
Tohoku Math. J.
69 (2017), 431–454

GAUSS MAPS OF TORIC VARIETIES
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Abstract. We investigate Gauss maps of (not necessarily normal) projective toric va-
rieties over an algebraically closed field of arbitrary characteristic. The main results are as
follows: (1) The structure of the Gauss map of a toric variety is described in terms of com-
binatorics in any characteristic. (2) We give a developability criterion in the toric case. In
particular, we show that any toric variety whose Gauss map is degenerate must be the join of
some toric varieties in characteristic zero. (3) As applications, we provide two constructions
of toric varieties whose Gauss maps have some given data (e.g., fibers, images) in positive
characteristic.

1. Introduction. Let X ⊆ PN be an n-dimensional projective variety over an alge-
braically closed field k of arbitrary characteristic. The Gauss map γ of X is defined as a
rational map

γ : X ��� G(n,PN) ,

which sends each smooth point x ∈ X to the embedded tangent space TxX of X at x in PN .
The Gauss map is a classical subject and has been studied by many authors. For example, it is
well known that a general fiber of the Gauss map γ is (an open subset of) a linear subvariety
of PN in characteristic zero (P. Griffiths and J. Harris [13, (2.10)], F. L. Zak [22, I, 2.3.
Theorem (c)]; S. L. Kleiman and R. Piene gave another proof in terms of the projective dual
[16, pp. 108–109]). The linearity of general fibers of γ also holds in arbitrary characteristic if
γ is separable [11, Theorem 1.1]. We denote by δγ (X) the dimension of a general fiber of γ ,
and call it the Gauss defect of X (see [7, 2.3.4]). The Gauss map γ is said to be degenerate if
δγ (X) > 0.

In this paper, we investigate the Gauss map of toric X ⊆ PN ; more precisely, we consider
a (not necessarily normal) toric variety X ⊆ PN such that the action of the torus on X extends
to the whole space PN . It is known that such X is projectively equivalent to a projective
toric variety XA associated to a finite subset A of a free abelian group M (see [12, Ch. 5,
Proposition 1.5]). The construction of XA is as follows.

Let M be a free abelian group of rank n and let k[M] = ⊕
u∈M kzu be the group ring

of M over k. We denote by TM the algebraic torus Speck[M]. For a finite subset A =
{u0, . . . , uN } ⊆ M , we define the toric variety XA to be the closure of the image of the
morphism
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ϕA : TM → PN : t �→ [zu0(t) : · · · : zuN (t)] .(1.1)

We set 〈A − A〉 ⊆ M (resp. 〈A − A〉k ⊆ Mk := M ⊗Z k) to be the subgroup of M (reap. the
k-vector subspace of Mk) generated by A − A := {u − u′ | u, u′ ∈ A}. The algebraic torus
T〈A−A〉 acts on XA, and T〈A−A〉 is contained in XA as an open dense orbit. In this paper, we
call such XA a projectively embedded toric variety, or simply toric variety.

We denote by Aff(A) (resp. Affk(A)) the affine sublattice of M (resp. the k-affine sub-
space of Mk) spanned by A. In other words, Aff(A) (resp. Affk(A)) is the set of linear com-
binations

∑
i aiui ∈ M with ai ∈ Z (resp. ai ∈ k),

∑
i ai = 1, and ui ∈ A. We say that A

spans the affine lattice M (resp. the k-affine space Mk) if Aff(A) = M (resp. Affk(A) = Mk).

The projective geometry of XA has been investigated in view of the projective dual in
many papers ([3], [4], [5], [6], [12], [18], etc.). On the other hand, the Gauss map of XA

has not been well studied yet. We note that, in the notion of the m-th Gauss map of an n-
dimensional variety X ⊆ PN for n � m � N − 1 by Zak, the (ordinary) Gauss map is
nothing but the n-th Gauss map, and the dual variety appears as the image of the (N − 1)-
th Gauss map ([22, I, 2.2. Remark]). For example, the dual defect, which is equal to the
dimension of a general fiber of the (N − 1)-th Gauss map, is greater than or equal to the
Gauss defect (see [7, §2.3.4, Proposition]).

In the following result, we describe the structure of Gauss maps of toric varieties in terms
of combinatorics.

THEOREM 1.1 (= Theorem 3.1). Let k be an algebraically closed field of arbitrary
characteristic, and let M be a free abelian group of rank n. For a finite subset A={u0,. . . ,uN }
⊆ M which spans the affine lattice M , set

B := {ui0 + ui1 + · · · + uin ∈ M | ui0 , ui1 , . . . , uin span the k-affine space Mk}
and let π : M → M ′ := M/(〈B − B〉R ∩ M) be the natural projection. Let γ : XA ���
G(n,PN) be the Gauss map of the toric variety XA ⊆ PN . Then the following hold.

(1) The closure γ (XA) of the image of γ , which is embedded in a projective space by the
Plücker embedding of G(n,PN), is projectively equivalent to the toric variety XB .

(2) The restriction of γ : XA ��� γ (XA) ∼= XB on TM ⊆ XA is the morphism

TM = Speck[M] � T〈B−B〉 = Speck[〈B − B〉] ⊆ XB

induced by the inclusion 〈B − B〉 ⊆ M .
(3) Let F ⊆ TM be an irreducible component of any fiber of γ |TM with the reduced

structure. Let TM ′ ↪→ TM be the subtorus induced by π . Then F is a translation of
TM ′ by an element of TM , and the closure F ⊆ XA is projectively equivalent to the
toric variety Xπ(A).

In particular, we have δγ (XA) = rk M ′ = n − rk〈B − B〉.
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Note that there is no loss of generality in assuming that A spans the affine lattice M in
the above theorem (see Remark 3.2). We also study when the Gauss map of XA is degenerate
(i.e., rk〈B − B〉 < n), and give a developability criterion for covering families of XA (see
§4.1).

REMARK 1.2. Essentially, the construction of the set B in Theorem 1.1 was already
introduced in the study of Nash blowups of toric varieties [1, Subsection 2.3]. Since the
authors of [1] work on affine toric varieties, they take the sum of ui which span Mk as the
k-vector space.

In the following example, we illustrate the notation in Theorem 1.1.

EXAMPLE 1.3. Let M = Z2 and

A =
{[

0
0

]
,

[
0
1

]
,

[
1

−1

]
,

[−1
−1

]}
⊆ Z2 ,

where we write elements in Z2 by column vectors. We consider the Gauss map γ of the toric
surface XA ⊆ P3. When chark �= 2,

B =
{[

0
−1

]
,

[
0

−2

]
,

[−1
0

]
,

[
1
0

]}
⊆ Z2 .

Hence 〈B − B〉 = M = Z2, and γ is birational due to (2) in Theorem 1.1. On the other hand,
when chark = 2,

B =
{[−1

0

]
,

[
1
0

]}
, 〈B − B〉 =

〈[
2
0

]〉
, 〈B − B〉R ∩ M =

〈[
1
0

]〉
⊆ Z2 ,

and π(A) = {0, 1,−1} ⊆ Z2/(〈B − B〉R ∩ M) = Z1 as in Figure 1. Thus (1) implies that
γ (XA) ∼= XB = P1, and (2) implies that γ |TM : TM = (k×)2 � T〈B−B〉 = k× is given
by (z1, z2) �→ z2

1. From (3), a general fiber of γ with the reduced structure is projectively
equivalent to the smooth conic Xπ(A).

•

•

• •

× ×

■

■

■

1

0

−1

• A

× B
■ π(A)

π
��

�� ��

��

FIGURE 1. char k = 2.
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In characteristic zero, it is well known that, if a projective variety is the join of some
varieties, then its Gauss map is degenerate due to Terracini’s lemma (see [7, 2.2.5], [22,
Ch. II, 1.10. Proposition]). For toric varieties in characteristic zero, this is the only case when
the Gauss map is degenerate; more precisely, we have:

COROLLARY 1.4 (= Corollary 4.13). Let X ⊆ PN be a projectively embedded toric
variety in chark = 0. Then there exist disjoint torus invariant closed subvarieties X0, . . . ,

Xδγ (X) ⊆ X such that X is the join of X0, . . . , Xδγ (X).

