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ON THE MOST EXPECTED NUMBER OF COMPONENTS
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Abstract. We consider a random link, which is defined as the closure of a braid ob-
tained from a random walk on the braid group. For such a random link, the expected value for
the number of components was calculated by Jiming Ma. In this paper, we determine the most
expected number of components for a random link, and further, consider the most expected
partition of the number of strings for a random braid.

1. Introduction. In [4], from a probabilistic point of view, Jiming Ma introduced and
studied two models of random links. We here consider the one which is defined as the braid
closures of randomly chosen braids via random walks on the braid groups.

Suppose that such a random walk on the braid groupBn of n-strings induces the uniform
distribution on the symmetric group Sn on n letters via the natural projection Bn → Sn

(n ≥ 3). Then, Ma showed in [4, Theorem 1.1] that, for the random link coming from a
random walk of k-step on Bn (n ≥ 3), the expected value of the number of components
converges to

1 + 1

2
+ 1

3
+ · · · + 1

n

when k diverges to ∞. See the next section for the precise definition of the random link.
From this result, it is natural to ask what is the most expected number of components for

such a random link. We first answer this question as follows.

THEOREM 1.1. Consider a random link obtained from a random walk onBn. Suppose
that the random walk on Bn is defined for the probability distribution on Bn which induces
the uniform distribution on Sn via the natural projection Bn → Sn (n ≥ 3). Then the most
expected number of components is equal to

Kn =
[

log(n + 1) + γ − 1 + ζ(2) − ζ(3)

log(n + 1) + γ − 1.5
+ h

(log(n + 1) + γ − 1.5)2

]
where [x] denotes the integer part of x, ζ is the Riemann zeta function, γ = 0.5772 . . . is the
Euler-Mascheroni constant, and h with −1.1 < h < 1.5 is a function on n, i.e., h = h(n). In
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particular, if n > 188, it follows that[
log n − 1

2

]
< Kn <

[
log n

]
.

In fact, this can be obtained from some known results on Combinatorics and Analytic
number theory.

To connect the problem of random link to them, the key is the correspondence between
components of the closure of a braid and cycles in the cycle decomposition of the permutation
corresponding to the braid. In particular, the number of components are calculated as the
number of cycles.

In view of this, we can relate random braids to random partitions of integers (i.e., the
numbers of strings). Then it is also natural to ask what is the most expect partition of the
number of strings for a random braid. About this question, against our naive intuition, we can
show the following.

THEOREM 1.2. Consider a random braid obtained from a random walk on Bn. Sup-
pose that the random walk on Bn is defined for the probability distribution on Bn which
induces the uniform distribution on Sn via the natural projection Bn → Sn (n ≥ 3). Then
the most expected partition of the number of the strings is ((n − 1), 1).

Actually the probability for such a partition of the number of the strings is shown to
converge to 1/(n − 1).

The first author thanks Jiming Ma for useful discussions in this topic, and also thanks
Kazuma Shimomoto for letting him know about the Stirling number of the first kind.

2. Link, braid and random walk. We here give a brief review of the setting for
studying the random links introduced in [4]. See [4] for details.

Throughout the paper, we denote the braid group of n-strings by Bn, and the symmetric
group on n letters by Sn.

We consider a probability distribution μ on Bn. By using such a probability distribution,
one can define a random walk by setting the transition probability as P(x, y) = μ(xy−1).
Here we suppose that our random walk starts at the identity element at time zero.

By considering the natural projection Bn → Sn, such a random walk on Bn induces a
random walk on Sn. We here suppose that the probability distribution μ induces the uniform
distribution on Sn via the natural projection. Here, by the uniform distribution on Sn, we
mean the probability distribution satisfying P(s) = 1/n! holds for any s ∈ Sn. That is,
we are assuming that the probability P(s) for any s ∈ Sn induced from the random walk is
sufficiently close to 1/n!, or, in other words, the induced random walk on Sn is the uniformly
distributed random walk.

