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A NOTE ON STABLE SHEAVES ON ENRIQUES SURFACES

KŌTA YOSHIOKA
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Abstract. We shall give a necessary and sufficient condition for the existence of stable
sheaves on Enriques surfaces based on results of Kim, Yoshioka, Hauzer and Nuer. For unn-
odal Enriques surfaces, we also study the relation of virtual Hodge “polynomial” of the moduli
stacks.

1. Introduction. Studies of moduli spaces of stable sheaves on Enriques surfaces
were started by a series of works of Kim [5], [6], [7], [8], [9]. In particular, he studied excep-
tional bundles and the singular locus of the moduli spaces. Recently the type of singularities
are investigated by Yamada [17]. For the topological properties of the moduli spaces, the
author [19] computed the Hodge polynomials of the moduli spaces if the rank is odd. In par-
ticular, the condition for the non-emptiness of the moduli spaces are known. For the even
rank case, by extending our arguments, Hauzer [4] related the virtual Hodge “polynomial” of
the moduli spaces to those for rank 2 or 4. Then Nuer [12] gave the condition for the non-
emptiness by studying the non-emptiness for rank 2 and 4 cases. The main purpose of this
note is to give another proof of his result on the non-emptiness.

THEOREM 1.1. Let X be an unnodal Enriques surface over C. For r, s ∈ Z and
L ∈ NS(X) such that r − s is even, let MH(r, L,− s

2 ) be the stack of semi-stable sheaves
E of rank r > 0, det E = L and χ(E) = r−s

2 , where the polarization is H . Assume that
gcd(r, c1(L), r−s

2 ) = 1, i.e., the Mukai vector is primitive. Then MH(r, L,− s
2 ) �= ∅ for a

general H if and only if

(i) gcd(r, c1(L), s) = 1 and (c1(L)2)+ rs ≥ −1 or
(ii) gcd(r, c1(L), s) = 2 and (c1(L)2)+ rs ≥ 2 or

(iii) gcd(r, c1(L), s) = 2, (c1(L)2)+ rs = 0 and L ≡ r
2KX mod 2.

If r = 0, then by assuming L to be effective, the same claim holds.

Since v is primitive and H is general, semi-stability implies stability.
In order to explain the difference of the proofs, we first mention the results in [19] and

[4]. In [19], we introduced the virtual Hodge “polynomial” e(MH(r, L,− s
2 )) of the moduli

stacks, which is an extension of the virtual Hodge polynomial of an algebraic set and showed
that it is preserved under a special kind of Fourier-Mukai transform. As an application, we
showed that e(MH(r, L,− s

2 )) is the same as e(MH(1, 0, 1
2 − n)) if r is odd, where 2n =
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(c1(L)2)+ rs + 1 [19, Thm. 4.6]. In particular we get the condition (c1(L)2)+ rs ≥ −1 for
the non-emptiness. Hauzer [4] generalized our method and showed that e(MH(r, L,− s

2 ))

is the same as e(MH(r ′, L′,− s ′
2 )) where r ′ = 2, 4 and (c1(L

′)2) + r ′s′ = (c1(L)2) + rs.
For the rank 2 case, the condition of non-emptiness follows by Kim’s results [9]. Thus the
remaining problem is to treat the rank 4 case.

For this problem, Nuer [12, Thm. 5.1] constructed μ-stable vector bundles of rank 4
by Serre construction, and got the condition for the non-emptiness. On the other hand, we
shall reduce the rank 4 case to the rank 2 case by improving Hauzer’s argument (Theorem
2.6). Combining Kim’s results [9], Theorem 1.1 follows. For convenience sake, we also give
another argument for the rank 2 case using a relative Fourier-Mukai transform associated
to an elliptic fibration. Replacing virtual Hodge “polynomial” by numbers of Fq -rational
points, our result also holds for unnodal Enriques surfaces over an algebraically closed field
of characteristic p �= 2. As a corollary of Theorem 1.1, by adding a deformation argument,
we shall treat the nodal case in Section 3.

Finally I would like to remark another approach in Appendix. For our argument, main
tool is a special kind of Fourier-Mukai transforms. For the case of K3 surfaces, Toda [16]
proved a certain counting invariant of the moduli stack of Bridgeland semi-stable objects are
invariant under Fourier-Mukai transforms. Since Gieseker stability corresponds to the large
volume limit of Bridgeland stability, it is possible to get Theorem 1.1 by a more sophisticated
method, i.e., Bridgeland theory of stability conditions [2]. For a more general treatment, we
recommend a reference [13].

2. Proof of Theorem 1.1.
2.1. Notation and some tools. We prepare several notation and results which will be

used.
The Mukai vector v(x) of x ∈ K(X) is defined as an element of H ∗(X,Q):

v(x) := ch(x)
√

tdX

= rk(x)+ c1(x)+
(

rk(x)

2
�X + ch2(x)

)
∈ H ∗(X,Q) ,

(2.1)

where �X is the fundamental class of X. We also introduce Mukai’s pairing on H ∗(X,Q) by
〈x, y〉 := − ∫

X
x∨ ∧ y. Then we have an isomorphism of lattices:

(2.2) (v(K(X)), 〈 , 〉) ∼=
(

1 0
0 −1

)
⊕

(
0 1
1 0

)
⊕ E8(−1) .

DEFINITION 2.1. We call an element of v(K(X)) by the Mukai vector. A Mukai vec-
tor v is primitive, if v is primitive as an element of v(K(X)).

