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Abstract. We establish the atomic decompositions for the weighted Hardy spaces
with variable exponents. These atomic decompositions also reveal some intrinsic structures
of atomic decomposition for Hardy type spaces.

1. Introduction. There are two main themes for this paper. The first one is to es-
tablish the atomic decompositions of weighted Hardy spaces with variable exponents. The
second one is the intrinsic structure of the atomic decomposition of Hardy type spaces.

The atomic decomposition is one of the most remarkable results for the study of Hardy
spaces. It is impossible to review all the applications and impacts of the atomic decompo-
sitions on the theory of function spaces. Thus, to match the main theme of this paper, we
briefly review some extensions of the atomic decompositions of Hardy spaces built on some
non-Lebesgue spaces on R

n.
Shortly after the introduction of the classical Hardy spaces [49], we already had the

study of weighted Hardy spaces and established the corresponding atomic decomposition in
[5, 22, 51]. As shown in [51], the weighted Hardy spaces provide an enlarged point of view
for the study of function spaces. For instance, it is shown in [51, p. 86] that the Dirac delta
function, being one of the most important distributions on the study of partial differential
equations, belongs to some weighted Hardy spaces.

Moreover, the atomic decompositions had been extended to the Hardy-Orlicz spaces in
[39, 52]. Hardy-Orlicz spaces were introduced in [39] by using maximal functions while
Hardy-Orlicz spaces given in [52] is used to study an extension of the function space of
bounded mean oscillation. The atomic decomposition for Hardy-Lorentz spaces is given in
[1].

Recently, Hardy-Morrey spaces and weighted Hardy-Morrey spaces are introduced in
[33, 45, 46, 47] and [29], respectively.

The study of Hardy spaces with variable exponent is inspired by the Lebesgue spaces
with variable exponents which recently, gain the attentions of a substantial number of re-
searchers. The Lebesgue spaces with variable exponents were introduced independently by
Orlicz and Nakano [40, 41, 44]. For some comprehensive accounts on the study of Lebesgue
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spaces with variable exponents, the reader is referred to [10, 15]. Notice that one of the ma-
jor breakthroughs on the Lebesgue spaces with variable exponents is the boundedness of the
Hardy-Littlewood maximal operator [8, 11, 14, 42]. This study has been extended to weighted
Lebesgue spaces with variable exponent Lp(·)ω in [9].

The Hardy spaces with variable exponents are introduced in [38]. The atomic decompo-
sition for the Hardy spaces with variable exponents was also established in [38]. It has been
further extended to the Hardy-Morrey spaces with variable exponent in [30]. For the studies
of Morrey spaces with variable exponents, the reader is referred to [2, 24, 25, 28, 31, 34].

For the atomic decomposition of the classical Hardy spaces Hp, 0 < p ≤ 1, we see
that the atom satisfies two essential conditions, namely, the size condition and the vanishing
moment condition. More precisely, the atom a with supp a ⊂ Q for a cube Q satisfies

‖a‖Lq ≤ |Q| 1
q
− 1
p(1.1) ∫

xγ a(x)dx = 0 , for all multi-indices γ with |γ | ≤
[
n

p
− n

]
(1.2)

for some 1 < q < ∞.
In this paper, we are particularly interested in the intrinsic structure of the atomic decom-

position. Precisely, the intrinsic structure consists of two questions related to the definition of
atoms. How do we determine the order of the vanishing moment condition by the information
from the Hardy spaces and how do we identify the range of q from the size condition satis-
fied by the atom? We find that the answers for both of the above questions are related to the
boundedness of the Hardy-Littlewood maximal operator.

The atomic decomposition for classical Hardy spaces is so refined that the relations be-
tween the boundedness of the Hardy-Littlewood maximal operatorM on Lebesgue spaces and
the indices appeared in the atomic decomposition can only be clearly revealed if we chase the
details of the proof of the atomic decomposition very carefully.

On the other hand, the atomic decompositions of weighted Hardy spaces with variable
exponents Hp(·)

ω can fully and easily reveal the connection between the boundedness of M
and the indices used in the definition of the atoms for the atomic decomposition.

Roughly speaking, we find that the order of the vanishing moment condition satisfied by
the atoms used in the atomic decomposition for Hp(·)

ω is determined by the infimum of those
r such that the Hardy-Littlewood maximal operator is bounded on the associate space of the
r-convexification of Lp(·)ω , that is, (Lrp(·)

ω1/r )
′ (see [43, Section 2.2] or [37, Volume II, p.53-54]

for the definition of r-convexification). In addition, the index q in the size condition for atoms
used in the atomic decomposition for Hp(·)

ω is related to the left-openness of the boundedness
of M on (Lrp(·)

ω1/r )
′.

In this paper, we extend the atomic decomposition of weighted Hardy spaces to weighted
Hardy spaces with variable exponents. Thus, the main results obtained in this paper, on one
hand, generalize the atomic decompositions in [5, 22, 38, 51]. On the other hand, they also
clarify the relation between the atomic decompositions of Hardy type spaces and the bound-
edness of the Hardy-Littlewood maximal operators on function spaces.
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This paper is organized as follows. Section 2 gives the definition of weighted Lebesgue
spaces with variable exponents and some of their preliminary results. We also introduce
indices related to the intrinsic structure of the atomic decomposition and define weighted
Hardy spaces with variable exponents in this section. Section 3 presents the Fefferman-Stein
vector-valued maximal inequalities on weighted Lebesgue spaces with variable exponents.
The smooth atomic decompositions of Hp(·)

ω is given in Section 4. Our main results on the
atomic decompositions of Hp(·)

ω are established in Section 5. As an application of atomic de-
composition, we show the equivalence of the Littlewood-Paley characterization and the max-
imal function characterization of weighted Hardy spaces with variable exponents in Section
6.

2. Preliminaries and Definitions. Let B(z, r) = {x ∈ R
n : |x − z| < r} denote the

open ball with center z ∈ R
n and radius r > 0. Let B = {B(z, r) : z ∈ R

n, r > 0}. Let M
be the class of Lebesgue measurable functions on R

n.
We begin with the definition of the well known Muckenhoupt class of weight functions.

DEFINITION 2.1. For 1 < p < ∞, a locally integrable function ω : Rn → [0,∞) is
said to be an Ap weight if

[ω]Ap = sup
B∈B

(
1

|B|
∫
B

ω(x)dx

)(
1

|B|
∫
B

ω(x)
− p′
p dx

) p

p′
< ∞

where p′ = p
p−1 . A locally integrable function ω : Rn → [0,∞) is said to be an A1 weight

if for all balls B,

1

|B|
∫
B

ω(y)dy ≤ Cω(x) , a.e. x ∈ B

for some constant C > 0. The infimum of all such C is denoted by [ω]A1 . We define A∞ =⋃
p≥1Ap.

For any B ∈ B and locally integrable function ω, write ω(B) = ∫
B
ω(x)dx.

We recall the definition of Lebesgue spaces with variable exponents and some of theirs
properties.

Let p(·) : Rn → (0,∞] be a Lebesgue measurable function, the Lebesgue space with
variable exponent Lp(·) consists of those Lebesgue measurable function f satisfying

‖f ‖Lp(·) = inf
{
λ > 0 : ρp(·)(|f (x)|/λ) ≤ 1

}
< ∞

where R
n∞ = {x ∈ R

n : p(x) = ∞} and

ρp(·)(f ) =
∫
Rn\Rn∞

|f (x)|p(x)dx + ess sup
R
n∞

|f (x)| .

For any Lebesgue measurable function p(·) : Rn → (0,∞], define

p− = ess inf{p(x) : x ∈ R
n}, p+ = ess sup{p(x) : x ∈ R

n}
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and

(2.1) p∗ = min(1, p−) .

DEFINITION 2.2. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function and
ω be a Lebesgue measurable function such that 0 < ω(x) < ∞ almost everywhere. The
weighted Lebesgue space with variable exponent Lp(·)ω consists of all Lebesgue measurable
functions f : Rn → C satisfying

‖f ‖
L
p(·)
ω

= ‖fω‖Lp(·) < ∞ .

We call p(·) the exponent function of Lp(·)ω .

For any p(·) : R
n → (0,∞), we can also define the weighted Lebesgue spaces with

variable exponents by the modular

ρp(·),ω =
∫

|f (x)|p(x)ω(x)dx.

Since ρp(·),ωp(·)(f ) = ρp(·)(fω), for brevity, we study the weighted Lebesgue spaces with
variable exponents defined in term of the quasi-norm ‖ · ‖

L
p(·)
ω

.
When p(·) = p, 0 < p < ∞, is a constant function,

(2.2) Lp(·)ω = Lp(ωp) =
{
f ∈ M :

∫
|f (x)|pωp(x)dx < ∞

}
.

For any p(·) : Rn → [1,∞), the conjugate function p′(·) is defined by 1
p(x)

+ 1
p′(x) = 1.

Notice thatLp(·)ω , 1 ≤ p(x) ≤ ∞, is not necessarily a Banach function space with respect
to the Lebesgue measure. Particularly, when p(·) = p, 1 < p < ∞, for any unbounded
Lebesgue measurable E with |E| < ∞, ‖χE‖

L
p(·)
ω

= ω(E)1/p is not necessarily finite.
On the other hand, several crucial properties with respect to the Lebesgue measure are

still valid for Lp(·)ω .
The following is the Hölder inequality for the pair Lp(·)ω and Lp

′(·)
ω−1 .

LEMMA 2.1. Let p(·) : Rn → [1,∞) be a Lebesgue measurable function and ω be a
Lebesgue measurable function such that 0 < ω(x) < ∞ almost everywhere. We have∫

Rn

|f (x)g(x)|dx ≤ 2‖f ‖
L
p(·)
ω

‖g‖
L
p′(·)
ω−1

.

The proof of the above lemma follows from [15, Lemma 3.2.20].
Next, we have the norm conjugate formula for Lp(·)ω .