If the Gauss map of XA ⊆ PN is separable, A is written as a Cayley sum of certain
finite subsets A0, . . . , Aδγ (X) in any characteristic (see Theorem 4.8 for details). However,
the statement of Corollary 1.4 does not hold in general in positive characteristic, even if the
Gauss map is separable (see Example 4.15).

Next, let us focus on inseparable Gauss maps. A. H. Wallace [21, §7] showed that the
Gauss map γ of a projective variety can be inseparable in positive characteristic. In this case,
it is possible that a general fiber of γ is not a linear subvariety of PN ; the fiber can be a union
of points (H. Kaji [14, Example 4.1] [15], J. Rathmann [20, Example 2.13], A. Noma [19]),
and can be a non-linear variety (S. Fukasawa [8, §7]). In fact, Fukasawa [9] showed that any
projective variety appears as a general fiber of the Gauss map of some projective variety.

As we will see in Corollary 3.6, Theorem 1.1 provides several computations on the Gauss
map γ of toric varieties (e.g., the rank, separable degree, inseparable degree). We also obtain
the toric version of Fukasawa’s result [9] as follows:

THEOREM 1.5 (Special case of Theorem 5.1). Assume chark > 0. Let Y ⊆ PN ′
and

Z ⊆ PN ′′
be projectively embedded toric varieties. If n := dim(Y ) + dim(Z) is greater

than or equal to N ′, then there exists an n-dimensional projectively embedded toric variety
X ⊆ Pn+N ′′

satisfying the following conditions:
(i) (The closure of) a general fiber of the Gauss map γ of X with the reduced structure is

projectively equivalent to Y .
(ii) (The closure of) the image of γ is projectively equivalent to Z.

By Theorem 1.5, any projectively embedded toric variety appears as a general fiber and
the image of the Gauss map of a certain projectively embedded toric variety; moreover we
can also control the rank of γ , and the number of the irreducible components of a general
fiber of γ (see §5, for details).

This paper is organized as follows. In §2, we recall some basic properties of toric vari-
eties. In §3, we describe the structure of the Gauss maps of toric varieties in a combinatorial
way, and prove Theorem 1.1. In §4, we investigate when the Gauss maps are degenerate, and
give a developability criterion. As a result, we show Corollary 1.4. In §5, we present two
constructions of projectively embedded toric varieties, yielding Theorem 1.5.

Acknowledgments. The authors would like to express their gratitude to Professors Satoru Fuka-
sawa and Hajime Kaji for their valuable comments and advice. In particular, Remark 3.9 is due to
Professor Kaji.
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2. Preliminary on toric varieties. Two projective varieties X1 ⊆ PN1 and X2 ⊆ PN2

are said to be projectively equivalent if there exist linear embeddings ji : PNi ↪→ PN

(i.e., j∗
i (OPN (1)) = O

P
Ni (1)) such that j1(X1) = j2(X2). (Indeed, we can take N =

max{N1, N2}.)
The following two lemmas about toric varieties are well known, but we prove them for

the convenience of the reader.

LEMMA 2.1. Let π : M → M ′ be a surjective homomorphism between free abelian
groups of finite ranks. Let ι : TM ′ ↪→ TM be the embedding induced by π . For a finite set
A ⊆ M with Aff(A) = M , the closure of ι(TM ′) in XA is projectively equivalent to Xπ(A).
The translations {t · ι(TM ′)}t∈TM of the closure ι(TM ′) under the action of TM on XA give a
covering family of XA, and each translation is also projectively equivalent to Xπ(A).

PROOF. Let A = {u0, . . . , uN } and π(A) = {u′
0, . . . , u

′
N ′ } for N = #A − 1 and N ′ =

#π(A) − 1. We define a linear embedding j : PN ′ → PN by

j ([X′
0 : · · · : X′

N ′ ]) = [X0 : · · · : XN ] ,

where for each i, we set Xi := X′
j for j such that π(ui) = u′

j . Then we have the following
commutative diagram

TM ′� �

ι

��

ϕπ(A) ��

�

PN ′
� �

j

��
TM

ϕA �� PN .

Hence ι(TM ′) is projectively equivalent to Xπ(A). Since the action of TM on XA extends to
PN (see [12, Ch. 5, Proposition 1.5]), translations of ι(TM ′) are also projectively equivalent
to Xπ(A). Since ι(TM ′) is non-empty and contained in TM , the translations give a covering
family of XA. �

Let f : X ��� Y be a rational map between varieties. For a smooth point x ∈ X, we
denote by dxf : txX → tf (x)Y the tangent map between Zariski tangent spaces at x and
f (x). The rank of f , denoted by rk(f ), is defined to be the rank of the k-linear map dxf for
general x ∈ X. Recall that f is said to be separable if the field extension K(X)/K(f (X)) is
separable; this condition is equivalent to rk(f ) = dim(f (X)).

LEMMA 2.2. Let M be a free abelian group of finite rank. Let M ′′ be a subgroup of
M and g : TM � TM ′′ be the morphism induced by the inclusion β : M ′′ ↪→ M .

(a) The inclusions M ′′ ⊆ M ′′
R

∩ M ⊆ M induce a decomposition of g

TM
g1→ TM ′′

R
∩M

g2→ TM ′′ ,

where g1 is a morphism with reduced and irreducible fibers, and g2 is a finite morphism.
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(b) The rank of g is equal to the rank of the k-linear map βk : M ′′
k

→ Mk obtained by
tensoring k with β : M ′′ ↪→ M . In particular, g is separable if and only if rk(βk) =
rk(M ′′).

(c) Assume p = chark > 0. Let a be the index [M ′′
R

∩ M : M ′′] and write a = psb with
integers s � 0, b � 1 such that p � b. Then the degree, separable degree, inseparable
degree of the finite morphism g2 are a, b, ps respectively.

PROOF. Set n = rk M, k = rk M ′′. By the elementary divisors theorem (see [17, III,
Theorem 7.8], for example), there exists a basis e1, . . . , en of M such that

M ′′ = Za1e1 ⊕ · · · ⊕ Zakek ⊆ Ze1 ⊕ · · · ⊕ Zen = M

for some positive integers ai . Set e′′
i := aiei ∈ M ′′. By the bases e1, . . . , en of M and

e′′
1 , . . . , e′′

k of M ′′, we identify M and M ′′ with Zn and Zk respectively. Then g : TM =
(k×)n → TM ′′ = (k×)k is described as

(k×)n → (k×)k : (z1, . . . , zn) �→ (z
a1
1 , . . . , z

ak

k ) .(2.1)

(a) By (2.1), g is decomposed as

(k×)n → (k×)k → (k×)k : (z1, . . . , zn) �→ (z1, . . . , zk) �→ (z
a1
1 , . . . , z

ak

k ) .

Since M ′′
R

∩ M = Ze1 ⊕ · · · ⊕ Zek ⊆ M , the assertion of (a) follows.

(c) Write ai = psi bi by integers si � 0, bi � 1 such that p � bi . Since g2 is the morphism

(k×)k → (k×)k : (z1, . . . , zk) �→ (z
a1
1 , . . . , z

ak

k ) = (z
ps1b1
1 , . . . , z

psk bk

k ) ,

the degree, separable degree, inseparable degree of g2 are
∏k

i=1 ai = a,
∏k

i=1 bi = b,
∏k

i=1 psi

= ps respectively.

(b) If chark = 0, this statement is clear from (2.1). Assume p = chark > 0 and use the
notation ai, si , bi as above. Then the rank of g is equal to #{ 1 � i � k | si = 0 }. On the other
hand, βk : M ′′

k
= kk → Mk = kn is the k-linear map defined by e′′

i �→ aiei = psi biei ∈ Mk

for 1 � i � k. Hence the rank of βk is also equal to #{ 1 � i � k | si = 0 }. Thus we have
rk(g) = rk(βk). The last statement follows from dim g(TM) = dim TM ′′ = rk(M ′′). �

3. Structure of Gauss maps. In this section, we prove Theorem 1.1 and describe
several invariants (e.g., the rank) of Gauss maps of toric varieties by combinatorial data.

