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Abstract. We show that the derived category of coherent sheaves on the quotient stack
of the affine plane by a finite small subgroup of the general linear group is obtained from the
derived category of coherent sheaves on the minimal resolution by adding a semiorthogonal
summand with a full exceptional collection. The proof is based on an explicit construction in
the abelian case, together with the analysis of the behavior of the derived categories of coherent
sheaves under root constructions.

1. Introduction. Let G be a finite small subgroup of GL2(C) acting on the affine
plane A2 = Spec R with the coordinate ring R = C[x, y]. The quotient singularity X =
A2/G = Spec RG has two kinds of natural resolutions: One is the minimal resolution τ :
Y → X, which exists uniquely by the minimal model theory in dimension two. The other is
the non-commutative ring A = EndRG R, which is a non-commutative crepant resolution in
the sense of Van den Bergh [vdB04a, Definition 4.1].

The minimal resolution Y is crepant if and only if G is a subgroup of SL2(C), whereas
the non-commutative resolution A is always crepant. It is known by Auslander (cf. e.g. [IT13,
Theorem 4.2]) that the ring A is isomorphic to the crossed-product algebra R � G. It fol-
lows that the category of finitely-generated A-modules is equivalent to the category of G-
equivariant coherent sheaves on A2, which in turn is equivalent to the category of coherent
sheaves on the quotient stack [A2/G];

mod A ∼= mod R � G ∼= coh[A2/G] .

When G is a subgroup of SL2(C), Ito and Nakamura [IN99] constructed the commu-
tative crepant resolution Y as the G-Hilbert scheme [Nak01] parametrizing G-invariant sub-
schemes Z ⊂ A

2 such that H 0(OZ) is isomorphic to the regular representation of G as a
G-module. This fine moduli interpretation comes with the universal flat family

(1.1)

Z q−−−−→ A2

p

⏐⏐� ⏐⏐�π

Y
τ−−−−→ X ,

which allows one to define the integral functor

(1.2) Φ = q∗ ◦ p∗ : Db coh Y → Db coh[A2/G]
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realizing the McKay correspondence as an equivalence of derived categories [KV00, BKR01].
This provides an example of a generalization [vdB04a, Conjecture 4.6] of a conjecture of Bon-
dal and Orlov [BO] that any crepant resolutions of X, either commutative or non-commutative,
are derived equivalent.

Even if G is not a subgroup of SL2(C), the Hilbert-Chow morphism τ in the diagram
(1.1) is still a resolution of X, which is minimal but not crepant [Ish02]. The integral functor
Φ is not an equivalence but a full and faithful embedding, and its essential image is admissible
[BO, Definition 2.1] since Φ has both left and right adjoints by Lemma 2.9.

The essential image of Φ and its right orthogonal are described as follows:

PROPOSITION 1.1. Let G be a finite subgroup of GL2(C) and Y be the Hilbert scheme
of G-orbits in A2. Then the essential image of Φ is generated by {OA2 ⊗ ρ}ρ:special, and its
right orthogonal is generated by {O0 ⊗ ρ}ρ:non-special.

Special representations are introduced by Wunram [Wun88] to extend the McKay corre-
spondence to subgroups of GL2(C). We recall the basic definitions and properties of special
representations in Section 2, where the proof of Proposition 1.1 is also given.

In the case of cyclic groups, we can prove the existence of a full exceptional collection
in the semiorthogonal complement of the essential image of Φ:

THEOREM 1.2. Let G be a finite small cyclic subgroup of GL2(C) and Y be the
Hilbert scheme of G-orbits in A2. Then there is an exceptional collection (E1, . . . , En) in
Db coh[A2/G] and a semiorthogonal decomposition

Db coh[A2/G] = 〈E1, . . . , En,Φ(Db coh Y )〉 ,

where n is the number of irreducible non-special representations of G.

