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OBSTACLE PROBLEM FOR MUSIELAK-ORLICZ DIRICHLET
ENERGY INTEGRAL ON METRIC MEASURE SPACES
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Abstract. We introduce Musielak-Orlicz Newtonian space on a metric measure space.
After discussing properties of weak upper gradients of functions in such spaces and Poincaré
inequalities for functions with zero boundary values in bounded open subsets, we prove the
existence and uniqueness of a solution to an obstacle problem for Musielak-Orlicz Dirichlet
energy integral.

1. Introduction. Sobolev spaces on metric measure spaces have been studied during
the last two decades, see [8, 9, 13, 26], etc.; systematic presentations are given in the book [4].
The theory was generalized to Orlicz-Sobolev spaces on metric measure spaces in [2, 3, 28]
and further to very general quasi-Banach function lattices in [18, 19].

The p-Dirichlet energy integral in metric measure spaces has been investigated by Shan-
mugalingam [27]. She proved the existence of a minimizer in Newtonian space N1,p(X), a
Sobolev type space, which is defined in terms of p-weak upper gradients of functions in a
metric measure space (X, d, μ). Kinnunen and Martio [15] studied the existence and unique-
ness of a solution to an obstacle problem for p-Dirichlet energy integrals in Newtonian spaces.
To show the existence of solutions, Poincaré inequalities play important roles. In [22], Mo-
canu proved the existence and uniqueness of a solution to an obstacle problem for an energy
integral in Orlicz-Sobolev spaces supporting a Poincaré inequality.

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss non-
linear partial differential equations with non-standard growth conditions (see [5, 6]). Acerbi
and Mingione [1] have studied the existence and the regularity of minimizers of the p(·)-
Dirichlet energy integral on a bounded domain in RN . Harjulehto, Hästö, Koskenoja and
Varonen [10] defined and studied variable exponent Sobolev spaces with zero boundary val-
ues in the Euclidean setting and proved that Dirichlet energy integral has a minimizer. Their
results are based on a p(·)-Poincaré inequality.

Variable exponent Sobolev spaces on metric measure spaces have been developed during
the past decades (see e.g. [7, 11, 12, 21]). Recently, we defined Musielak-Orlicz-Sobolev
space on a metric measure space X defined in terms of a functionΦ(x, t) : X×[0,∞)→ [0,∞).
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We proved basic properties of such spaces (see [24]) and studied Musielak-Orlicz-Sobolev
spaces with zero boundary values on X (see [25]), as an extension of [10, 14].

In this paper, we develop the theories for obstacle problems in the framework of
Musielak-Orlicz-Sobolev space on a metric measure space X. We prove a Poincaré inequality
for Musielak-Orlicz Newtonian functions with zero boundary values in bounded open subsets
of X. Using the Poincaré inequality we prove the existence and uniqueness of a solution to an
obstacle problem for a Φ-Dirichlet energy integral on a bounded open set in X.

This present paper is organized as follows. In Section 2, we define Musielak-Orlicz
spaces LΦ(Ω). In Section 3, we study Φ-weak upper gradients and introduce Musielak-Orlicz
Newtonian space N1,Φ(Ω). In Section 4, we study a capacity defined in terms of Φ. In Section
5, we define Musielak-Orlicz Newtonian spaces with zero boundary values and we consider
the Poincaré inequalities for such spaces. In Section 6, we solve the obstacle problem for
Φ-Dirichlet energy integral (see Theorem 6.1).

2. Musielak-Orlicz spaces. Throughout this paper, let C denote various constants
independent of the variables in question and C(a, b, . . . ) be a constant that depends on a, b, . . . .

We denote by (X, d, μ) a metric measure spaces, where X is a set, d is a metric on X and
μ is a nonnegative complete Borel regular outer measure on X which is finite and positive for
every open balls in X. For simplicity, we often write X instead of (X, d, μ). For x ∈ X and
r > 0, we denote by B(x, r) the open ball centered at x with radius r and dE = sup{d(x, y) :
x, y ∈ E} for a set E ⊂ X. We denote by χE the characteristic function of E ⊂ X.

We consider a function

Φ(x, t) : X × [0,∞)→ [0,∞)

satisfying the following conditions (Φ1) – (Φ4):

(Φ1) Φ( · , t) is measurable on X for each t ≥ 0 and Φ(x, · ) is continuous on [0,∞) for
each x ∈ X;

(Φ2) Φ(x, 0) = 0 and Φ(x, ·) is a convex function on [0,∞) for every x ∈ X;
(Φ3) 0 < infx∈B Φ(x, 1) ≤ supx∈B Φ(x, 1) < ∞ for every open ball B in X;
(Φ4) there exists a constant Ad ≥ 2 such that

Φ(x, 2t) ≤ AdΦ(x, t) for all x ∈ X and t > 0 .

Note that (Φ2) and (Φ4) imply

(2.1) aΦ(x, t) ≤ Φ(x, at) ≤ Ad

2
alog2 AdΦ(x, t) for a ≥ 1 ;

in particular,

(2.2) tΦ(x, 1) ≤ Φ(x, t) ≤ Ad

2
tlog2 AdΦ(x, 1) for t ≥ 1 .
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REMARK 2.1. Let p0 ≥ 1. Suppose Φ(x, t) satisfies (Φ1), (Φ3), (Φ4) and

(Φ2′; p0) t 	→ t−p0Φ(x, t) is uniformly almost increasing, namely there exists a constant A′ ≥ 1
such that

t−p0Φ(x, t) ≤ A′s−p0Φ(x, s) for all x ∈ X whenever 0 ≤ t < s .