THEOREM 3.1 (= Theorem 1.1). Let k be an algebraically closed field of arbitrary
characteristic, and let M be a free abelian group of rank n. For a finite subset A={u0,. . . ,uN }
⊆ M which spans the affine lattice M , set

B := {ui0 + ui1 + · · · + uin ∈ M | ui0 , ui1 , . . . , uin span the k-affine space Mk}
and let π : M → M ′ := M/(〈B − B〉R ∩ M) be the natural projection. Let γ : XA ���
G(n,PN) be the Gauss map of the toric variety XA ⊆ PN . Then the following hold.

(1) The closure γ (XA) of the image of γ , which is embedded in a projective space by the
Plücker embedding of G(n,PN), is projectively equivalent to the toric variety XB .
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(2) The restriction of γ : XA ��� γ (XA) ∼= XB on TM ⊆ XA is the morphism

TM = Speck[M] � T〈B−B〉 = Speck[〈B − B〉] ⊆ XB

induced by the inclusion 〈B − B〉 ⊆ M .
(3) Let F ⊆ TM be an irreducible component of any fiber of γ |TM with the reduced

structure. Let TM ′ ↪→ TM be the subtorus induced by π . Then F is a translation of
TM ′ by an element of TM , and the closure F ⊆ XA is projectively equivalent to the
toric variety Xπ(A).

In particular, we have δγ (XA) = rk M ′ = n − rk〈B − B〉.
In order to investigate a toric variety XA for A ⊆ M , we may assume that A spans the

affine lattice M due to the following remark.

REMARK 3.2. For a finite subset A ⊆ M , let θ : Zm → Aff(A) be an affine isomor-
phism for m = rk〈A−A〉. Then θ−1(A) spans Zm as an affine lattice and Xθ−1(A) is naturally
identified with XA by [12, Chapter 5, Proposition 1.2]. Hence any projectively embedded
toric variety X is projectively equivalent to XA for some A ⊆ M with Aff(A) = M .

Let A = {u0, u1, . . . , uN } ⊆ M := Zn be a finite subset which spans the affine lattice
M . We denote each ui by a column vector as

ui =
⎡
⎢⎣

ui,1
...

ui,n

⎤
⎥⎦ .

Then the morphism ϕA, defined by (1.1) in §1, is described as

ϕA : (k×)n → PN : z = (z1, . . . , zn) �→ [zu0 : zu1 : · · · : zuN ] ,

where zui := z
ui,1
1 z

ui,2
2 · · · zui,n

n . By the assumption that A spans Zn as an affine lattice, ϕA is
an isomorphism onto an open subset of XA.

Let us study the Gauss map γ : XA ��� G(n,PN) of XA ⊆ PN .

LEMMA 3.3. Let A,ϕA be as above, and let x ∈ (k×)n. Then γ (ϕA(x)) ∈ G(n,PN)

is expressed by the k-valued (n + 1) × (N + 1) matrix Γ (x); more precisely, γ (ϕA(x))

corresponds to the n-plane (i.e., n-dimensional linear subvariety of PN ) spanned by the n+ 1
points which are given as the row vectors of Γ (x), where

Γ :=

⎡
⎢⎢⎢⎣

zu0 zu1 · · · zuN

u0,1 · zu0 u1,1 · zu1 · · · uN,1 · zuN

...
...

...

u0,n · zu0 u1,n · zu1 · · · uN,n · zuN

⎤
⎥⎥⎥⎦

=
[

zu0 ·
[

1
u0

]
zu1 ·

[
1
u1

]
· · · zuN ·

[
1

uN

] ]
.
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PROOF. Let Lx ⊆ PN be the n-plane spanned by the n + 1 points which are given as
the row vectors of ⎡

⎢⎢⎢⎣
zu0 · · · zuN

∂(zu0)/∂z1 · · · ∂(zuN )/∂z1
...

...

∂(zu0)/∂zn · · · ∂(zuN )/∂zn

⎤
⎥⎥⎥⎦ (x) .(3.1)

Then Lx coincides with the embedded tangent space TxX, because of the equality tx ′L̂x =
tx ′X̂ of Zariski tangent spaces in tx ′AN+1 with x ′ ∈ x̂ \ {0}, where Ŝ ⊆ AN+1 means the
affine cone of S ⊆ PN . On the other hand, (3.1) is calculated as⎡

⎢⎢⎢⎣
zu0 · · · zuN

u0,1 · zu0/z1 · · · uN,1 · zuN /z1
...

...

u0,n · zu0/zn · · · uN,n · zuN /zn

⎤
⎥⎥⎥⎦ .

Since each row vector corresponds to the homogeneous coordinates of a point of PN , by
multiplying zi with the (i + 1)-th row vector for 1 � i � n, we have the matrix Γ and the
assertion. �

We interpret Lemma 3.3 by the Plücker embedding. We regard PN as P∗(V ) = (V \
{0})/k×, the projectivization of V := kN+1. Let G(n,PN) ↪→ P∗(

∧n+1
V ) be the Plücker

embedding and let [pi0,...,in ](i0,i1,...,in)∈I be the Plücker coordinates on P∗(
∧n+1

V ), where

I := {(i0, i1, . . . , in) ∈ Nn+1 | 0 � i0 < i1 < · · · < in � N} .

LEMMA 3.4. The composite morphism (k×)n
γ ◦ϕA−→ G(n,PN) ↪→ P∗(

∧n+1
V ) maps

z = (z1, . . . , zn) ∈ (k×)n to

[
μi0,i1,...,in · zui0+ui1 +···+uin

]
(i0,i1,...,in)∈I

∈ P∗
( n+1∧

V
)

,

where

μi0,i1,...,in := det

[
1 1 · · · 1

ui0 ui1 · · · uin

]
∈ k .

PROOF. This directly follows from Lemma 3.3 and the definition of the Plücker embed-
ding. �

Set

J := {(i0, i1, . . . , in) ∈ I | μi0,i1,...,in �= 0} .

By definition, μi0,i1,...,in �= 0 in k if and only if ui0 , ui1, . . . , uin span Mk as an affine space.
Hence the finite set B in Theorem 1.1 is described as

B = {ui0 + ui1 + · · · + uin ∈ M | (i0, i1, . . . , in) ∈ J } .
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Write B = {b0, b1, . . . , b#B−1} for mutually distinct bj ∈ M . We define a linear embedding

P#B−1 ↪→ P∗
( n+1∧

V
)

[Y0 : Y1 : · · · : Y#B−1] �→ [pi0,i1,...,in ](i0,i1,...,in)∈I

(3.2)

as follows. When (i0, i1, . . . , in) ∈ J , there exists a unique 0 � j � #B − 1 such that bj =
ui0 +ui1 +· · ·+uin . For this j , we set pi0,i1,...,in = μi0,i1,...,in ·Yj . When (i0, i1, . . . , in) �∈ J ,
we set pi0,i1,...,in = 0.

By Lemma 3.4 and the definition of the embedding (3.2), we have the following com-
mutative diagram:

(k×)n

ϕB
�����

����
����

����
��

� � ϕA �� XA

γ ����� P∗(
∧n+1

V )

P#B−1 .
��

��
(3.3)

PROOF OF THEOREM 1.1. By taking a basis of M , we may assume that M = Zn

and use the notation as above. From the above diagram (3.3), the embedding P#B−1 ↪→
P∗(
∧n+1

V ) gives an isomorphism between

γ (XA) = γ ◦ ϕA((k×)n) and XB = ϕB((k×)n) .

Hence (1) in Theorem 1.1 holds.
The toric variety XB = ϕB((k×)n) contains T〈B−B〉 as an open dense orbit and the

restriction ϕB |TM is nothing but TM = (k×)n � T〈B−B〉 induced by the inclusion 〈B −B〉 ↪→
M . Hence (2) in Theorem 1.1 holds by the diagram (3.3).

To show (3), we use the following claim.

CLAIM 3.5. The morphism γ |TM = ϕB is decomposed as

TM
g1−→ T〈B−B〉R∩M

g2−→ T〈B−B〉
by 〈B − B〉 ⊆ 〈B − B〉R ∩ M ⊆ M , where g1 is a morphism with reduced and irreducible
fibers, and g2 is a finite morphism.