We denote the torsion free quotient of NS(X) by NSf(X), that is, NSf(X)=NS(X)/ZKX .

LEMMA 2.2. Let v = (r, c1,− s
2 ) (r, s ∈ Z, 2 | r− s, c1 ∈ NSf(X)) be a Mukai vector.

(1) v is primitive if and only if gcd(r, c1,
r−s

2 ) = 1.
(2) Assume that v is primitive. We set � := gcd(r, c1, s). Then � = 1, 2.
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(a) If � = 1, then gcd(r, c1, 2) = 1.
(b) If � = 2, then 2 | r , 2 | c1, 2 | s and r + s ≡ 2 mod 4.

PROOF. (1) For E = rOX + F ∈ K(X) with rk F = 0, v(E) = (r, 0, r
2 ) + (0,D, t),

where D ∈ NSf(X) and t ∈ Z. Then v(E) is primitive if and only if gcd(r,D, t) = 1. If
v = v(E), then c1 = D and t + r

2 = − s
2 . Hence gcd(r, c1,

r−s
2 ) = gcd(r,D, t), which shows

the claim.
(2) It is [4, Lem. 2.5]. For convenience sake, we give a proof. Since s = r + 2 s−r

2 , � =
1, 2. If � = 1, then gcd(r, c1, 2) = 1. If � = 2, then 2 | r , 2 | c1. Since gcd(r, c1,

s−r
2 ) = 1,

r + s ≡ 2 mod 4. �

For a variety Y over C, the cohomology with compact support H ∗c (Y,Q) has a natural
mixed Hodge structure. Let ep,q(Y ) :=∑

k(−1)khp,q(Hk
c (Y )) be the virtual Hodge number

and e(Y ) :=∑
p,q ep,q(Y )xpyq the virtual Hodge polynomial of Y .

For α ∈ NS(X)Q, a torsion free sheaf E is α-twisted semi-stable with respect to H , if

(2.3)
χ(F(−α + nH))

rk F
≤ χ(E(−α + nH))

rk E
(n� 0)

for all subsheaf F of E [10]. Mα
H (v) denotes the moduli stack of α-twisted semi-stable

sheaves E with v(E) = v, where H is the polarization. (H, α) is general with respect to v, if
equality in (2.3) implies

v(F )

rk F
= v(E)

rk E
.

In particular, if v is primitive, then Mα
H (v) consists of α-twisted stable objects for a general

pair (H, α). If α = 0, then we write MH(v). Then Mα
H (v) is described as a quotient stack

[Qss/GL(N)], where Qss is a suitable open subscheme of QuotO⊕N
X /X

. We define the virtual

Hodge “polynomial” of Mα
H (v) by

(2.4) e(Mα
H(v)) = e(Qss)/e(GL(N)) ∈ Q(x, y) .

It is easy to see that e(Qss)/e(GL(N)) does not depend on the choice of Qss . The following
was essentially proved in [18, Sect. 3.2] (see also [20, Sect. 2.2]).

PROPOSITION 2.3. Let X be a surface such that KX is numerically trivial. Let (H, α)

be a pair of ample divisor H and a Q-divisor α. Then e(Mα
H (v)) does not depend on the

choice of H and α, if (H, α) is general with respect to v.

By using a special kind of Fourier-Mukai transform called (−1)-reflection and using
Proposition 2.3, we get the following result.

PROPOSITION 2.4 ([19, Prop. 4.5]). Let X be an unnodal Enriques surface. Assume
that r, s > 0. Then

(1)

e

(
Mα

H

(
r, c1,− s

2

))
= e

(
Mα

H

(
s,−c1,− r

2

))
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for a general (H, α), if (c2
1) < 0, i.e., 〈v2〉 < rs, where v = (r, c1,− s

2 ). In particu-
lar, if r > 〈v2〉, then we get our claim.

(2) If we specify the first Chern class as an element of Pic(X) ∼= NS(X), then we also
have

e

(
Mα

H

(
r, L+ r

2
KX,− s

2

))
= e

(
Mα

H

(
s,−

(
L+ s

2
KX

)
,− r

2

))

for a general (H, α), if (c1(L)2) < 0, i.e., 〈v2〉 < rs, where v = (r, c1(L),− s
2 ).

REMARK 2.5. (1) For the proof of Proposition 2.4 (2), we use the description of the
(−1)-reflection as a Fourier-Mukai transform (see Appendix). Then the first Chern
class L+ r

2KX is replaced by −[(L+ r
2KX)+ 〈v, v(KX)〉KX] = −(L+ s

2KX).
(2) The same claim also holds for nodal case (see Appendix).

2.2. Reduction to the rank 2 case. From Subsection 2.2 to Subsection 2.5, we as-
sume that X is an unnodal Enriques surface and r is even (and hence s is also even). We also
assume that α = 0, that is, we consider the moduli stack of ordinary Gieseker semi-stable
sheaves MH (v). We shall prove the following result in this subsection.

THEOREM 2.6. Let v = (r, c1,− s
2 ) be a primitive Mukai vector such that r > 0 is

even.

(1) If gcd(r, c1, s) = 1, then e(MH(r, c1,− s
2 )) = e(MH(2, ξ,− s ′

2 )) for a general H ,
where ξ is a primitive element of NSf(X) and (ξ2)+ 2s′ = (c2

1)+ rs.

(2) If gcd(r, c1, s) = 2, then e(MH(r, c1,− s
2 )) = e(MH(2, 0,− s ′

2 )) for a general H ,
where 2s′ = (c2

1)+ rs.