Theorem 1.2 is not obvious at all, since

• the set {O0 ⊗ ρ}ρ:non-special rarely form an exceptional collection (cf. Example 2.11),
and

• the category Db coh[A2/G] does not have an exceptional object at all when G is a
subgroup of SL2(C).

We use the abelian case to obtain a similar result in a general case by using a slightly
different functor, while we expect the same result for the functor Φ.

THEOREM 1.3. Let G be a finite small subgroup of GL2(C) and Y → A2/G be the
minimal resolution of A2/G. For a suitable fully faithful functor

Φ ′ : Db coh Y → Db coh[A2/G] ,

there is an exceptional collection (E1, . . . , En) in Db coh[A2/G] and a semiorthogonal de-
composition

Db coh[A2/G] = 〈E1, . . . , En,Φ
′(Db coh Y )〉 ,

where n is the number of irreducible non-special representations of G.
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Theorem 1.3 is complementary to the works of Craw [Cra11] and Wemyss [Wem11],
which describe Db coh Y as the derived category of modules over the path algebra of a quiver
with relations called the special McKay quiver. One can say that their works give a non-
commutative description of the commutative non-crepant resolution, whereas Theorem 1.3
gives the relation between the commutative non-crepant resolution and the non-commutative
crepant resolution.

We now give the definition of the functor Φ ′. The action of G on A2 induces

• an action of G0 := G ∩ SL(2,C) on A2, and
• an action of G/G0 on G0-Hilb(A2).

The Hilbert-Chow morphism Y2 := G/G0-Hilb(G0-Hilb(A2)) → A2/G from the iterated
Hilbert scheme is a resolution of A2/G. The resolution Y2 → A

2/G is not necessarily mini-
mal, and factors through the minimal resolution Y → A

2/G;

Y2 Y

A
2/G .

ϕ

By embedding G into SL3(C) and embedding Y2 as a divisor in G/G0-Hilb(G0-Hilb(A3)),
one can deduce from [IINdC13, Theorem 2.7] that Y2 can be identified with the moduli space
Mθ of stable G-equivariant sheaves on A

2 for a suitable choice of a stability parameter θ .
This gives a fully faithful functor

Φ ′
2(−) := π2∗

(
π1

∗(−) ⊗ Eθ

) : Db coh Y2 → Db coh[A2/G] ,

where Eθ is the universal family on Mθ × [A2/G]. The composition

Φ ′ := Φ ′
2 ◦ ϕ∗ : Db coh Y → Db coh[A2/G]

is a fully faithful functor.
The proof of Theorem 1.3 proceeds as follows:

1. If G ⊂ GL2(C) is a cyclic group, then special representations can be computed by
continued fraction expansions [Wun87, Wun88], and we can explicitly construct an
exceptional collection E1, . . . , En in coh[A2/G] as in Theorem 3.1.1

2. Let G be a finite small subgroup of GL2(C) and put G0 = G ∩ SL2(C). Then G0

is a normal subgroup of G and A = G/G0 is a cyclic group. The group A acts on
Y0 = G0-HilbA2 and one has an equivalence

(1.3) Φ0 : Db coh[Y0/A] ∼−→ Db coh[A2/G]
1Kawamata pointed out that this step can also be carried out using his arguments [Kaw05, Kaw06], and has

subsequently written a paper [Kaw13] which includes it as a special case.
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by Theorem 4.1, which is an equivariant version of the McKay correspondence
[KV00, BKR01]. Since Y0 is a resolution of A2/G0, a resolution of Y0/A is a
resolution of A2/G.