PROOF OF CLAIM 3.5. By applying (a) in Lemma 2.2 to 〈B − B〉 ⊆ M , we have the
assertion. �

The short exact sequence

0 → 〈B − B〉R ∩ M → M
π→ M/(〈B − B〉R ∩ M) → 0

induces a short exact sequence of algebraic tori

1 → TM/(〈B−B〉R∩M) → TM
g1→ T〈B−B〉R∩M → 1 .(3.4)

Hence g−1
1 (1T〈B−B〉R∩M ) = TM/(〈B−B〉R∩M) holds for the identity element 1T〈B−B〉R∩M of the

torus T〈B−B〉R∩M . Applying Lemma 2.1 to the surjection π : M → M/(〈B − B〉R ∩ M), it
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holds that the closure

g−1
1 (1T〈B−B〉R∩M ) ⊆ XA

is projectively equivalent to Xπ(A).
Let F be an irreducible component of any fiber of γ |TM with the reduced structure.

From Claim 3.5, F is a fiber of g1. By (3.4), F is the translation of g−1
1 (1T〈B−B〉R∩M ) =

TM/(〈B−B〉R∩M) by an element of TM . Hence the closure F is projectively equivalent to Xπ(A)

by Lemma 2.1. �

COROLLARY 3.6. Let A,M, γ,B be as in Theorem 1.1. Let γ |TM = g2 ◦ g1 be the
decomposition of γ |TM in Claim 3.5. Then the following hold.

(1) The rank of γ is equal to dim(Affk(B)). In particular, γ is separable if and only if
dim(Affk(B)) = rk(Aff(B)).

(2) Assume p = chark > 0. Then we have

deg(g2) = [〈B − B〉R ∩ M : 〈B − B〉] .

For the maximum integer s � 0 such that ps | deg(g2), the separable degree and the
inseparable degree of g2 are deg(g2)/p

s and ps respectively. Hence the number of
the irreducible components of a general fiber of γ is equal to deg(g2)/p

s , which is
coprime to p.

We note that dim(Affk(B)) = dim〈B − B〉k holds since Affk(B) is a parallel translation
of 〈B − B〉k in Mk.

PROOF OF COROLLARY 3.6. We apply Lemma 2.2 to M ′′ = 〈B − B〉 ⊆ M . In this
case, g in Lemma 2.2 is γ |TM . Since the image of M ′′

k
→ Mk is nothing but 〈B − B〉k ⊆ Mk,

it holds that rk(γ ) = dim〈B − B〉k = dim Affk(B) by (b) in Lemma 2.2. This implies (1).
On the other hand, (2) follows from (c) in Lemma 2.2 directly. �

In the following examples, we denote the separable degree and the inseparable degree of
a finite morphism f by degs(f ) and degi (f ) respectively.

EXAMPLE 3.7. Let A,B be as in Example 1.3 and assume chark = 2. Then rk(γ ) =
dim〈B − B〉k = 0. From (2) of Corollary 3.6, we can calculate deg(g2) = degi (g2) = 2 and
degs (g2) = 1.

EXAMPLE 3.8. Kaji’s example [14, Example 4.1] can be interpreted as follows.
Let A = {0, 1, cpm, cpm + 1} ⊆ M = Z1, where c,m are positive integers and p =

chark > 0. Assume that c and p are relatively prime. Then

B = {1, cpm + 1, 2cpm + 1}, 〈B − B〉 = 〈cpm〉, 〈B − B〉R ∩ M = M

as in Figure 2. Therefore deg(γ ) = cpm, degi (γ ) = pm, degs(γ ) = c. In particular, a general
fiber of γ with the reduced structure is equal to a set of c points.
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• • • •× × ×
0 1 cpm cpm + 1 2cpm + 1

• A ×B

��

FIGURE 2. Kaji’s example.

As in (2) of Corollary 3.6, the number of the irreducible components of a general fiber
of γ is coprime to p = chark in the toric case. However, the number can be a multiple of p

in the non-toric case. The authors learned the following example from H. Kaji in a personal
communication.

REMARK 3.9 (A variant of [14, Example 4.1]). We take f : P1 ��� P1 to be a sepa-
rable rational map whose degree is a multiple of p, and locally parameterize f by t �→ [1 :
f1(t)]. We set ϕ : P1 ��� P3 to be the rational map which is locally parameterized by

t �→ [1 : t : f
p

1 : t · f
p

1 ]
and set X ⊆ P3 to be the projective curve im(ϕ). Then a general fiber of γ : X ��� G(1,P3)

with the reduced structure is equal to a set of deg(f ) points. In order to show this, we may
check that γ is locally parameterized by t �→ f

p

1 (t), whose separable degree is equal to
deg(f ). We leave the details to the reader.

The following are examples of toric varieties XA ⊆ PN with codimension 1 or 2 such that
the Gauss maps are birational. Later, these examples will be used in the proof of Theorem 5.4.

EXAMPLE 3.10. Assume p = chark > 0. Let e1, . . . , en be the standard basis of
M := Zn, and set

A = {0, e1, . . . , en, a1e1 + · · · + anen} ⊆ Zn

for a1, . . . , an ∈ Z such that

(i) a1, . . . , an �≡ 0 mod p, and
(ii) a1 + · · · + an �≡ 1 mod p.

Then the Gauss map of the toric hypersurface XA ⊆ Pn+1 is birational as follows.
By condition (i), A \ {ei} spans Mk = kn as an affine space for any 1 � i � n. Hence it

holds that

e1 + · · · + en + a1e1 + · · · + anen − ei ∈ B .(3.5)

By condition (ii), A \ {0} spans MR = kn as an affine space. Hence

e1 + · · · + en + a1e1 + · · · + anen ∈ B .(3.6)

Considering the difference between (3.5) and (3.6), we have ei ∈ B − B for any i. Therefore
〈B − B〉 = M . By (2) in Theorem 1.1, the Gauss map of XA is birational.
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REMARK 3.11. For example, the conditions (i) and (ii) are satisfied for a1 = · · · =
an = 1 (resp. a1 = · · · = an = −1) when n �≡ 1 mod p (resp. n �≡ −1 mod p). Hence
there exists a toric hypersurface in Pn+1 whose Gauss map is birational if chark �= 2 or n is
even.

If chark = 2 and n is odd, the Gauss map of any (not necessarily toric) hypersurface in
Pn+1 cannot be birational as we will see later in Remark 5.3.

EXAMPLE 3.12. Assume n � 2. Let

A = {0, e1, . . . , en, e1 + e2, e2 + e3 + · · · + en} ⊆ M := Zn .

For S := {0, e1, . . . , en, e1 + e2} ⊆ A, each of

S \ {e1 + e2}, S \ {e1}, S \ {e2}
spans the affine space Mk. Hence it holds that e1, e2 ∈ B−B. In addition, {0, e1, . . . , en, e2+
e3 + · · · + en} \ {ei} spans the affine space Mk for 2 � i � n. Thus we have ei − e2 ∈ B − B

for 2 � i � n. Hence 〈B − B〉 = M and the Gauss map of XA ⊆ Pn+2 is birational.

4. Degenerate Gauss maps.
4.1. Developability criterion. By Theorem 1.1, the Gauss map of any given toric

variety and its general fibers can be explicitly determined from the computation of B and
π(A) as in Example 1.3. However, it is not so clear for what kind of A the Gauss map γ of
XA ⊆ PN is degenerate, i.e., rk〈B − B〉 < n. The following result gives conditions for which
γ is degenerate.

PROPOSITION 4.1. Let M,A,π be as in Theorem 1.1. Let π̃ : M → M̃ ′ be a sur-
jective homomorphism of free abelian groups. Then π̃ factors through π : M → M ′, i.e.,
〈B − B〉 ⊆ ker π̃ if and only if

Ñ ′∑
j=0

dim Affk(Aj ) = n − Ñ ′ ,

where Ñ ′ := #π̃(A) − 1, π̃(A) = {ũ′
0, . . . , ũ

′
Ñ ′ }, and Aj = π̃−1(ũ′

j ) ∩ A.