Then,

Φ(x, t) = tp0−1
∫ t

0

{
sup

0≤s≤r
s−p0Φ(x, s)

}
dr

satisfies (Φ1), (Φ2), (Φ3) and (Φ4) with the same Ad; further

Φ(x, t/2) ≤ Φ(x, t) ≤ A′Φ(x, t)

for all x ∈ X and t > 0.
Φ(x, ·) is strictly convex if p0 > 1.

LEMMA 2.2. For every ε > 0, there exists a constant A(ε) > 0 such that

(2.3) |Φ(x, t1) − Φ(x, t2)| ≤ ε{Φ(x, t1) +Φ(x, t2)} + A(ε)Φ(x, |t1 − t2|)

for all x ∈ X and t1, t2 ≥ 0.

PROOF. We may assume t1 > t2. If Φ(x, t1) − Φ(x, t2) ≤ εΦ(x, t1), then (2.3) trivially
holds. Thus, consider the case

Φ(x, t1) −Φ(x, t2) > εΦ(x, t1) .

By (Φ2) and (Φ4), we see

Φ(x, t1) ≤ t2
t1
Φ(x, t2) +

t1 − t2
t1

Φ(x, t1 + t2)

≤Φ(x, t2) +
t1 − t2

t1
AdΦ(x, t1) .

Hence

εΦ(x, t1) < Φ(x, t1) −Φ(x, t2) ≤ t1 − t2
t1

AdΦ(x, t1) ,

which implies t1 < (Ad/ε)(t1 − t2). Thus,

|Φ(x, t1) −Φ(x, t2)| ≤Φ(x, t1) ≤ Φ(x, (Ad/ε)(t1 − t2))

≤ A(ε)Φ(x, t1 − t2) .

�
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EXAMPLE 2.3. Let w be a positive measurable function on X such that 0 <

infx∈B w(x) ≤ supx∈B w(x) < ∞ for every open ball B in X. Let p(·) and q j(·), j = 1, . . . , k, be
measurable functions on X such that

(P1) 1 ≤ p− := infx∈X p(x) ≤ supx∈X p(x) =: p+ < ∞
and

(Q1) 0 ≤ q−j := infx∈X q j(x) ≤ supx∈X q j(x) =: q+j < ∞
for all j = 1, . . . , k.

Set Lc(t) = log(c + t) for c ≥ e and t ≥ 0, L(1)
c (t) = Lc(t), L( j+1)

c (t) = Lc(L( j)
c (t)) and

Φ(x, t) = w(x)tp(x)
∫ t

0

[ k∏
j=1

(L( j)
c (s))qj(x)

]
ds.

Then, Φ(x, t) satisfies (Φ1), (Φ2), (Φ3) and (Φ4).

Let Ω be a measurable set in X. For Φ(x, t) satisfying (Φ1), (Φ2), (Φ3) and (Φ4), the
associated Musielak-Orlicz space

LΦ(Ω) =

{
f : measurable function on Ω such that

∫
Ω

Φ
(
y, | f (y)|)dμ(y) < ∞

}

is a Banach space with respect to the norm

‖ f ‖LΦ(Ω) = inf

{
λ > 0 ;

∫
Ω

Φ
(
y, | f (y)|/λ)dμ(y) ≤ 1

}

if we identify functions which are equal μ-a.e. (cf. [23]). Note that LΦ(Ω) ⊂ L1(Ω) if μ(Ω) <
∞ by (2.2).

For a measurable function f on Ω, we define the modular ρΦ,Ω( f ) by

ρΦ,Ω( f ) =
∫
Ω

Φ(y, | f (y)|) dμ(y) .

If Ω = X, we denote ρΦ,Ω( f ) by ρΦ( f ).
By convexity of Φ(x, ·) and (2.1), we see that

(2.4) ‖ f ‖LΦ (Ω) ≤ ρΦ,Ω( f ) ≤ Ad

2
‖ f ‖ωLΦ (Ω) if ‖ f ‖LΦ (Ω) ≥ 1

and

(2.5) 2(Ad)−1‖ f ‖ωLΦ(Ω) ≤ ρΦ,Ω( f ) ≤ ‖ f ‖LΦ (Ω) if ‖ f ‖LΦ (Ω) ≤ 1 ,

where ω = log2 Ad.
By (2.5), we have

LEMMA 2.4 (cf. [16, Lemma 2.2] and [23, Theorem 8.14]). Let { fi} be a sequence in
LΦ(Ω). Then ρΦ,Ω( fi) converges to 0 if and only if ‖ fi‖LΦ(Ω) converges to 0.

LEMMA 2.5. Let { fi} be a sequence in LΦ(Ω) and f ∈ LΦ(Ω). If ρΦ,Ω( fi − f ) converges
to 0, then ρΦ,Ω( fi) converges to ρΦ,Ω( f ).
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PROOF. First, note that {ρΦ,Ω( fi)} is bounded. In fact, by the above lemma, ‖ fi −
f ‖LΦ (Ω) → 0, and hence {‖ fi‖LΦ(Ω)} is bounded, which implies that {ρΦ,Ω( fi)} is bounded by
(2.4).