PROPOSITION 2.2. Let p(·) : Rn → [1,∞) be a Lebesgue measurable function and
ω be a locally integrable function such that 0 < ω(x) < ∞ almost everywhere. We have

‖f ‖
L
p(·)
ω

≈ sup

{∫
Rn

|f (x)g(x)|dx : g ∈ Lp′(·)
ω−1 , ‖g‖

L
p′(·)
ω−1

≤ 1

}
.
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The proof of the preceding proposition follows from [15, Corollary 3.2.14].
Next, we show that ‖ · ‖

L
p(·)
ω

is an absolutely continuous quasi-norm. For the definition
of absolutely continuous quasi-norm, the reader may consult [4, Chapter 1, Proposition 3.2]
or [26, Definition 2.4].

LEMMA 2.3. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with 0 <
p− ≤ p+ < ∞ and ω ∈ Wp(·). Let {fj }j∈N be Lebesgue measurable functions with fj ↓ 0.

If f1 ∈ Lp(·)ω , then ‖fj ‖Lp(·)ω
↓ 0.

PROOF. We have {fj }j∈N ⊂ L
p(·)
ω and ωfj ↓ 0. As Lp(·) possesses absolutely continu-

ous quasi-norm, ‖ · ‖Lp(·) is absolutely continuous. Thus, ‖fj‖Lp(·)ω
= ‖ωfj‖Lp(·) ↓ 0. �

The convergence of the atomic decompositions ofHp(·)
ω in the topology ofHp(·)

ω is guar-
anteed by the above lemma.

We now introduce weights that we use to define weighted Hardy spaces with variable
exponents.

DEFINITION 2.3. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with
0 < p− ≤ p+ < ∞. Let Wp(·) consist of those Lebesgue measurable function ω satisfying;

(1) ‖χB‖
L
p(·)/p∗
ωp∗

< ∞ and ‖χB‖
L
(p(·)/p∗)′
ω−p∗

< ∞, ∀B ∈ B,

(2) there exist κ > 1 and s > 1 such that the Hardy-Littlewood maximal operator is

bounded on L(sp(·))
′/κ

ω−κ/s .

Notice that Lsp(·)
ω1/s is the s-convexification of Lp(·)ω .

It is necessary to introduce s since the Hardy-Littlewood operator is not bounded on
those Lebesgue spaces with variable exponent Lp(·)ω with p− ≤ 1.

The introduction of κ is inspired by the left-openness property from the Muckenhoupt
class and the class A defined and studied in [15, Chapter 5]. For the left-openness of the class
A, the reader may consult [15, Theorem 5.4.15].

In fact, the κ is also used to determine the size condition satisfied by the atoms for the
atomic decompositions of the weighted Hardy spaces with variable exponents.

We introduce the following indices so that the intrinsic structure of the atomic decom-
positions of weighted Hardy spaces with variable exponents can be precisely stated. For any
ω ∈ Wp(·), write

sω = inf{s ≥ 1 : M is bounded on L(sp(·))
′

ω−1/s } and(2.3)

Sω = {s : s ≥ 1, M is bounded on L(sp(·))
′/κ

ω−κ/s for some κ > 1} .(2.4)

By using Jensen’s inequality, we find that for any s ∈ Sω, we have s ≥ sω.
For any fixed s ∈ Sω, define

κsω = sup{κ > 1 : M is bounded on L(sp(·))
′/κ

ω−κ/s } .
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The index κsω is used to measure the left-openness of the boundedness of M on the family

{L(sp(·))′/κ
ω−κ/s }κ>1.

The indices sω and κsω are defined for presenting the atomic decompositions of Hp(·)
ω .

They are also related to the intrinsic structure of the atomic decompositions. The index sω is
related to the vanishing moment condition and the index κsω is related to the size condition.

When p(·) = p, 0 < p < ∞, is a constant function and ω ≡ 1, we have sω = 1/p and
κ

1/p
ω = ∞.

Furthermore, by using Jensen’s inequality, for any 1 < r < ∞ we have

(2.5) (Mf )r ≤ M(|f |r ) .
Therefore, when ω fulfills Definition 2.3 (2), the Hardy-Littlewood operator is also bounded

on L(sp(·))
′

ω−1/s .

Since for any s ∈ Sω, s ≥ sω ≥ 1
p∗ and Lp(·)/p∗

ωp∗ is a Banach lattice, Lemma 2.1 and
the Hölder inequality for Banach lattice [37, Volume II, Proposition 1.d.2] yield that for any
B ∈ B and f ∈ Lsp(·)

ω1/s

∫
χB(x)|f (x)|dx ≤ ‖χB‖

L
(p(·)/p∗)′
ω−p∗

‖χBf ‖
L
p(·)/p∗
ωp∗

≤ ‖χB‖
L
(p(·)/p∗)′
ω−p∗

‖|f |sp∗‖
1
sp∗
L
p(·)/p∗
ωp∗

‖χB‖1− 1
sp∗

L
p(·)/p∗
ωp∗

= ‖χB‖
L
(p(·)/p∗)′
ω−p∗

‖f ‖
L
sp(·)
ω1/s

‖χB‖1− 1
sp∗

L
p(·)/p∗
ωp∗

.(2.6)

In view of the definition of L(sp(·))
′

ω−1/s , χB ∈ L(sp(·))′
ω−1/s for any B ∈ B.

Thus, when ω satisfies Definition 2.3 (1), we have

(2.7) ‖χB‖
L
(sp(·))′/κ
ω−κ/s

= ‖χB‖κ
L
(sp(·))′
ω−1/s

= ‖χB‖
L
(sp(·))′
ω−1/s

< ∞ , ∀B ∈ B .

That is, Definition 2.3 (1) guarantees that L(sp(·))
′/κ

ω−κ/s is non-trivial and it does make sense to

assume the boundedness of the Hardy-Littlewood maximal operator on L(sp(·))
′/κ

ω−κ/s .
When p(·) = p, 1 < p < ∞, is a constant function, Definition 2.3 (1) is equivalent to

the assumption that ωp and ω−p′
are locally integrable functions.

When p(·) = p, 0 < p ≤ 1, is a constant function, Definition 2.3 (1) is equivalent to the
assumption that ω is locally integrable and ω−1 is locally bounded.

Furthermore, for Definition 2.3 (2), we have the following result:

PROPOSITION 2.4. Let 0 < p < ∞. If p(·) = p, then a Lebesgue measurable
function ω : Rn → (0,∞) satisfies Definition 2.3 (2) if and only if ωp ∈ A∞.

PROOF. Let ωp ∈ A∞. Then, for some large s, we have ωp ∈ Asp and sp > 1. In view

of [23, Proposition 9.1.5 (4)], ω− p
sp−1 ∈ A(sp)′ .
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As

− p

sp − 1
= −1

s

sp

sp − 1
= −1

s
(sp)′ ,

ω− 1
s (sp)

′ ∈ A(sp)′ . By using the left-openness property of A(sp)′ [23, Corollary 9.2.6]. There

is a κ > 1 such that ω− 1
s (sp)

′ ∈ A(sp)′/κ . That is, M is bounded on L(sp)
′/κ

ω−κ/s .

Next, let M is bounded on L(sp)
′/κ

ω−κ/s for some κ, s > 1. The Jensen inequality assures that

M is bounded on L(sp(·))
′

ω−1/s . That is, ω− 1
s
(sp)′ ∈ A(sp)′.

Thus, by [23, Proposition 9.1.5 (4)] again, we find that

ω
(− 1

s (sp)
′)(− 1

(sp)′−1
) ∈ Asp .

Since (
− 1

s
(sp)′

)(
− 1

(sp)′ − 1

)
=

(
− p

sp − 1

)
(−(sp − 1)) = p ,

we have ωp ∈ Asp ⊂ A∞. �

The above proposition and (2.2) show that when p(·) = p, 0 < p < ∞, Lp(·)ω becomes
the weighted Lebesgue spaces with weight belonging to A∞.

For a general Lebesgue measurable function p(·) : Rn → (0,∞), we have the following
result which guarantees ω satisfies the first condition in Definition 2.3 (1).

LEMMA 2.5. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with 0 <
p− ≤ p+ < ∞. If ωp+ is locally integrable, then for any B ∈ B, ‖χB‖

L
p(·)/p∗
ωp∗

< ∞.

PROOF. Since ωp+ is locally integrable, we have

ρp(·)/p∗(χBω
p∗) =

∫
B

(ω(x))p(x)dx ≤ |{x ∈ B : ω(x) ≤ 1}| +
∫
B

(ω(x))p+dx

≤ |B| +
∫
B

(ω(x))p+dx < ∞ .

As p(·)/p∗ : Rn → [1,∞), [10, Proposition 2.12] ensures that χBωp∗ ∈ Lp(·)/p∗ . That is,
‖χB‖

L
p(·)/p∗
ωp∗

< ∞. �

Whenever p(·) is log-Hölder continuous and satisfies log-Hölder decay condition [10,
Definition 2.2] and [15, Definitions 4.1.1 and 4.1.4], a necessary and sufficient condition for
the boundedness of M on Lp(·)ω is given in [8, Definition 1.4 and Theroem 1.5].

Since our results for the Hardy spaces with variable exponent are valid for exponent
function p(·) which is not necessarily log-Hölder continuous nor satisfying log-Hölder decay
condition, we refer the reader to [8] for the boundedness of M on Lp(·)ω with p(·) being log-
Hölder continuous and satisfying log-Hölder decay condition.

Furthermore, the main results obtained in this paper also generalize the atomic decom-
positions given in [38] since the atomic decompositions obtained in [38] apply to the Hardy
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spaces with variable exponent with the exponent function being log-Hölder continuous and
satisfying the log-Hölder decay condition.

At the end of this section, we use the Littlewood-Paley function to define weighted Hardy
spaces with variable exponents.