For a surjective homomorphism π̃ : M → M̃ ′ of free abelian groups, the toric variety
XA is covered by the translations of TM̃ ′ = Xπ̃(A) by elements of TM due to Lemma 2.1. The
homomorphism π̃ factors through π if and only if TM̃ ′ (or equivalently, the translation of TM̃ ′
by any element of TM ) is contracted to one point by γ .

In general, a covering family {Fα} of a projective variety X ⊆ PN by subvarieties Fα ⊆
X is said to be developable if Fα is contracted to one point by the Gauss map of X (i.e., TxX

is constant on general x ∈ Fα) for general α. Proposition 4.1 is regarded as a toric version of
the developability criterion (cf. [7, 2.2.4], [8], [11, §4]; see also §4.2 for the separable case).

Before the proof, we illustrate Proposition 4.1 by an example.



GAUSS MAPS OF TORIC VARIETIES 443

EXAMPLE 4.2. Let A ⊆ Z2 be as in Example 1.3. For the projection π̃ : Z2 → Z1

to the second factor, π̃(A) = {0, 1,−1}. Then A0 = π̃−1(0) ∩ A, A1 = π̃−1(1) ∩ A, A2 =
π̃−1(−1) ∩ A are given by

A0 =
{[

0
0

]}
, A1 =

{[
0
1

]}
, A2 =

{[
1

−1

]
,

[−1
−1

]}
.

Thus

Ñ ′∑
j=0

dim Affk(Aj) =
{

1 when chark �= 2,

0 when chark = 2 .

On the other hand, n − Ñ ′ = 2 − 2 = 0 holds. Hence the equality in Proposition 4.1 holds
if and only if chark = 2. Note that, in this example, the above π̃ can be identified with the
natural projection π : M → M ′ in Theorem 1.1 when char k = 2.

To prove Proposition 4.1, we need the following lemma.

LEMMA 4.3. In the setting of Proposition 4.1, the homomorphism π̃ factors through
π if and only if

Affk(Aj ) = Affk({ui0 , ui1, . . . , uin} ∩ Aj) (0 � j � Ñ ′)

for any ui0, . . . , uin ∈ A which span the affine space Mk.

PROOF. First, we show the “only if” part. Assume that π̃ factors through π . The inclu-
sion “⊃” always holds. We show “⊆”. Let u ∈ Aj . Since ui0 , . . . , uin span the affine space
Mk, we can write u = ∑n

k=0 cikuik with
∑n

k=0 cik = 1 and cik ∈ k. For any k with cik �= 0,
we have uik ∈ Aj as follows.

If cik �= 0, we find that {u} ∪ {uik′ }0�k′�n,k′ �=k span the affine space Mk. Thus u +∑
0�k′�n,k′ �=k uik′ ∈ B, and then u − uik ∈ B − B. Since π̃ factors through π , we have

π̃ (uik ) = π̃(u) = ũ′
j by u ∈ Aj = π̃−1(ũ′

j ) ∩ A; hence uik ∈ Aj .
Thus we have u =∑uik

∈Aj
cik uik with

∑
uik

∈Aj
cik = 1, i.e., u is contained in Affk({ui0,

ui1 , . . . , uin} ∩ Aj). This implies the assertion.

Next, we show the “if” part. For any b ∈ B, we can write b = ui0 + · · · + uin with
ui0 , . . . , uin ∈ A which span the affine space Mk. Since the n-dimensional affine space Mk is
spanned by n + 1 elements ui0 , . . . , uin ∈ A, we have

#({ui0, . . . , uin } ∩ Aj) = dim Affk({ui0, ui1 , . . . , uin} ∩ Aj) + 1 .

Hence #({ui0, . . . , uin}∩Aj) = dim Affk(Aj )+ 1 holds for each 0 � j � Ñ ′ by assumption.
In particular, it holds that

π̃(b) = π̃(ui0 + · · · + uin) =
∑

0�j�Ñ ′
(dim Affk(Aj ) + 1) · u′

j ,

which does not depend on b ∈ B. Thus we have B−B ⊆ ker π̃ , i.e., π̃ factors through π . �
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REMARK 4.4. Assume that π̃ factors through π . From the “if” part in the above proof,
#({ui0, . . . , uin } ∩ Aj) does not depend on ui0 , . . . , uin ∈ A which span the affine space Mk.
Thus each element of B −B is written as a linear combination of elements of

⋃
0�j�Ñ ′(Aj −

Aj).

PROOF OF PROPOSITION 4.1. Let us take ui0 , . . . , uin ∈ A which span the affine space
Mk. Then the latter condition of Lemma 4.3 holds if and only if

dim Affk(Aj ) = #({ui0, ui1 , . . . , uin} ∩ Aj) − 1(4.1)

for any 0 � j � Ñ ′ (we note that “�” always holds). On the other hand, since A = A0 �
A1 � · · · � AÑ ′ , we have

∑
0�j�Ñ ′

(#({ui0, ui1 , . . . , uin} ∩ Aj) − 1) = #{ui0, ui1 , . . . , uin } − (Ñ ′ + 1) = n − Ñ ′ .

Hence
∑

0�j�Ñ ′ dim Affk(Aj) = n − Ñ ′ holds if and only if the equality (4.1) holds for any

0 � j � Ñ ′. Therefore this proposition follows from Lemma 4.3. �

COROLLARY 4.5. Let A,π : M → M ′ be as in Theorem 1.1. Then it holds that
rk(γ ) � n − (#π(A) − 1). Moreover, if γ is separable, then we have #π(A) = rk M ′ + 1,
which means Xπ(A) is a linear projective space of dimension rk M ′.

PROOF. We apply Proposition 4.1 to the homomorphism π . Then it holds that
∑

j dim
〈Aj − Aj 〉k = n − (#π(A) − 1). From Corollary 3.6, we have rk(γ ) = dim Affk(B) =
dim〈B −B〉k. By Remark 4.4, 〈B −B〉 is contained in the space 〈{Aj −Aj }j 〉. Thus rk(γ ) �
n − (#π(A) − 1) holds.

If γ is separable, rk(γ ) = rk〈B − B〉 = n − rk(M ′) holds by Corollary 3.6. Hence
rk(M ′) � #π(A) − 1 holds by the above inequality. The converse inequality “�” always
holds since π(A) spans the affine lattice M ′. Since π(A) spans the affine lattice M ′, the
equality #π(A) = rk M ′ +1 means Xπ(A) is a linear projective space of dimension rk M ′. �

REMARK 4.6. The equality “rk(γ ) = n − (#π(A) − 1)” does not hold in general. For
example, set A = {0, 1, p} ⊆ M = Z1 with p = chark > 0. Then we have

B = {1, p + 1}, 〈B − B〉 = 〈p〉, 〈B − B〉R ∩ M = M .

Thus π : M = Z1 → M/(〈B − B〉R ∩ M) = {0} is the zero map. Here we have rk(γ ) =
dim〈B − B〉k = 0 and n − (#π(A) − 1) = 1 − (1 − 1) = 1.

4.2. Separable Gauss maps, Cayley sums, and joins. In this subsection, we study
the case when the Gauss map is separable, and prove Corollary 1.4 in the characteristic zero
case.

DEFINITION 4.7. Let l � n be non-negative integers. Let e1, . . . , el be the standard
basis of Zl . For finite sets A0, . . . , Al ⊆ Zn−l , the Cayley sum A0 ∗ · · · ∗ Al of A0, . . . , Al is
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defined to be

A0 ∗ · · · ∗ Al := (A0 × {0}) ∪ (A1 × {e1}) ∪ · · · (Al × {el}) ⊆ Zn−l × Zl .