Then, conceptually, we said a braid is a random braid if it is represented by a braid
coming from a random walk on Bn with sufficiently long steps.

We remark that our assumption on the probability distribution does not give severe re-
striction. Actually, Ma showed the following as [4, Theorem 2.5]. Let μ be a probability
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distribution on Bn, which induces a random walk ωn,k on Sn. Suppose that the probability
P(ωn,1 = e) is larger than 0, for the identity element e ∈ Sn, and the support of μ generates
Bn. Then μ induces the uniform distribution on Sn.

For example, the probability distribution μc on Bn defined by

μc(e) = μc(σi) = μc(σ
−1
i ) = 1

2n − 1

for the identity element e and each canonical generator σi ∈ Bn (1 ≤ i ≤ n − 1) is shown to
satisfy the assumption.

Now we consider a random walk ωn,k on Bn, and the probability pm
n,k for the link cor-

responding to the random walk ωn,k which has exactly m components. Then, for the random
link, we say that the most expected number of components is m if, for any sufficiently large k,
pm

n,k is maximal among p
j
n,k for 1 ≤ j ≤ n.

3. Most expected number of components. In this section, we give a proof of Theo-
rem 1.1.

PROOF OF THEOREM 1.1. Consider a random walk ωn,k on Bn. By taking the braid
closure of ωn,k , we have a link ω̂n,k in the 3-sphere.

Consider the natural projection π : Bn → Sn. We see that a component of ω̂n,k cor-
responds to an orbit of the action of π(ωn,k) on n letters. It follows that, if we consider the
decomposition of π(ωn,k) into cycles with mutually distinct letters, the number of components
of ω̂n,k is equal to the number of cycles in the decomposition of π(ωn,k).

Now we are supposing that ωn,k is defined by a probability distribution on Bn which
induces the uniform probability distribution on Sn via the natural projection π : Bn → Sn.
This means that, for any s ∈ Sn, the probability P(s) defined by the induced random walk
π(ωn,k) converges to 1/n!.

Let pm
n,k be the probability for the link ω̂n,k corresponding to the random walk ωn,k which

has exactly m components. It then follows that, as k → ∞, pm
n,k converges to the ratio of the

number of permutations with disjoint m cycles in Sn.
Here we note that the number of permutations of n letters with disjoint m cycles is called

the Stirling number of the first kind, denoted by c(n,m). Consequently, to obtain the most
expected number of components for ω̂n,k , it suffices to study the value of m for which c(n,m)

is maximal for 1 ≤ m ≤ n.
This was already established by Hammersley in [3] that c(n,m) is maximal for 1 ≤ m ≤

n if m is equal to

Kn =
[

log(n + 1) + γ − 1 + ζ(2) − ζ(3)

log(n + 1) + γ − 1.5
+ h

(log(n + 1) + γ − 1.5)2

]

where [x] denotes the integer part of x, ζ is the Riemann zeta function, γ = 0.5772 . . . is the
Euler-Mascheroni constant, and h with −1.1 < h < 1.5 is a function on n, i.e., h = h(n).
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Furthermore, if n > 188, Erdös proved in [2] that[
log n − 1

2

]
< Kn <

[
log n

]
holds.

This completes the proof of Theorem 1.1.
�

4. Partition of the number of strings for braid. In this section, we give a proof of
Theorem 1.2. Before starting the proof, we should fix our terminology.

An element of the symmetric group Sn on n letters is uniquely represented as a com-
position of several cycles with distinct letters. The set of the lengths of such cycles gives a
partition of the integer n. That is, if an element of Sn is represented as a composition of cycles
of lengths n1, n2, . . . , nm with n1 ≥ n2 ≥ · · · ≥ nm, then we have a partition (n1, n2, . . . , nm)

of n, for n = n1 + n2 + · · · + nm holds.
In view of this, given a braid σ with n-strings with n > 0, we define a partition of the

number of strings for σ as a non-increasing sequence of positive integers (n1, n2, . . . , nm)

which is obtained in that way for the element π(σ) of Sn, where π denotes the natural pro-
jection Bn → Sn.