Let ε > 0 be arbitrarily given. By Lemma 2.2,

|ρΦ,Ω( fi) − ρΦ,Ω( f )| ≤
∫
Ω

|Φ(x, | fi(x)|) −Φ(x, | f (x)|)| dμ(x)

≤ ε{ρΦ,Ω( fi) + ρΦ,Ω( f )} + A(ε)ρΦ,Ω( fi − f ),

so that

lim sup
i→∞

|ρΦ,Ω( fi) − ρΦ,Ω( f )| ≤ ε
[
lim sup

i→∞
ρΦ,Ω( fi) + ρΦ,Ω( f )

]
.

Since {ρΦ,Ω( fi)} is bounded and ε > 0 is arbitrary, it follows that ρΦ,Ω( fi)→ ρΦ,Ω( f ). �

LEMMA 2.6. Let B be an open ball in X. Then

‖1‖LΦ(B) ≤ max

{
1, μ(B) sup

x∈B
Φ(x, 1)

}
.

PROOF. Let λ = μ(B) supx∈B Φ(x, 1).
If λ ≥ 1, then by convexity∫

B
Φ(x, 1/λ) dμ(x) ≤ (1/λ)

∫
B
Φ(x, 1) dμ(x) ≤ 1 ,

so that ‖1‖LΦ(B) ≤ λ.
If λ ≤ 1, then

∫
B
Φ(x, 1) dμ(x) ≤ λ ≤ 1, so that ‖1‖LΦ(B) ≤ 1. �

3. Φ-weak upper gradient and Musielak-Orlicz Newtonian space N1,Φ(Ω). Let
Γ(Ω) be the family of all rectifiable curves in a set Ω ⊂ X. Each γ ∈ Γ(X) is a nonconstant
continuous map γ : [0, �γ] → X, where �γ is the length of γ. For Γ ⊂ Γ(X), we denote by
F(Γ) the set of all Borel measurable functions h : X → [0,∞] such that∫

γ

h ds ≥ 1

for every γ ∈ Γ, where ds represents integration with respect to arc length. We define the
Φ-modulus of Γ ⊂ Γ(X) by

MΦ(Γ) = inf
h∈F(Γ)

ρΦ(h) .

If F(Γ) = ∅, then we set MΦ(Γ) = ∞.
For a set Ω ⊂ X, we say that a property holds for MΦ-a.e. γ ∈ Γ(Ω), if it holds on

γ ∈ Γ(Ω) \ Γ for a family Γ ⊂ Γ(X) with MΦ(Γ) = 0.

REMARK 3.1. In [19], in a general setting of quasi-Banach function lattices, Malý
defined modulus of curves in terms of norms instead of modular. His definition applied to our
case is:

ModLΦ(X)(Γ) = inf
h∈F(Γ)

‖h‖LΦ(X) .
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This plays almost the same roles as our MΦ; in particular, since

MΦ(Γ) = 0 if and only if ModLΦ(X)(Γ) = 0 ,

in view of Lemma 2.4, the notions “MΦ-a.e.” and “ModLΦ(X)-a.e.” coincide. Further,
proofs of the results in [18] and [19] are often applicable to the proofs of corresponding
results in this paper.

LEMMA 3.2 ([19, Lemma 4.10]). Let Ω be a measurable set in X and h be a nonneg-
ative measurable function on Ω. Then

∫
γ

h ds is well-defined for MΦ-a.e. γ ∈ Γ(Ω); in fact, if
h1 is a nonnegative Borel functions on X such that h1 = h μ-a.e. in Ω, then

∫
γ

h ds =
∫
γ

h1 ds

for MΦ-a.e. γ ∈ Γ(Ω).

Let Ω be a measurable set in X and let u be a function Ω → [−∞,∞]. A nonnegative
measurable function h on Ω is said to be a Φ-weak upper gradient of u in Ω if

(3.1) |u(γ(0)) − u(γ(�γ))| ≤
∫
γ

h ds

holds for MΦ-a.e. γ ∈ Γ(Ω). Here, by saying that (3.1) holds, we understand that
∫
γ

h ds is

well-defined and
∫
γ

h ds = ∞ in case |u(γ(0))| = ∞ or |u(γ(�γ))| = ∞ (cf. [4]).

REMARK 3.3. Let Ω′ ⊂ Ω be a measurable set. If h is a Φ-weak upper gradient of u in
Ω, then h|Ω′ is a Φ-weak upper gradient of u|Ω′ in Ω′.

The Musielak-Orlicz Newtonian space N1,Φ(Ω) is defined to be the family of all u ∈
LΦ(Ω) having a Φ-weak upper gradient h ∈ LΦ(Ω) in Ω. For u ∈ N1,Φ(Ω) we define

‖u‖N1,Φ(Ω) = ‖u‖LΦ(Ω) + inf ‖h‖LΦ(Ω) ,

where the infimum is taken over all Φ-weak upper gradients of u in Ω.
We say that u is absolutely continuous on a curve γ, if u ◦ γ is absolutely continuous on

[0, �γ]. Let ACCΦ(Ω) be the family of measurable functions on Ω each of which is absolutely
continuous on MΦ-a.e. γ ∈ Γ(Ω).

LEMMA 3.4 ([19, Theorem 6.7]). If u ∈ N1,Φ(Ω), then u ∈ ACCΦ(Ω).

