x) =
1

4π

∮
γ(j,j+1)

x− y
|x− y|3

× dly, j = 1, 2,

describing the magnetic fields upon passage through the contours γ(1,2) and

γ(2,3). Let us introduce γ(1,2) and γ(2,3).

1. Contour γ(1,2) goes through two layer type outlets D1 and D2, γ
(1,2) is an

infinite smooth simple curve which intersects ∂Ω at the points x(1) ∈ S(1) and

x(2) ∈ S(3) ∩ ∂D2. Contour γ(1,2) consists of a finite curve γ̂
(2)
1 ⊂ Ω0 and semi-

infinite curves l1, l2 ⊂ R3 \ Ω which begin at the points x(1), x(2), respectively

(see Figure 3):

γ(1,2) = γ̂
(2)
1 ∪ l1 ∪ l2.

2. Contour γ(2,3) goes through two outlets, one of which is paraboloidal

outlet D3 and another D2 is of the layer type:

γ(2,3) = γ̂(2) ∪ γ̂(3) ∪ l2 ∪ γ̂(3)
2 ,

where γ̂(3) ⊂ D3 is a semi-infinite line, γ̂(2) ⊂ D2 is a finite line intersecting ∂Ω

at the point x(2) ∈ S(2) ∩ ∂D2, γ̂
(3)
2 ⊂ Ω0 is a curve joining γ̂(3) with γ̂(2), and

l2 ⊂ R3 \Ω is a semi-infinite curve which starts at the point x(2) (see Figure 3).

We suppose that the distances dist(γ(1,2), ∂Ω \ (S(1) ∪ (S(3) ∩D2))) ≥ d0 and

dist(γ(2,3), ∂Ω \ (S(2) ∩ D2)) ≥ d0 are positive, where d0 is a sufficiently small

positive number (see Figure 3). The direction of the curves γ(1,2) and γ(2,3)

coincides with the direction of increase of the axis z
(2)
3 , z

(3)
3 , respectively.
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Denote

b
(flux)
j,j+1(x, ε) = curl(ζj,j+1(x, ε)b(j,j+1)(x)) = ∇ζj,j+1(x, ε)× b(j,j+1)(x),

ζj,j+1(x, ε) = Ψ

(
ε ln

δ(j,j+1)(x)

∆S(j,j+1)∪Γ(x)

)
, j = 1, 2,

where

δ(1,2)(x) =


ρ1(x)∆(γ∪S(1))∩D1

+ ρ2(x)∆(γ∪S(3))∩D2
+ ρ3(x)C0

+

(
1−

3∑
k=1

ρk(x)

)
∆γ∪S(1)∪S(3)(x), x ∈ Ω \ (γ ∪ S(1) ∪ S(3)),

0, x ∈ γ ∪ S(1) ∪ S(3),

δ(2,3)(x) =


ρ2(x)∆(γ∪S(2))∩D2

+ ρ3(x)∆γ∩D3
+ ρ1(x)C0

+

(
1−

3∑
k=1

ρk(x)

)
∆γ∪S(1)∪S(2)(x), x ∈ Ω \ (γ ∪ S(1) ∪ S(2)),

0, x ∈ γ ∪ S(1) ∪ S(2),

with a sufficiently small positive constant C0.

Note that in the first case (the contour γ(1,2) goes from the layer D1 to the

layer D2) the function ζ is equal to zero on S(1) ∪S(3) and ζ = 1 on S(2). In the

second case (the contour γ(2,3) goes from the layer D2 to the paraboloidal outlet

D3) the function ζ is equal to zero on S(1) ∪ S(2) and ζ = 1 on S(3).

The vector fields b
(flux)
j,j+1 have the following properties (see [42], [38] for the

case of the paraboloidal outlets and [33] for the case of the layer type outlets).

Lemma 3.8. The vector fields b
(flux)
1,2 (x, ε) and b

(flux)
2,3 (x, ε) are solenoidal,

b
(flux)
1,2 |∂Ω = 0, b

(flux)
2,3 |∂Ω = 0, b

(flux)
1,2 (x, ε) = 0 for x ∈ D3, |x| � 1, b

(flux)
2,3 (x, ε) =

0 for x ∈ D1, |x| � 1 and∫
σ1(t)

b
(flux)
1,2 · n dS = 1,

∫
σ2(t)

b
(flux)
1,2 · n dS = −1,∫

σ2(t)

b
(flux)
2,3 · n dS = 1,

∫
σ3(t)

b
(flux)
2,3 · n dS = −1.

