BOUNDEDNESS OF THE MAXIMAL OPERATOR ON MUSIELAK-ORLICZ-MORREY SPACES

Dedicated to Professor Yoshihiro Mizuta on the occasion of his seventieth birthday

Fumi-Yuki Maeda, Takao Ohno and Tetsu Shimomura
(Received July 10, 2015, revised October 13, 2015)

Abstract

We give the boundedness of the maximal operator on Musielak-OrliczMorrey spaces, which is an improvement of [7, Theorem 4.1]. We also discuss the sharpness of our conditions.

1. Introduction. For $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{N}\right)$, its maximal function $M f$ is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y,
$$

where $B(x, r)$ is the ball in \mathbf{R}^{N} with center x and of radius $r>0$ and $|B(x, r)|$ denotes its Lebesgue measure. The mapping $f \mapsto M f$ is called the maximal operator. When f is a function on an open set Ω in \mathbf{R}^{N}, we define $M f$ by extending f to be zero outside Ω.

The classical result that M is a bounded operator on $L^{p}\left(\mathbf{R}^{N}\right)$ for $p>1$ has been extended to various function spaces. Boundedness of the maximal operator on variable exponent Lebesgue spaces $L^{p(\cdot)}$ was investigated in [3] and [4]. Variable exponent Lebesgue spaces are special cases of the Musielak-Orlicz spaces, which were first considered by H. Nakano as modulared function spaces in [12] and then developed by J. Musielak as generalized Orlicz spaces in [9]. The boundedness of the maximal operator was also studied for variable exponent Morrey spaces (see $[1,8]$). All the above spaces are special cases of the so-called Musielak-Orlicz-Morrey spaces

In [7, Theorem 4.1], we established the boundedness of the maximal operator M on Musielak-Orlicz-Morrey spaces $L^{\Phi, \kappa}\left(\mathbf{R}^{N}\right)$ defined by general functions $\Phi(x, t)$ and $\kappa(x, r)$ satisfying certain conditions. Our aim in this paper is to give its improvement by relaxing assumptions on $\Phi(x, t)$ (Theorem 7). In fact, we shall show our result by assuming ($\Phi 5 ; v$) and $(\Phi 6 ; \omega)$ below instead of $(\Phi 5)$ and $(\Phi 6)$ in [7]. Further, the result is proved without the doubling condition on $\Phi(x, \cdot)$ which is ($\Phi 4$) in [7]. As a result, we can include a variety of examples of $\Phi(x, t)$ to which our theory applies; in particular, non-doubling functions $\Phi(x, t)$ as in Examples 2-5. See also Hästö [6]. His conditions for the boundedness of the maximal operator on Musielak-Orlicz spaces are different from ours.

In the final section, we discuss the sharpness of the conditions ($\Phi 5 ; \nu$) and $(\Phi 6 ; \omega)$.

[^0]2. Preliminaries. Let Ω be an open set in \mathbf{R}^{N} and consider a function
$$
\Phi(x, t): \Omega \times[0, \infty) \rightarrow[0, \infty)
$$
satisfying the following conditions ($\Phi 1$)-($\Phi 4$):
$(\Phi 1) \quad \Phi(\cdot, t)$ is measurable on Ω for each $t \geq 0$ and $\Phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in \Omega$;
($\Phi 2$) there exists a constant $A_{1} \geq 1$ such that
$$
A_{1}^{-1} \leq \Phi(x, 1) \leq A_{1} \quad \text { for all } x \in \Omega ;
$$
($\Phi 3$) $t \mapsto \Phi(x, t) / t$ is uniformly almost increasing on $(0, \infty)$, namely there exists a constant $A_{2} \geq 1$ such that
$$
\Phi\left(x, t_{1}\right) / t_{1} \leq A_{2} \Phi\left(x, t_{2}\right) / t_{2} \quad \text { for all } x \in \Omega \text { whenever } 0<t_{1}<t_{2} .
$$

Note that ($\Phi 2$) and ($\Phi 3$) imply

$$
\begin{equation*}
\Phi(x, t) \leq A_{1} A_{2} t \quad \text { for } 0 \leq t \leq 1 \quad \text { and } \quad \Phi(x, t) \geq\left(A_{1} A_{2}\right)^{-1} t \quad \text { for } t \geq 1 \tag{1}
\end{equation*}
$$

Let $\bar{\phi}(x, t)=\sup _{0<s \leq t} \Phi(x, s) / s$ and

$$
\bar{\Phi}(x, t)=\int_{0}^{t} \bar{\phi}(x, r) d r
$$

for $x \in \Omega$ and $t \geq 0$. Then $\bar{\Phi}(x, \cdot)$ is convex and

$$
\begin{equation*}
\Phi(x, t / 2) \leq \bar{\Phi}(x, t) \leq A_{2} \Phi(x, t) \tag{2}
\end{equation*}
$$

for all $x \in \Omega$ and $t \geq 0$.
We also consider a function $\kappa(x, r): \Omega \times(0, \infty) \rightarrow(0, \infty)$ satisfying the following conditions:
($\kappa 1$) there is a constant $Q_{1} \geq 1$ such that

$$
\kappa(x, 2 r) \leq Q_{1} \kappa(x, r)
$$

for all $x \in \Omega$ and $r>0 ;$
($\kappa 2$) $r \mapsto r^{-\varepsilon} \kappa(x, r)$ is uniformly almost increasing on $(0, \infty)$ for some $\varepsilon>0$, namely there exists a constant $Q_{2} \geq 1$ such that

$$
r^{-\varepsilon} \kappa(x, r) \leq Q_{2} s^{-\varepsilon} \kappa(x, s)
$$

for all $x \in \Omega$ whenever $0<r<s$;
($\kappa 3$) there is a constant $Q_{3} \geq 1$ such that

$$
Q_{3}^{-1} \min \left(1, r^{N}\right) \leq \kappa(x, r) \leq Q_{3} \max \left(1, r^{N}\right)
$$

for all $x \in \Omega$ and $r>0$.