We here prepare the following, which is the key algebraic lemma to prove Theorem 1.2.

LEMMA 4.1. In the symmetric group on n letters with n ≥ 3, the conjugacy class of
the maximal cardinality is the one containing the (n − 1)-cycle (1 2 . . . n − 1), and the
cardinality is n · (n − 2)!.

PROOF. Let Sn be the symmetric group on n letters (n ≥ 3).
It is known that the cardinality of the conjugacy classes including a ∈ Sn is given by

|Sn|/|Z(a)| (see [1, Chapter 6, pp. 198] for example), where Z(a) denotes the centralizer of
a, that is, {g ∈ Sn|ga = ag}.

Thus it suffice to show that |Z(a)| ≥ n − 1 for any element a ∈ Sn.
We first claim that, in general, k1 · · · kr ≥ k1 + · · · + kr holds for a tuple of integers

k1, . . . , kr ≥ 2. This is easily shown by induction, and the equality holds only when r = 1,
or r = 2 and k1 = k2 = 2.

Now let us describe a ∈ Sn by a product of cycles without common letters: for example,
a = a1 · · · ar with ai is a ki-cycle and k1 ≥ k2 ≥ · · · ≥ kr ≥ 1.

Here we note that, if kr ≥ 2, then the centralizer Z(a) contains the direct product of
abelian groups generated by a1, . . . , ar . Thus the order of Z(a) is at least k1 · · · kr , which is
greater than or equal to k1 + · · · + kr = n by the above claim.

If kr−1 ≥ 2, kr = 1, then Z(a) contains the direct product of abelian groups generated
by a1, . . . , ar−1, which has k1 · · · kr−1 elements. Again, by the above claim, the order of Z(a)

is at least k1 + · · · + kr−1 = n − 1.
Finally, if kp = · · · = kr = 1 for some p with 2 ≤ p ≤ r − 1, then Z(a) contains the

direct product of abelian groups generated by a1, . . . , ap−1 and the (r − p + 1)-cycle of the
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other letters. The order of the cycle is at least k1 · · · kp−1 · (r − p + 1) ≥ k1 + · · · + kp−1 +
(r − p + 1) = n.

Consequently we see that |Z(a)| ≥ n − 1.
Furthermore, suppose that |Z(a)| = n − 1 holds, then we have r − 1 = 1, k1 ≥ 2, and

k2 = 1, that is, a is the (n − 1)-cycle, or r − 1 = 2, k1 = k2 = 2, k3 = 1, n − 1 = 4.
In the latter case, i.e., n = 5, we may assume that a = (12)(34). But in this case, we have
|Z(a)| = 8 (the quaternion group is also contained), and so, the equality does not hold. �

PROOF OF THEOREM 1.2. Consider a random walk ωn,k on Bn. By using the natural
projection, we have the induced random walk on Sn. Since we have assumed that this induced
random walk is uniformly distributed, the probability of a braid in the sequence with a given
partition, say (n1, n2, . . . , nm), of the number n of the strings converges to �n,i/n!, where
�n,i denotes the number of elements in Sn giving that partition of the integer n. This �n,i

is equal to the cardinality of the conjugacy class of an element in Sn decomposed into the
cycles of distinct letters of lengths n1, n2, . . . , nm. Then, by the above lemma, �n,i takes
maximum for the one containing the (n− 1)-cycle (1 2 . . . n− 1). That is, the most expected
partition of the number of the strings for a random n-braid must be ((n−1), 1). Also, since the
maximum of �n,i is n · (n− 2)!, the most expected probability is n · (n− 2)!/n! = 1/(n− 1).
Furthermore, in that case, the link comes from the braid corresponding to the (n − 1)-cycle
(1 2 . . . n − 1). �

Actually, in the same way, it can be shown that the probability that a given random link
becomes a knot converges to 1/n.
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