3. The stack [Y0/A] may have non-trivial stabilizer groups along divisors, whereas the
canonical stack Y1 associated with the coarse moduli space Y1 := Y0/A is a stack
which has trivial stabilizer groups except at the singular points. There is a morphism
[Y0/A] → Y1 coming from the universal property of the canonical stack, which
can be regarded as an iteration of root constructions [AGV08, Cad07] along simple
normal crossing divisors. The coarse moduli spaces of irreducible divisors with non-
trivial stabilizer groups are smooth rational curves, so that one has a full and faithful
functor Φ1 : Db cohY1 → Db coh[Y0/A] and a semiorthogonal decomposition

(1.4) Db coh[Y0/A] = 〈E1, . . . , En1 ,Φ1(D
b cohY1)〉

by Proposition 7.2.
4. The coarse moduli space Y1 of Y1 has cyclic quotient singularities. By taking the

minimal resolution of it, we obtain a resolution Y2 of A2/G. This gives a full and
faithful functor Φ2 : Db coh Y2 → Db cohY1 and a semiorthogonal decomposition

(1.5) Db cohY1 = 〈En1+1, . . . , En2 ,Φ2(D
b coh Y2)〉

by Proposition 8.1.
5. The minimal resolution Y can be obtained from Y2 by contracting (−1)-curves. This

gives a full and faithful functor Φ3 : Db coh Y → Db coh Y2 and a semiorthogonal
decomposition

(1.6) Db coh Y2 = 〈En2+1, . . . , En,Φ3(D
b coh Y )〉

by Orlov [Orl92, Theorem 4.3].
By combining the semiorthogonal decompositions from (1.3) to (1.6), one obtains Tho-

erem 1.3. In fact, our proof of Theorem 1.3 readily gives the following global analog:

THEOREM 1.4. Let X be the canonical stack associated with a surface X with at worst
quotient singularities, and Y be the minimal resolution of X. Then there is a full and faithful
functor

Φ : Db coh Y → Db cohX
and a semiorthogonal decomposition

Db cohX = 〈E1, . . . , E�,Φ(Db coh Y )〉
where E1, . . . , E� is an exceptional collection.

This gives the relation between the derived categories of the commutative minimal res-
olution and a non-commutative crepant resolution for any surface X with at worst quotient
singularities. As an application of Theorem 1.4, we show the existence of a full exceptional
collection on a two-dimensional stack associated with an invertible polynomial in Theorem
10.2.
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Root constructions appearing in Step 3 are introduced independently by Cadman [Cad07]
and Abramovich, Graber and Vistoli [AGV08], and play important roles in the theory of toric
stacks [BCS05, FMN10] and orbifold Gromov-Witten theory [AGV08]. As the analysis of
the derived categories of root stacks in Step 3 may also be of independent interest, we state it
as theorems here. The first result concerns the root stack of a line bundle:

THEOREM 1.5. Let L be a line bundle on a Deligne-Mumford stack X and r
√L/X be

the r-th root stack for a positive integer r . Then the abelian category of coherent sheaves on
r
√L/X is the direct sum of r copies of the abelian category of coherent sheaves on X ;

coh r
√
L/X ∼= (cohX )⊕r .

Note that the decomposition above is not only semiorthogonal but orthogonal, and we do
not need to pass to the derived categories. Theorem 1.5 enables us to generalize the results of
Borisov and Hua [BH09] to the case when the N-lattice has torsion (cf. the second paragraph
in [BH09, Section 2]).

The second result deals with the root stack of a line bunlde with a section:

THEOREM 1.6. Let D be a smooth divisor in a smooth Deligne-Mumford stack X and
Y = r

√
(OX (D), 1)/X be the r-th root stack of the line bundle OX (D) with the canonical

section 1 ∈ H 0(OX (D)). Then there are full and faithful functors

ΦX : Db cohX → Db cohY ,

ΦD : Db cohD → Db cohY
and a semiorthogonal decomposition

Db cohY =
〈
ΦD(Db cohD) ⊗ M⊗(r−1), . . . , ΦD(Db cohD) ⊗ M,ΦX (Db cohX )

〉
,

where M is the universal line bundle on Y .