Given $\Phi(x, t)$ and $\kappa(x, r)$ as above, the Musielak-Orlicz-Morrey space $L^{\Phi, \kappa}(\Omega)$ is defined by

$$
\begin{aligned}
& L^{\Phi, \kappa}(\Omega) \\
& \quad=\left\{f \in L_{\mathrm{loc}}^{1}(\Omega): \sup _{x \in \Omega, r>0} \frac{\kappa(x, r)}{|B(x, r)|} \int_{B(x, r) \cap \Omega} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) d y<\infty \text { for some } \lambda>0\right\} .
\end{aligned}
$$

It is a Banach space with respect to the norm

$$
\begin{aligned}
\|f\|_{\Phi, \kappa ; \Omega} & =\|f\|_{L^{\Phi, \kappa}(\Omega)} \\
& =\inf \left\{\lambda>0: \sup _{x \in \Omega, r>0} \frac{\kappa(x, r)}{|B(x, r)|} \int_{B(x, r) \cap \Omega} \bar{\Phi}\left(y, \frac{|f(y)|}{\lambda}\right) d y \leq 1\right\}
\end{aligned}
$$

(cf. [11]).
In case $\kappa(x, r)=r^{N}, L^{\Phi, \kappa}(\Omega)$ is the Musielak-Orlicz space $L^{\Phi}(\Omega)$ (cf. [9]).
We shall also consider the following conditions for $\Phi(x, t)$: Let $p \geq 1, q \geq 1, v>0$ and $\omega>0$.
$(\Phi 3 ; 0 ; p) \quad t \mapsto t^{-p} \Phi(x, t)$ is uniformly almost increasing on $(0,1]$, namely there exists a constant $A_{2,0, p} \geq 1$ such that
$t_{1}^{-p} \Phi\left(x, t_{1}\right) \leq A_{2,0, p} t_{2}^{-p} \Phi\left(x, t_{2}\right) \quad$ for all $x \in \Omega$ whenever $0<t_{1}<t_{2} \leq 1 ;$
$(\Phi 3 ; \infty ; q) \quad t \mapsto t^{-q} \Phi(x, t)$ is uniformly almost increasing on $[1, \infty)$, namely there exists a constant $A_{2, \infty, q} \geq 1$ such that
$t_{1}^{-q} \Phi\left(x, t_{1}\right) \leq A_{2, \infty, q} t_{2}^{-q} \Phi\left(x, t_{2}\right) \quad$ for all $x \in \Omega$ whenever $1 \leq t_{1}<t_{2} ;$
($\Phi 5 ; \nu$) for every $\gamma>0$, there exists a constant $B_{\gamma, v} \geq 1$ such that

$$
\Phi(x, t) \leq B_{\gamma, \nu} \Phi(y, t)
$$

whenever $x, y \in \Omega,|x-y| \leq \gamma t^{-v}$ and $t \geq 1$;
($\Phi 6 ; \omega$) there exist a function g on Ω and a constant $B_{\infty} \geq 1$ such that $0 \leq g(x) \leq 1$ for all $x \in \Omega, g \in L^{\omega}(\Omega)$ and

$$
B_{\infty}^{-1} \Phi(x, t) \leq \Phi\left(x^{\prime}, t\right) \leq B_{\infty} \Phi(x, t)
$$

whenever $x, x^{\prime} \in \Omega,\left|x^{\prime}\right| \geq|x|$ and $g(x) \leq t \leq 1$.
Note that $(\Phi 3 ; 0 ; 1)+(\Phi 3 ; \infty ; 1)=(\Phi 3)$. If $\Phi(x, t)$ satisfies $(\Phi 3 ; 0 ; p)$, then it satisfies $\left(\Phi 3 ; 0 ; p^{\prime}\right)$ for $1 \leq p^{\prime} \leq p$; if $\Phi(x, t)$ satisfies $\left(\Phi 3 ; \infty ; q\right.$), then it satisfies $\left(\Phi 3 ; \infty ; q^{\prime}\right)$ for $1 \leq q^{\prime} \leq q$.

If $\Phi(x, t)$ satisfies $(\Phi 3 ; 0 ; p)$, then

$$
\begin{equation*}
\Phi(x, t) \leq A_{1} A_{2,0, p} t^{p} \quad \text { for } 0 \leq t \leq 1 ; \tag{3}
\end{equation*}
$$

if $\Phi(x, t)$ satisfies $(\Phi 3 ; \infty ; q$), then

$$
\Phi(x, t) \geq\left(A_{1} A_{2, \infty, q}\right)^{-1} t^{q} \quad \text { for } t \geq 1
$$

If $\Phi(x, t)$ satisfies ($\Phi 5 ; v$), then it satisfies $\left(\Phi 5 ; \nu^{\prime}\right)$ for all $v^{\prime} \geq v$; if $\Phi(x, t)$ satisfies $(\Phi 6 ; \omega)$, then it satisfies ($\left.\Phi 6 ; \omega^{\prime}\right)$ for all $\omega^{\prime} \geq \omega$.

REMARK 1. In view of $(\Phi 2)$, if $|\Omega|<\infty$, then $(\Phi 6 ; \omega)$ is automatically satisfied for every $\omega>0$ with $g(x) \equiv 1$.

In the following examples, let

$$
f^{-}:=\inf _{x \in \Omega} f(x) \quad \text { and } \quad f^{+}:=\sup _{x \in \Omega} f(x)
$$

for a measurable function f on Ω.
EXAMPLE 2. Let $p_{i}(\cdot), i=1,2$ and $q_{i, j}(\cdot), j=1, \ldots, k_{i}$, be real valued measurable functions on Ω such that $p_{i}^{-}>1$ and $q_{i, j}^{-}>-\infty, i=1,2, j=1, \ldots, k_{i}$.