Let S(Rn) and S ′(Rn) denote the classes of tempered functions and Schwartz distribu-
tions, respectively. Let P denote the class of polynomials in R

n.

DEFINITION 2.4. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with
0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). The weighted Hardy space with variable exponentHp(·)

ω

consists of those f ∈ S ′(Rn)/P such that

‖f ‖
H
p(·)
ω

=
∥∥∥∥
( ∑
ν∈Z

|ϕν ∗ f |2
)1/2∥∥∥∥

L
p(·)
ω

< ∞

where ϕν(x) = 2νnϕ(2νx), ν ∈ Z and ϕ ∈ S(Rn) satisfies

(2.8) supp ϕ̂ ⊆ {x ∈ R
n : 1/2 ≤ |x| ≤ 2} and |ϕ̂(ξ)| ≥ C, 3/5 ≤ |x| ≤ 5/3

for some C > 0.

Hardy spaces with variable exponents can also be defined via the maximal functions. In
Section 6 of this paper, as an application of the atomic decompositions ofHp(·)

ω , we establish
the equivalence of these two characterizations of Hp(·)

ω .

3. Vector-valued maximal inequalities. We apply the extrapolation theory to obtain
the Fefferman-Stein vector-valued maximal inequalities on Lp(·)ω in this section.

THEOREM 3.1. Let 1 < q < ∞ and p(·) : Rn → (0,∞) be a Lebesgue measurable
function with 0 < p− ≤ p+ < ∞. If ω ∈ Wp(·), then for any r > sω, we have

(3.1)

∥∥∥∥
(∑
i∈N
(Mfi)

q

)1/q∥∥∥∥
L
rp(·)
ω1/r

≤ C

∥∥∥∥
(∑
i∈N

|fi |q
)1/q∥∥∥∥

L
rp(·)
ω1/r

for some C > 0.

PROOF. According to the definition of sω, we have s > sω satisfying s < r such thatM

is bounded on L(sp(·))
′

ω−1/s .
We follow the idea from the extrapolation theory, see [7]. For any non-negative function

h, define

Rh(x) =
∞∑
k=0

Mkh(x)

2k‖M‖k
L
(sp(·))′
ω−1/s

where ‖M‖
L
(sp(·))′
ω−1/s

is the operator norm of the Hardy-Littlewood maximal operator on L(sp(·))
′

ω−1/s .

We find that

h(x) ≤ Rh(x) ,(3.2)
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‖Rh‖
L
(sp(·))′
ω−1/s

≤ 2‖h‖
L
(sp(·))′
ω−1/s

,(3.3)

[Rh]A1 ≤ 2‖M‖
L
(sp(·))′
ω−1/s

.(3.4)

Write

F =
{(( K∑

i=0

(Mfi)
q

)1/q

,

( K∑
i=0

|fi |q
)1/q)

: K ∈ N, {fi}Ki=0 ⊂ L∞
comp

}

where L∞
comp denotes the set of bounded functions with compact support.

Let θ = r/s > 1. According to the weighted norm inequalities for Lebesgue spaces
obtained in [3], for any (F,G) ∈ F and w ∈ A1, we have

(3.5)
∫
F(x)θw(x)dx ≤ C

∫
G(x)θw(x)dx .

In view of Proposition 2.2, we find that

‖F‖θ
L
rp(·)
ω1/r

= ‖Fθ‖
L
sp(·)
ω1/s

≤ C sup

{∫
Rn

|F(x)θg(x)|dx : g ∈ L(sp(·))′
ω−1/s , ‖g‖

L
(sp(·))′
ω−1/s

≤ 1

}
(3.6)

for some C > 0.
Since F is non-negative, we are allowed to taking over those non-negative g only. For

any fixed non-negative g ∈ L(sp(·))′
ω−1/s with ‖g‖

L
(sp(·))′
ω−1/s

≤ 1, (3.2) assures that

(3.7)
∫
F(x)θg(x)dx ≤

∫
F(x)θRg(x)dx

for some C > 0.
Property (3.4) assures that Rg ∈ A1. Therefore, (3.3), (3.5) and Lemma 2.1 give∫

F(x)θRg(x)dx ≤ C

∫
G(x)θRg(x)dx ≤ C‖Gθ‖

L
sp(·)
ω1/s

‖Rg‖
L
(sp(·))′
ω−1/s

≤ C‖G‖θ
L
rp(·)
ω1/r

‖g‖
L
(sp(·))′
ω−1/s

≤ C‖G‖θ
L
rp(·)
ω1/r

(3.8)

for some C > 0.
Thus, (3.6), (3.7) and (3.8) yield (3.1) when {fi}i∈N ∈ L∞

comp . The validity of (3.1)

for all f ∈ L
rp(·)
ω1/r follows from the fact that fN ↑ f and MfN ↑ Mf as N → ∞ where

fN = fχ{x∈Rn:|x|<N,|f (x)|<N}. �

Theorem 3.1 is a key component for establishing the atomic decomposition for Hp(·)
ω .

Moreover, the above result also has its own independent interest. It extends several exist-
ing results on vector-valued maximal inequalities. It covers the vector-valued maximal in-
equalities for weighted Lebesgue spaces in [3]. It also generalizes the vector-valued maximal
inequalities for Lebesgue spaces with variable exponent in [6].
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4. Smooth atomic decompositions. In this section, we establish the smooth atomic
decomposition forHp(·)

ω . In [26], a general approach is given for the study of function spaces
defined via the Littlewood-Paley function. Thus, in this section, we recall the results from
[26] and apply it directly to Hp(·)

ω . Some similar approaches for studying function spaces are
given in [36, 53].

For any j ∈ Z and k = (k1, k2, . . . , kn) ∈ Z
n, Qj,k = {(x1, x2 . . . , xn) ∈ R

n : ki ≤
2j xi ≤ ki + 1, i = 1, 2, . . . , n}. We write |Q| and l(Q) to be the Lebesgue measure ofQ and
the side length of Q, respectively. We denote the set of dyadic cubes {Qj,k : j ∈ Z, k ∈ Z

n}
by Q.

DEFINITION 4.1. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with
0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). The sequence space hp(·)ω is the collection of all
complex-valued sequences s = {sQ}Q∈Q such that

‖s‖
h
p(·)
ω

=
∥∥∥∥
( ∑

Q

(|sQ|χ̃Q)2
)1/2∥∥∥∥

L
p(·)
ω

< ∞ ,

where χ̃Q = |Q|−1/2χQ.

We restate the definition of the φ-ψ transform introduced by Frazier and Jawerth in
[16, 18, 19]. Let ϕ,ψ ∈ S(Rn) satisfy

supp ϕ̂, supp ψ̂ ⊆ {ξ ∈ R
n : 1/2 ≤ |ξ | ≤ 2} ,(4.1)

|ϕ̂(ξ)|, |ψ̂(ξ)| ≥ C if 3/5 ≤ |ξ | ≤ 5/3 for some C > 0 ,(4.2) ∑
ν∈Z

ϕ̂(2−νξ)ψ̂(2−νξ) = 1 if ξ �= 0(4.3)

where ϕ̂ denotes the Fourier transform of ϕ and similarly for ψ̂ .
Define ϕ̃(x) = ϕ(−x). Write ϕν(x) = 2νnϕ(2νx), ψν(x) = 2νnψ(2νx) and

ϕQ(x) = |Q|−1/2ϕ(2νx − k) , ψQ(x) = |Q|−1/2ψ(2νx − k) , ν ∈ Z , k ∈ Z
n

for Q = Qν,k ∈ Q. For any f ∈ S ′(Rn)/P and for any complex-valued sequences s = {sQ},
we define

Sϕ(f ) = {(Sϕf )Q}Q∈Q = {〈f, ϕQ〉}Q∈Q and Tψ(s) =
∑
Q

sQψQ .

We find that Tψ ◦ Sϕ = id in Hp(·)
ω because Hp(·)

ω is a subspace of S ′(Rn)/P [18, Theorem
2.2].

By using the terminologies given in [26, Definition 1.8], Theorem 3.1 guarantees that the
pair (lq , Lp(·)ω ), 1 < q < ∞, is an a-admissible pair when 0 < a < 1

sω
.

THEOREM 4.1. Let p(·) : R
n → (0,∞) be a Lebesgue measurable function with

0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). The weighted Hardy space with variable exponentHp(·)
ω

is well defined. That is, it is independent of the function ϕ in Definition 2.4.
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Moreover, the operators Sϕ and Tψ are bounded operators on Hp(·)
ω and hp(·)ω , respec-

tively. In addition, we have constants C1 > C2 > 0 such that

(4.4) C2‖f ‖
H
p(·)
ω

≤ ‖Sϕ(f )‖hp(·)ω
≤ C1‖f ‖

H
p(·)
ω
, ∀f ∈ Hp(·)

ω .

PROOF. We apply the general approach given in [26, Theorem 3.1]. According to [26,
Definition 1.2], we have to show that

(4.5) (1 + |x|)−L ∈ Lp(·)ω

for some L > 0.
According to [21, Chapter II, Theorem 2.12], for any 1 < p < ∞ and for any Lebesgue

measurable functions φ ≥ 0 and f on R
n, we have

(4.6)
∫
Rn

(MχB(0,1)(x))
pφ(x)dx ≤ Cp

∫
Rn

|χB(0,1)(x)|pM(φ)(x)dx
for some Cp > 0 independent of f and φ.

We have

(4.7)
Crn

(r + |x − y|)n ≤ (MχB(y,r))(x)

for some C > 0 independent of x, y ∈ R
n and r > 0.