LEMMA 3.5 ([19, Lemma 6.8]). Let u ∈ ACCΦ(Ω) and let g be a nonnegative mea-
surable function on Ω. If, for MΦ-a.e. γ ∈ Γ(Ω),

(3.2) |(u ◦ γ)′(t)| ≤ g(γ(t)) for a.e. t ∈ [0, �γ],

then g is a Φ-weak upper gradient of u in Ω.
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Conversely, let u ∈ ACCΦ(Ω) and let g ∈ LΦ(Ω) be a Φ-weak upper gradient of u in Ω.
Then (3.2) holds for MΦ-a.e. γ ∈ Γ(Ω).

We say that hu ∈ LΦ(Ω) is a minimal Φ-weak upper gradient of u ∈ N1,Φ(Ω) in Ω if hu

is a Φ-weak upper gradient of u in Ω and hu ≤ h μ-a.e. in Ω for all Φ-weak upper gradients
h ∈ LΦ(Ω) of u in Ω.

LEMMA 3.6 (cf. [18, Theorem 4.6]). Let u ∈ N1,Φ(Ω). Then there exists a minimal
Φ-weak upper gradient hu of u in Ω.

Moreover hu is unique up to sets of measure zero.

LEMMA 3.7 (cf. [4, Corollary 2.20]). Let u, v ∈ N1,Φ(Ω) and let hu and hv be minimal
Φ-weak upper gradients of u and v in Ω respectively. Then huχ{u>v} + hvχ{v≥u} is a minimal
Φ-weak upper gradient of max{u, v} in Ω and hvχ{u>v} + huχ{v≥u} is a minimal Φ-weak upper
gradient of min{u, v} in Ω.

LEMMA 3.8 (cf. [4, Corollary 2.21]). Let u, v ∈ N1,Φ(Ω) and let hu and hv be minimal
Φ-weak upper gradients of u and v in Ω respectively. Then hu = hv μ-a.e. on {x ∈ Ω : u(x) =
v(x)}.

LEMMA 3.9 (cf. [4, Lemma 2.23]). Let E ⊂ Ω be an open set. If u ∈ N1,Φ(Ω) and hu

is a minimal Φ-weak upper gradient of u in Ω, then hu|E is a minimal Φ-weak upper gradient
of u|E in E.

LEMMA 3.10 ([19, Proposition 6.10]). Let u, v ∈ N1,Φ(Ω) and let hu and hv be minimal
Φ-weak upper gradients of u and v in Ω respectively. Then |u|hv + |v|hu is a Φ-weak upper
gradient of uv in Ω.

4. Capacity cΦ. For u ∈ N1,Φ(Ω), we set

ρ̂Φ,Ω(u) = ρΦ,Ω(u) + inf ρΦ,Ω(h) ,

where the infimum is taken over all Φ-weak upper gradients of u in Ω.
For E ⊂ Ω, we denote

sΦ(E;Ω) = {u ∈ N1,Φ(Ω) : u ≥ 1 on E}
and define the Φ-capacity with respect to Ω by

cΦ(E;Ω) = inf
u∈sΦ(E;Ω)

ρ̂Φ,Ω(u) .

In case sΦ(E;Ω) = ∅, we set cΦ(E;Ω) = ∞. If X = Ω, we denote sΦ(E;Ω) and cΦ(E;Ω) by
sΦ(E) and cΦ(E) respectively.

cΦ( · ;Ω) is an outer measure; in particular, it is countably subadditive (see [24, Proposi-
tion 4.5]).

REMARK 4.1. For E ⊂ Ω, cΦ(E;Ω) ≤ cΦ(E).
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REMARK 4.2. In [19], Malý defined a capacity in terms of norms instead of modular.
As remarked for the notion of modulus of curves in Remark 3.1, our capacity cΦ plays almost
the same roles as the capacity defined in [19].

LEMMA 4.3. Let B be an open ball with radius r in X. Then

cΦ(B) ≤
(
1 +max{r−1, Adr−ω/2}

)
μ(2B) sup

x∈2B
Φ(x, 1) ,

where ω = log2 Ad .

PROOF. Set u(x) = max{1 − d(x, B)/r, 0} and

h(x) =

⎧⎪⎪⎨⎪⎪⎩
1/r for x ∈ 2B

0 for x ∈ X \ 2B .

Then u ∈ LΦ(X), u = 1 on B and h is a Φ-weak upper gradient of u in X, so that u ∈ sΦ(B).
Hence we have by (Φ2) and (2.1)

cΦ(B)≤
∫

2B
Φ (x, 1) dμ(x) +

∫
2B
Φ

(
x,

1
r

)
dμ(x)

≤ μ(2B) sup
x∈2B

Φ(x, 1) + μ(2B) sup
x∈2B

Φ(x, 1) max{r−1, Adr−ω/2},
as required. �

For a set E ⊂ Ω, we say that a property holds cΦ(·;Ω)-q.e. in E, if it holds on E except
of a set F ⊂ E with cΦ(F;Ω) = 0, where q.e. stands for quasi-everywhere.

LEMMA 4.4 ([19, Corollary 5.11]). If u = v cΦ(·;Ω)-q.e. inΩ and h is aΦ-weak upper
gradient of u with respect to Ω, then h is also a Φ-weak upper gradient of v in Ω.

LEMMA 4.5 ([19, Proposition 6.12]). If u, v ∈ N1,Φ(Ω) and u = v μ-a.e. in Ω, then
u = v cΦ(·;Ω)-q.e. in Ω.