Set $L_{c}(t)=\log (c+t)$ for $c>1$ and $t \geq 0, L_{c}^{(1)}(t)=L_{c}(t), L_{c}^{(j+1)}(t)=L_{c}\left(L_{c}^{(j)}(t)\right)$. Let

$$
\Phi(x, t)= \begin{cases}t^{p_{1}(x)} \prod_{j=1}^{k_{1}}\left(L_{e-1}^{(j)}(1 / t)\right)^{-q_{1, j}(x)} & \text { if } 0 \leq t \leq 1 \\ t^{p_{2}(x)} \prod_{j=1}^{k_{2}}\left(L_{e-1}^{(j)}(t)\right)^{q_{2, j}(x)} & \text { if } t \geq 1\end{cases}
$$

Then, $\Phi(x, t)$ satisfies $(\Phi 1)$, $(\Phi 2)$ and ($\Phi 3$). It satisfies $(\Phi 3 ; 0 ; p)$ for $1 \leq p<p_{1}^{-}$in general and for $1 \leq p \leq p_{1}^{-}$in case $q_{1, j}^{-} \geq 0$ for all $j=1, \ldots, k_{1}$; it satisfies $(\Phi 3 ; \infty ; q$) for $1 \leq q<p_{2}^{-}$in general and for $1 \leq q \leq p_{2}^{-}$in case $q_{2, j}^{-} \geq 0$ for all $j=1, \ldots, k_{2}$.

Moreover, we see that $\Phi(x, t)$ satisfies $(\Phi 5 ; v)$ for every $v>0$ if $p_{2}(\cdot)$ is log-Hölder continuous, namely

$$
\left|p_{2}(x)-p_{2}(y)\right| \leq \frac{C_{p}}{L_{e}(1 /|x-y|)} \quad(x, y \in \Omega)
$$

with a constant $C_{p} \geq 0$ and $q_{2, j}(\cdot)$ is ($j+1$)-log-Hölder continuous, namely

$$
\left|q_{2, j}(x)-q_{2, j}(y)\right| \leq \frac{C_{j}}{L_{e}^{(j+1)}(1 /|x-y|)} \quad(x, y \in \Omega)
$$

with constants $C_{j} \geq 0$ for each $j=1, \ldots, k_{2}$.
Finally, we see that $\Phi(x, t)$ satisfies $(\Phi 6 ; \omega)$ for every $\omega>0$ with $g(x)=(1+$ $|x|)^{-(N+1) / \omega}$ if $p_{1}(\cdot)$ is log-Hölder continuous at ∞, namely

$$
\left|p_{1}(x)-p_{1}\left(x^{\prime}\right)\right| \leq \frac{C_{p, \infty}}{L_{e}(|x|)}
$$

whenever $\left|x^{\prime}\right| \geq|x|\left(x, x^{\prime} \in \Omega\right)$ with a constant $C_{p, \infty} \geq 0$, and $q_{1, j}(\cdot)$ is $(j+1)$-log-Hölder continuous at ∞, namely

$$
\left|q_{1, j}(x)-q_{1, j}\left(x^{\prime}\right)\right| \leq \frac{C_{j}^{\prime}}{L_{e}^{(j+1)}(|x|)}
$$

whenever $\left|x^{\prime}\right| \geq|x|\left(x, x^{\prime} \in \Omega\right)$ with a constant $C_{j}^{\prime} \geq 0$, for each $j=1, \ldots, k_{1}$. In fact, if $(1+|x|)^{-(N+1) / \omega}<t \leq 1$, then $t^{-\left|p_{1}(x)-p_{1}\left(x^{\prime}\right)\right|} \leq e^{(N+1) C_{p, \infty} / \omega}$ for $\left|x^{\prime}\right| \geq|x|$ and $\left(L_{e-1}^{(j)}(1 / t)\right)^{\left|q_{1, j}(x)-q_{1, j}\left(x^{\prime}\right)\right|} \leq C\left(N, C_{j}^{\prime}\right)$ for $\left|x^{\prime}\right| \geq|x|$.

EXAMPLE 3. Let $p(\cdot)$ be a measurable function on Ω such that $0<p^{-} \leq p^{+}<\infty$. Then,

$$
\Phi(x, t)=e^{p(x) t}-p(x) t-1
$$

satisfies $(\Phi 1),(\Phi 2)$ and $(\Phi 3)$. It satisfies $(\Phi 3 ; 0 ; p)$ and $(\Phi 3 ; \infty ; q)$ for $1 \leq p \leq 2$ and $q \geq 1$.

Moreover, we see that $\Phi(x, t)$ satisfies $(\Phi 5 ; v)$ for every $v>0$ if $p(\cdot)=$ const. and for $v \geq 1 / \alpha$ if $p(\cdot)$ is α-Hölder continuous, namely

$$
|p(x)-p(y)| \leq C_{\alpha}|x-y|^{\alpha}
$$

with a constant $C_{\alpha} \geq 0(0<\alpha \leq 1)$. In fact,

$$
\left(1-\left(1+p^{-}\right) e^{-p^{-}}\right) e^{p(x) t} \leq \Phi(x, t) \leq e^{p(x) t}
$$

for all $x \in \Omega$ and $t \geq 1$ and

$$
|p(x) t-p(y) t| \leq C_{\alpha} \gamma^{\alpha}
$$

whenever $1 \leq t \leq(\gamma /|x-y|)^{\alpha}$.
Finally, we see that $\Phi(x, t)$ satisfies $(\Phi 6 ; \omega)$ for every $\omega>0$ with $g(x) \equiv 0$, since

$$
\frac{1}{2}(p(x) t)^{2} \leq \Phi(x, t) \leq \frac{e^{p^{+}}}{2}(p(x) t)^{2}
$$

for all $x \in \Omega$ and $0 \leq t \leq 1$.
EXAMPLE 4. Let $p(\cdot)$ be a real valued measurable function on Ω such that $p^{-} \geq 1$. Then,

$$
\Phi(x, t)=e^{t} t^{p(x)}
$$

satisfies $(\Phi 1)$, $(\Phi 2)$ and $(\Phi 3)$. It satisfies $(\Phi 3 ; 0 ; p)$ and $(\Phi 3 ; \infty ; q)$ for $1 \leq p \leq p^{-}$and $q \geq 1$.