Consequently, for any φ ∈ L(sp(·))′
ω−1/s ,∫

Rn

(1 + |x|)−npφ(x)dx ≤Cp
∫
B(0,1)

M(φ)(x)dx

≤C‖χB(0,1)‖Lsp(·)
ω1/s

‖φ‖
L
(sp(·))′
ω−1/s

.(4.8)

Since Definition 2.3 (1) assures that ‖χB‖
L
p(·)
ω

= ‖χB‖s
L
sp(·)
ω1/s

< ∞, ∀B ∈ B, by taking

supreme over all φ ∈ L(sp(·))′
ω−1/s with ‖φ‖

L
(sp(·))′
ω−1/s

≤ 1 on (4.8), we obtain

‖(1 + |x|)−snp‖1/s

L
p(·)
ω

= ‖(1 + |x|)−np‖
L
sp(·)
ω1/s

≤ C‖χB(0,1)‖Lsp(·)
ω1/s

< ∞ .

Therefore, (4.5) is valid with L = snp. Finally, our claimed results follow from Theorem 3.1
and [26, Theorem 3.1]. �

We state the definition of smooth atoms from [19, p.46].

DEFINITION 4.2. For each dyadic cubeQ, AQ is a smoothN-atom forHp(·)
ω , N ∈ N,

if it satisfies ∫
xγAQ(x)dx = 0 for 0 ≤ |γ | ≤ N, γ ∈ N

n ,(4.9)

suppAQ ⊆ 3Q,(4.10)

and for γ ∈ N
n,

(4.11) |∂γAQ(x)| ≤ Cγ |Q|−1/2−|γ |/n.
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In view of [27, Theorem 2.1], we have the smooth atomic decomposition forHp(·)
ω .

THEOREM 4.2 (Smooth Atomic Decomposition). LetN ∈ N, p(·) : Rn → (0,∞) be
a Lebesgue measurable function with 0 < p− ≤ p+ < ∞ andω ∈ Wp(·). For any f ∈ Hp(·)

ω ,

there exist a sequence s = {sQ}Q∈Q ∈ hp(·)ω and a family of smooth N-atoms {AQ}Q∈Q such
that f = ∑

Q∈Q sQAQ and ‖s‖
h
p(·)
ω

≤ C‖f ‖
H
p(·)
ω

for some constant C > 0.

5. Non-smooth atomic decompositions. In this section, we establish the non-smooth
atomic decomposition for weighted Hardy spaces with variable exponent. It consists of a de-
composition theorem and a reconstruction theorem. They extend the atomic decompositions
of the weighted Hardy spaces and the Hardy spaces with variable exponent obtained in [51]
and [38], respectively.

We obtain our non-atomic decomposition ofHp(·)
ω by using the smooth atomic decompo-

sition ofHp(·)
ω given in Theorem 4.2. Theorem 4.2 exhibits a connection between the weighted

Hardy space with variable exponent and the sequence space hp(·)ω . In this section, we first ob-
tain an atomic decomposition for the sequence space hp(·)ω . Then, we rearrange the atomic
decomposition of hp(·)ω and reassemble it into the non-smooth atomic decomposition ofHp(·)

ω .
The reader may refer [18, Section 7] and [29] for using some similar ideas to study the atomic
decompositions for Triebel-Lizorkin spaces and weighted Hardy-Morrey spaces, respectively.

In addition, in this section, the intrinsic structure of the atomic decompositions of Hp(·)
ω

is presented explicitly in the statement of Theorem 5.3.
For any sequence s = {sQ}Q∈Q, write

g(s) =
( ∑
Q∈Q

(|sQ|χ̃Q)2
)1/2

.

We call g(s) the Littlewood-Paley function of s. According to the definition of hp(·)ω , we have
‖s‖

h
p(·)
ω

= ‖g(s)‖
L
p(·)
ω

.

DEFINITION 5.1. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with
0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). A sequence r = {rQ}Q∈Q is an ∞-atom for hp(·)ω if there
exists a dyadic cube P ∈ Q such that rQ = 0 if Q �⊂ P and ‖g(r)‖L∞ ≤ 1

‖χP ‖
L
p(·)
ω

.

We call P the support of r and write supp(r) = P .
Moreover, a family of ∞-atoms indexed by Q, {rJ }J∈Q, is called an ∞-atomic family

for hp(·)ω if supp(rJ ) = J .

The reader is referred to [16, p.403] for the definition of ∞-atom for the classical Hardy
space.

We now establish the atomic decomposition of the sequence space hp(·)ω .

THEOREM 5.1. Let p(·) : R
n → (0,∞) be a Lebesgue measurable function with

0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). For any s ∈ h
p(·)
ω , there exist a family of ∞-atomic
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family for hp(·)ω , {rJ }J∈Q, and a sequence of scalars {tJ }J∈Q such that

s =
∑
J∈Q

tJ rJ , and(5.1)

∥∥∥∥
∑
J∈Q

( |tJ |
‖χJ ‖

L
p(·)
ω

)θ
χJ

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

≤ C‖s‖
h
p(·)
ω
, ∀ 0 < θ < ∞ ,(5.2)

for some C > 0 independent of s.

PROOF. For any P ∈ Q, define

gP (s) =
( ∑
Q∈Q,P⊆Q

(|Q|− 1
2 |sQ|)2

)1/2

.

Whenever P1 ⊆ P2, we have 0 ≤ gP2(s) ≤ gP1(s). We also find that, for any given x ∈ R
n,

gP (s) satisfies

lim
l(P )→∞,x∈P gP (s) = 0 ,(5.3)

lim
l(P )→0,x∈P gP (s) = g(s)(x) .(5.4)

For any k ∈ Z, define Ak = {P ∈ Q : gP (s) > 2k}. Identity (5.4) guarantees that

(5.5) {x ∈ R
n : g(s)(x) > 2k} =

⋃
P∈Ak

P .

According to the proof of [29, (4.4)], we have

(5.6)

( ∑
P∈Q\Ak

(|sP |χ̃P (x))2
) 1

2

≤ 2k , ∀x ∈ R
n .

For any k ∈ Z, let Bk denote the set of maximal dyadic cubes in Ak\Ak+1. As maximal
dyadic cubes exist in Ak , Bk is well defined. According to the proof of [20, Theorem 7.3], for
any J ∈ Bk, the family of sequences βJ = {(βJ )Q}Q∈Q defined by

(βJ )Q =
{
sQ , Q ⊆ J and Q ∈ Ak\Ak+1 ,

0 , otherwise ,

satisfy s = ∑
J∈Q βJ and |g(βJ )| ≤ 2k+1.

Let rJ = 2−k−1‖χJ ‖−1
L
p(·)
ω

βJ and tJ = 2k+1‖χJ ‖
L
p(·)
ω

. As

(5.7) Q =
( ∞⋃
k=−∞

( ⋃
J∈Bk

{Q ∈ Q : Q ⊂ J }
)) ⋃

{Q ∈ Q : sQ = 0}

is a disjoint union, we find that s = ∑
J∈Q tJ rJ and {rJ }J∈Q is an ∞-atomic family for hp(·)ω .
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In view of the disjoint union in (5.7), we find that

∑
J∈Q

( |tJ |
‖χJ ‖

L
p(·)
ω

)θ
χJ ≤

∑
k∈Z

2(k+1)θ
∑
J∈Bk

χJ ≤ C(g(s))θ

for some C > 0. Applying the quasi-norm ‖ · ‖
L
p(·)/θ
ωθ

on both sides of the above inequalities,

we obtain

∥∥∥∥
∑
J∈Q

( |tJ |
‖χJ ‖

L
p(·)
ω

)θ
χJ

∥∥∥∥
L
p(·)/θ
ωθ

≤ C‖(g(s))θ‖
L
p(·)/θ
ωθ

= C‖s‖θ
h
p(·)
ω

.

�

Next, we transfer the result from the atomic decomposition of hp(·)ω to the atomic decom-
position of the weighted Hardy spaces with variable exponent. We begin with the definition
of the non-smooth atoms for Hp(·)

ω .

DEFINITION 5.2. Let 1 < r < ∞, p(·) : Rn → (0,∞) be a Lebesgue measurable
function with 0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). For any N ∈ N, a family of functions
{aQ}Q∈Q is called a (p(·), r,N)-atomic family with respect to ω if

supp aQ ⊆ 3Q, ∀Q ∈ Q ,∫
xγ aQ(x)dx = 0 , ∀γ ∈ N

n with 0 ≤ |γ | ≤ N ,

‖aQ‖Lr ≤ |Q| 1
r

‖χQ‖
L
p(·)
ω

.

We now ready to use the atomic decompositions for the sequence spaces hp(·)ω to establish
the atomic decomposition of weighted Hardy spaces with variable exponentHp(·)

ω .

THEOREM 5.2. Let 1 < q < ∞, p(·) : R
n → (0,∞) be a Lebesgue measurable

function with 0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). For any f ∈ Hp(·)
ω and any positive integer

N , there exist a (p(·), q,N)-atomic family with respect to ω, {aQ}Q∈Q, and a sequence t =
{tQ}Q∈Q such that f = ∑

Q∈Q tQaQ and

∥∥∥∥
∑
J∈Q

( |tJ |
‖χJ‖Lp(·)ω

)θ
χJ

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

≤ C‖f ‖
H
p(·)
ω
, ∀0 < θ < ∞

for some C > 0.

PROOF. Theorem 4.2 assures that, for any f ∈ H
p(·)
ω , there exist a family of smooth

N-atoms {AQ}Q∈Q and a sequence s = {sQ}Q∈Q ∈ h
p(·)
ω such that f = ∑

Q∈Q sQAQ and
‖s‖

h
p(·)
ω

≤ C‖f ‖
H
p(·)
ω

.



WEIGHTED HARDY SPACES WITH VARIABLE EXPONENTS 397

According to Theorem 5.1, we have t = {tJ }J∈Q and an ∞-atomic family for hp(·)ω ,
{rJ }J∈Q, such that s = ∑

J∈Q tJ rJ and

∥∥∥∥
∑
J∈Q

( |tJ |
‖χJ ‖

L
p(·)
ω

)θ
χJ

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

≤ C‖s‖
h
p(·)
ω
, ∀0 < θ < ∞

for some C > 0.
Consequently, we rewrite f as

f =
∑
Q∈Q

sQAQ =
∑
Q∈Q

( ∑
J∈Q

tJ rJ

)
Q

AQ =
∑
J∈Q

tJ aJ

where aJ = ∑
Q⊆J (rJ )QAQ. We have suppaJ ⊆ 3J because suppAQ ⊆ 3Q and Q ⊆ J .