We assume that all divisors are Cartier throughout this paper. Theorem 1.6 is a root stack
analog of [Orl92, Theorem 4.3], where the derived category of the blow-up is described in
terms of derived categories of the original variety and the center. This shows that the root
construction behaves very much like the ‘blow-up along a divisor’ as far as derived categories
of coherent sheaves are concerned.

This paper is organized as follows: We recall the definition of special representations
and prove Proposition 1.1 in Section 2. Steps 1 and 2 are carried out in Sections 3 and 4 re-
spectively. Theorem 1.5 is proved in Section 5, and Theorem 1.6 is proved in Section 6. Steps
3 and 4 are carried out in Sections 7 and 8 respectively. Theorems 1.3 and 1.4 are proved in
Section 9. As a corollary, we show in Section 10 that the two-dimensional Deligne-Mumford
stack associated with an invertible polynomial in four variables has a full exceptional collec-
tion.

Acknowledgment. We thank Yujiro Kawamata for the remark on Step 1 above. A. I. is supported
by Grant-in-Aid for Scientific Research (No. 18540034). K. U. is supported by Grant-in-Aid for Young
Scientists (No. 20740037 and No. 24740043).
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2. The special McKay correspondence. In this section, we recall the definition of
special representations and prove Proposition 1.1. Let G be a finite small subgroup of GL2(C)

acting on the affine plane A2 = Spec R and τ : Y → X = Spec RG be the minimal resolution
of the quotient singularity. First we recall the relation between full sheaves on Y and reflexive
modules on X:

DEFINITION-LEMMA 2.1 (Esnault [Esn85]). Let M be a sheaf on Y and M∨ be its
dual sheaf. Then there exists a reflexive module M on X such that M ∼= M̃ := τ ∗M/torsion
if and only if the following three conditions are satisfied:

1. M is locally-free.
2. M is generated by global sections.
3. H 1((M)∨ ⊗ ωY ) = 0.

In this case M is said to be full.

Note that reflexive modules coincide with Cohen-Macaulay modules since X is a normal
surface.

THEOREM 2.2 (Auslander [Aus86]). The functor (−)G of taking G-invariant part
gives an equivalence from the category of projective R�G-modules to the category of Cohen-
Macaulay RG-modules.

It follows that indecomposable full sheaves on Y are in one-to-one correspondence with
irreducible representations of G.

THEOREM 2.3 (Wunram [Wun88, Main Result]). Let E = ⋃r
i=1 Ei be the decompo-

sition into irreducible components of the exceptional set E. Then for every curve Ei there
exists exactly one indecomposable reflexive module Mi such that the corresponding full sheaf
M̃i = τ ∗Mi/torsion satisfies the conditions H 1((M̃)∨) = 0 and

c1(M̃i) · Ej = δij .

A full sheaf is said to be special if there is an index 1 ≤ i ≤ r such that M = Mi or it
is isomorphic to the structure sheaf OY . The special full sheaf OY corresponds to the trivial
representation and is denoted by M0.

We will repeatedly use the following lemma:

LEMMA 2.4. Let f : S → T be a proper morphism of Noetherian schemes such that
T is affine and all fibers of f are at most 1-dimensional. Let further E and F be coherent
sheaves on S such that E is generated by global sections and H 1(F) = 0. Then one has
H 1(E ⊗ F) = 0.

PROOF. One has a surjection O⊕r
S → E for some r ∈ N since E is generated by global

sections. Let I be the kernel of this surjection, so that one has a short exact sequence

0 → I → O⊕r
S → E → 0(2.1)
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of sheaves. Since f has at most one-dimensional fibers, one has H 2(F ⊗ I) = 0. By ten-
soring (2.1) with F and taking the associated long exact sequence, one obtains a surjection
H 1(F)⊕r → H 1(E ⊗ F). This implies H 1(E ⊗ F) = 0 since H 1(F) = 0. �

We also need the following:

LEMMA 2.5 ([Esn85, Lemma 2.1]). If M is a locally-free sheaf on Y such that
H 1(M∨ ⊗ ωY ) = 0, then τ∗M is reflexive.