For the proof of this result, we shall slightly improve Hauzer’s argument. Let Zσ + Zf

be a hyperbolic lattice in NS(X):

(σ 2) = (f 2) = 1, (σ, f ) = 1 .

The main difference of [19] and [4] is the case MH(r, c1,− s
2 ) such that r is even and c1 =

r
2bf + r

2b′σ + ξ , b, b′ = 0, 1, ξ ∈ E8(−1). In order to treat this case, we shall modify the
argument in [4]. For a primitive Mukai vector (r, r

2bf + ξ,− s
2 ) (b = 0,−1, 1, ξ ∈ E8(−1)),

[4, Cor. 2.6] implies that gcd(r, ξ, s) = 1, 2. Indeed 1 = gcd(r, r
2bf +ξ, r−s

2 ) = gcd( r
2 , s

2 , ξ)

implies gcd(r, ξ, s) = 1, 2.

LEMMA 2.7. For a primitive Mukai vector v = (r, r
2bf + ξ,− s

2 ) (b = 0,−1, 1, ξ ∈
E8(−1)), we set l := gcd(r, ξ, s).

(1) e(MH(r, r
2bf + ξ,− s

2 )) = e(MH(r ′, r
2bf + ξ ′,− s ′

2 )) for a general H , where
r ′ ≡ r mod 2l, s′ ≡ s mod 2l, l = gcd(r ′, ξ ′, s′), ξ ′/l ∈ E8(−1) is primitive and
r ′s′ ≥ r ′ > 〈v2〉.

(2) e(MH(r, r
2bf + ξ,− s

2 )) = e(MH(s′′,−( r
2bf + ξ ′′),− r ′

2 )) for a general H , where
r ′ ≡ r mod 2l, s′′ ≡ s mod 2l, l = gcd(s′′, ξ ′′, r ′), ξ ′′/l ∈ E8(−1) is primitive
and r ′s′′ ≥ s′′ > 〈v2〉.
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PROOF. We first note that the choice of H is not important by Proposition 2.3. So
we do not explain about the choice of H . (1) We set p := (r, ξ). For v = (r, r

2bf +
ξ,− s

2 ), we take D ∈ E8(−1) such that veD = (r, r
2bf + ξ1,− s ′

2 ) satisfies ξ1/p is primi-
tive and s′ > 〈v2〉. Since s′ = s − 2(ξ,D) − r(D2), s′ ≡ s mod 2l. By Proposition 2.4,
e(MH(v)) = e(MH(s′,−( r

2bf + ξ1),− r
2 )). Since l = (s′, p), we take D1 ∈ E8(−1)

such that (s′,−( r
2bf + ξ1),− r

2 )eD1 = (s′,−( r
2bf + ξ ′),− r ′

2 ) satisfies ξ ′/l is primitive and
r ′ > 〈v2〉. We also have r ′ = r + 2(ξ1,D1) − s′(D2

1) ≡ r mod 2l. Applying Proposition
2.4, we have

e

(
MH

(
s′,−

( r

2
bf + ξ1

)
,− r

2

))
= e

(
MH

(
r ′, r

2
bf + ξ ′,− s′

2

))
.

(2) For (r ′, r
2bf + ξ ′,− s ′

2 ) in (1), we take D2 ∈ E8(−1) such that (r ′, r
2bf + ξ ′′,− s ′′

2 ) =
(r ′, r

2bf + ξ ′,− s ′
2 )eD2 satisfies ξ ′′/l ∈ E8(−1) is primitive, s′′ > 〈v2〉. Then we have

e

(
MH

(
r ′, r

2
bf + ξ ′,− s′

2

))
= e

(
MH

(
s′′,−

(
r

2
bf + ξ ′′

)
,− r ′

2

))

by Proposition 2.4. �

LEMMA 2.8. For a primitive Mukai vector v = (r, r
2bf + ξ,− s

2 ) (b = 0,−1, 1, ξ ∈
E8(−1)), there exist some zeta and t such that

e

(
MH

(
r,

r

2
bf + ξ,− s

2

))
= e

(
MH

(
2, ζ,− t

2

))

for a general H .

PROOF. (1) We first assume that r ≡ 0 mod 4 and s ≡ 2 mod 4. By Lemma 2.7, we
have

e

(
MH

(
r,

r

2
bf + ξ,− s

2

))
= e

(
MH

(
r ′, r

2
bf + ξ ′,− s′

2

))

for a general H , where r ′ ≡ 0 mod 2l, s′ ≡ 2 mod 2l, ξ ′/l ∈ E8(−1) is primitive and

r ′ > 〈v2〉. For η ∈ E8(−1), we set D := σ − (η2)
2 f + η. Then (D2) = 0. Since r ≡ 0

mod 2l, we can choose η such that

(2.5) s′ − rb − 2 = 2(ξ ′, η) .

Then ( r
2bf + ξ ′,D) = r

2b + (ξ ′, η) = s ′
2 − 1 and

(
r ′, r

2
bf + ξ ′,− s′

2

)
eD =

⎛

⎜
⎝r ′, r

2
bf + ξ ′ + r ′D,−

s′ − 2
( r

2
bf + ξ ′,D

)

2

⎞

⎟
⎠

=
(

r ′, r

2
bf + ξ ′ + r ′D,−1

)
.