In view of the Littlewood-Paley characterization of Lebesgue spaces Lq , 1 < q < ∞
and the boundedness of the ϕ-ψ transforms on Ḟ 02

q = Lq and ḟ 02
q , respectively [18, Theorem

2.2], we obtain

‖aJ ‖Lq ≤ C‖g(rJ )‖Lq ≤ C
|J | 1

q

‖χJ ‖
L
p(·)
ω

for some C > 0. The vanishing moment conditions for aJ are inherited from the correspond-
ing conditions from {AQ}Q∈Q. Thus, {aJ }J∈Q is a (p(·), q,N)-atomic family with respect to
ω and ∥∥∥∥

∑
J∈Q

( |tJ |
‖χJ ‖

L
p(·)
ω

)θ
χJ

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

≤ C‖f ‖
H
p(·)
ω
.

�

The following is the reconstruction theorem for the atomic decompositions of weighted
Hardy spaces with variable exponents.

THEOREM 5.3. Let p(·) : R
n → (0,∞) be a Lebesgue measurable function with

0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). Suppose that 0 < θ ≤ 1 satisfies 1
θ

∈ Sω.

For any (p(·), q, [nsω−n])-atomic family with respect to ω, {aj }j∈N, with q > θ(κ
1/θ
ω )′,

supp aj ⊂ Qj and sequence of scalars {λj }j∈N satisfying

(5.8)

∥∥∥∥
∑
j∈N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χQj

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

< ∞ ,

the series f = ∑
j∈N λjaj converges in S ′(Rn) and f ∈ Hp(·)

ω with

(5.9) ‖f ‖
H
p(·)
ω

≤ C

∥∥∥∥
∑
j∈N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χQj

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

for some C > 0 independent of f .
Moreover, f = ∑

j∈N λjaj also converges in Hp(·)
ω .
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Theorems 5.2 and 5.3 extend the atomic decompositions for weighted Hardy space [5,
22, 51] to Hp(·)

ω . They also generalize the atomic decompositions for the Hardy spaces with
variable exponents in [38, 48] to Hp(·)

ω .
The intrinsic structure of the atomic decomposition of Hp(·)

ω is clearly presented in the
above theorem. The order of the vanishing moment conditions satisfied by the atoms is [nsω−
n]. It is determined by the boundedness of M on L(sp(·))

′
ω−1/s . The index q for the size condition

satisfied by the atoms is given by q > θ(κ1/θ
ω )′. It is related to κ1/θ

ω and condition (5.8).
When ω ≡ 1 and p(·) = p, 0 < p < 1, is a constant function, we have θ = p, sω = 1/p

and κ1/p
ω = ∞. Therefore, Theorem 5.3 becomes the atomic decomposition of the classical

Hardy spaces.
We need the subsequent supporting results to obtain Theorem 5.3.

LEMMA 5.4. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with 0 <
p− ≤ p+ < ∞ and ω ∈ Wp(·). Let s ∈ Sω and {λk}k∈N be a sequence of scalars. For any
r > (κsω)

′, {bk}k∈N ⊂ Lr with supp bk ⊆ Qk ∈ Q and

(5.10) ‖bk‖Lr ≤ Ak|Qk| 1
r ,

where Ak > 0, ∀k ∈ N, we have

(5.11)

∥∥∥∥
∑
k∈N

λkbk

∥∥∥∥
L
sp(·)
ω1/s

≤ C

∥∥∥∥
∑
k∈N

Ak|λk|χQk
∥∥∥∥
L
sp(·)
ω1/s

for some C > 0 independent of {Ak}k∈N, {bk}k∈N and {λk}k∈N.

PROOF. Fix an s ∈ Sω. For any g ∈ L(sp(·))′
ω−1/s with ‖g‖

L
(sp(·))′
ω−1/s

≤ 1, we find that

∣∣∣∣
∫
Rn

bk(x)g(x)dx

∣∣∣∣ ≤ ‖bk‖Lr‖χQkg‖
Lr

′ ≤ Ak|Qk| 1
r

(∫
Qk

|g(x)|r ′dx
) 1
r′

where r ′ is the conjugate of r . Consequently,

∣∣∣∣
∫
Rn

bk(x)g(x)dx

∣∣∣∣ ≤Ak|Qk|
(

1

|Qk|
∫
Qk

|g(x)|r ′dx
) 1
r′

≤ CAk|Qk | inf
x∈Qk

(M(|g|r ′)(x)) 1
r′

≤ CAk

∫
Qk

(M(|g|r ′)(x)) 1
r′ dx

for some C > 0.
Therefore, Lemma 2.1 gives

∣∣∣∣
∫
Rn

( ∑
k∈N

λkbk(x)

)
g(x)dx

∣∣∣∣
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≤ C
∑
k∈N

Ak|λk|
∫
Qk

(M(|g|r ′)(x)) 1
r′ dx

≤ C

∫
Rn

( ∑
k∈N

Ak|λk |χQk(x)
)
(M(|g|r ′)(x)) 1

r′ dx

≤ C

∥∥∥∥
∑
k∈N

Ak|λk|χQk
∥∥∥∥
L
sp(·)
ω1/s

‖(M(|g|r ′)) 1
r′ ‖

L
(sp(·))′
ω−1/s

≤ C

∥∥∥∥
∑
k∈N

Ak|λk|χQk
∥∥∥∥
L
sp(·)
ω1/s

‖M(|g|r ′)‖1/r ′

L
(sp(·))′/r′
ω−r′/s

.

As r ′ < κsω, the definition of κsω guarantees that there exists r ′ < κ < κsω such that M is

bounded on L(sp(·))
′/κ

ω−κ/s . Thus, (2.5) asserts thatM is bounded on L(sp(·))
′/r ′

ω−r′/s .
Finally, Proposition 2.2 yields (5.11). �

The reader is referred to [30, Proposition 5.8] for a similar result of the above lemma on
Morrey spaces with variable exponents.

PROOF OF THEOREM 5.3. Let ϕ ∈ S(Rn) satisfy the conditions in Definition 2.4. For
any h ∈ S ′(Rn), define the Lebesgue measurable function G(h) by

G(h) =
( ∑
ν∈Z

|(h ∗ ϕν)|2
)1/2

.

Write N = [nsω − n]. According to the proof of [29, Theroem 4.4], we find that for any
(p(·), q,N)-atomic family with respect to ω, {aj }j∈N, with supp aj ⊂ Qj ,

|(aj ∗ ϕν)(x)| ≤ C2(N+n+1)ν |Qj |N+1
n (1 + 2ν |x − xQj |)−L

∫
3Qj

|aj (y)|dy

≤ C2(N+n+1)ν |Qj |N+1
n (1 + 2ν |x − xQj |)−L‖aj‖Lq |Qj |1/q ′

≤ C2(N+n+1)ν |Qj |N+1
n (1 + 2ν |x − xQj |)−L

|Qj |1/q ′ |Qj |1/q
‖χQj ‖Lp(·)ω

=C2(N+n+1)ν |Qj |N+1
n

+1(1 + 2ν |x − xQj |)−L
1

‖χQj ‖Lp(·)ω

for some sufficient large L > 0.
By using the embedding l1 ↪→ l2 and the inequality∑

ν∈Z
2(N+n+1)ν(1 + 2ν |x − xQ|)−L ≤ C|x − xQ|−N−n−1 ,

we find that

G(f ) ≤ C
∑
j∈N

|λj |Xj + C
∑
j∈N

|λj |Yj = X + Y
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for some C > 0 where

Xj (x)= G(aj )(x)χ4Qj (x)

Yj (x)= 1

‖χQj ‖Lp(·)ω

χRn\4Qj (x)

(
1 + |x − xQj |

l(Qj )

)−N−n−1

.

We first consider X. Since θ ≤ 1, by using the θ -inequality, we obtain

Xθ ≤ C
∑
j∈N

|λj |θ |Xj |θ

for some C > 0.
The Littlewood-Paley characterization of Lq gives

‖Xθj ‖Lq/θ ≤ C‖G(aj )‖θLq ≤ C‖aj‖θLq ≤ C
|Qj |

θ
q

‖χQj ‖Lp(·)/θ
ωθ

for some C > 0.
Since q > θ(κsω)

′, Xj satisfies (5.10) with suppXj ⊆ 4Qj and Aj = ‖χQj ‖−θ
L
p(·)
ω

.

Furthermore, since 1
θ

∈ Sω, we are allowed to apply Lemma 5.4 with r = q/θ to obtain

‖X‖
L
p(·)
ω

= ‖Xθ‖1/θ

L
p(·)/θ
ωθ

≤ C

∥∥∥∥
∑
j∈N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χ4Qj

∥∥∥∥
1/θ

L
p(·)/θ
ωθ

.