For any solenoidal w ∈W 1,2
loc (Ω) with w|∂Ω = 0 the following estimates:

(3.31)

∫
ωs(hs(t))

|b(flux)
j,j+1|

2|w|2 dx ≤ εc
∫
ωs(hs(t))

|∇w|2 dx,

j = 1, 2, s = 1, 2, 3,∫
Ω(t)

|b(flux)
j,j+1|

2|w|2 dx ≤ εc
∫

Ω(t)

|∇w|2 dx

hold with the constant c independent of ε and t. Moreover,

|b(flux)
j,j+1(x, ε)| ≤ C(ε)

g2
3(z

(3)
3 )

, |∇b(flux)
j,j+1(x, ε))| ≤ C(ε)

g3
3(z

(3)
3 )

, x ∈ D3,
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|b(flux)
j,j+1(x, ε)| ≤ C(ε)

gi(|z(i)′|)|z(i)′|
,

|∇b(flux)
j,j+1(x, ε))| ≤ C(ε)

g2
i (|z(i)′|)|z(i)′|

+
C(ε)

gi(|z(i)′|)|z(i)′|2
, x ∈ Di, i = 1, 2,

|b(flux)
j,j+1(x, ε)| + |∇b(flux)

j,j+1(x, ε))| ≤ C(ε), x ∈ supp b
(flux)
j,j+1.

Let us define

B(flux)(x, ε) = α1b
(flux)
1,2 (x, ε) + α2b

(flux)
2,3 (x, ε),

where α1 = F1 + F(inn) + F(out), α2 = F1 +F2 + F(inn) + F(out). The vector field

B(flux) satisfies flux conditions (3.29).

3.4. Solvability of problem (2.3). We look for the solution u in the form

(3.32) u(x) = A(x, ε) + v(x),

where

A(x, ε) = B(out)(x, ε) + B(inn)(x) + B(flux)(x, ε).

As it follows from (3.15), (3.24), (3.31), for any solenoidal w ∈ W 1,2
loc (Ω) with

w|∂Ω = 0 the following inequalities

(3.33)

∫
ωj(hj(t))

|A|2|w|2 dx ≤ c(ε|
−→
F |2+ε|F(out)|2+|F(inn)|2)

∫
ωj(hj(t))

|∇w|2dx,

∫
Ω(t)

|A|2|w|2 dx ≤ c(ε|
−→
F |2 + ε|F(out)|2 + |F(inn)|2)

∫
Ω(t)

|∇w|2 dx,

hold, where |
−→
F | =

√
F2

1 + F2
2 + F2

3 ,
−→
F = (F1,F2,F3), j = 1, 2, 3.

In order to prove the existence of at least one weak solution, we need some

known results.

Lemma 3.9 ([23]). Let non-negative, non-decreasing smooth functions y(t)

and ϕ(t) satisfy the inequalities

y(t) ≤ θ(y′(t)) +
1

2
ϕ(t),(3.34)

ϕ(t) ≥ 2θ(ϕ′(t)), t ∈ [0, T ],(3.35)

where θ(s) is a positive increasing function of a positive argument s. If y(T ) ≤
ϕ(T ), then y(t) ≤ ϕ(t) for all t ∈ [0, T ].

Lemma 3.10 (Poincaré inequality). Let u ∈ W̊ 1,2(Ω). Then the following

inequalities

(3.36)

∫
ωj(t)

|u(x)|2 dx ≤ c g2
j (t)

∫
ωj(t)

|∇u(x)|2 dx, j = 1, 2, 3,

hold, where the constant c is independent of u and t.
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Lemma 3.11. Let u ∈ W̊ 1,2(Ω). Then the following inequalities

(3.37) ‖u‖L4(ωj(t)) ≤ c g
1/4
j (t)‖∇u‖L2(ωj(t)), j = 1, 2, 3,

hold, where the constant c is independent of u and t.

The proof of this lemma follows directly from the multiplicative inequality

(3.38) ‖u‖L4(ωj(t)) ≤ c‖∇u‖
3/4
L2(ωj(t)) · ‖u‖

1/4
L2(ωj(t)), j = 1, 2, 3,

and Poincaré inequality (3.36). The constant c in (3.38) is independent of t.