(2.6)
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Hence

e

(
MH

(
r ′,

r

2
bf + ξ ′,− s′

2

))
= e

(
MH

(
2, ζ,− r ′

2

))

for a general H , where ζ = −( r
2bf + ξ ′ + r ′D).

(2) We next assume that r ≡ 2 mod 4. If b = 0 and l = 2, then by using Lemma 2.7
(2), we have

e

(
MH

(
r, ξ,− s

2

))
= e

(
MH

(
s′′,−ξ ′′,− r ′

2

))

for a general H . Since r ′ ≡ 2 mod 2l, it is reduced to the case (1).
Assume that b = ±1 or l = 1. By Lemma 2.7 (1), we have

e

(
MH

(
r,

r

2
bf + ξ,− s

2

))
= e

(
MH

(
r ′, r

2
bf + ξ ′,− s′

2

))

for a general H , where r ′ ≡ 2 mod 2l, ξ ′/l is primitive and r ′ > 〈v2〉. Since ξ ′/l is primitive

and r
2 is odd, we take η ∈ E8(−1) such that r

2b + (ξ ′, η) = 1. We set D := σ − (η2)
2 f + η.

Then (D, r
2bf + ξ ′) = r

2b + (ξ ′, η) = 1. Hence
(

r ′, r

2
bf + ξ ′,− s′

2

)
e

(
s′
2 −1

)
D =

(
r ′, r

2
bf + ξ ′ + r ′

(
s′

2
− 1

)
D,−1

)
.

Applying Proposition 2.4, we get

e

(
MH

(
r ′, r

2
bf + ξ ′,− s′

2

))
= e

(
MH

(
2, ζ,− r ′

2

))

for a general H , where ζ = −( r
2bf + ξ ′ + r ′( s ′

2 − 1)D).
(3) Finally we assume that r ≡ 0 mod 4 and s ≡ 0 mod 4. If l = 2, then 2 | ( r

2bf +ξ).
By Lemma 2.2 (2), v is not primitive. Hence l = 1. By using Lemma 2.7 (1) again, we have

e

(
MH

(
r,

r

2
bf + ξ,− s

2

))
= e

(
MH

(
r ′,

r

2
bf + ξ ′,− s′

2

))

for a general H , where ξ ′ is primitive and r ′ > 〈v2〉. Since we can take η ∈ E8(−1) with
r
2b + (ξ ′, η) = 1, as in the case (2), we get the claim. �

We shall next treat the general case. We use induction on r . We set c1 := d1σ +d2f +ξ ,
ξ ∈ E8(−1). Replacing v by v exp(kσ ), we may assume that − r

2 < d1 ≤ r
2 . We first assume

that d1 �= 0, r
2 . We note that (c1, f ) = d1. Replacing v by v exp(η), η ∈ E8(−1), we may

assume that s > 〈v2〉. Then by Proposition 2.4, e(MH(v)) = e(MH(s,−c1,− r
2 )) for a

general H . We take an integer k such that 0 < r + 2d1k ≤ 2|d1| < r . Then v exp(kf ) =
(s, (−c1 + skf ),− r ′

2 ), where r ′ = r + 2d1k. Since s > 〈v2〉, Proposition 2.4, implies that

e(MH(s, (−c1 + skf ),− r ′
2 )) = e(MH(r ′, (c1 − skf ),− s

2 )) for a general H . By induction
hypothesis, we get our claim.
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If d1 = 0, r
2 , then we may assume that− r

2 < d2 ≤ r
2 . If d2 �= 0, r

2 , then we can apply the
same argument and get our claim. If (d1, d2) = (0, 0), ( r

2 , 0), (0, r
2 ), then the claim follows

from Lemma 2.8.
Assume that (d1, d2) = ( r

2 , r
2 ). We may assume that ξ = kξ ′, ξ ′ is primitive and 0 ≤

k ≤ r
2 .

For η ∈ E8(−1), we set σ ′ := σ − (η2)
2 f + η. Then σ ′ and f spans a hyperbolic lattice

and
(

r

2
(σ + f )+ ξ, f

)
= r

2
(

r

2
(σ + f )+ ξ, σ ′

)
= r

2

(
1− (η2)

2

)
+ (ξ, η).

(2.7)

Replacing η by −η if necessary, we can take η such that

(2.8) (ξ ′, η) =
{
−1 , 2 | (η2)/2

1 , 2 � (η2)/2 .

(2.9)
r

2

(
1− (η2)

2

)
+ (ξ, η) ≡

{
r
2 − k mod r 2 | (η2)/2

k mod r 2 � (η2)/2 .

If k �= r
2 , 0, then we can reduce to the case where |d1| < r

2 . If k = 0, then choosing η

with (η2) = −2, we can reduced to the case d1 = 0. If k = r
2 , then we choose η satisfying

((ξ ′ − η)2) ≡ (ξ ′2)+ 2 mod 4. Then

(2.10)
r

2

(
1− (η2)

2

)
+ r

2
(ξ ′, η) ≡ 0 mod r .

Hence we can also reduce to the case where d1 = 0. Therefore Theorem 2.6 holds. �
REMARK 2.9. In [4], Hauzer takes a hyperbolic lattice spanned by σ and σ + f + e1,

where e1 ∈ E8(−1) is a (−2)-vector. Then c1 = (r + (ξ, e1))σ
′ + (r/2)f ′ + ξ ′.

By Theorem 2.6, Theorem 1.1 for r > 0 is reduced to the following claim.