Moreover, we see that $\Phi(x, t)$ satisfies $(\Phi 5 ; v)$ for $v>0$ if $p(\cdot)$ is log-Hölder continuous, and $\Phi(x, t)$ satisfies $(\Phi 6 ; \omega)$ with $g(x)=(1+|x|)^{-(N+1) / \omega}$ for every $\omega>0$ if $p(\cdot)$ is \log-Hölder continuous at ∞.

EXAMPLE 5. Let $p(\cdot)$ be a measurable function on Ω such that $p^{-} \geq 1$ and $p^{+}<\infty$. Then,

$$
\Phi(x, t)=e^{t^{p(x)}}-1
$$

satisfies $(\Phi 1),(\Phi 2)$ and ($\Phi 3$). It satisfies $(\Phi 3 ; 0 ; p)$ and $(\Phi 3 ; \infty ; q)$ for $1 \leq p \leq p^{-}$and $q \geq 1$.

Moreover, we see that $\Phi(x, t)$ satisfies $(\Phi 5 ; v)$ for every $v>0$ if $p(\cdot)=$ const. and for $v>p^{+} / \alpha$ if $p(\cdot)$ is α-Hölder continuous $(0<\alpha \leq 1)$. In fact, there exists a constant $C>1$ such that

$$
C^{-1} e^{t^{p(x)}} \leq \Phi(x, t) \leq e^{t^{p(x)}}
$$

for all $x \in \Omega$ and $t \geq 1$ and

$$
\left|t^{p(x)}-t^{p(y)}\right| \leq|p(x)-p(y)|(\log t) t^{p^{+}} \leq C
$$

whenever $1 \leq t \leq(\gamma /|x-y|)^{1 / v}$ for $v>p^{+} / \alpha$.
Finally, since

$$
t^{p(x)} \leq \Phi(x, t) \leq e t^{p(x)}
$$

for all $x \in \Omega$ and $0 \leq t \leq 1$, we see that $\Phi(x, t)$ satisfies ($\Phi 6 ; \omega)$ with $g(x)=(1+$ $|x|)^{-(N+1) / \omega}$ for every $\omega>0$ if $p(\cdot)$ is log-Hölder continuous at ∞.

EXAMPLE 6. Let $v(\cdot)$ and $\beta(\cdot)$ be functions on Ω such that $\inf _{x \in \Omega} v(x)>0$, $\sup _{x \in \Omega} \nu(x) \leq N$ and $-c(N-\nu(x)) \leq \beta(x) \leq c(N-v(x))$ for all $x \in \Omega$ and some constant $c>0$. Then $\kappa(x, r)=r^{\nu(x)}(\log (e+r+1 / r))^{\beta(x)}$ satisfies $(\kappa 1)$, ($\left.\kappa 2\right)$ and ($\left.\kappa 3\right)$.
3. Boundedness of the maximal operator. Throughout this paper, let C denote various constants independent of the variables in question and $C(a, b, \ldots)$ be a constant that depends on a, b, \ldots

For $f \in L_{\text {loc }}^{1}\left(\mathbf{R}^{N}\right)$, its maximal function $M f$ is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y .
$$

When f is a function on Ω, we define $M f$ by extending f to be zero outside Ω. As the boundedness of the maximal operator M on $L^{\Phi, \kappa}(\Omega)$, we give the following theorem, which is an improvement of [7, Theorem 4.1]:

Theorem 7. Suppose that $\Phi(x, t)$ satisfies ($\Phi 3 ; 0 ; p$), $(\Phi 3 ; \infty ; q),(\Phi 5 ; v)$ and $(\Phi 6 ; \omega)$ for $p>1, q>1, v>0$ and $\omega>0$ satisfying

$$
\begin{equation*}
v<q / N \quad \text { and } \quad \omega \leq p \tag{4}
\end{equation*}
$$

Then the maximal operator M is a bounded operator from $L^{\Phi, \kappa}(\Omega)$ into itself, namely $\left.M f\right|_{\Omega} \in L^{\Phi, \kappa}(\Omega)$ for all $f \in L^{\Phi, \kappa}(\Omega)$ and

$$
\|M f\|_{\Phi, \kappa ; \Omega} \leq C\|f\|_{\Phi_{, \kappa} ; \Omega}
$$

with a constant $C>0$ depending only on N and constants appearing in conditions for Φ.
In case $\kappa(x, r)=r^{N}$, we have the following corollary.
Corollary 8. Suppose that $\Phi(x, t)$ satisfies $(\Phi 3 ; 0 ; p)$, $(\Phi 3 ; \infty ; q)$, $(\Phi 5 ; v)$ and $(\Phi 6 ; \omega)$ for $p>1, q>1, v>0$ and $\omega>0$ satisfying $v<q / N$ and $\omega \leq p$. Then the maximal operator M is a bounded operator from $L^{\Phi}(\Omega)$ into itself.

We prove this theorem by modifying the proof of [7, Theorem 4.1].
For a nonnegative measurable function f on $\Omega, x \in \Omega$ and $r>0$, let

$$
I(f ; x, r)=\frac{1}{|B(x, r)|} \int_{B(x, r) \cap \Omega} f(y) d y
$$

and

$$
J(f ; x, r)=\frac{1}{|B(x, r)|} \int_{B(x, r) \cap \Omega} \Phi(y, f(y)) d y .
$$

Lemma 9. Suppose $\Phi(x, t)$ satisfies $\left(\Phi 3 ; \infty ; q_{1}\right)$ and $(\Phi 5 ; v)$ for $q_{1} \geq 1$ and $v>0$ satisfying $v \leq q_{1} / N$. Then, given $L \geq 1$, there exist constants $C_{1}=C(L) \geq 2$ and $C_{2}>0$ such that

$$
\Phi\left(x, I(f ; x, r) / C_{1}\right) \leq C_{2} J(f ; x, r)
$$

for all $x \in \Omega, r>0$ and for all nonnegative measurable function f on Ω such that $f(y) \geq 1$ or $f(y)=0$ for each $y \in \Omega$ and

$$
\begin{equation*}
\sup _{x \in \Omega, r>0} \frac{\kappa(x, r)}{|B(x, r)|} \int_{B(x, r) \cap \Omega} \Phi(y, f(y)) d y \leq L . \tag{5}
\end{equation*}
$$