Moreover, if Ω is an open set in X, then u = v cΦ-q.e. in Ω.

LEMMA 4.6 ([18, Proposition 5.6]). Let Ω be an open set in X. Let hi ∈ LΦ(Ω) be
a Φ-weak upper gradient of ui ∈ N1,Φ(Ω) in Ω for i = 1, 2, . . . . Suppose {ui} converges to
a function u in LΦ(Ω) and {hi} converges to a nonnegative function h in LΦ(Ω). Then there
exists a measurable function ũ such that ũ = u μ-a.e. in Ω and h is a Φ-weak upper gradient
of ũ in Ω, and there exists a subsequence {uik } which converges to ũ pointwise cΦ-q.e. in Ω.

Moreover, if there exists a subsequence {uik } which converges to u pointwise cΦ-q.e. in Ω,
then we may choose ũ = u in Ω.

LEMMA 4.7 (cf. [4, Lemma 6.2]). Let Ω be an open set in X. Assume that LΦ(Ω) is
reflexive. Suppose {ui} and {hi} are bounded sequences in LΦ(Ω) such that hi is a Φ-weak
upper gradient of ui in Ω for i = 1, 2, . . . . Then there exist u, h ∈ LΦ(Ω), subsequences {uik }
and {hik } and convex combinations vk =

∑Nk

n=k ak,nuin and gk =
∑Nk

n=k ak,nhin such that

(1) {vk} and {gk} converge to u and h in LΦ(Ω) respectively;
(2) there exists a subsequence {vki } which converges pointwise to u cΦ-q.e. in Ω;
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(3) h is a Φ-weak upper gradient of u in Ω.

5. Musielak-Orlicz Newtonian spaces with zero boundary values N1,Φ
0 (E) and

Poincaré inequality. For E ⊂ X, we define

N1,Φ
0 (E) = { f |E : f ∈ N1,Φ(X) and f = 0 in X \ E} .

By Lemma 4.4, we have

N1,Φ
0 (E) = { f |E : f ∈ N1,Φ(X) and f = 0 cΦ-q.e. in X \ E}.

LEMMA 5.1 (cf. [4, Lemma 2.37]). Let u ∈ N1,Φ(Ω) and let v, w ∈ N1,Φ
0 (Ω) be such

that v ≤ u ≤ w cΦ-q.e. in Ω. Then u ∈ N1,Φ
0 (Ω).

LEMMA 5.2. Let Ω ⊂ X be an open set. Let u1 ∈ N1,Φ
0 (Ω) and let h1 be a Φ-weak

upper gradient of u1 in Ω. Set

u =

{
u1 on Ω

0 on X \ Ω and h =

{
h1 on Ω

0 on X \ Ω .
Then h is a Φ-weak upper gradient of u in X.

PROOF. Since u ∈ N1,Φ(X) by definition, there exists a minimalΦ-weak upper gradient
hu of u in X by Lemma 3.6. Then, by Lemma 3.8, we may assume that hu is identically zero
outside Ω. On the other hand, hu|Ω is a minimal Φ-weak upper gradient of u1 in Ω by Lemma
3.9, and hence hu ≤ h1 μ-a.e. in Ω, so that hu ≤ h μ-a.e. in X. Hence, we obtain the required
result by Lemma 3.2. �

We say that X supports a Φ-Poincaré inequality if, for every open ball B in X, there exist
constants CP(B) > 0 and λ ≥ 1 such that

‖u − uB‖LΦ(B) ≤ CP(B)‖h‖LΦ(λB)

holds whenever h is a Φ-weak upper gradient of u on λB and u is integrable on B, where
uB = −

∫
B

u dμ is the mean-value of u on B.

EXAMPLE 5.3. RN supports a Φ-Poincaré inequality if Φ(x, t) satisfies (Φ2′; p0) for
p0 > 1 and the following condition for 0 < ν < p0/N:

(Φ5; ν) For every γ > 0, there exists a constant Bγ,ν ≥ 1 such that

Φ(x, t) ≤ Bγ,νΦ(y, t)

whenever |x − y| ≤ γt−ν and t ≥ 1.

We give a proof of this fact in the Appendix (Section 7).

PROPOSITION 5.4 (cf. [4, Lemma 5.53]). Assume that X supports a Φ-Poincaré
inequality. Let B = B(x0, r) be an open ball in X. Then there exists a constant C =

C(supx∈2B Φ(x, 1), Ad,CP(B), μ(2B), r) > 0 such that

cΦ(B ∩ S )‖u‖LΦ(2B) ≤ C‖hu‖LΦ(2λB)
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for all u ∈ N1,Φ(X), where λ is the constant in the Φ-Poincaré inequality, S = {x ∈ X : u(x) =
0} and hu ∈ LΦ(X) is a minimal Φ-weak upper gradient of u in X.

PROOF. Denote by hg a minimal Φ-weak upper gradient of g in X. Let u ∈ N1,Φ(X).
First note from the Φ-Poincaré inequality that u is a constant μ-a.e. in 2B if ‖hu‖LΦ(2λB) = 0,
so that it is sufficient to prove that there exists a constant C = C(supx∈2B Φ(x, 1), Ad,CP(B),
μ(2B), r) > 0 such that

(5.1) cΦ(B ∩ S )‖u‖LΦ(2B) ≤ C

for all u ∈ N1,Φ(X) with ‖hu‖LΦ(2λB) = 1. Further, we may assume that u is nonnegative on 2B
by Lemma 3.7.