Lemma 3.12. Let f ∈ L2(ωi(t)) and∫
ωi(t)

f dx = 0, i = 1, 2.

Then problem

(3.39)

div u = f for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

admits a solution u ∈ W̊ 1,2(ωi(t)) satisfying the estimate

(3.40) ‖∇u‖L2(ωi(t)) ≤ c
t

gi(t)
‖f‖L2(ωi(t))

with the constant c independent of u, f and t.

Lemma 3.13. Let f ∈ L2(ω3(t)) and∫
ω3(t)

f dx = 0.

Then problem (3.39) admits a solution u ∈ W̊ 1,2(ω3(t)) satisfying the estimate

(3.41) ‖∇u‖L2(ω3(t)) ≤ c‖f‖L2(ω3(t))

with the constant c independent of u, f and t.

The last two lemmas were proved in [21] and [33], respectively.

Theorem 3.14. Assume that the boundary value a ∈W 1/2,2(∂Ω) has a com-

pact support, the flux F(inn) is sufficiently small and the necessary condition (2.4)

holds. Then there exists at least one weak solution u of problem (2.3) satisfying

the inequality

(3.42)

∫
Ω(t)

|∇u|2 dx ≤ c · c(a,
−→
F )

(
1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)
,

where

c(a,
−→
F ) = ‖a‖2W 1/2,2(∂Ω) + ‖a‖4W 1/2,2(∂Ω) + |

−→
F |2 + |

−→
F |4, |

−→
F |2 = F2

1 +F2
2 +F2

3 .
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Proof. In every bounded domain Ω(T ) there exists a vector field v(T ) ∈
H(Ω(T )) satisfying the integral identity

(3.43) ν

∫
Ω(T )

∇v(T ) : ∇η dx−
∫

Ω(T )

((A + v(T )) · ∇)η · v(T ) dx

−
∫

Ω(T )

(v(T ) ·∇)η ·A dx = −ν
∫

Ω(T )

∇A : ∇η dx+

∫
Ω(T )

(A · ∇)η ·A dx

for all η ∈ H(Ω(T )). Indeed, it is well known that in the bounded domain Ω(T )

this integral identity is equivalent to the operator equation

(3.44) v(T ) = L̂v(T ),

where L̂ is a compact operator (e.g. [20]). By the Leray–Schauder Theorem,

(3.44) admits at least one solution if the norms of all possible solutions of the

equation

(3.45) v(T,λ) = λL̂v(T,λ), λ ∈ [0, 1],

are bounded by the same constant independent of λ.

Taking η = v(T ) (5) in (3.43) and using the Leray–Hopf (2.8) and Cauchy–

Schwarz inequalities, we obtain

ν

∫
Ω(T )

|∇v(T )|2 dx = λ

∫
Ω(T )

(v(T ) · ∇)v(T ) ·A dx(3.46)

− νλ
∫

Ω(T )

∇A : ∇v(T ) dx+ λ

∫
Ω(T )

(A · ∇)v(T ) ·A dx

≤
(∫

Ω(T )

|∇v(T )|2 dx
)1/2

·
(∫

Ω(T )

|v(T )|2|A|2 dx
)1/2

+

(∫
Ω(T )

|∇A|2 dx
)1/2

·
(∫

Ω(T )

|∇v(T )|2 dx
)1/2

+

(∫
Ω(T )

|A|4 dx
)1/2

·
(∫

Ω(T )

|∇v(T )|2 dx
)1/2

≤ c
√
ε|
−→
F |2 + ε|F(out)|2 + |F(inn)|2

∫
Ω(T )

|∇v(T )|2 dx

+ c
(
‖∇A‖2L2(Ω(T )) + ‖A‖4L4(Ω(T ))

)
+
ν

2
‖∇v(T )‖2L2(Ω(T )).

The last inequality yields(
ν

2
− c
√
ε|
−→
F |2 + cε|F(out)|2 + |F(inn)|2

)
‖∇v(T )‖2L2(Ω(T ))

≤ c
(
‖∇A‖2L2(Ω(T )) + ‖A‖4L4(Ω(T ))

)
.