Special full sheaves are characterized as follows:

THEOREM 2.6 (Wunram [Wun88, Theorem 1.2]). An indecomposable full sheaf M
is special if and only if H 1(M∨) = 0.

An irreducible representation ρ of G is said to be special if the corresponding full sheaf
Mρ = τ ∗ (

(ρ∨ ⊗ R)G
)
/torsion is special.

LEMMA 2.7. For a special representation ρ, we have an isomorphism

Φ(M∨
ρ ) ∼= OA2 ⊗ ρ

in Db(coh[A2/G]).
PROOF. Note that p∗OZ ∼= ⊕

σ∈Irrep(G) Mσ ⊗ σ as shown in [Ish02, Corollary 3.2].
One has

π∗Φ(M∨
ρ ) = π∗q∗p∗(M∨

ρ )(2.2)

= τ∗p∗p∗(M∨
ρ )(2.3)

= τ∗(p∗OZ ⊗ M∨
ρ )(2.4)

=
⊕

σ∈Irrep(G)

τ∗(Mσ ⊗ M∨
ρ ) ⊗ σ .(2.5)

For any σ ∈ Irrep(G), one has H 1(Mσ ⊗M∨
ρ ) = 0 since Mσ is generated by global sections

(this follows from the fact that Mσ is a full sheaf), H 1(M∨
ρ ) = 0 (this follows from the fact

that Mρ is a special full sheaf), and τ has at most one-dimensional fibers. This implies that
π∗Φ(M∨

ρ ) is a sheaf, which in turn implies that Φ(Mρ) is a sheaf since π is finite.
Since both Mρ and Mσ are full sheaves, the sheaf Mρ is generated by global sections

and H 1(M∨
σ ⊗ ωY ) = 0. By Lemma 2.4, one obtains

H 1((M∨
ρ ⊗ Mσ )∨ ⊗ ωY ) ∼= H 1(Mρ ⊗ (M∨

σ ⊗ ωY )) = 0 .

By Lemma 2.5, this implies that τ∗(M∨
ρ ⊗ Mσ ) is reflexive. Therefore,

π∗(Φ(M∨
ρ )) ∼= τ∗

( ⊕
σ∈Irrep(G)

M∨
ρ ⊗ Mσ ⊗ σ

)

is reflexive as an OX-module. This implies that Φ(M∨
ρ ) is reflexive, since τ is finite and

surjective (cf. e.g. [BD08, Lemma 2.24]). Since the isomorphism class of a reflexive sheaf
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is determined by the restriction to a complement of any codimension 2 subset, the assertion
follows from the isomorphism

Φ(M∨
ρ )|A2\{0} ∼= π∗(M∨

ρ )|A2\{0} ∼= π∗(((OA2 ⊗ ρ∨)G)∨)|A2\{0} ∼= (OA2 ⊗ ρ)|A2\{0}
of the restrictions to A2 \ {0}. Here, the last isomorphism follows from the fact that the action
of G on A2 \ {0} is free, so that one has an equivalence

Db coh(A2 \ {0})/G ∼= Db cohG(A2 \ {0})
which commutes with taking duals. �

We also need the following lemma:

LEMMA 2.8. Let ι : U ↪→ T be an open immersion of smooth varieties and S ⊂ U be
a closed subscheme of U whose image ι(S) is closed in T . Suppose an object E ∈ Db coh U

is supported on S. Then for any object F ∈ Db coh T , one has a functorial isomorphism

Hom(ι∗E,F) ∼= Hom(E, ι∗F) .(2.6)

PROOF. First note that one has

ι∗ι∗E ∼= E
since ι : U → T is an open immersion. This implies that

ι∗((ι∗E)∨) ∼= (ι∗(ι∗E))∨ ∼= E∨

since pull-back commutes with taking duals. It follows that the adjunction morphism