PROPOSITION 2.10 (Kim [9]). Assume that v := (2, c1(L),− s
2 ) is primitive. Then

MH(2, L,− s
2 ) �= ∅ if and only if

(i) gcd(2, c1(L)) = 1 and 〈v2〉 ≥ −1 or
(ii) gcd(2, c1(L)) = 2 and 〈v2〉 ≥ 2 or

(iii) gcd(2, c1(L)) = 2, 〈v2〉 = 0 and L ≡ KX mod 2.

For the case of Proposition 2.10 (iii), by using Proposition 2.4 (2), we have Theorem 1.1
(iii). In the next subsection, we shall give another proof of Kim’s result.
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2.3. Relative Fourier-Mukai transform. For G ∈ K(X) with rk G > 0, we define
G-twisted semi-stability replacing the Hilbert polynomial χ(E(nH)) by the G-twisted Hilbert
polynomial χ(G∨ ⊗ E(nH)). MG

H (r, L,− s
2 ) denotes the moduli scheme of G-twisted semi-

stable sheaves E with v(E) = (r, c1(L),− s
2 ) and det E = L. If G = OX, then we also denote

MG
H (r, L,− s

2 ) by MH(r,L,− s
2 ). The G-twisted semi-stability is the same as the α-twisted

semi-stability, where α = c1(G)/ rk G.
We have an elliptic fibration X → P1 such that 2f is the divisor class of a fiber. Let

G1 be a locally free sheaf on X such that v(G1) = v(OX) + v(OX(σ)) + (0, 0, k). We set
Y := M

G1
H+nf (0, 2f, 1), where H is an ample divisor on X and n ≥ 0. Then χ(G1, E) =

−〈v(G1), v(E)〉 = 0 for E ∈ M
G1
H+nf (0, 2f, 1).

LEMMA 2.11. Y consists of G1-twisted stable sheaves.

PROOF. If E ∈ M
G1
H+nf (0, 2f, 1) is properly G1-twisted semi-stable, then there is a

proper subsheaf E1 of E such that χ(G1, E1) = 0 and E/E1 is also purely 1-dimensional.
We set v(E1) = (0, ξ1, a), a ∈ Z. Then (ξ1, c1(G1)) = 2a ∈ 2Z. Since (c1(E1), c1(G1)),
(c1(E/E1), c1(G1)) ≥ 0 and (c1(E), c1(G1)) = 2, (c1(E1), c1(G1)) = 0 or (c1(E/E1),
c1(G1)) = 0. If every singular fiber is irreducible, then (c1(E1), c1(G1)) > 0 and (c1(E/E1),
c1(G1)) > 0. Therefore Y consists of G1-twisted stable sheaves. �

By [1], Y is a smooth projective surface which is a compactification of Pic1
X/C . Hence

Y ∼= X. Let E be a universal family. Let Ψ : D(X)→ D(Y ) be a contravariant Fourier-Mukai
transform defined by

(2.11) Ψ (E) := R HompY (p∗X(E), E) ,

where pX and pY are the projections from X × Y to X and Y respectively.
Let L1 be a line bundle on C ∈ |H | and set G2 := Ψ (L1)[1] (see the above of [22, Lem.

3.2.3]). We also set Ĥ := −c1(Ψ (G1)) ([22, Lem. 3.2.1]).

PROPOSITION 2.12 ([22, Prop. 3.4.5]). Assume that (c1(L), f ) = r
2 ∈ Z and

χ(E,L1) < 0. Ψ induces an isomorphism

MG1
H+nf

(
r, L,− s

2

) ∼=MG2
Ĥ+nf

(
0,D,− s′

2

)

for n� 0, where D is an effective divisor such that (D2) = (c1(L)2)+ rs and (D, 2f ) = r .

REMARK 2.13. Replacing E by E(mf ) (m� 0), χ(E,L1) < 0 holds.

REMARK 2.14. Although G1 is fixed, H is not fixed. So we can change H to be
general.

COROLLARY 2.15. Assume that 2 � c1(L). Then MG1
H+nf (2, L,− s

2 ) �= ∅ if and only

if (c1(L)2)+ 2s ≥ 0.

PROOF. Let D be the divisor in Proposition 2.12. Since (D2) = (c1(L)2) + 2s, we
shall prove that the condition is (D2) ≥ 0. Obviously the condition is necessary. Conversely
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assume that (D2) ≥ 0. Since Y ∼= X is unnodal, |D| contains a reduced and irreducible curve
C by [3, Thm. 3.2.1], where we also use (D, f ) = 1 if (D2) = 0. Then a line bundle F on C

with χ(F) = − s ′
2 is a member of MG2

Ĥ+nf
(0,D,− s ′

2 ). �

2.4. Rank 2 case.

PROPOSITION 2.16. Assume that 2 � c1(L) is primitive. Then MH(2, L,− s
2 ) �= ∅

for a general H if and only if (c1(L)2)+ 2s ≥ 0.

PROOF. If 2 � (c1(L), f ) or 2 � (c1(L), σ ), then the claim follows from Corollary
2.15. Otherwise we may assume that c1(L) ∈ E8(−1) and c1(L) is primitive. Then there is

η ∈ E8(−1) with (c1(L), η) = 1. We set σ ′ := σ − (η2)
2 f + η. Then Zσ ′ + Zf spans a

hyperbolic lattice and (σ ′, c1(L)) = 1. Since X is unnodal and f is effective, σ ′ is effective
and 2σ ′ defines an elliptic fibration. Therefore the claim also holds for this case. �

PROPOSITION 2.17. Assume that 2 | c1(L). Then MH(2, L,− s
2 ) �= ∅ if and only if

(i) (c1(L)2)+ 2s > 0 or
(ii) (c1(L)2)+ 2s = 0 and L ≡ KX mod 2.