Proof. Given f as in the statement of the lemma, $x \in \Omega$ and $r>0$, set $I=I(f ; x, r)$ and $J=J(f ; x, r)$. Note that (5) implies

$$
\begin{equation*}
J \leq \kappa(x, r)^{-1} L \tag{6}
\end{equation*}
$$

By (1), $\Phi(y, f(y)) \geq\left(A_{1} A_{2}\right)^{-1} f(y)$ for all $y \in \Omega$. Hence $I \leq A_{1} A_{2} J$. Thus, if $J \leq 1$, then by ($\Phi 3$)

$$
\Phi\left(x, I / C_{1}\right) \leq A_{2} J \Phi(x, 1) \leq A_{1} A_{2} J
$$

whenever $C_{1} \geq A_{1} A_{2}$.
Next, suppose $J>1$. Since $\Phi(x, t) \rightarrow \infty$ as $t \rightarrow \infty$ by (1), there exists $K>1$ such that

$$
\Phi(x, K)=\Phi(x, 1) J
$$

With this K, we have by ($\Phi 3$)

$$
\begin{aligned}
\int_{B(x, r) \cap \Omega} f(y) d y & \leq \int_{B(x, r) \cap \Omega \cap\{y: f(y) \leq K\}} f(y) d y+\int_{B(x, r) \cap \Omega \cap\{y: f(y)>K\}} f(y) d y \\
& \leq K|B(x, r)|+A_{2} K \int_{B(x, r) \cap \Omega} \frac{\Phi(y, f(y))}{\Phi(y, K)} d y .
\end{aligned}
$$

Since $K>1$, by ($\Phi 3 ; \infty ; q_{1}$) we have

$$
\Phi(x, 1) J=\Phi(x, K) \geq A_{2, \infty, q_{1}}^{-1} K^{q_{1}} \Phi(x, 1)
$$

so that, in view of (6) and ($\kappa 3$),

$$
\begin{aligned}
K^{q_{1}} & \leq A_{2, \infty, q_{1}} J \leq A_{2, \infty, q_{1}} \kappa(x, r)^{-1} L \\
& \leq A_{2, \infty, q_{1}} Q_{3} L \max \left(1, r^{-N}\right) .
\end{aligned}
$$

Since $J>1, \kappa(x, r)<L$ by (6). By ($\kappa 2$) and ($\kappa 3$), $\kappa(x, \rho) \geq\left(Q_{2} Q_{3}\right)^{-1} \rho^{\varepsilon}$ for $\rho \geq 1$, so that $\kappa(x, \rho) \geq L$ for $x \in \Omega$ if $\rho \geq R:=\left(Q_{2} Q_{3} L\right)^{1 / \varepsilon}$. Thus $r<R$. Since $R \geq 1$, it follows
that $\max \left(1, r^{-N}\right) \leq R^{N} r^{-N}$. Hence

$$
K^{q_{1}} \leq A_{2, \infty, q_{1}} Q_{3} L R^{N} r^{-N}
$$

or $r \leq \gamma K^{-q_{1} / N}$ with $\gamma=\left(A_{2, \infty, q_{1}} Q_{3} L\right)^{1 / N} R$. Thus, if $|y-x| \leq r$, then $|y-x| \leq$ $\gamma K^{-q_{1} / N} \leq \gamma K^{-v}$. Hence, by $(\Phi 5 ; v)$ there is $\beta \geq 1$, independent of f, x, r, such that

$$
\Phi(x, K) \leq \beta \Phi(y, K) \quad \text { for all } y \in B(x, r) \cap \Omega
$$

Thus, we have by ($\Phi 2$) and ($\Phi 3$)

$$
\begin{aligned}
\int_{B(x, r) \cap \Omega} f(y) d y & \leq K|B(x, r)|+\frac{A_{2} \beta K}{\Phi(x, K)} \int_{B(x, r) \cap \Omega} \Phi(y, f(y)) d y \\
& =K|B(x, r)|+A_{2} \beta K|B(x, r)| \frac{J}{\Phi(x, K)} \\
& =K|B(x, r)|\left(1+\frac{A_{2} \beta}{\Phi(x, 1)}\right) \leq K|B(x, r)|\left(1+A_{1} A_{2} \beta\right)
\end{aligned}
$$

Therefore

$$
I \leq\left(1+A_{1} A_{2} \beta\right) K,
$$

so that by ($\Phi 2$) and ($\Phi 3$)

$$
\Phi\left(x, I / C_{1}\right) \leq A_{2} \Phi(x, K) \leq A_{1} A_{2} J
$$

whenever $C_{1} \geq 1+A_{1} A_{2} \beta$.
The next lemma can be shown in the same way as [7, Lemma 3.2]; note that the value of ω is irrelevant in this lemma.

Lemma 10. Suppose $\Phi(x, t)$ satisfies $(\Phi 6 ; \omega)$ for some $\omega>0$. Then there exists a constant $C_{3}>0$ such that

$$
\Phi(x, I(f ; x, r) / 2) \leq C_{3}\{J(f ; x, r)+\Phi(x, g(x))\}
$$

for all $x \in \Omega, r>0$ and for all nonnegative measurable function f on Ω such that $g(y) \leq$ $f(y) \leq 1$ or $f(y)=0$ for each $y \in \Omega$, where g is the function appearing in $(\Phi 6 ; \omega)$.

We use the following lemma which is the special case of the theorem when $\Phi(x, t)=$ $t^{p_{0}}\left(p_{0}>1\right)$; this lemma can be proved in a way similar to the proof of [10, Theorem 1].