(ι∗E)∨ → ι∗ι∗((ι∗E)∨) ∼= ι∗(E∨)(2.7)

becomes an isomorphism if it is pulled-back by ι∗;

ι∗((ι∗E)∨)
∼−→ ι∗(ι∗(E∨)) .(2.8)

Note that the supports of both ι∗(E∨) and (ι∗E)∨ are contained in ι(S), since supp(E) ⊂ S

and ι(S) is closed in T . It follows that (ι∗E)∨ ∼= ι∗(E∨), and one has

Hom(ι∗E,F) ∼= H 0((ι∗E)∨ ⊗ F)

∼= H 0(ι∗(E∨) ⊗ F)

∼= H 0(ι∗(E∨ ⊗ ι∗F))

∼= H 0(E∨ ⊗ ι∗F)

∼= Hom(E, ι∗F) . �

Now we prove the following:

LEMMA 2.9. Φ has left and right adjoints.

PROOF. Φ is defined as

Φ(−) = p2∗(OZ ⊗ p∗
1(−))
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where p1 : Y × A2 → Y and p2 : Y × A2 → A2 are the projections. As in [BKR01],
the problem is that pi are not projective morphisms; p∗

1 does not have a left adjoint and
p2∗ does not have a right adjoint. Note however that the restrictions of p1 and p2 to Z
are projective morphisms. Take a smooth projective variety Y which contains Y as an open
set. Let i1 : Y × A2 ↪→ Y × P2 and i2 : Y × A2 ↪→ Y × A2 be open immersions, and
p1 : Y × P2 → Y and p2 : Y × A2 → A2 be the projections. Then, by the projectivity of Z
over Y and A2, i1∗(OZ ) and i2∗(OZ ) are coherent sheaves. Thus for objects α ∈ Db(coh Y )

and β ∈ Db(coh[A2/G]), i2∗(OZ ⊗ p∗
1(α)) ∈ Db(coh Y × [A2/G]) and we can apply the

Grothendieck duality for p2 to obtain

Hom(Φ(α), β) = Hom(p2∗i2∗(OZ ⊗ p∗
1(α)), β) ∼= Hom(i2∗(OZ ⊗ p∗

1(α)), p∗
2β ⊗ ωY [2]) .

Since the support of OZ (and hence that of OZ ⊗ p∗
1(α)) is closed in Y × A2, the last group

is isomorphic to

Hom(OZ ⊗ p∗
1(α), p∗

2β ⊗ ωY [2]) ∼= Hom(α, p1∗(p∗
2β ⊗ ωY ⊗ O∨

Z [2])G)

by Lemma 2.8. This proves that Φ has a right adjoint. A left adjoint is obtained in a similar
way by applying the Grothendieck duality for p1. �

Special full sheaves generate the derived category of coherent sheaves on Y :

THEOREM 2.10 (Van den Bergh [VdB04b, Theorem B]). The direct sum of indecom-
posable special full sheaves generates Db coh Y .

PROOF OF PROPOSITION 1.1. It follows from Lemma 2.7 and Theorem 2.10 that the
essential image of Φ is generated by {OA2 ⊗ ρ}ρ:special. Moreover, for special representations
ρ and σ , we have

HomDb coh Y (M∨
ρ ,M∨

σ ) ∼= (R ⊗ ρ∨ ⊗ σ)G ∼= HomDb coh[A2/G](OA2 ⊗ ρ,OA2 ⊗ σ) ,

which implies that Φ is full and faithful.
{O0 ⊗ ρ}ρ:non-special is right orthogonal to {OA2 ⊗ ρ}ρ:special since

RHom[A2/G](OA2 ⊗ ρ,O0 ⊗ τ ) ∼=
{
C ρ = τ ,

0 otherwise .

Conversely, suppose an object α in Db coh[A2/G] is right orthogonal to {OA2 ⊗ ρ}ρ:special.