Since

(5.12) χ4Qj ≤ C(MχQj )
2

for some C > 0 independent of j , we get

‖X‖
L
p(·)
ω

≤ C

∥∥∥∥
∑
j∈N

( |λj |θ/2
‖χQj ‖θ/2

L
p(·)
ω

MχQj

)2∥∥∥∥
1/θ

L
p(·)/θ
ωθ

= C

∥∥∥∥
( ∑
j∈N

( |λj |θ/2
‖χQj ‖θ/2

L
p(·)
ω

MχQj

)2) 1
2
∥∥∥∥

2/θ

L
2p(·)/θ
ωθ/2

for some C > 0.
Moreover, as 1

θ
∈ Sω, sω ≤ 1

θ
< 2

θ
. The Fefferman-Stein vector-valued maximal in-

equality, Theorem 3.1, yields

‖X‖
L
p(·)
ω

≤C
∥∥∥∥
( ∑
j∈N

( |λj |θ/2
‖χQj ‖θ/2

L
p(·)
ω

χQj

)2) 1
2
∥∥∥∥

2/θ

L
2p(·)/θ
ωθ/2

=C

∥∥∥∥
∑
j∈N

|λj |θ
‖χQj ‖θ

L
p(·)
ω

χQj

∥∥∥∥
1/θ

L
p(·)/θ
ωθ

for some C > 0.
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Then, we deal with the function Y .
By using (4.7), we have

Y ≤
∑
j∈N

|λj |
‖χQj ‖Lp(·)ω

χRn\4Qj (x)

(
1 + |x − xQj |

l(Qj )

)−N−n−1

≤C
∑
j∈N

(
M

( |λj |
‖χQj ‖Lp(·)ω

χQj

)1/β

(x)

)β

for any 1 < β < N+n+1
n

.
As N = [nsω − n], we have

(5.13)
N + n+ 1

n
>
nsω − n− 1 + n+ 1

n
= sω .

Therefore, we can select β satisfying

1 ≤ sω < β <
N + n+ 1

n
.

Applying the quasi-norm ‖ · ‖
L
p(·)
ω

on both sides of the above inequality, we find that

‖Y‖
L
p(·)
ω

≤ C

∥∥∥∥
∑
j∈N

(
M

( |λj |
‖χQj ‖Lp(·)ω

χQj

)1/β)β∥∥∥∥
L
p(·)
ω

= C

∥∥∥∥
( ∑
j∈N

(
M

( |λj |
‖χQj ‖Lp(·)ω

χQj

)1/β)β)1/β∥∥∥∥
L
βp(·)
ω1/β

.

As β > sω, the θ -inequality and Theorem 3.1 yield

‖Y‖
L
p(·)
ω

≤ C

∥∥∥∥
( ∑
j∈N

(( |λj |
‖χQj ‖Lp(·)ω

χQj

)1/β)β)1/β∥∥∥∥
L
βp(·)
ω1/β

=C

∥∥∥∥
∑
j∈N

|λj |
‖χQj ‖Lp(·)ω

χQj

∥∥∥∥
L
p(·)
ω

≤ C

∥∥∥∥
∑
j∈N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χQj

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

for some C > 0.
The above estimates for ‖X‖

L
p(·)
ω

and ‖Y‖
L
p(·)
ω

yield

‖f ‖
H
p(·)
ω

= ‖G(f )‖
L
p(·)
ω

≤ C

∥∥∥∥
∑
j∈N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χQj

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

for some C > 0 independent of f ∈ Hp(·)
ω .

Since SN = ∑∞
j=N

( |λj |
‖χQj ‖

L
p(·)
ω

)θ
χQj ↓ 0 as N goes to infinity, Lemma 2.3 assures that

lim
N→∞

∥∥∥∥
∞∑
j=N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χQj

∥∥∥∥
L
p(·)/θ
ωθ

= 0 .
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Write fN = ∑N−1
j=0 λjaj . Then (5.9) yields

lim
N→∞ ‖f − fN‖

H
p(·)
ω

≤ C lim
N→∞

∥∥∥∥
∞∑
j=N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χQj

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

= 0

which asserts the convergence of the atomic decomposition in Hp(·)
ω . �

6. Characterization by maximal functions. In this section, we present an appli-
cation of the atomic decompositions. We show that Hp(·)

ω possesses the maximal function
characterization. That is, the definitions of Hp(·)

ω via the Littlewood-Paley function and the
maximal functions are equivalent.

For classical Hardy spaces, this equivalence can be obtained by studying the boundedness
of singular integral operators on vector-valued Hardy spaces [23, Sections 6.4.4-6.4.6]. This
idea is also used in [38] for Hardy spaces with variable exponents.

However, in this paper, we establish this equivalence for Hp(·)
ω by atomic decomposi-

tions.
We first recall some terminologies and notations from the study of maximal functions.
We say that f ∈ S ′(Rn) is a bounded tempered distribution if ϕ ∗ f ∈ L∞(Rn) for any

ϕ ∈ S(Rn).
For any N ∈ N, define

NN(φ) = sup
x∈Rn

(1 + |x|)N
∑

|γ |≤N+1

|∂γ φ(x)|, ∀φ ∈ S(Rn) .

Write

FN = {φ ∈ S(Rn) : NN(φ) ≤ 1} .
For any t > 0 and Φ ∈ S(Rn), write Φt(x) = t−nΦ(x/t).
For any f ∈ S ′(Rn), the grand maximal function of f is given by

(Mf )(x) = sup
Φ∈FN

sup
t>0

|(Φt ∗ f )(x)| ,

see [50, Chapter III, (2)].
The grand maximal function depends on N , for simplicity, we use the abused notion M.

DEFINITION 6.1. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with
0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). The weighted Hardy space with variable exponent Hp(·)

ω

consists of all bounded f ∈ S ′(Rn) satisfying

‖f ‖Hp(·)
ω

= ‖Mf ‖
L
p(·)
ω
< ∞ .

The main result of this section is the equivalence of the definitions of the weighted Hardy
space with variable exponents by using the Littlewood-Paley characterization and the grand
maximal function characterization.
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THEOREM 6.1. Let p(·) : R
n → (0,∞) be a Lebesgue measurable function with

0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). The quasi-norms ‖ · ‖
H
p(·)
ω

and ‖ · ‖Hp(·)
ω

are mutually
equivalent.

We prove the above result by showing that Hp(·)
ω also possesses atomic decompositions

as what we obtain in the previous section for Hp(·)
ω .

Even though the statement of the atomic decomposition for Hp(·)
ω is precisely the same

as Theorems 5.2 and 5.3, the proofs are different. For the sake of completeness, we present
the atomic decompositions for Hp(·)

ω in the following.

THEOREM 6.2. Let 1 < q < ∞, p(·) : R
n → (0,∞) be a Lebesgue measurable

function with 0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). For any f ∈ Hp(·)
ω and any positive integer

N , there exist a (p(·), q,N)-atomic family with respect to ω, {aQ}Q∈Q, and a sequence t =
{tQ}Q∈Q such that f = ∑

Q∈Q tQaQ and

∥∥∥∥
∑
J∈Q

( |tJ |
‖χJ ‖

L
p(·)
ω

)θ
χJ

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

≤ C‖f ‖Hp(·)
ω
, ∀0 < θ < ∞

for some C > 0.

We also have the reconstruction theorem for the atomic decomposition of Hp(·)
ω .

THEOREM 6.3. Let p(·) : R
n → (0,∞) be a Lebesgue measurable function with

0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). Suppose that 0 < θ ≤ 1 satisfies 1
θ

∈ Sω.

For any (p(·), q, [nsω−n])-atomic family with respect to ω, {aj }j∈N, with q > θ(κ
1/θ
ω )′,

supp aj ⊂ Qj and sequence of scalars {λj }j∈N satisfying

(6.1)

∥∥∥∥
∑
j∈N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χQj

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

< ∞,

the series

f =
∑
j∈N

λj aj

converges in S ′(Rn) and f ∈ Hp(·)
ω with

(6.2) ‖f ‖Hp(·)
ω

≤ C

∥∥∥∥
∑
j∈N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χQj

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

for some C > 0 independent of f .

Theorem 6.1 follows from Theorems 5.2, 5.3, 6.2 and 6.3. Thus, it remains to establish
Theorems 6.2 and 6.3.

We use the ideas from [50, Chapter III, Section 2] and [30, Section 5] to obtain Theorems
6.2 and 6.3.
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We recall a crucial supporting result for the atomic decomposition [50, Chapter III, Sec-
tion 2.1] and [51, Chapter VIII, Lemma 3]. We use the presentation given in [30, Proposition
5.4] and [38, Lemma 4.7] .

For any d ∈ N, let Pd denote the class of polynomials in R
n of degree less than or equal

to d .

PROPOSITION 6.4. Let d ∈ N and σ > 0. For any f ∈ S ′(Rn), there exist g ∈
S ′(Rn), {bk}k∈N ⊂ S ′(Rn), a collection of cubes {Qk}k∈N and a family of smooth functions
with compact supports {ηk} such that

(1) f = g + b where b = ∑
k∈N bk,

(2) the family {Qk}k∈N has bounded intersection property and⋃
k∈N

Qk = {x ∈ R
n : (Mf )(x) > σ } ,

(3) suppηk ⊂ Qk , 0 ≤ ηk ≤ 1 and∑
k∈N

ηk = χ{x∈Rn:(Mf )(x)>σ },

(4) the tempered distribution g satisfies

(Mg)(x)≤ (Mf )(x)χ{x∈Rn:(Mf )(x)≤σ }(x)

+ σ
∑
k∈N

l(Qk)
n+d+1

(l(Qk)+ |x − xk|)n+d+1 ,

where xk denotes the center of the cube Qk ,
(5) the tempered distribution bk is given by bk = (f − ck)ηk where ck ∈ Pd satisfying

〈f − ck, q · ηk〉 = 0, ∀q ∈ Pd ,
and

(6.3) (Mbk)(x) ≤ C(Mf )(x)χQk(x)+ Cσ
l(Qk)

n+d+1

|x − xk|n+d+1χR
n\Qk(x)

for some C > 0.

For brevity, we refer the reader to [50, Chapter III, Section 2.1] for the proof of the above
proposition.

PROPOSITION 6.5. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with
0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). If f ∈ Hp(·)

ω , then the distribution g given in Proposition
6.4 is locally integrable.