PROOF. We may assume that L = 0,KX. If there is a stable sheaf E, then E ∼= E(KX)

and (c1(L)2)+2s ≥ −2, or E �∼= E(KX) and (c1(L)2)+2s ≥ −1. Since 4 | s, (c1(L)2)+2s =
2s ≥ 0.

Assuming (c1(L)2)+2s > 0, we first proveMH(2, L,− s
2 ) �= ∅ for a general H . We set

k := s
4 > 0. Then E1⊕E2 with v(E1) = (1, 0,−k− 1

2 ), v(E2) = (1, 0,−k+ 1
2 ) belongs to

the moduli stack MH(2, L,− s
2 )μ-ss of μ-semi-stable sheaves. Let F(v1, v2) be the substack

of MH(2, L,− s
2 )μ-ss consisting of E whose Harder-Narasimhan filtration 0 ⊂ F1 ⊂ F2 = E

satisfies v(F1) = v1 and v(F/F1) = v2. Then

dimF(v1, v2) =〈v1, v2〉 + dimMH(v1)+ dimMH(v2)

=〈v2〉 − 〈v1, v2〉 .
(2.12)

We set v1 = (1, ξ1,− s1
2 ), v2 = (1, ξ2,− s2

2 ). Then ξ1 and ξ2 are numerically trivial, s1 < s2

and s1+ s2 = s. Then 〈v1, v2〉 = s1+s2
2 = s

2 > 0. By the deformation theory, each irreducible
component M of MH (v)μ-ss satisfies dimM ≥ 〈v2〉. Hence there is a stable sheaf.

We next treat the case where (c1(L)2) + 2s = 0. By [19], MH(2,KX, 0) ∼= X and
E(KX) ∼= E for all E ∈ MH(2,KX, 0). Moreover there is a universal family which defines
a Fourier-Mukai transform. Then for a stable sheaf E with v(E) ≡ v mod KX, we see that
E ∈ MH(2,KX, 0). In particular, MH(2, 0, 0) = ∅. �

Therefore Proposition 2.10 holds by Proposition 2.16, 2.17, and we complete the proof
of Theorem 1.1 for r > 0.

REMARK 2.18. Nuer constructed μ-stable vector bundles of rank 4 in [12, Thm. 5.1].
This reuslt ([12, Thm. 5.1]) does not follow from our method.
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2.5. Rank 0 case. We shall prove Theorem 1.1 for r = 0. We first note that if
MH(0, L,− s

2 ) �= ∅, then L is effective. For the proof of Theorem 1.1, we use Proposi-
tion 2.12. By choosing a suitable elliptic fibration, we may assume that (c1(L), f ) > 0. Then
we have

e

(
MH

(
0, L,− s

2

))
= e

(
MH

(
r, L′,− s′

2

))
,

where (c1(L
′), 2f ) = r . Then the case of r = 0 is reduced to the case of r > 0 at least for

gcd(c1(L), s) = 1 or (c1(L)2) > 0. Assume that gcd(c1(L), s) = 2 and (c1(L)2) = 0. Then
MH(0, L,− s

2 ) = ∅ or MH(0, L+KX,− s
2 ) = ∅. If L ≡ 0 mod 2, then there is r

2C ∈ |L|
such that C is a smooth fiber of the elliptic fibration, and a stable vector bundle F of rank r

2
and χ(F) = − s

2 on C is a member of MH(0, L,− s
2 ). Hence MH(0, L,− s

2 ) �= ∅ if and
only if L ≡ 0 mod 2 as we claimed in Theorem 1.1.

REMARK 2.19. It is easy to see that [21, Thm. 1.7] holds for Enriques surfaces. Indeed
a similar claim to [21, Prop. 2.7] (see Appendix) holds and [21, Prop. 2.8, Prop. 2.11] hold if
we modify the number N in the claims suitably.

Then Theorem 1.1 for r = 0 can also be reduced to the claim for r > 0.

REMARK 2.20. Since X is unnodal, effectivity implies (c1(L)2) ≥ 0 and (c1(L),
H) > 0. Conversely if (c1(L)2) ≥ 0 and (c1(L), H) > 0, then L is effective by the Riemann-
Roch theorem.

3. A nodal case. We shall treat the nodal case by adding a deformation argument and
results of Kim [5] and [8].

THEOREM 3.1. Let X be a nodal Enriques surface over C. We take r, s ∈ Z (r > 0)

and L ∈ NS(X) such that r − s is even. Assume that gcd(r, c1(L), r−s
2 ) = 1, i.e., the Mukai

vector is primitive. Then MH(r, L,− s
2 ) �= ∅ for a general H if and only if

(i) gcd(r, c1(L), s) = 1 and (c1(L)2)+ rs ≥ −1 or
(ii) gcd(r, c1(L), s) = 2 and (c1(L)2)+ rs ≥ 2 or

(iii) gcd(r, c1(L), s) = 2, (c1(L)2)+ rs = 0 and L ≡ r
2KX mod 2 or

(iv) (c1(L)2)+ rs = −2, L ≡ D + r
2KX mod 2, where D is a nodal cycle, i.e., D is

effective, (D2) = −2 and |D +KX| = ∅.
REMARK 3.2. If (c1(L),H ′) > 0 for an ample divisor H ′, then the same claim holds

for r = 0.