Let A be the Cayley sum of A0, . . . , Al ⊆ Zn−l , and assume that A spans the affine
lattice Zn−l × Zl . For the projection π̃ : Zn−l × Zl → Zl to the second factor, Xπ̃(A) is an
l-plane since π̃(A) = {0, e1, . . . , el}. By Lemma 2.1, XA is covered by l-planes, which are
translations of Xπ̃(A) = TZl . For this π̃ , Ñ ′ in Proposition 4.1 is equal to l. Thus, the subtorus
TZl ⊆ TZn−l×Zl is contracted to one point by the Gauss map of XA if and only if

l∑
j=0

dim Affk(A
j ) = n − l .(4.2)

In other words, (4.2) is the condition for the developability of the covering family obtained
by translations of TZl . In fact, any toric variety with separable Gauss map is described by a
Cayley sum with the condition (4.2), as follows.

THEOREM 4.8. Let A,M be as in Theorem 1.1. Assume that the Gauss map γ of
XA ⊆ PN is separable, and set l = δγ (X). Then there exist finite subsets A0, . . . , Al ⊆
Zn−l with

∑l
j=0 dim Affk(Aj ) = n − l such that A is identified with the Cayley sum of

A0, . . . , Al ⊆ Zn−l under some affine isomorphism M � Zn−l × Zl .

PROOF. Let A = {u0, u1, . . . , uN } and π : M → M ′ be as in Theorem 1.1, where we
may assume u0 = 0 ∈ M . From Theorem 1.1 and Corollary 4.5, it follows that rk M ′ = l and
#π(A) = l + 1 since γ is separable by assumption. Set π(A) = {u′

0, . . . , u
′
l}. Without loss of

generality, we may assume that u′
0 = π(u0) = 0 ∈ M ′. Then u′

1, . . . , u
′
l form a basis of M ′

since π(A) spans the affine lattice M ′ � Zl . Set Aj = π−1(u′
j ) ∩ A.

Fix a splitting s : M ′ → M of the short exact sequence 0 → ker π → M
π→ M ′ → 0.

Then the induced isomorphism

M
∼→ ker π × M ′ : u �→ (u − s(π(u)), π(u))

gives an identification of A ⊆ M with

l⋃
j=0

(
Aj × {u′

j }
)

⊆ ker π × M ′ ,(4.3)

where Aj := Aj − s(u′
j ) ⊆ ker π is the parallel translation of Aj by s(u′

j ). Since u′
1, . . . , u

′
l

form a basis of M ′, u′
0 = 0, and ker π � Zn−l , this theorem follows. �

REMARK 4.9. In [6], Di Rocco determined which smooth projective toric varieties
over C have positive dual defects. Roughly, her result states that an n-dimensional smooth
toric variety XA ⊆ PN has positive dual defect d if and only if there exist finite subsets
A0, . . . , A(n+d)/2 ⊆ Zn−(n+d)/2 such that

• A is identified with the Cayley sum of A0, . . . , A(n+d)/2 under some affine isomor-
phism M � Zn−(n+d)/2 × Z(n+d)/2,
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• all Conv(Aj )’s have the same normal fan,
• n + d � 4.

In order to prove Corollary 1.4, we consider a relation between Cayley sums and joins.
For projective varieties X1, . . . , Xm ⊆ PN , we define the join of X1, . . . , Xm to be the closure
of
⋃

x1∈X1,...,xm∈Xm
Λx1,...,xm ⊆ PN , where Λx1,...,xm is the linear variety spanned by the

points x1, . . . , xm.

LEMMA 4.10. Let A ⊆ Zn−l × Zl be the Cayley sum of A0, . . . , Al ⊆ Zn−l with
Aff(A) = Zn−l × Zl . Then the following hold.

(a) XA0, . . . , XAl are embedded into XA as torus invariant subvarieties, and they are mu-
tually disjoint.

(b) XA is contained in the join of XA0, . . . , XAl ⊆ PN , and the codimension of XA in the
join is l − n +∑l

j=0 rk Aff(Aj ).

PROOF. (a) Write Aj = {uj

0, . . . , u
j
Nj

} ⊆ Zn−l for Nj = #Aj − 1. Set N = #A − 1 =∑l
j=0(Nj + 1) − 1 and let {Xj

i }0�i�Nj ,0�j�l be the homogeneous coordinates on PN . By
the definition of the Cayley sum A, it holds that

ϕA(z,w) = [wjz
u

j
i ]0�i�Nj ,0�j�l

= [w0z
u0

0 : · · · : w0z
u0

N0 : w1z
u1

0 : · · · : w1z
u1

N1 : · · · : wlz
ul

0 : · · · : wlz
ul

Nl ]
(4.4)

in PN for (z,w) = (z1, . . . , zn−l , w1, . . . , wl) ∈ (k×)n−l × (k×)l = TZn−l×Zl , where we set
w0 = 1. For fixed 0 � j � l and z ∈ (k×)n−l = TZn−l , ϕA(z,w) converges to

[0 : · · · : 0 : zu
j
0 : · · · : z

u
j
Nj : 0 : · · · : 0] ∈ PN(4.5)

when wk/wj → 0 for 0 � k �= j � l. Thus, the point (4.5) is contained in the closure

ϕA(TZl×Zn−l ) = XA. In other words, ϕAj (z) = [zu
j

0 : · · · : z
u

j
Nj ] ∈ PNj

is contained in XA

for any z ∈ (k×)n−l = TZn−l by an embedding PNj into PN as

PNj = (X
j ′
i = 0)j ′ �=j,0�i�Nj ′ ⊆ PN .(4.6)

Since XAj is the closure of ϕAj (TZn−l ), XAj ⊆ PNj is contained in XA.
The action of TZn−l×Zl on XA is described as

(z,w) · [Xj
i ]0�i�Nj ,0�j�l = [wjz

u
j
i X

j
i ]0�i�Nj ,0�j�l

for (z,w) = (z1, . . . , zn−l , w1, . . . , wl) ∈ TZn−l×Zl and [Xj
i ]0�i�Nj ,0�j�l ∈ XA, where

w0 = 1 as before. Therefore XAj ⊆ XA is a torus invariant subvariety. Since PN0 , . . . ,PNl ⊆
PN are mutually disjoint by (4.6), so are XA0, . . . , XAl ⊆ XA.

(b) For (z,w) ∈ TZn−l×Zl , the image ϕA(z,w) ∈ XA ⊆ PN is described by (4.4), and
ϕAj (z) ∈ XAj ⊆ PN is described by (4.5) for each 0 � j � l. Hence ϕA(z,w) is contained
in the l-plane spanned by ϕA0(z), ϕA1(z), . . . , ϕAl (z). Thus XA is contained in the join of
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XA0 , . . . , XAl . From (4.6), the dimension of the join of XA0 , . . . , XAl is l +∑l
j=0 dim XAj ,

which is equal to l +∑l
j=0 rk Aff(Aj ). Since dim(XA) = n, the assertion about the codimen-

sion follows. �

EXAMPLE 4.11. Let A ⊆ Z2 × Z1 be the Cayley sum of

A0 =
{[

0
0

]
,

[
1
0

]
,

[
2
0

]}
, A1 =

{[
0
0

]
,

[
0
1

]
,

[
0
2

]
,

[
0
3

]}
⊆ Z2 .

Then it holds that

l − n +
l∑

j=0

rk Aff(Aj ) = 1 − 3 + (1 + 1) = 0 .

Hence XA is the join of XA0 and XA1 . In fact,

XA = {[1 : x : x2 : w : wy : wy2 : wy3] | (x, y,w) ∈ (k×)3 = TZ2×Z1

} ⊆ P6 ,

and the conic XA0 ⊆ P2 and the twisted cubic XA1 ⊆ P3 are embedded into XA as

XA0 = {[1 : x : x2 : 0 : 0 : 0 : 0] | x ∈ k×} ⊆ XA ,

XA1 = {[0 : 0 : 0 : 1 : y : y2 : y3] | y ∈ k×} ⊆ XA .

REMARK 4.12. In Theorem 4.8, the codimension of XA in the join of XA0, . . . , XAl

is
∑l

j=0(rk Aff(Aj ) − dim Affk(Aj )) by Lemma 4.10.

Now we can prove Corollary 1.4 immediately.

COROLLARY 4.13 (= Corollary 1.4). Let X ⊆ PN be a projectively embedded toric
variety in chark = 0. Then there exist disjoint torus invariant closed subvarieties X0, . . . ,

Xδγ (X) ⊆ X such that X is the join of X0, . . . , Xδγ (X).