Lemma 11. Let $p_{0}>1$. Then there exists a constant $C>0$ for which the following holds: If f is a measurable function such that

$$
\int_{B(x, r) \cap \Omega}|f(y)|^{p_{0}} d y \leq|B(x, r)| \kappa(x, r)^{-1}
$$

for all $x \in \Omega$ and $r>0$, then

$$
\int_{B(x, r) \cap \Omega}[M f(y)]^{p_{0}} d y \leq C|B(x, r)| \kappa(x, r)^{-1}
$$

for all $x \in \Omega$ and $r>0$.

Proof of Theorem 7. Set $p_{0}=\min (p, q, q /(N \nu))$. Then $p_{0}>1$. Consider the function

$$
\Phi_{0}(x, t)=\Phi(x, t)^{1 / p_{0}} .
$$

Then $\Phi_{0}(x, t)$ satisfies the conditions $(\Phi j), j=1,2,(\Phi 5 ; v)$ and $(\Phi 6 ; \omega)$ with the same g.
Condition ($\Phi 3 ; 0 ; p$) implies that $\Phi_{0}(x, t)$ satisfies $\left(\Phi 3 ; 0 ; p / p_{0}\right)$ and condition $(\Phi 3 ; \infty ; q)$ implies that $\Phi_{0}(x, t)$ satisfies $\left(\Phi 3 ; \infty ; q / p_{0}\right)$.

Let $f \geq 0$ and $\|f\|_{\Phi, \kappa ; \Omega} \leq 1 / 2$. Let $f_{1}=f \chi_{\{x: f(x) \geq 1\}}, f_{2}=f \chi_{\{x: g(x) \leq f(x)<1\}}$ with g in $(\Phi 6 ; \omega)$ and $f_{3}=f-f_{1}-f_{2}$, where χ_{E} is the characteristic function of E.

Since $\Phi(x, t) \geq\left(A_{1} A_{2}\right)^{-1}$ for $t \geq 1$ by (1), in view of (2) we have

$$
\Phi_{0}(x, t) \leq\left(A_{1} A_{2}\right)^{1-1 / p_{0}} \Phi(x, t) \leq\left(A_{1} A_{2}\right)^{1-1 / p_{0}} \bar{\Phi}(x, 2 t)
$$

if $t \geq 1$. Hence

$$
\sup _{x \in \Omega, r>0} \frac{\kappa(x, r)}{|B(x, r)|} \int_{B(x, r) \cap \Omega} \Phi_{0}\left(y, f_{1}(y)\right) d y \leq\left(A_{1} A_{2}\right)^{1-1 / p_{0}} .
$$

If we set $q_{1}=q / p_{0}$, then $q_{1} \geq 1$ and $v \leq q_{1} / N$. Hence applying Lemma 9 to Φ_{0}, f_{1} and $L=\left(A_{1} A_{2}\right)^{1-1 / p_{0}}$, there exist constants $C_{1} \geq 2$ and $C_{2}>0$ such that

$$
\Phi_{0}\left(x, M f_{1}(x) / C_{1}\right) \leq C_{2} M\left[\Phi_{0}\left(\cdot, f_{1}(\cdot)\right)\right](x)
$$

so that

$$
\begin{equation*}
\Phi\left(x, M f_{1}(x) / C_{1}\right) \leq C_{2}^{p_{0}}\left[M\left[\Phi_{0}(\cdot, f(\cdot))\right](x)\right]^{p_{0}} \tag{7}
\end{equation*}
$$

for all $x \in \Omega$.
Next, applying Lemma 10 to Φ_{0} and f_{2}, we have

$$
\Phi_{0}\left(x, M f_{2}(x) / C_{1}\right) \leq C\left[M\left[\Phi_{0}\left(\cdot, f_{2}(\cdot)\right)\right](x)+\Phi_{0}(x, g(x))\right] .
$$

Noting that $\Phi_{0}(x, g(x)) \leq C g(x)^{p / p_{0}}$ by (3), we have

$$
\begin{equation*}
\Phi\left(x, M f_{2}(x) / C_{1}\right) \leq C\left\{\left[M\left[\Phi_{0}(\cdot, f(\cdot))\right](x)\right]^{p_{0}}+g(x)^{p}\right\} \tag{8}
\end{equation*}
$$

for all $x \in \Omega$ with a constant $C>0$ independent of f.
Since $0 \leq f_{3} \leq g \leq 1,0 \leq M f_{3} \leq M g \leq 1$. Hence by (3) we have

$$
\begin{equation*}
\Phi\left(x, M f_{3}(x) / C_{1}\right) \leq C[M g(x)]^{p} \tag{9}
\end{equation*}
$$

for all $x \in \Omega$ with a constant $C>0$ independent of f.
Combining (7), (8) and (9), and noting that $g(x) \leq M g(x)$ for a.e. $x \in \Omega$, we obtain

$$
\begin{equation*}
\Phi\left(x, M f(x) /\left(3 C_{1}\right)\right) \leq C\left\{\left[M\left[\Phi_{0}(\cdot, f(\cdot))\right](x)\right]^{p_{0}}+[M g(x)]^{p}\right\} \tag{10}
\end{equation*}
$$

for a.e. $x \in \Omega$ with a constant $C>0$ independent of f.
Since $\|f\|_{\Phi, \kappa ; \Omega} \leq 1 / 2$, in view of (2), we have

$$
\int_{B(x, r) \cap \Omega} \Phi_{0}(y, f(y))^{p_{0}} d y=\int_{B(x, r) \cap \Omega} \Phi(y, f(y)) d y \leq|B(x, r)| \kappa(x, r)^{-1}
$$

for all $x \in \Omega$ and $r>0$. Hence, applying Lemma 11 to $\Phi_{0}(y, f(y))$, we have

$$
\int_{B(x, r) \cap \Omega}\left[M\left[\Phi_{0}(\cdot, f(\cdot))\right](y)\right]^{p_{0}} d y \leq C|B(x, r)| \kappa(x, r)^{-1}
$$

with a constant $C>0$ independent of x, r and f. Here note from $g \in L^{\infty}(\Omega) \cap L^{\omega}(\Omega)$ for $\omega \leq p$ that $g \in L^{p}(\Omega)$. Therefore, by ($\kappa 3$) we see that