Obviously (c1(L)2)+ rs ≥ −2 is necessary for the non-emptyness of the moduli stack.
We first assume that (c1(L)2) + rs ≥ −1. In his case, the existence is a consequence of
Theorem 1.1. Let (X,H) be an Enriques surface X and an ample divisor H on X. By [3,
Prop. 1.4.1], H 1(X, TX) ∼= C

⊕10 and H 2(X, TX) = 0. We also have H 2(X,OX) = 0. Hence
a polarized deformation of the pair (X,H) is unobstructed. Let (X ,H) → S be a general
deformation of (X,H) such that a general member is not nodal and (X0,H0) = (X,H)

(0 ∈ S). Then we have a family of moduli spaces of semi-stable sheaves f : M(X ,H)(v)→ S.



A NOTE ON STABLE SHEAVES ON ENRIQUES SURFACES 379

Under the assumption (i), (ii), (iii) in Theorem 1.1, M(X ,H)(v)s �= ∅ for unnodal Xs . Hence
f is dominant. By the projectivity of f , im f = S. Hence M(X ,H)(v)s �= ∅ for all s.

PROPOSITION 3.3. Let X be an Enriques surface. Under the conditions (i), (ii), (iii)
of Theorem 1.1, MH(r, L,− s

2 ) �= ∅ for a general H .

If gcd(r, c1(L), a) = 2, (c1(L)2)+rs = 0 and L �≡ r
2KX mod 2, thenMH(r, L,− s

2 )=
∅. Indeed since MH (r,L + KX,− s

2 )( �= ∅) is an Enriques surface for a general H and the
universal family induces a Fourier-Mukai transform, we see that every stable sheaf E with
v(E) = (r, c1(L),− s

2 ) belongs to MH(r,L + KX,− s
2 ). Therefore Theorem 3.1 holds if

(c1(L)2)+ rs ≥ −1.

REMARK 3.4. If r is odd and H is general, then Ext2(E,E) = 0 for E ∈MH(r, c1,

− s
2 ). In this case, f is a smooth morphism in a neighborhood of 0.

We treat the remaining case, i.e., (c1(L)2)+rs = −2. This case is completely studied by
Kim in [5] and [8]. For completeness of the proof, we add an outline of the proof in [8]. Let
π : X̃→ X be the universal cover of X. X̃ is a K3 surface. We need the following elementary
fact.

LEMMA 3.5. For a locally free sheaf F of rank r on X̃,

det π∗(F ) ∼= det(π∗(det F))((r − 1)KX) .

PROOF. Let H be an ample divisor on X. Since π∗(H) is ample, we have an exact
sequence

(3.1) 0→ OX̃(−nπ∗(H))⊕(r−1)→ F → IZ(D)→ 0 ,

where D is a divisor, Z is a 0-dimensional subscheme of X̃ and n is sufficiently large. Since
π∗(OX̃) = OX ⊕OX(KX) and OX̃(D − (r − 1)nπ∗(H)) = det F , we get the claim. �

We also need the following result of Kim [8, Thm. 1].

LEMMA 3.6. Assume that r ∈ 2Z>0, a ∈ Z and L ∈ NS(X) satisfy (c1(L)2)− 2ra =
−2. Then MH (r, L, a) �= ∅ for a general H if and only if MH(2, L− ( r

2 − 1)KX, ra
2 ) �= ∅.

PROOF. Since the formulation of the claim is slightly different from [8, Thm. 1], we
write the proof. We set v := (r, c1(L), a). Since gcd(r, c1(L)) = 1, there is an ample divisor
H with gcd(r, (c1(L),H)) = 1. Indeed we first take a divisor η with gcd(r, (c1(L), η)) = 1.
Then we have an ample divisor H = η+ rλ, λ ∈ Amp(X), which satisfies the claim. We may
prove the claim for this polarization.

For E ∈ MH(r, L, a), we have E ∼= E(KX). By the proof of [15, Lem. 1.12], there
is a simple vector bundle F such that E = π∗(F ). Since E is rigid, F is also rigid (see the
proof of [8, Thm. 1]). By the stability of E, F is stable with respect to π∗(H). We have
π∗(E) ∼= F ⊕ ι∗(F ). We set C := det(F ). Then v(F ) = ( r

2 , C, a) and C + ι∗(C) = π∗(L).
We see that (C2) = (C, ι∗(C)) − 2 and (C2) − ra = −2. We set E′ := π∗(OX̃(C)). Since

π∗(E) ∼= OX̃(C) ⊕ OX̃(ι∗(C)), we see that v(E′) = (2, c1(L), (C2)
2 + 1) = (2, c1(L), ra

2 ).
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By Lemma 3.5,

det E′ = (det E)

(
−

(
r

2
− 1

)
KX

)
= OX

(
L−

(
r

2
− 1

)
KX

)
.

Obviously E′ is semi-stable with respect to H . Since gcd(r, (c1(E
′),H)) = 1, it is μ-stable.