PROOF. We may assume that X = XA for some finite set A ⊆ M with Aff(A) = M .
Then the assertion follows from Theorem 4.8 and Remark 4.12 since the equality rk Aff(Aj ) =
dim Affk(Aj ) holds in chark = 0. �

COROLLARY 4.14. Assume chark = 0. If a toric variety XA ⊆ PN is the join of some
projective varieties, then XA is the join of some toric varieties XA0,XA1 , . . . , XAl for some
l > 0.

PROOF. Since XA is the join in chark = 0, the Gauss defect δγ (XA) is positive (due to
Terracini’s lemma). Hence this corollary follows from Corollary 1.4 for l = δγ (X). �

The assumption chark = 0 is crucial in the above proof of Corollary 1.4. In positive
characteristic, even if the Gauss map γ of XA is separable (equivalently, a general fiber of
γ is scheme-theoretically an open subset of a linear variety of PN ), it is possible that γ is
degenerate but XA is not the join of any varieties, as follows.
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EXAMPLE 4.15. Let p = chark � 3. Set

A0 = {0, 1,−1}, A1 = {0, p} ⊆ Z1

and let A ⊆ Z1 × Z1 be the Cayley sum of A0, A1. Then

〈B − B〉 = Z1 × {0} ⊆ Z1 × Z1

as in Figure 3. Hence π : M → M/(〈B −B〉R∩M) coincides with the projection Z1 ×Z1 →
Z1 to the second factor. In this setting, the following hold.

(1) The Gauss map γ of the surface XA ⊆ P4 is separable. A general fiber of γ is a line;
in particular, γ is degenerate.

(2) The conic XA0 and the line XA1 are embedded into XA.
(3) XA is of codimension one in the join of XA0 and XA1 . On the other hand, XA itself

is not the join of any varieties.

The reason is as follows. (1) The separability of γ follows from Corollary 3.6. A general
fiber of γ is projectively equivalent to Xπ(A), which is a line. (2) The embedding of XAj is
given as in Lemma 4.10. (3) It follows from Theorem 4.8 that XA is contained in the join of
XA0 and XA1 . Since the join is of dimension 3, the codimension of XA in the join is equal to
1. By Remark 4.12, the codimension is also calculated from

rk Aff(A0) − dim Affk(A
0) = 1 − 1 = 0 ,

rk Aff(A1) − dim Affk(A
1) = 1 − 0 = 1 .

On the other hand, XA is not the join of any varieties; this is because, a projective surface
X ⊆ PN is the join of some varieties if and only if X is the cone of a curve with a vertex.

In Figure 3, the Cayley sum A of A0 and A1 corresponds to the disjoint union of black
bullets • and white bullets ◦.

1−1
|
p

×× × × × ×◦◦

•• •

■

■

1

0

• A0 × {0} ◦ A1 × {1} × B ■ π(A)

π
��

�� ��

��

FIGURE 3. Cayley sum A = A0 ∗ A1 (p � 3).

5. Constructions in positive characteristic. This section presents two constructions
of projectively embedded toric varieties in positive characteristic. We consider whether it is
possible to find a toric variety whose Gauss map γ has given data about

(F) each irreducible component of a general fiber of γ ;
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(I) the image of γ ;
(c) the number of the irreducible components of a general fiber of γ ;
(r) the rank of γ .

The statement of Theorem 1.5 means that, a projectively embedded toric variety X is con-
structed for given (F) and (I). In fact, in the construction of Theorem 5.1, we can control
(F), (I), and (c), but not (r) (indeed, rk(γ ) = 0 for X in our proof). On the other hand, in
the construction of Theorem 5.4, we can control (F), (r), and (c). Hereafter we assume that
p = chark is positive.

THEOREM 5.1. Assume p = chark > 0. Let A′ and A′′ be finite subsets of free
abelian groups M ′ and M ′′ respectively such that Aff(A′) = M ′ and Aff(A′′) = M ′′. Let
c > 0 be an integer coprime to p. Assume n := rk(M ′)+ rk(M ′′) � #A′−1 and rk(M ′′) � 1.
Then there exists a finite subset A ⊆ M := Zn with #A = n + #A′′ and Aff(A) = M such
that the Gauss map γ of XA ⊆ P#A−1 satisfies the following conditions:

(i) (The closure of) each irreducible component of a general fiber of γ is projectively equiv-
alent to XA′ .

(ii) (The closure of) the image γ (XA) is projectively equivalent to XA′′ .
(iii) The number of the irreducible components of a general fiber of γ is equal to c.

PROOF. We set N ′ = #A′−1 and A′ = {u′
0, . . . , u

′
N ′ }, and let e1, . . . , en be the standard

basis of M = Zn. Without loss of generality, we may assume that u′
0 = 0. We define a group

homomorphism π by

π : M → M ′ : ei �→
{

u′
i for 1 � i � N ′ ,

0 for N ′ + 1 � i � n .

We note that n � N ′ holds by assumption. Since Aff(A′) = M ′ and u′
0 = 0 ∈ M ′, π is

surjective. Hence ker π is a free abelian group whose rank is rk(M ′′). Since rk(M ′′) � 1, we
can take and fix an injective group homomorphism

M ′′ ↪→ ker π

whose cokernel is isomorphic to Z/〈c〉. Let A′′ = {f0, . . . , fN ′′ } ⊆ M ′′ ⊆ ker π for N ′′ =
#A′′ − 1. Without loss of generality, we may assume that f0 = 0 ∈ M ′′. Set

A = {e1, . . . , en, pf0, . . . , pfN ′′ } ⊆ M .

Since e1, . . . , en form a basis of M and pf0 = 0 ∈ M , A spans the affine lattice M .
Let B be as in the statement of Theorem 1.1 for the above A. Choose n + 1 elements

ui0 , ui1 , . . . , uin ∈ A which span the affine space Mk. Since pfs = 0 in Mk for 0 � s �
N ′′, at most one element of {pf0, pf1, . . . , pfN ′′ } is contained in {ui0, ui1 , . . . , uin}. Hence
{ui0 , ui1 , . . . , uin} = {pfs, e1, . . . , en} holds for some 0 � s � N ′′. Thus we have

B = {pf0 + e1 + · · · + en, . . . , pfN ′′ + e1 + · · · + en} ,
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that is, B is the parallel translation of p · A′′ by e1 + · · · + en. Hence we have XB = Xp·A′′ =
XA′′ . Since the closure of the image γ (XA) is projectively equivalent to XB by (1) in Theorem
1.1, the condition (ii) in this theorem holds.

Since A′′ = {f0, . . . , fN ′′ } spans the affine lattice M ′′, it holds that

〈B − B〉 = p · 〈A′′ − A′′〉 = p · M ′′ ⊆ M ′′ ⊆ ker π .

Therefore 〈B − B〉R ∩ M = ker π and the natural projection M → M/(〈B − B〉R ∩ M)

coincides with π : M → M ′. Since π(A) = A′ by the definition of π and A, the condition (i)
in this theorem follows from (3) in Theorem 1.1.

Since ker π/M ′′ � Z/〈c〉, the order of the finite group

(〈B − B〉R ∩ Zn)/〈B − B〉 = ker π/(p · M ′′)

is prk(M ′′)c. Hence (iii) in this theorem follows from (2) in Corollary 3.6. �

Note that, in the above construction, rk(γ ) = dim〈B − B〉k = 0.

EXAMPLE 5.2. In this example, we illustrate Theorem 5.1 for

A′ =
{[

0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]}
⊆ Z2, A′′ = {0, 1, 2, 3} ⊆ Z1

and an integer c > 0 coprime to p = chark. In this case, XA′ = P1 × P1 ⊆ P3 is a smooth
quadric surface and XA′′ ⊆ P3 is a twisted cubic curve. Since n = 2 + 1 � #A′ − 1 = 4 − 1,
we can apply Theorem 5.1.