(5) For simplicity, we omit the index λ.
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Assuming that |F(inn)| ≤ ν/(4c) and taking ε sufficiently small we derive

(3.47) ‖∇v(T )‖2L2(Ω(T )) ≤ c
(
‖∇A‖2L2(Ω(T )) + ‖A‖4L4(Ω(T ))

)
.

Since

‖∇A‖2L2(Ω(T )) + ‖A‖4L4(Ω(T )) ≤ c
(
‖a‖2W 1/2,2(∂Ω) + ‖a‖4W 1/2,2(∂Ω)

+ |
−→
F |2 + |

−→
F |4

)(
1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)

= c · c(a,
−→
F )

(
1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)
,

from (3.47) it follows that

(3.48) ‖∇v(T )‖2L2(Ω(T )) ≤ c · c(a,
−→
F )

(
1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)
.

Hence, for any fixed T the existence of a solution v(T ) of operator equation (3.44)

follows from the Leray–Schauder Theorem. If the integrals∫ 2hi(t)

1

dr

r g3
i (r)

, i = 1, 2, and

∫ h3(t)

1

dr

g4
3(r)

are bounded, then the right hand side of the above estimate is bounded by

a constant uniformly independent of T . Let us assume that all the integrals are

unbounded. Then we have to estimate the norm ‖∇v(T )‖L2(Ω(t)) for t < T . We

introduce the cut-off function κ(x, t):

(3.49) κ(x, t)

=



1 for x ∈ Ω

(
h1(t), h2(t), h3(t)− g3(h3(t))

2L3

)
,

2h1(t)− |z(1)′|
h1(t)

for x ∈ ω1(h1(t)),

2h2(t)− |z(2)′|
h2(t)

for x ∈ ω2(h2(t)),

2L3
h3(t)− z(3)

3

g3(h3(t))
for x ∈ ω3(h3(t)),

0 for x ∈ Ω \ Ω(t),

where

ωi(hi(t)) =
{
z(i) ∈ Di : hi(t) < |z(i)′| < 2hi(t)

}
, i = 1, 2,

ω3(h3(t)) =

{
z(3) ∈ D3 : h3(t)− g3(h3(t))

2L3
< z

(3)
3 < h3(t)

}
.
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The derivatives of the function κ(x, t) satisfy the estimates

(3.50)

∂κ

∂z
(i)
k

= −
z

(i)
k

hi(t) · |z(i)′|
, k = 1, 2,

|∇κ| ≤ c

hi(t)
,

∂κ

∂t
≥ g1/3

i (hi(t)), x ∈ ωi(hi(t)), i = 1, 2,

(3.51)

∂κ

∂z
(3)
3

= − 2L3

g3(h3(t))
,

|∇κ| ≤ c

g3(h3(t))
,

∂κ

∂t
≥ g1/3

3 (h3(t)), x ∈ ω3(h3(t)).

Define the function

(3.52) U(T )(x, t)

=



v(T )(x), x ∈ Ω

(
h1(t), h2(t), h3(t)− g3(h3(t))

2L3

)
,

κ(x, t)v(T )(x) +

3∑
j=1

v̂
(T )
j (x), x ∈

3⋃
j=1

ωj(hj(t)),

0, x ∈ Ω \ Ω(t),

where v̂
(T )
j ∈ W̊ 1,2(ωj(hj(t))) are the solutions of the problems

(3.53)
div v̂

(T )
j = −∇κ · v(T ) in ωj(hj(t)),

v̂
(T )
j = 0 on ∂ωj(hj(t)).

Since∫
ωj(hj(t))

∇κ · v(T ) dx =

∫
ωj(hj(t))

div(κv(T )) dx

=

∫
∂ωj(hj(t))

κv(T ) · n dx =

∫
σj(hj(t∗))

v(T ) · n dx = 0,

for j = 1, 2, 3, and

t∗ = hi(t), i = 1, 2, t∗ = h3(t)− g3(h3(t))

2L3
,

there exist the solutions v̂
(T )
j of problems (3.53) satisfying the estimates

(3.54) ‖∇v̂
(T )
j ‖L2(ωj(hj(t))) ≤ Cj(ωj(hj(t)))‖∇κ · v(T )‖L2(ωj(hj(t))),

where

Ci(ωi(hi(t))) ≤
c hi(t)

gi(hi(t))
, i = 1, 2, C3(ω3(h3(t))) ≤ c,

the constant c is independent of t (see Lemmas 3.12 and 3.13, respectively).
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Using the estimates of the derivatives of the function κ(x, t) and Poincaré

inequality (3.36), from (3.54) we derive

‖∇v̂
(T )
i ‖L2(ωi(hi(t))) ≤ c

hi(t)

gi(hi(t))
‖∇κ · v(T )‖L2(ωi(hi(t)))