If ‖u‖LΦ(2B) ≤ ‖1‖LΦ(2B), then we see that (5.1) holds by Lemmas 2.6 and 4.3. Thus,
assume that ‖u‖LΦ(2B) > ‖1‖LΦ(2B) and set α = ‖u‖LΦ(2B)/‖1‖LΦ(2B)(> 1). Let η(x) = max{1 −
dist(x, B)/r, 0}. Then hη ≤ (1/r)χ2B. Set v = η(1 − u/α). By Lemma 3.10, we see that
(hη|u − α| + hu)/α is a Φ-weak upper gradient of v in X, so that v ∈ N1,Φ(X). Since v = 1 in
B ∩ S , we have

(5.2) cΦ(B ∩ S ) ≤ ρΦ(v) + ρΦ(hv) .

Since α > 1,

ρΦ(v) ≤ ρΦ,2B(1 − u/α) ≤ 1
α
ρΦ,2B(u − α) .

By (Φ4) and convexity of Φ(x, ·),

ρΦ,2B(u − α) ≤ Ad

2
(
ρΦ,2B(u − u2B) + ρΦ,2B(u2B − α)

)
.

Since

|u2B − α| =
∣∣∣u2B‖1‖LΦ(2B) − ‖u‖LΦ(2B)

∣∣∣
‖1‖LΦ(2B)

≤ ‖u − u2B‖LΦ(2B)

‖1‖LΦ(2B)
≤ CP(B)
‖1‖LΦ(2B)

by the Φ-Poincaré inequality, we see that

ρΦ,2B(u2B − α) ≤ C1ρΦ,2B(1/‖1‖LΦ(2B)) ≤ C1

by (2.1), where C1 = max
{
CP(B), AdCP(B)ω/2

}
. By (2.4), (2.5) and theΦ-Poincaré inequality,

ρΦ,2B(u − u2B) ≤ C1 .

Hence,

(5.3) ρΦ,2B(u − α) ≤ AdC1,

so that ρΦ(v) ≤ AdC1/α.
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Since

hv ≤ hη|u − α| + hu

α
χ2B ≤ 1

α

(
1
r
|u − α| + hu

)
χ2B

and α > 1, we see that

ρΦ(hv) ≤ 1
α
ρΦ,2B

(
1
r
|u − α| + hu

)

≤ Ad

2α

{
ρΦ,2B

(
1
r

(u − α)

)
+ ρΦ,2B(hu)

}

≤ Ad

2α
{
max{1/r, Ad/(2rω)}ρΦ,2B(u − α) + 1

}

≤ C2(Ad,CP(B), r)
α

in view of (5.3). Since 1/α ≤ C3(supx∈2B Φ(x, 1), μ(2B))/‖u‖LΦ(2B), we finally obtain (5.1)
from (5.2). �

By Lemma 3.8 and Proposition 5.4, we have the following Poincaré inequalities for
N1,Φ

0 (E).

COROLLARY 5.5 (cf. [4, Corollary 5.54]). Assume that X supports a Φ-Poincaré in-
equality. Let Ω be a bounded set in X with cΦ(X \ Ω) > 0. Then there exists a constant C > 0
such that

‖u‖LΦ(X) ≤ C‖hu‖LΦ(X)

for all u ∈ N1,Φ
0 (Ω), where hu ∈ LΦ(X) is a minimal Φ-weak upper gradient of u in X (by

considering as u = 0 on X \ Ω).

PROOF. Let u ∈ N1,Φ
0 (Ω). Then we may assume that u ∈ N1,Φ(X) and u = 0 on X \ Ω.

Let hu ∈ LΦ(X) be a minimal Φ-weak upper gradient of u in X. By Lemma 3.8, we have
hu = 0 μ-a.e. in X \Ω. Since Ω is a bounded set in X with cΦ(X \Ω) > 0, there exists an open
ball B ⊃ Ω such that cΦ(B \ Ω) > 0. By Proposition 5.4, we find

‖u‖LΦ(X) = ‖u‖LΦ(2B) ≤ C
cΦ(B \ Ω)

‖hu‖LΦ(2λB) = C‖hu‖LΦ(X) ,

as required. �

6. Obstacle problem in N1,Φ(Ω). From now on, we assume that Ω is an open
bounded set with cΦ(X \ Ω) > 0. We denote by hg a minimal Φ-weak upper gradient of g
in Ω.

For f ∈ N1,Φ(Ω) and ψ : Ω→ [−∞,∞], we define

Kψ, f (Ω) = {u ∈ N1,Φ(Ω) : u − f ∈ N1,Φ
0 (Ω) and u ≥ ψ cΦ-q.e. in Ω} .

A function u ∈ Kψ, f (Ω) is called a solution of the Kψ, f (Ω)-obstacle problem in N1,Φ(Ω) if∫
Ω

Φ(x, hu(x)) dμ(x) ≤
∫
Ω

Φ(x, hv(x)) dμ(x)
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for all v ∈ Kψ, f (Ω).

THEOREM 6.1 (cf. [4, Theorem 7.2]). Assume that LΦ(Ω) is reflexive and X supports
a Φ-Poincaré inequality. Let f ∈ N1,Φ(Ω) and ψ : Ω → [−∞,∞]. If Kψ, f (Ω) � ∅, then there
exists a solution of the Kψ, f (Ω)-obstacle problem in N1,Φ(Ω).