Therefore MH (2, L− ( r
2 − 1)KX, rs

2 ) �= ∅.
Conversely for E′ ∈MH(2, L−( r

2−1)KX, ra
2 ), there is a divisor C with π∗(OX̃(C)) =

E′. Since π∗(E′) ∼= OX̃(C)⊕OX̃(ι∗(C)), we see that (C2) = (C, ι∗(C))−2 and (C2)+2 =
ra. For u := ( r

2 , C, a), we have 〈u2〉 = −2. By gcd(r, (c1(L),H)) = 1 and π∗(L) =
C+ι∗(C), gcd(r, (C, π∗(H))) = 1. Let F be a μ-stable locally free sheaf such that v(F ) = u

with respect to π∗(H). Then E := π∗(F ) is a μ-stable locally free sheaf with v(π∗(F )) = v.
By Lemma 3.5, det E = L. Therefore MH(r, L, a) �= ∅. �

PROPOSITION 3.7. Assume that r ∈ Z≥0, s ∈ Z and L ∈ NS(X) satisfy r ≡ s mod 2
and (c1(L)2)+ rs = −2. If r = 0, then we further assume that (c1(L),H ′) > 0 for an ample
divisor H ′ on X. Then MH(r, L,− s

2 ) �= ∅ for a general H if and only if L = D+2A+ r
2KX,

where D is a nodal cycle and A ∈ NS(X).

PROOF. If r > 0, then the claim is a consequence of Lemma 3.6 and [5, Thm. 3.4]. If
r = 0, then the claim is a consequence of Remark 2.19 (see also Corollary 4.5). �

4. Appendix. Let X be any Enriques surface and H be an ample divisor on X. For
ω = tH , t > 0, let Z(0,ω) : D(X)→ C be a stability function defined by

(4.1) Z(0,ω)(E) := 〈eω
√−1, v(E)〉 , E ∈ D(E) .

Let T(0,ω) be the full subcategory of Coh(X) generated by torsion sheaves and torsion free
stable sheaves E with Z(0,ω)(E) ∈ H∪R<0. Let F(0,ω) be the full subcategory of Coh(X) gen-
erated by torsion free stable sheaves E with −Z(0,ω)(E) ∈ H ∪ R<0. Let A(0,ω)(⊂ D(X)) be
the category generated by T(0,ω) and F(0,ω)[1]. If(ω2) �= 1, then σ(0, ω) := (A(0,ω), Z(0,ω))

is a stability condition. A(0,ω) is constant on (ω2) �= 1. We set

DEFINITION 4.1. (1) For (ω2) > 1, we set Tμ := T(0,ω), Fμ := F(0,ω) and
Aμ := A(0,ω).

(2) For (ω2) < 1, we set T := T(0,ω), F := F(0,ω) and A := A(0,ω).

For E ∈ Fμ, we have an exact sequence

(4.2) 0→ E1→ E→ E2→ 0

such that

(1) E1 is generated by OX and KX, and
(2) E2 ∈ Fμ satisfies Hom(OX,E2) = Hom(OX(KX),E2) = 0, i.e., E2 ∈ F.

Since H 1(OX(KX)) = H 1(OX) = 0,

E1 ∼= O⊕n
X ⊕OX(KX)⊕m .
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We also have E1 = Hom(OX,E) ⊗ OX ⊕ Hom(OX(KX),E) ⊗ OX(KX). For E ∈ T, the
natural homomorphism

φ : E→ Hom(E,OX)∨ ⊗OX ⊕ Hom(E,OX(KX))∨ ⊗OX(KX)

is surjective and ker φ ∈ Tμ.
We set

E := ker(OX �OX ⊕OX(KX)∨ �OX(KX)→ OΔ) .

As in [11], Φ
E∨[1]
X→X : D(X) → D(X) induces an isomorphism A → Aμ and we have a

commutative diagram

(4.3)

A
Φ

E∨[1]
X→X−−−−→ Aμ

Z(0,ω)

⏐⏐�
⏐⏐�Z(0,ω′)

C ←−−−−
×(ω2)

C

where ω′ = ω/(ω2). In particular, we get the following.

PROPOSITION 4.2. Φ
E∨[1]
X→X induces an isomorphism

(4.4) M(0,ω)

(
r, η + r

2
KX,− s

2

)
∼=M(0,ω′)

(
s, η + s

2
KX,− r

2

)
.

Applying Toda’s argument to the wall crossing along the line ω = tH , t > 0, we get the
following result (see also the argument in [11]).

PROPOSITION 4.3 (cf. Toda [16]). (1) If (ω2)� 0 and (η, ω) > 0, then

M(0,ω)

(
r, η + r

2
KX,− s

2

)
=Mω

(
r, η + r

2
KX,− s

2

)
.

(2) e
(M(0,ω)

(
r, η + r

2KX,− s
2

))
is independent of a general choice of ω.

REMARK 4.4. Wall crossing along the line ω = tH is very similar to the classical
wall crossing of Gieseker semi-stability, since A(0,ω) is almost the same.

COROLLARY 4.5.

e

(
MH

(
r, η + r

2
KX,− s

2

))
= e

(
MH

(
s, η + s

2
KX,− r

2

))

for a general H .

We have another proof of Proposition 3.7.

PROPOSITION 4.6. Assume that (η2) + rs = −2. MH(r, η + r
2KX,− s

2 ) �= ∅ for a
general H if and only if η ≡ D mod 2, where D is a nodal cycle.
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PROOF. By the proof of Theorem 2.6, we have e(MH(r, η + r
2KX,− s

2 )) = e(MH(2,

η′ + KX,− s ′
2 )), where η ≡ η′ mod 2. By [5], MH(2, η′ + KX,− s ′

2 ) �= ∅ if and only if
η ≡ D mod 2, where D is a nodal cycle. Therefore the claim holds. �
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