≤ c hi(t)

gi(hi(t))

1

hi(t)
‖v(T )‖L2(ωi(hi(t)))≤c‖∇v(T )‖L2(ωi(hi(t))),

for i = 1, 2, and

‖∇v̂
(T )
3 ‖L2(ω3(h3(t))) ≤ c‖∇κ · v(T )‖L2(ω3(h3(t)))

≤ c

g3(h3(t))
‖v(T )‖L2(ω3(h3(t))) ≤ c‖∇v(T )‖L2(ω3(h3(t))).

Hence,

(3.55) ‖∇v̂
(T )
j ‖L2(ωj(hj(t))) ≤ c‖∇v(T )‖L2(ωj(hj(t))), j = 1, 2, 3.

Taking in integral identity (3.43) η = U(T ) and using the fact that∫
Ω(t)

((v(T ) + A) · ∇)U(T ) ·U(T ) dx = 0,

we obtain

ν

∫
Ω(t)

|∇v(T )|2κ(x, t) dx(3.56)

=

3∑
j=1

∫
ωj(hj(t))

((v(T ) + A) · ∇)U(T ) · (v(T ) −U(T )) dx

− ν
3∑
j=1

∫
ωj(hj(t))

∇v(T ) : ∇U(T ) dx+

∫
Ω(t)

(v(T ) · ∇)U(T ) ·A dx

− ν
∫

Ω(t)

∇A : ∇U(T ) dx+

∫
Ω(t)

(A · ∇)U(T ) ·A dx.

Using definition (3.52) of the function U(T ), Poincaré inequality (3.36) and esti-

mates (3.55), we obtain

‖v(T )‖L4(ωj(hj(t))) ≤ c g
1/4
j (hj(t))‖∇v(T )‖L2(ωj(hj(t))),

‖v(T ) −U(T )‖L4(ωj(hj(t))) ≤ c‖v(T )‖L4(ωj(hj(t))) + c‖v̂(T )
j ‖L4(ωj(hj(t)))

≤ c g1/4
j (hj(t))‖∇v(T )‖L2(ωj(hj(t)))

+ c g
1/4
j (hj(t))‖∇v̂

(T )
j ‖L2(ωj(hj(t)))

≤ c g1/4
j (hj(t))‖∇v(T )‖L2(ωj(hj(t))),
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for j = 1, 2, 3. Definition (3.52) of the function U(T ), estimates (3.50), (3.51),

(3.55) and Poincaré inequality (3.36) yield

‖∇U(T )‖L2(ωi(hi(t))) ≤ ‖∇(κv(T ))‖L2(ωi(hi(t))) + ‖∇v̂
(T )
i ‖L2(ωi(hi(t)))

≤ c

hi(t)
‖v(T )‖L2(ωi(hi(t))) + c‖∇v(T )‖L2(ωi(hi(t))) + ‖∇v̂

(T )
i ‖L2(ωi(hi(t)))

≤ cgi(hi(t))

hi(t)
‖∇v(T )‖L2(ωi(hi(t))) + c‖∇v(T )‖L2(ωi(hi(t)))

≤ c‖∇v(T )‖L2(ωi(hi(t))),

for i = 1, 2, and

‖∇U(T )‖L2(ω3(h3(t))) ≤‖∇(κv(T ))‖L2(ω3(h3(t))) + ‖∇v̂
(T )
3 ‖L2(ω3(h3(t)))

≤ c

g3(h3(t))
‖v(T )‖L2(ω3(h3(t))) + c ‖∇v(T )‖L2(ω3(h3(t)))

≤ c‖∇v(T )‖L2(ω3(h3(t))).

Hence,

‖∇U(T )‖L2(ωj(hj(t))) ≤ c‖∇v(T )‖L2(ωj(hj(t))), j = 1, 2, 3.