Further, if Φ(x, ·) is strictly convex for μ-a.e. x ∈ Ω, then the solution of the Kψ, f (Ω)-
obstacle problem in N1,Φ(Ω) is unique (up to sets of cΦ-capacity zero).

PROOF. Set

I = inf
v∈Kψ, f (Ω)

∫
Ω

Φ(x, hv(x)) dμ(x) .

Then 0 ≤ I < ∞ since Kψ, f (Ω) � ∅. Take {v j} ⊂ Kψ, f (Ω) such that
∫
Ω
Φ(x, hv j(x)) dμ(x)

converges to I as j → ∞. Here note that {hv j} is bounded in LΦ(Ω). By Corollary 5.5 and
Lemmas 3.8 and 3.9, we have

‖v j − f ‖LΦ(Ω) ≤ C‖hv j− f ‖LΦ(Ω) ≤ C
(
‖hv j‖LΦ(Ω) + ‖h f ‖LΦ(Ω)

)
.

Hence {v j} is bounded in N1,Φ(Ω).
By Lemma 4.7, there exist sequences {u j}, {h j} ⊂ LΦ(Ω) and functions u, h ∈ LΦ(Ω)

such that {u j} and {h j} converge to u and h in LΦ(Ω) respectively, {u j} converges pointwise
to u cΦ-q.e. in Ω, h j and h are Φ-weak upper gradients of u j and u in Ω respectively, where
u j, h j are convex combinations of subsequences of {vk}k≥ j, {hvk }k≥ j respectively. It follows that
u ∈ N1,Φ(Ω). Further, u j ≥ ψ cΦ-q.e. in Ω, which implies u ≥ ψ cΦ-q.e. in Ω. Also, we see
that u j − f ∈ N1,Φ

0 (Ω). Let w j ∈ N1,Φ(X) be such that w j = u j − f on Ω and w j = 0 on X \ Ω.
Then, w j converges to w in LΦ(X), where w = u − f on Ω and w = 0 on X \ Ω. We consider
g j := h j + h f and g := h + h f to be identically zero outside Ω. Since g j is a Φ-weak upper
gradient of w j in X by Lemma 5.2 and {w j} and {g j} converge to w and g in LΦ(X) respectively,
we have w ∈ N1,Φ(X) by Lemma 4.6, so that u − f ∈ N1,Φ

0 (Ω). Therefore u ∈ Kψ, f (Ω). By
convexity of Φ(x, ·), ∫

Ω

Φ(x, h j(x)) dμ(x) ≤ sup
k≥ j

∫
Ω

Φ(x, hvk(x)) dμ(x) ,

so that

lim
j→∞

∫
Ω

Φ(x, h j(x)) dμ(x) ≤ I .

Hence

I ≤
∫
Ω

Φ(x, hu(x)) dμ(x) ≤
∫
Ω

Φ(x, h(x)) dμ(x) = lim
j→∞

∫
Ω

Φ(x, h j(x)) dμ(x) ≤ I

by Lemma 2.5, which shows that u is the desired minimizer.
We next prove the uniqueness. Assume that u1 and u2 are solutions of the Kψ, f (Ω)-

obstacle problem. Then, since u3 = (u1 + u2)/2 ∈ Kψ, f (Ω), we have by strictly convexity
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of Φ ∫
Ω

Φ(x, hu1 (x)) dμ(x)≤
∫
Ω

Φ(x, hu3(x)) dμ(x)

≤
∫
Ω

Φ

(
x,

hu1 (x) + hu2 (x)

2

)
dμ(x)

<
1
2

(∫
Ω

Φ(x, hu1(x)) dμ(x) +
∫
Ω

Φ(x, hu2(x)) dμ(x)

)

=

∫
Ω

Φ(x, hu1(x)) dμ(x)

if μ({x ∈ Ω : hu1 (x) � hu2(x)}) > 0. Hence, hu1 = hu2 μ-a.e. in Ω.
For c ∈ R, set

uc = max{u1,min{u2, c}} .
Then uc ∈ N1,Φ(Ω) and uc ≥ ψ cΦ-q.e. in Ω. Since

uc − f ≤ max{u1 − f , u2 − f } ∈ N1,Φ
0 (Ω)

and uc− f ≥ u1− f ∈ N1,Φ
0 (Ω), we have uc− f ∈ N1,Φ

0 (Ω) by Lemma 5.1, so that uc ∈ Kψ, f (Ω).
Let

Vc = {x ∈ Ω : u1(x) < c < u2(x)} .
Then note that Vc ⊂ {x ∈ Ω : uc(x) = c}, so that huc = 0 μ-a.e. in Vc by Lemma 3.8. The
minimizer property of hu1 implies∫

Ω

Φ(x, hu1 (x)) dμ(x)≤
∫
Ω

Φ(x, huc(x)) dμ(x)

=

∫
Ω\Vc

Φ(x, huc(x)) dμ(x) =
∫
Ω\Vc

Φ(x, hu1(x)) dμ(x)

since hu1 = hu2 = huc μ-a.e. in Ω \ Vc by Lemma 3.7. Hence, we have hu1 = hu2 = 0 μ-a.e. in
Vc for all c ∈ R. Since