We use the notations in the proof of Theorem 5.1. Since π : M = Z3 → M ′ = Z2 is
defined by

π(e1) =
[

1
0

]
, π(e2) =

[
0
1

]
, π(e3) =

[
1
1

]

for the standard basis e1, e2, e3 of Z3, ker π is generated by e1 + e2 − e3. Hence an injection
M ′′ = Z1 ↪→ ker π with cokernel Z/〈c〉 is given by mapping 1 ∈ Z1 to c(e1 + e2 − e3). Thus
A in the proof of Theorem 5.1 is

A =
⎧⎨
⎩
⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

1
0

⎤
⎦ ,

⎡
⎣0

0
1

⎤
⎦ , p · 0, p · f, p · 2f, p · 3f

⎫⎬
⎭ for f =

⎡
⎣ c

c

−c

⎤
⎦ .

We can see directly that (i) - (iii) in Theorem 5.1 hold for this A as follows: In this case,
XA is the image of ϕA : (k×)3 ↪→ P6 defined by

(x, y, z) �→ [x : y : z : 1 : (xyz−1)pc : (xyz−1)2pc : (xyz−1)3pc] .(5.1)
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We embed P3 into G(3,P6) by mapping [X : Y : Z : W ] ∈ P3 to the 3-plane in P6 spanned
by the 4 points which are given as the row vectors of⎡

⎢⎢⎣
0 0 0 X Y Z W

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎤
⎥⎥⎦ .

Then the image of ϕA(x, y, z) by the Gauss map γ of XA is

[1 : (xyz−1)pc : (xyz−1)2pc : (xyz−1)3pc] ∈ P3 ⊆ G(3,P6)(5.2)

from Lemma 3.3. Hence the closure γ (XA) is the twisted cubic curve XA′′ ⊆ P3. Thus (ii)
holds.

From (5.1) and (5.2), the fiber of γ |TM over [1 : 1 : 1 : 1] ∈ γ (XA) = XA′′ ⊆ P3 is{
[x : y : z : 1 : 1 : 1 : 1] ∈ XA ⊆ P6 | (x, y, z) ∈ (k×)3, (xyz−1)pc = 1

}
.

As a set, this is the disjoint union of{
[s : t : ζ kst : 1 : 1 : 1 : 1] ∈ XA ⊆ P6 | (s, t) ∈ (k×)2

}
(5.3)

for 0 � k � c − 1, where ζ ∈ k× is a primitive c-th root of unity. Since the closure of each
(5.3) is projectively equivalent to XA′ = P1 × P1 ⊆ P3, (i) and (iii) are satisfied.

Next, we consider how to construct X for a given integer r > 0 such that the rank of
the Gauss map of X is equal to r . From the following remark, we need to assume r �= 1 if
chark = 2.

REMARK 5.3. In characteristic 2, it is known that the rank of the Gauss map of any
projective variety X ⊆ PN cannot be equal to 1. In addition, if X is a hypersurface, then the
rank of the Gauss map is even. The reason is as follows.

Let X ⊆ PN be a projective variety in char k = 2, and let x ∈ X be a general point.
As in [10, §2], choosing homogeneous coordinates on PN , we may assume that X is locally
parameterized at x = [1 : 0 : · · · : 0] by [1 : z1 : · · · : zn : fn+1 : · · · : fN ], where z1, . . . , zn

form a regular system of parameters of OX,x , and fn+1, . . . , fN ∈ OX,x . Then rk dxγ is equal
to the rank of the n × (n(N − n)) matrix[

H(fn+1) H(fn+2) · · · H(fN)
]

,(5.4)

where H(f ) := [∂2f/∂zi∂zj ]1�i,j�n is the Hessian matrix of a function f . Assume that
rk(γ ) (= rk dxγ ) is nonzero. Then the matrix (5.4) is nonzero; in particular, one of the
Hessian matrix H(fk) is nonzero. Since chark = 2, we have ∂2fk/∂zi∂zi = 0, i.e., the
diagonal entries of H(fk) are zero. Hence some ∂2fk/∂zi∂zj with i �= j must be nonzero.
Therefore H(fk) has 2 × 2 submatrix[

∂2fk/∂zi∂zi ∂2fk/∂zj ∂zi

∂2fk/∂zi∂zj ∂2fk/∂zj ∂zj

]
=
[

0 ∂2fk/∂zi∂zj

∂2fk/∂zi∂zj 0

]
,



452 K. FURUKAWA AND A. ITO

whose determinant is nonzero. This implies that rk(γ ) � 2.
Now assume that X ⊆ PN is a hypersurface. Then X is locally parametrized by [1 : z1 :

· · · : zn : fn+1], and hence rk dxγ = rk H(fn+1). Since chark = 2, the symmetric matrix
H(fn+1) is skew-symmetric, whose rank is even (for example, see [2, §5, no1, Corollaire 3]).

THEOREM 5.4. Assume p = chark > 0. Let A′ be a finite subset of a free abelian
group M ′ with Aff(A′) = M ′. Let r, c > 0 be positive integers such that (p, r) �= (2, 1) and
c is coprime to p. Assume that positive integers n,N satisfy

n � max{(#A′ − 1) + r, rk(M ′) + r + 1}
and

N �
{

2n − rk(M ′) − r + 1 if p � 3, or p = 2, r : even ,

2n − rk(M ′) − r + 2 if p = 2, r : odd .
(5.5)

Then there exists a finite subset A ⊆ M := Zn with Aff(A) = M and #A = N + 1 such that
the Gauss map γ of XA ⊆ PN satisfies the following conditions:

(i) (The closure of) each irreducible component of a general fiber of γ is projectively equiv-
alent to XA′ .

(ii) The rank of γ is equal to r .
(iii) The number of the irreducible components of a general fiber of γ is equal to c.

PROOF. We set n′ = rk(M ′), N ′ = #A′ − 1, and A′ = {u′
0, . . . , u

′
N ′ }. Let e1, . . . , en

be the standard basis of M = Zn. Without loss of generality, we may assume that u′
0 = 0. As

in the proof of Theorem 5.1, we define a surjective group homomorphism π : Zn → M ′ by
π(ei) = u′

i for 1 � i � N ′ and π(ei) = 0 for N ′ + 1 � i � n. Since ker π � Zn−n′
and

eN ′+1, . . . , eN ′+r ∈ ker π (note that N ′ + r = (#A′ − 1) + r � n holds by assumption), there
exist

f1, . . . , fn−n′−r ∈ ker π

such that eN ′+1, . . . , eN ′+r , f1, . . . , fn−n′−r form a basis of ker π . By assumption, n − n′ −
r = n − rk(M ′) − r � 1 holds.

First, we consider the case when N is equal to the right hand side of (5.5). Set

A = C ∪ D ⊆ M ,

where

C = {e1, . . . , en, 0, cpf1, pf2, . . . , pfn−n′−r } ,

D =
⎧⎨
⎩

{eN ′+1 + · · · + eN ′+r } for r �≡ 1 mod p ,

{−eN ′+1 − · · · − eN ′+r} for r ≡ 1, r �≡ −1 mod p ,

{eN ′+1 + eN ′+2, eN ′+2 + · · · + eN ′+r } for p = 2, r : odd, r � 3 .
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By a similar argument as in the proof of Theorem 5.1 and by Remark 3.11, Example 3.12, we
have

〈B − B〉 =
N ′+r⊕

i=N ′+1

Zei ⊕ Zcpf1 ⊕
n−n′−r⊕

j=2

Zpfj .(5.6)

Hence 〈B − B〉R ∩ M = ker π . Since A′ = π(A), (i) and (iii) in this corollary follows as in
Theorem 5.1.

Since eN ′+1, . . . , eN ′+r , f1, . . . , fn−n′−r form a basis of ker π , we have 〈B − B〉k =⊕N ′+r
i=N ′+1 kej . Thus the rank of γ is dim〈B − B〉k = r by Corollary 3.6.

Next, we consider any integer N satisfying the inequality (5.5). We take a finite subset
E of the right hand side of (5.6) such that N = #(C ∪ D ∪ E) − 1 for the above C and D.
Set A := C ∪ D ∪ E ⊆ M . Since E is contained in the right hand side of (5.6), the subgroup
〈B − B〉 for this A is the same as (5.6). Hence the assertion follows. �
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