Therefore, we can estimate the integrals in the right-hand side of (3.56) as follows∣∣∣∣ ∫
ωj(hj(t))

((v(T ) + A) · ∇)U(T ) · (v(T ) −U(T )) dx

∣∣∣∣
≤‖v(T )‖L4(ωj(hj(t))) ‖v(T ) −U(T )‖L4(ωj(hj(t))) ‖∇U(T )‖L2(ωj(hj(t)))

+ ‖∇U(T )‖L2(ωj(hj(t)))

(∫
ωj(hj(t))

|A|2|v(T ) −U(T )|2 dx
)1/2

≤ cg1/2
j (hj(t))‖∇v(T )‖3L2(ωj(hj(t)))

+ c

(√
ε|F(out)|2 + ε|

−→
F |2 + |F(inn)|2

)
‖∇v(T )‖L2(ωj(hj(t)))

×
(∫

ωj(hj(t))

|∇(v(T ))−U(T )|2 dx
)1/2

≤ cg1/2
j (hj(t))‖∇v(T )‖3L2(ωj(hj(t)))

+ c

(√
ε|F(out)|2 + ε|

−→
F |2 + |F(inn)|2

)
‖∇v(T )‖2L2(ωj(hj(t))),

for j = 1, 2, 3, and

3∑
j=1

∣∣∣∣ ∫
ωj(hj(t))

∇v(T ) : ∇U(T ) dx

∣∣∣∣
≤

3∑
j=1

‖∇v(T )‖L2(ωj(hj(t))) ‖∇U(T )‖L2(ωj(hj(t))) ≤ c
3∑
j=1

‖∇v(T )‖2L2(ωj(hj(t)));
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Ω(t)

(v(T ) · ∇)U(T ) ·A dx

∣∣∣∣ ≤ ‖∇U(T )‖L2(Ω(t))

(∫
Ω(t)

|v(T )|2|A|2 dx
)1/2

≤ c
(√

ε|F(out)|2 + ε|
−→
F |2 + |F(inn)|2

)
×
(∫

Ω(t)

|∇v(T )|2κ(x, t) dx+

3∑
j=1

‖∇v(T )‖2L2(ωj(hj(t)))

)
;

ν

∣∣∣∣ ∫
Ω(t)

∇A : ∇U(T ) dx

∣∣∣∣+

∣∣∣∣ ∫
Ω(t)

(A · ∇)U(T ) ·A dx

∣∣∣∣
≤ c
(
‖∇A‖L2(Ω(t)) + ‖A‖2L4(Ω(t))

)
‖∇U(T )‖L2(Ω(t))

≤C(µ)
(
‖∇A‖L2(Ω(t)) + ‖A‖2L4(Ω(t))

)2
+ µ‖∇U(T )‖2L2(Ω(t))

≤C(µ) · c
(
a,
−→
F
)(

1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)

+ µ

(∫
Ω(t)

|∇v(T )|2κ(x, t) dx+

3∑
j=1

‖∇v(T )‖2L2(ωj(hj(t)))

)
.

Hence,

ν

∫
Ω(t)

|∇v(T )|2κ(x, t) dx ≤ c
3∑
j=1

g
1/2
j (hj(t))‖∇v(T )‖3L2(ωj(hj(t)))

+ c

(√
ε|F(out)|2 + ε|

−→
F |2 + |F(inn)|2

) 3∑
j=1

‖∇v(T )‖2L2(ωj(hj(t)))

+ νc

3∑
j=1

‖∇v(T )‖2L2(ωj(hj(t)))

+ c

(√
ε|F(out)|2 + ε|

−→
F |2 + |F(inn)|2

)∫
Ω(t)

|∇v(T )|2κ(x, t) dx

+ C(µ) · c
(
a,
−→
F
)(

1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)

+ µ

(∫
Ω(t)

|∇v(T )|2κ(x, t) dx+

3∑
j=1

‖∇v(T )‖2L2(ωj(hj(t)))

)
.

Assuming that |F(inn)| ≤ ν/(4c) and taking ε, µ sufficiently small we obtain∫
Ω(t)

|∇v(T )|2κ(x, t) dx

≤ c1
3∑
j=1

g
1/2
j (hj(t))‖∇v(T )‖3L2(ωj(hj(t))) + c2

3∑
j=1

‖∇v(T )‖2L2(ωj(hj(t)))
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+ c3 · c
(
a,
−→
F
)(

1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)
.