{x ∈ Ω : u1(x) < u2(x)} ⊂
⋃
c∈Q

Vc ,

we see that hu1 = hu2 = 0 μ-a.e. in {x ∈ Ω : u1(x) < u2(x)}. Similarly, hu1 = hu2 = 0 μ-a.e. in
{x ∈ Ω : u1(x) > u2(x)}. It follows that

hu1−u2 (x) ≤ (hu1 (x) + hu2 (x))χ{x∈Ω:u1(x)�u2(x)} = 0

for μ-a.e in Ω. In view of Lemma 3.9, we find

‖u1 − u2‖LΦ(Ω) ≤ C‖hu1−u2‖LΦ(Ω) = 0

by Corollary 5.5. Hence we have u1 = u2 cΦ-q.e. in Ω by Lemma 4.5, as required. �
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REMARK 6.2. If f ∈ N1,Φ(Ω) and max{ψ − f , 0} ∈ N1,Φ
0 (Ω), then u = max{ f , ψ} ∈

Kψ, f (Ω). Conversely, if Kψ, f (Ω) � ∅ for f ∈ N1,Φ(Ω) and ψ ∈ N1,Φ(Ω), then we see that
max{ψ − f , 0} ∈ N1,Φ

0 (Ω) by Lemma 5.1; cf. [4, Proposition 7.4].

REMARK 6.3. A solution u of the Kψ, f (Ω)-obstacle problem is a superminimizer of
the Φ-Dirichlet energy integral on Ω, namely

(6.1)
∫
{y∈Ω:ϕ(y)�0}

Φ(x, hu(x)) dμ(x) ≤
∫
{y∈Ω:ϕ(y)�0}

Φ(x, hu+ϕ(x)) dμ(x),

for all nonnegative ϕ ∈ N1,Φ
0 (Ω).

In fact, since u + ϕ ∈ Kψ, f (Ω),∫
Ω

Φ(x, hu(x)) dμ(x) ≤
∫
Ω

Φ(x, hu+ϕ(x)) dμ(x).

Since hu+ϕ = hu μ-a.e. on {y ∈ Ω : ϕ(y) = 0} by Lemma 3.8, we have (6.1).

7. Appendix: Φ-Poincaré inequality for N1,Φ(RN).

LEMMA 7.1 ([20, Lemma 1.50]). Let B be an open ball in RN and u ∈ W1,1(B). Then

|u(x) − uB| ≤ C
∫

B

|∇u(y)|
|x − y|N−1

dy for a.e. x ∈ B

with a constant C > 0 depending only on N.

The Hardy-Littlewood maximal function M f of f ∈ L1
loc(RN) is defined by

M f (x) := sup
r>0

1
|B(x, r)|

∫
B(x,r)
| f (y)| dy ,

where |B(x, r)| is the Lebesgue measure of B(x, r).

LEMMA 7.2 (cf. [20, Lemma 1.32]). Let B be an open ball in RN and f ∈ L1(B).
Then, for x ∈ B, ∫

B

f (y)
|x − y|N−1

dy ≤ CdBM f̃ (x)

with a constant C > 0 depending only on N, where dB denotes the diameter of B and f̃ is the
function f extended by 0 outside B.

As to the boundedness of the maximal operator M, we have shown (see [17, Theorem 7
and Remark 1]):

LEMMA 7.3. Assume that Φ(x, t) satisfies (Φ2′; p0) and (Φ5; ν) given in Example 5.3
for p0 > 1 and 0 < ν < p0/N. Then, for every open ball B in RN, there is a constant C(B) ≥ 1
such that

‖M f̃ ‖LΦ(B) ≤ C(B)‖ f ‖LΦ(B)

for all f ∈ LΦ(B).



OBSTACLE PROBLEM FOR MUSIELAK-ORLICZ DIRICHLET ENERGY INTEGRAL 67

LEMMA 7.4 (cf. [28, Theorem 6.19]). Let Ω be an open set in RN. Then N1,Φ(Ω) ⊂
W1,Φ(Ω) and if u ∈ N1,Φ(Ω) and h ∈ LΦ(Ω) is a Φ-weak upper gradient of u in Ω, then
|∇u| ≤ √Nh a.e. in Ω.

PROOF. Let u ∈ N1,Φ(Ω). Then, u ∈ ACCΦ(Ω) by Lemma 3.4. It follows that u ∈
ACL(Ω), namely u is absolutely continuous along almost every compact line segment in Ω
(cf. [28, Lemma 4.7]); here note that LΦ(Ω) ⊂ L1

loc(Ω) by (2.2).
Hence u has partial derivatives ∂ ju a.e. in Ω. Furthermore, |∂ ju| ≤ h a.e. in Ω for every

Φ-weak upper gradient h of u by Lemma 3.5. It then follows that u ∈ W1,1
loc (Ω) and |∇u| ≤ √Nh

a.e. in Ω. It in turn follows that |∇u| ∈ LΦ(Ω), namely u ∈ W1,Φ(Ω).
�

Combining these lemmas, we obtain Poincaré inequality for N1,Φ(RN):

THEOREM 7.5. IfΦ(x, t) satisfies (Φ2′; p0) and (Φ5; ν) with p0 > 1 and 0 < ν < p0/N,
then for every open ball B in RN there is a constant C(B) > 0 such that

‖u − uB‖LΦ(B) ≤ C(B)‖h‖LΦ(B)

for all u ∈ N1,Φ(B) and Φ-weak upper gradients h in B.
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