$$
\int_{B(x, r) \cap \Omega} g(y)^{p} d y \leq \min \left(\|g\|_{L^{p}(\Omega)}^{p},|B(x, r)|\right) \leq C|B(x, r)| \kappa(x, r)^{-1}
$$

with a constant $C=C\left(\|g\|_{L^{p}(\Omega)}^{p}\right)>0$ independent of x and r. Hence, by Lemma 11 again,

$$
\int_{B(x, r) \cap \Omega}[M g(y)]^{p} d y \leq C|B(x, r)| \kappa(x, r)^{-1}
$$

for all $x \in \Omega$ and $r>0$. Thus, by (10), there exists a constant $C_{4} \geq 1$ such that

$$
\int_{B(x, r) \cap \Omega} \Phi\left(y, M f(y) /\left(3 C_{1}\right)\right) d y \leq C_{4}|B(x, r)| \kappa(x, r)^{-1}
$$

for all $x \in \Omega$ and $r>0$, so that

$$
\int_{B(x, r) \cap \Omega} \bar{\Phi}\left(y, M f(y) /\left(3 A_{2} C_{1} C_{4}\right)\right) d y \leq|B(x, r)| \kappa(x, r)^{-1}
$$

for all $x \in \Omega$ and $r>0$. This completes the proof of the theorem.
4. Sharpness of conditions. We next show that q / N and p in condition (4) are sharp. For $p>1, q>1, \delta>0, \eta>0$ and $\zeta>0$, consider the function

$$
\begin{aligned}
\Phi(x, t) & =\Phi_{[p, q ; \delta, \eta ; \zeta]}(x, t) \\
& = \begin{cases}t^{p}\left[\left(1-h\left(x_{1}\right)\right) t+h\left(x_{1}\right) \max \left(t, g_{\delta}(x)\right)\right]^{\eta} & \text { if } 0 \leq t \leq 1, \\
t^{q} \max \left(1, h\left(x_{1}\right) t^{\zeta}\right) & \text { if } t \geq 1,\end{cases}
\end{aligned}
$$

where $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbf{R}^{N}$,

$$
h\left(x_{1}\right)=\max \left(0, \min \left(1, x_{1}\right)\right) \quad \text { and } \quad g_{\delta}(x)=[\max (2,|x|)]^{-N / \delta} .
$$

This $\Phi(x, t)$ satisfies $(\Phi 1),(\Phi 2),(\Phi 3 ; 0 ; p)$ and $(\Phi 3 ; \infty ; q)$. We shall show:
(I) $\Phi(x, t)$ satisfies $(\Phi 5 ; \zeta)$;
(II) $\Phi(x, t)$ satisfies $(\Phi 6 ; \omega)$ for $\omega>\delta$;
(III) If $\zeta>q / N$, then there is $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ such that $M f \notin L^{\Phi}\left(\mathbf{R}^{N}\right)$;
(IV) If $\delta>p+\eta$, then there is $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ such that $M f \notin L^{\Phi}\left(\mathbf{R}^{N}\right)$.

These show the sharpness of q / N and p in (4).
Proof of (I). Suppose $|x-y| \leq \gamma t^{-\zeta}$ and $t \geq 1$. Then

$$
\Phi(y, t) \leq \Phi(x, t)+t^{q+\zeta}\left|x_{1}-y_{1}\right| \leq \Phi(x, t)+\gamma t^{q} \leq(1+\gamma) \Phi(x, t)
$$

since $\Phi(x, t) \geq t^{q}$ for $t \geq 1$. This shows that $\Phi(x, t)$ satisfies $(\Phi 5 ; \zeta)$.

Proof OF (II). Suppose $g_{\delta}(x) \leq t \leq 1$ and $\left|x^{\prime}\right| \geq|x|$. Then $\max \left(t, g_{\delta}(x)\right)=$ $\max \left(t, g_{\delta}\left(x^{\prime}\right)\right)=t$, so that $\Phi(x, t)=\Phi\left(x^{\prime}, t\right)=t^{p+\eta}$. Since $g_{\delta} \in L^{\omega}\left(\mathbf{R}^{N}\right)$ for $\omega>\delta$, this shows that $\Phi(x, t)$ satisfies $(\Phi 6 ; \omega)$ if $\omega>\delta$.

To prove (III) and (IV), we prepare the following lemma.
Lemma 12. (1) For $0<a<N$, let $f_{0, a}(x)=|x|^{-a} \chi_{B(0,1) \cap\left\{x_{1}<0\right\}}(x)$. Then there is a constant $C_{0}(N, a)>0$ depending only on N and a such that

$$
\begin{equation*}
M f_{0, a}(x) \geq C_{0}(N, a)|x|^{-a} \quad \text { for } \quad|x| \leq 1 \tag{11}
\end{equation*}
$$

(2) For $0<b<N$, let $f_{\infty, b}(x)=|x|^{-b} \chi_{\left\{x_{1}<0\right\} \backslash B(0,1)}(x)$. Then there is a constant $C_{\infty}(N, b)>0$ depending only on N and b such that

$$
\begin{equation*}
M f_{\infty, b}(x) \geq C_{\infty}(N, b)|x|^{-b} \quad \text { for } \quad|x| \geq 2 . \tag{12}
\end{equation*}
$$

Proof. (1) Let $|x| \leq 1$. Since $B(x, 2|x|) \supset B(0,|x|)$,

$$
\begin{aligned}
& \frac{1}{|B(x, 2|x|)|} \int_{B(x, 2|x|)} f_{0, a}(y) d y \\
& \quad \geq \frac{1}{2^{N}|B(0,1)||x|^{N}} \int_{B(0,|x|) \cap\left\{y_{1}<0\right\}}|y|^{-a} d y=\frac{N}{2^{N+1}(N-a)}|x|^{-a} .
\end{aligned}
$$