PROOF. We first show that Mg ∈ L1
loc. In view of Proposition 6.4 (4) and (4.7), it

suffices to show that F = ∑
k∈N(MχQk)

n+d+1
n ∈ L1

loc.
For any B ∈ B, by [21, Chapter II, Theorem 2.12], we have∫

B

|F(x)|dx ≤
∑
k∈N

∫
Rn

(MχQk(x))
n+d+1
n χB(x)dx
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≤
∫
Rn

( ∑
k∈N

χQk(x)

)
(MχB)(x)dx

because n+d+1
n

> 1.
The definition of sω (2.3), there exists an r such that sω < r and the Hardy-Littlewood

maximal operator M is bounded on L(rp(·))
′

ω−1/r . Therefore, the bounded intersection property
and Lemma 2.1 yield∫

B

|F(x)|dx ≤C
∫
Rn

χ{x∈Rn:(Mf )(x)>σ }(x)(MχB)(x)dx

≤C‖χ{x∈Rn:(Mf )(x)>σ }‖Lrp(·)
ω1/r

‖MχB‖
L
(rp(·))′
ω−1/r

≤C‖χ{x∈Rn:(Mf )(x)>σ }‖1/r

L
p(·)
ω

‖χB‖
L
(rp(·))′
ω−1/r

≤Cσ−1/r‖Mf ‖1/r

L
p(·)
ω

‖χB‖
L
(rp(·))′
ω−1/r

< ∞.(6.4)

That is, F ∈ L1
loc and, hence, Mg ∈ L1

loc. By using the idea from [50, Chapter III, 2.3.3], we
now prove that g ∈ L1

loc.
For any B ∈ B, let AB be the space of finite Borel measures on B. AB is the dual of the

space of continuous functions on B and Mg ∈ L1
loc ⊂ AB . Taking an approximate of identity

Φ, we have |Φi ∗ g| ≤ Mg andΦi ∗ g → g in S ′(Rn). The Banach-Alaoglu theorem assures
that there exists a subsequence of Φi ∗ g converges weakly to a measure dμ ∈ AB .

Since |Φi ∗ g| ≤ Mg , we find that dμ = hdx is absolutely continuous with∫
B |h(x)|dx < ∞ and, hence, g = h. Therefore, g ∈ L1

loc. �

The proof of the following proposition also provides a supporting result for the proof of
Theorem 6.2.

PROPOSITION 6.6. Let p(·) : Rn → (0,∞) be a Lebesgue measurable function with
0 < p− ≤ p+ < ∞ and ω ∈ Wp(·). Then Hp(·)

ω ↪→ S ′(Rn) and Hp(·)
ω ∩ L1

loc is dense in

Hp(·)
ω .

PROOF. According to [50, Chapter III, (21)], for any φ ∈ S(Rn), there exists B0 ∈ B

such that

|〈f, φ〉| ≤ CMf (x) , ∀x ∈ B0

for some C > 0. That is,

|〈f, φ〉|p∗ ≤ C

|B0|
∫
B0

|Mf (x)|p∗dx ≤ C

|B0|‖(Mf )p∗‖
L
p(·)/p∗
ωp∗

‖χB0‖L(p(·)/p∗)′
ω−p∗

.

Definition 2.3 (1) assures that ‖χB0‖L(p(·)/p∗)′
ω−p∗

< ∞. Thus,

|〈f, φ〉| ≤ C

|B0| ‖Mf ‖
L
p(·)
ω

≤ C‖f ‖Hp(·)
ω

for some C > 0 independent of f ∈ Hp(·)
ω . That is, Hp(·)

ω ↪→ S ′(Rn).
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Next, we show that Hp(·)
ω ∩ L1

loc is dense in Hp(·)
ω .

For any f ∈ Hp(·)
ω , by applying Proposition 6.4 with d = dω = [nsω − n] and σ = 2j ,

j ∈ Z, we have f = gj + bj with bj = ∑
k∈N b

j

k . The bjk are supported in the cubes Qjk
where these cubes satisfy

(6.5)
⋃
k∈N

Q
j

k = {x ∈ R
n : (Mf )(x) > 2j } = Oj .

We haveOj ↓ ∅, as j → ∞.
We now show that bj → 0 in Hp(·)

ω when j → ∞. The definition of sω (2.3) and the
inequality (5.13) assure the existence of r such that

sω < r <
[nsω − n] + n+ 1

n
= dω + n+ 1

n

and the Hardy-Littlewood maximal operatorM is bounded on L(rp(·))
′

ω−1/r .

In view of (4.7) and (6.3), for any h ∈ L(rp(·))′
ω−1/r with ‖h‖

L
(rp(·))′
ω−1/r

≤ 1, we have

∫
Rn

|(Mbj )(x)|1/r |h(x)|dx

≤ C

∫
Rn

∑
k∈N

|(Mf )(x)|1/r |h(x)|χ
Q
j
k

(x)dx

+ C2j/r
∫
Rn

|h(x)|
∑
k∈N

( l(Q
j
k )
n+dω+1χ

Rn\Qjk (x)

(l(Q
j
k)+ |x − x

j
k |)n+dω+1

)1/r

dx

≤ C

∫
Oj

|(Mf )(x)|1/r |h(x)|dx + C2j/r
∑
k∈N

∫
Rn

((Mχ
Q
j
k

)(x))(n+dω+1)/rn|h(x)|dx .

By using [21, Chapter II, Theorem 2.12], we obtain
∫
Rn

((Mχ
Q
j
k

)(x))
n+dω+1
rn |h(x)|dx ≤

∫
Rn

(χ
Q
j
k

(x))
n+dω+1

rn (Mh)(x)dx

=
∫
Rn

χ
Q
j
k

(x)(Mh)(x)dx =
∫
Q
j
k

(Mh)(x)dx

as n+dω+1
rn

> 1.

Lemma 2.1, the bounded intersection property satisfied by {Qjk}k∈N and (6.5) assure that
∫
Rn

|(Mbj )(x)|1/r |h(x)|dx ≤C
∫
Oj

|(Mf )(x)|1/r(Mh)(x)dx
≤C‖χOj (Mf )1/r‖

L
rp(·)
ω1/r

‖Mh‖
L
(rp(·))′
ω−1/r

for some C > 0.



WEIGHTED HARDY SPACES WITH VARIABLE EXPONENTS 407

Since M is bounded on L(rp(·))
′

ω−1/r and ‖h‖
L
(rp(·))′
ω−1/r

≤ 1, we obtain

∫
|(Mbj )(x)|1/r |h(x)|dx ≤C‖χOj (Mf )1/r‖

L
rp(·)
ω1/r

‖h‖
L
(rp(·))′
ω−1/r

≤C‖χOj (Mf )1/r‖
L
rp(·)
ω1/r

for some C > 0.
By taking supremum over those h ∈ L(rp(·))′

ω−1/r with ‖h‖
L
(rp(·))′
ω−1/r

≤ 1, Proposition 2.2 yields

‖Mbj‖1/r

L
p(·)
ω

= ‖(Mbj )1/r‖
L
rp(·)
ω1/r

≤ C‖χOj (Mf )1/r‖
L
rp(·)
ω1/r

= C‖χOjMf ‖1/r

L
p(·)
ω

.

Thus, bj ∈ Hp(·)
ω .

Since Lemma 2.3 asserts that ‖ · ‖
L
p(·)
ω

is an absolutely continuous quasi-norm, Mf ∈
L
p(·)
ω and χOjMf ↓ 0 as j → ∞, the above inequality gives

lim
j→∞ ‖bj‖Hp(·)

ω
= lim
j→∞ ‖Mbj‖

L
p(·)
ω

≤ C lim
j→∞ ‖χOjMf ‖

L
p(·)
ω

= 0 .

Consequently, gj = f −bj ∈ Hp(·)
ω . Since gj ∈ Hp(·)

ω ∩L1
loc, we find that limj→∞ ‖f −

gj‖Hp(·)
ω

= limj→∞ ‖bj‖Hp(·)
ω

= 0. Therefore, Hp(·)
ω ∩ L1

loc is dense in Hp(·)
ω . �

We now ready to prove Theorem 6.2.

PROOF OF THEOREM 6.2. It suffices to establish the atomic decomposition for
(p(·),∞, d) atoms with d ≥ dω.

In view of Proposition 6.6, Hp(·)
ω ∩L1

loc is dense in Hp(·)
ω . Therefore, by using the density

argument, it suffices to assume that f ∈ Hp(·)
ω ∩ L1

loc.

For any d ≥ dω and f ∈ Hp(·)
ω ∩ L1

loc, by applying Proposition 6.4 with σ = 2j , j ∈ Z,

we have f = gj +bj with bj = ∑
k∈N b

j

k . The bjk are supported in the cubesQjk where these
cubes satisfy (6.5).

Let {ηjk } be the family of smooth functions given in Proposition 6.4 (3) for the collection

of cube {Qjk}.
In view of (4.7) and (6.4), there exists a xj ∈ B(0, 1) such that

∑
k∈N

l(Q
j
k )
n+d+1

(l(Q
j
k )+ |xj − x

j
k |)n+d+1

≤ C

|B(0, 1)|
∫
B(0,1)

∑
k∈N

(Mχ
Q
j
k

(x))
n+d+1
n dx ≤ C2−j/r

for some C > 0 independent of j ∈ Z. For any ϕ ∈ S(Rn), write ϕj (·) = ϕ(· − xj ), we
have (ϕ ∗ gj )(0) = (ϕj ∗ gj )(xj ). As xj ∈ B(0, 1), NN(Cϕ

j ) ≤ NN(ϕ) for some C > 0
independent of j ∈ Z. Proposition 6.4 (4) ensures that

|ϕ ∗ gj (0)| = |(ϕj ∗ gj )(xj )| ≤ M(gj )(xj ) ≤ C2j (1− 1
r )

for some C > 0. As r > sω ≥ 1, we obtain gj → 0 in S ′(Rn) as j → −∞.
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In addition, Proposition 6.6 ensures that bj → 0 in S ′(Rn) as j → ∞. The convergence
of gj and bj guarantees that f = ∑

j∈Z(gj+1 − gj ) converges in S ′(Rn).
Moreover, Item (5) of Proposition 6.4 gives

gj+1 − gj = bj+1 − bj =
∑
k∈N

((f − c
j+1
k )η

j+1
k − (f − c

j

k )η
j

k )

where cjk ∈ Pd satisfies∫
Rn

(f (x)− c
j

k (x))q(x)η
j

k(x)dx = 0 , ∀q ∈ Pd .