Denote y(t) =
∫

Ω(t)
|∇v(T )|2 κ(x, t) dx. Then the last inequality can be rewritten

in the form

y(t) ≤ c1
3∑
j=1

g
1/2
j (hj(t))‖∇v(T )‖3L2(ωj(hj(t))) + c2

3∑
j=1

‖∇v(T )‖2L2(ωj(hj(t)))

+ c3 · c
(
a,
−→
F
)(

1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)
.

Since (6)

dy(t)

dt
=

3∑
j=1

∫
ωj(hj(t))

|∇v(T )|2 ∂κ
∂t
dx ≥ c

3∑
j=1

g
1/3
j (hj(t))‖∇v(T )‖2L2(ωj(hj(t)))

we derive

y(t) ≤ c∗y′(t) + c∗∗(y
′(t))3/2 +

1

2
ϕ(t),

where

ϕ(t) = 2 c3 · c
(
a,
−→
F
)(

1 +

2∑
i=1

∫ 2hi(t)

1

dr

y g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)
.

Using (2.2) we get

(3.57) ϕ′(t) = c3 · c(a,
−→
F )

( 2∑
i=1

2h′i(t)

2hi(t) · g3
i (2hi(t))

+
h′3(t)

g4
3(h3(t))

)

≤ c3 c4 · c(a,
−→
F )

3∑
j=1

g
−8/3
j (hj(t)).

Then because of the condition (3.57) we can choose the constant c3 in such

a manner that condition (3.35) should hold, i.e.

2 θ(ϕ′(t)) = 2 c∗ϕ
′(t) + 2 c∗∗(ϕ

′(t))3/2

≤ 2 c∗ c3 c4 · c
(
a,
−→
F
) 3∑
j=1

g
−8/3
j (hj(t)) + 2 c∗∗

(
c3 c4 · c

(
a,
−→
F
) 3∑
j=1

g
−8/3
j (hj(t))

)3/2

≤ c3 c4 · c
(
a,
−→
F
)(

2 c∗

3∑
j=1

g
−8/3
j (hj(t)) + 8c∗∗

√
c3 c4 · c

(
a,
−→
F
) 3∑
j=1

g−4
j (hj(t))

)
.

Note that
3∑
j=1

g
−8/3
j (hj(t)) and

3∑
j=1

g−4
j (hj(t)) are bounded for every t and the

integrals
∫ 2hi(t)

1
dr/(r g3

i (r)), i = 1, 2, and
∫ h3(t)

1
dr/g4

3(r) tend to infinity as

(6) This estimate follows from (3.50) and (3.51).
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t→∞. Therefore, for sufficiently large t we get the following estimate

θ(ϕ′(t)) ≤ c3 · c(a,
−→
F )

(
1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)
.

Thus, ϕ(t) satisfies conditions of Lemma 3.9 and we obtain the estimate

(3.58) y(t) =

∫
Ω(t)

|∇v(T )|2 κ(x, t) dx

≤ c3 · c
(
a,
−→
F
)(

1 +

2∑
i=1

∫ 2hi(t)

1

dr

r g3
i (r)

+

∫ h3(t)

1

dr

g4
3(r)

)
.

Since for every bounded domain Ω(t) the embedding W 1,2(Ω(t)) ↪→ L4(Ω(t))

is compact, the estimate (3.58) guarantees the existence of a subsequence {v(Tm)}
which converges weakly in W̊ 1,2(Ω(t)) and strongly in L4(Ω(t)) for any t (such

subsequence could be constructed by Cantor diagonal process). Taking in inte-

gral identity (3.43) an arbitrary test function η with a compact support, we can

find such t that suppη ⊂ Ω(t) and, hence η ∈ H(Ω(t)). Extending η by zero

into Ω \ Ω(t), and considering all the integrals in (3.43) as the integrals over Ω,

we can pass in (3.43) to a limit as Tm → ∞. As a result we get for the limit

vector function v integral identity (2.7). Therefore, the sum u = A+v is a weak

solution of problem (2.3). Estimate (3.42) for v follows from (3.58). Since for

A the analogous to (3.42) estimate is also valid, we obtain (3.42) for the sum

u = A + v. �

Remark 3.15. All the results obtained in the paper remain valid for the non-

homogeneous Navier–Stokes system if the external force f have an appropriate

decay at infinity.
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