(2) Let $|x| \geq 2$. Then

$$
\begin{aligned}
& \frac{1}{|B(x, 2|x|)|} \int_{B(x, 2|x|)} f_{\infty, b}(y) d y \\
& \quad \geq \frac{1}{2^{N}|B(0,1)||x|^{N}} \int_{(B(0,|x|) \backslash B(0,1)) \cap\left\{y_{1}<0\right\}}|y|^{-b} d y \\
& \quad=\frac{N}{2^{N+1}(N-b)}|x|^{-N}\left(|x|^{N-b}-1\right) \geq \frac{\left(1-2^{b-N}\right) N}{2^{N+1}(N-b)}|x|^{-b} .
\end{aligned}
$$

Proof of (III). Assume $\zeta>q / N$. Set $a=(N+1) /(q+\zeta)$. Then $0<a<a q<N$. Since $f_{0, a} \geq 1$ on $B(0,1) \cap\left\{x_{1}<0\right\}$ and $\Phi(x, t)=t^{q}$ if $t \geq 1$ and $x_{1}<0$,

$$
\Phi\left(x, f_{0, a}(x)\right)=|x|^{-a q} \chi_{B(0,1) \cap\left\{x_{1}<0\right\}}(x),
$$

so that $f_{0, a} \in L^{\Phi}\left(\mathbf{R}^{N}\right)$.
On the other hand, by (11), $M f_{0, a}(x) \geq 1$ if $|x| \leq c_{0}:=\min \left(1, C_{0}(N, a)^{1 / a}\right)$, and hence

$$
\begin{aligned}
\Phi\left(x, M f_{0, a}(x)\right) & \geq\left[M f_{0, a}(x)\right]^{q+\zeta} x_{1} \\
& \geq 2^{-1} C_{0}(N, a)^{q+\zeta}|x|^{-a(q+\zeta)+1}=2^{-1} C_{0}(N, a)^{q+\zeta}|x|^{-N}
\end{aligned}
$$

if $|x| \leq c_{0}$ and $x_{1} \geq|x| / 2$. It follows that $\int_{\mathbf{R}^{N}} \Phi\left(x, M f_{0, a}(x)\right) d x=\infty$, which means that $M f_{0, a} \notin L^{\Phi}\left(\mathbf{R}^{N}\right)$.

Proof OF (IV). Assume $\delta>p+\eta$. Set $b=N(\delta-\eta) /(p \delta)$. Then $N / \delta<N /(p+\eta)<$ $b<N / p<N$. Since $0 \leq f_{\infty, b} \leq 1$ on $\left\{x_{1}<0\right\} \backslash B(0,1)$ and $\Phi(x, t)=t^{p+\eta}$ if $0 \leq t \leq 1$ and $x_{1}<0$,

$$
\Phi\left(x, f_{\infty, b}(x)\right)=|x|^{-b(p+\eta)} \chi_{\left\{x_{1}<0\right\} \backslash B(0,1)}(x),
$$

so that $f_{\infty, b} \in L^{\Phi}\left(\mathbf{R}^{N}\right)$.
On the other hand, since $M f_{\infty, b} \leq 1$, by (12) we have

$$
\begin{aligned}
\Phi\left(x, M f_{\infty, b}(x)\right) & =\left[M f_{\infty, b}(x)\right]^{p}\left[\max \left(M f_{\infty, b}(x),|x|^{-N / \delta}\right)\right]^{\eta} \\
& \geq C_{\infty}(N, b)^{p}|x|^{-p b}\left[\max \left(C_{\infty}(N, b)|x|^{-b},|x|^{-N / \delta}\right)\right]^{\eta}
\end{aligned}
$$

if $|x| \geq 2$ and $x_{1} \geq 1$. Since $b>N / \delta$,

$$
C_{\infty}(N, b)|x|^{-b} \leq|x|^{-N / \delta} \quad \text { for } \quad|x| \geq R_{b}:=\max \left(2, C_{\infty}(N, b)^{1 /(b-N / \delta)}\right) .
$$

Since $p b+N \eta / \delta=N$, it follows that

$$
\Phi\left(x, M f_{\infty, b}(x)\right) \geq C_{\infty}(N, b)^{p}|x|^{-N}
$$

whenever $|x| \geq R_{b}$ and $x_{1} \geq 1$. Hence $\int_{\mathbf{R}^{N}} \Phi\left(x, M f_{\infty, b}(x)\right) d x=\infty$, namely $M f_{\infty, b} \notin$ $L^{\Phi}\left(\mathbf{R}^{N}\right)$.

References

[1] A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable exponent Morrey spaces, Georgian Math. J. 15 (2008), no. 2, 195-208.
[2] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, Heidelberg, 2013.
[3] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238; Ann. Acad. Sci. Fenn. Math. 29 (2004), 247-249.
[4] L. Diening, Maximal functions in generalized $L^{p(\cdot)}$ spaces, Math. Inequal. Appl. 7(2) (2004), 245-254.
[5] L. Diening, P. Harjulehto, P. HÄStö and M. Rư̌ičKa, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math. 2017, Springer, 2011.
[6] P. HÄStÖ, The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (2015), no. 12, 4038-4048; Corrigendum to "The maximal operator on generalized Orlicz spaces", J. Funct. Anal. 271 (2016), no. 1, 240-243.
[7] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), 76-96.
[8] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583-602.
[9] J. MUSIELAK, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
[10] E. NAKAI, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95-103.
[11] E. NAKAI, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, 323-333, Yokohama Publ., Yokohama, 2004.
[12] H. NaKano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.

4-24 FURUE-HIGASHI-MACHI
Nishi-ku Hiroshima 733-0872
JAPAN
E-mail address: fymaeda@h6.dion.ne.jp
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524
JAPAN
E-mail address: tshimo@hiroshima-u.ac.jp

Faculty of Education
Oita University
DANNOHARU OITA-CITY 870-1192
JAPAN
E-mail address: t-ohno@oita-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 46E30; Secondary 42B25.
 Key words and phrases. Maximal operator, Musielak-Orlicz-Morrey space, variable exponent.