Consequently, we have f = ∑
j,k A

j
k where

A
j

k = (f − c
j

k )η
j

k −
∑
l∈N
(f − c

j+1
l )η

j+1
l η

j

k +
∑
l∈N

ck,lη
j+1
l

and ck,l ∈ Pd fulfills∫
Rn

((f (x)− c
j+1
l (x))η

j
k (x)− ck,l(x))q(x)η

j+1
l (x)dx = 0, ∀q ∈ Pd .

Define

a
j
k = λ−1

j,kA
j
k and λj,k = c2j‖χ

Q
j
k

‖
L
p(·)
ω

where c is a constant determined by the family {Ajk}j,k . Most importantly, the constant c is
independent of j and k, see [50, p.108-109].

The proof for the classical Hardy space [50, Chapter III, Section 2] assures that ajk is a
(p(·),∞, d) atom.

The definition ofQjk and the finite intersection property of the family {Qjk}k∈N yield that
for any 0 < θ < ∞

∑
k∈N

( |λj,k|
‖χ

Q
j
k

‖
L
p(·)
ω

)θ
χ
Q
j
k

(x) ≤ C2θjχOj (x)

for some C > 0.
That is,

∑
j,k

( |λj,k |
‖χ

Q
j
k

‖
L
p(·)
ω

)θ
χ
Q
j
k

(x) ≤ C
∑
j∈Z

2θjχOj (x) ≤ C(Mf )(x)θ .

Applying the quasi-norm ‖ · ‖1/θ

L
p(·)/θ
ωθ

on both sides of the above inequality, we find that

∥∥∥∥
∑
j,k

( |λj,k |
‖χ

Q
j
k

‖
L
p(·)
ω

)θ
χ
Q
j
k

∥∥∥∥
1
θ

L
p(·)/θ
ωθ

≤ C‖f ‖Hp(·)
ω
, 0 < θ < ∞

for some C > 0 independent of f . �
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PROOF OF THEOREM 6.3. Let {aj }j∈N be a family of (p(·), q, [nsω − n]) atoms with
supp aj ⊆ 3Qj . Let {λj }j∈N satisfy (6.1).

Write∥∥∥∥M
( ∑
j∈N

λjaj

)∥∥∥∥
L
p(·)
ω

≤ C

(∥∥∥∥
∑
j∈N

λjχ3QjM(aj )

∥∥∥∥
L
p(·)
ω

+
∥∥∥∥

∑
j∈N

λjχRn\3QjM(aj )

∥∥∥∥
L
p(·)
ω

)
= I + II .

We consider I . As Φ ∈ S(Rn), Φ has a radial majorant that is non-increasing, bounded
and integrable. In view of [50, Chapter II, (16)], we have

sup
t>0

|Φt ∗ aj (x)| ≤ M(aj)(x)

∫
Rn

|Φ(z)|dz ≤ CNN(Φ)M(aj)(x) , ∀x ∈ 3Qj

for some N,C > 0 independent of j ∈ N, Φ ∈ S(Rn), x ∈ R
n and t > 0.

By taking supreme over those Φ ∈ S(Rn) with NN(Φ) ≤ 1, we obtain

(6.6) Maj (x) ≤ CM(aj )(x) , ∀x ∈ 3Qj

for some C > 0. Therefore, the θ -inequality gives

I ≤ C

∥∥∥∥
∑
j∈N

|λj |M(aj )
∥∥∥∥
L
p(·)
ω

≤ C

∥∥∥∥
( ∑
j∈N

(|λj |M(aj))θ
)1/θ∥∥∥∥

L
p(·)
ω

= C

∥∥∥∥
∑
j∈N

(|λj |M(aj))θ
∥∥∥∥

1/θ

L
p(·)/θ
ωθ

.

The boundedness of the Hardy-Littlewood maximal operatorM on Lq yields

‖(M(aj ))θ‖Lq/θ = ‖M(aj )‖θLq ≤ C‖aj‖θLq ≤ C
|Qj |

θ
q

‖χQj ‖Lp(·)/θ
ωθ

for some C > 0.
Since 1

θ
∈ Sω and q > θ(κ

1/θ
ω )′, we apply Lemma 5.4 with bj = (M(aj )χQj )

θ and

Aj = ‖χQj ‖−1
L
p(·)/θ
ωθ

to obtain

I ≤ C

∥∥∥∥
∑
j∈N

(|λj |M(aj))θ
∥∥∥∥

1/θ

L
p(·)/θ
ωθ

≤ C

∥∥∥∥
∑
j∈N

( |λj |
‖χQj ‖Lp(·)ω

)θ
χ3Qj

∥∥∥∥
1/θ

L
p(·)/θ
ωθ

.

Furthermore, (5.12) and Theorem 3.1 yield

I ≤ C

∥∥∥∥
( ∑
j∈N

( |λj |θ/2
‖χQj ‖θ/2

L
p(·)
ω

MχQj

)2) 1
2
∥∥∥∥

2/θ

L
2p(·)/θ
ωθ/2

≤ C

∥∥∥∥
∑
j∈N

|λj |θ
‖χQj ‖θ

L
p(·)
ω

χQj

∥∥∥∥
1/θ

L
p(·)/θ
ωθ

(6.7)

for some C > 0.
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Next, we deal with II . For x ∈ R
n\3Qj , we use the vanishing moment condition

satisfied by aj to obtain

|(aj ∗Φt)(x)| ≤
∫
Rn

∣∣aj (y)
(
Φt(x − y)−

∑
|γ |≤dω

(y − xQj )
γ

γ ! ∂γΦt(x − xQj )

)∣∣dy .

By using the reminder terms of the Taylor expansion of Φt , we have

|(aj ∗Φt)(x)| ≤
∫
Rn

∣∣aj (y)| ∑
|γ |=dω+1

∣∣∣∣
(y − xQj )

γ

γ ! ∂γΦt (x − y + θ(y − xQj ))

∣∣∣∣dy

for some 0 ≤ θ ≤ 1. Since y ∈ Qj , we have |(y − xQj )
γ | ≤ |Qj | dω+1

n for any |γ | = dω + 1.
Moreover, for any y ∈ Qj ,

|x − y + θ(y − xQj )| ≥ |x − xQj | − (1 − θ)|y − xQj | ≥ 1

2
|x − xQj |.

We obtain

|(aj ∗Φt)(x)| ≤ CNN(Φ)t
−(dω+n+1)|Qj | dω+1

n (1 + t−1|x − xQj |)−L
∫

3Qj
|aj (y)|dy

for some sufficient large L > n+ dω + 1 and some C > 0 independent of t > 0 and Φ. The
Hölder inequality and the definition of aj yield

(6.8)
∫

3Qj
|aj (y)|dy ≤ ‖aj‖Lq‖χ3Qj ‖Lq′ ≤ |Qj |

‖χQj ‖Lp(·)ω

where q ′ is the conjugate of q . That is,

|(aj ∗Φt)(x)| ≤ CNN(Φ)t
−(dω+n+1) |Qj |

n+dω+1
n

‖χQj ‖Lp(·)ω

(1 + t−1|x − xQj |)−L .

As L > n+ dω + 1, by taking supremum over t > 0 and Φ ∈ S(Rn) with NN(Φ) ≤ 1
on both sides of the above inequality, we obtain

Maj (x) ≤ C
|Qj | n+dω+1

n

‖χQj ‖Lp(·)ω

1

|x − xQj |n+dω+1 , ∀x ∈ R
n\3Qj .

Furthermore, (4.7) yields

(6.9) Maj (x) ≤ C
(MχQj (x))

n+dω+1
n

‖χQj ‖Lp(·)ω

, ∀x ∈ R
n\3Qj

for some C > 0 independent of the atoms {aj }.
Write α = n+dω+1

n
. Consequently,

II ≤ C

∥∥∥∥
( ∑
j∈N

|λj |
‖χQj ‖Lp(·)ω

(MχQj (x))
α

)1/α∥∥∥∥
α

L
αp(·)
ω1/α

.
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Since

α = n+ dω + 1

n
≥ n+ [nsω − n] + 1

n
> sω ,

the Fefferman-Stein vector-valued maximal inequality asserts that

II ≤ C

∥∥∥∥
( ∑
j∈N

|λj |
‖χQj ‖Lp(·)ω

χQj

)1/α∥∥∥∥
α

L
αp(·)
ω1/α

= C

∥∥∥∥
∑
j∈N

|λj |
‖χQj ‖Lp(·)ω

χQj

∥∥∥∥
L
p(·)
ω

for some C > 0. Then, the θ -inequality gives

(6.10) II ≤ C

∥∥∥∥
∑
j∈N

|λj |θ
‖χQj ‖θ

L
p(·)
ω

χQj

∥∥∥∥
1/θ

L
p(·)/θ
ωθ

.

In conclusion, (6.7) and (6.10) yield (6.2). �

Finally, Theorem 6.1 is a straightforward consequence of Theorems 5.2, 5.3, 6.2 and 6.3.
Hence, the quasi-norms ‖ · ‖

H
p(·)
ω

and ‖ · ‖Hp(·)
ω

are mutually equivalent. When ω ≡ 1, this
result extends the Littlewood-Paley characterization for Hardy spaces with variable exponents
in [38] because the exponent function considered in Theorem 6.1 is not necessarily to be log-
Hölder continuous.

Acknowledgments. The author would like to thank the referee for careful reading of the paper and
valuable suggestions for improving the context and presentation of this paper.
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