Then since X is affine, the vanishing of

Homi
Db coh[A2/G](OA2, α) ∼= Hi(A2, α)G ∼= Hi(X, π∗α)G

for any i implies that (π∗α)G = 0. Then one can see by using the isomorphism

[(A2 \ 0)/G] ∼= X \ 0

that the restriction of α to [(A2 \ 0)/G] is zero and hence that α must be supported on the
origin of A2. Moreover, for any special representation ρ, the vanishing of

Homi
Db coh[A2/G](OA2 ⊗ ρ, α) ∼= Hi(ρ∗ ⊗ α)G
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FIGURE 2.1. The McKay quiver. FIGURE 2.2. The non-special quiver.

implies that O0 ⊗ ρ does not appear in the Jordan-Hölder filtration of (cohomology sheaves
of) α. Therefore, the right orthogonal complement of {OA2 ⊗ρ}ρ:special is generated by {O0 ⊗
ρ}ρ:non-special. �

Let ρNat be the two-dimensional representation of G coming from the inclusion G ⊂
GL2(C), and aμν be the multiplicity appearing in the irreducible decomposition

μ ⊗ ρ∨
Nat =

⊕
ν∈Irrep(G)

ν⊕aμν

of tensor products of in the representation ring of G. It follows from the projective resolution

0 −−−−→ OA2 ⊗ det ρ∨
Nat −−−−→ OA2 ⊗ ρ∨

Nat −−−−→ OA2 −−−−→ O0 −−−−→ 0

that one has

dim Hom(O0 ⊗ μ,O0 ⊗ ν) = δμν ,

dim Ext1(O0 ⊗ μ,O0 ⊗ ν) = aμν ,

and
dim Ext2(O0 ⊗ μ,O0 ⊗ ν) = dim Hom(O0 ⊗ ν,O0 ⊗ μ ⊗ det ρ∨

Nat).

This is summarized in the McKay quiver of G, whose vertices are irreducible representations
of G whose solid arrows from μ to ν are basis of Ext1(O0 ⊗ μ,O0 ⊗ ν), and whose dashed
arrows are basis of Ext2(O0 ⊗ μ,O0 ⊗ ν).

EXAMPLE 2.11. As an example, consider the case G = 〈
diag(ζ, ζ 3)

〉
where ζ =

exp(2π
√−1/8). The McKay quiver is shown in Figure 2.1, and its full subquiver consisting

of non-special vertices is shown in Figure 2.2. Here, the number i indicates the representation
which sends the generator of G to ζ−i . This clearly shows that the set {O0 ⊗ ρ}ρ:non-special

does not form an exceptional collection.
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3. The case of cyclic groups. We prove the following in this section:

THEOREM 3.1. Let A be a finite small abelian subgroup of GL2(C) and Y be the
Hilbert scheme of A-orbits in A

2. Then there is an exceptional collection (E1, . . . , En) in
Db coh[A2/A] and a semiorthogonal decomposition

Db coh[A2/A] = 〈E1, . . . , En,Φ(Db coh Y )〉 ,

where n is the number of indecomposable non-special representations of G.

To prove Theorem 3.1, we recall Wunram’s description of special representations in the
case of cyclic groups. For relatively prime integers 0 < q < n, consider the cyclic small
subgroup G = 〈 1

n
(1, q)〉 of GL2(C) generated by

1

n
(1, q) =

(
ζ 0
0 ζ q

)
,

where ζ is a primitive n-th root of unity. For a ∈ Z/nZ, let ρa denote the irreducible repre-
sentation of G that sends the above generator to ζ−a .

Define integers r , b1, . . . , br and i0, . . . , ir+1 as follows: Put i0 := n, i1 := q and define
it+2, bt+1 inductively by

it = bt+1it+1 − it+2 (0 < it+2 < it+1)

until we finally obtain ir = 1 and ir+1 = 0. This gives a continued fraction expansion

n

q
= b1 − 1

b2 − 1

. . . − 1

br

and −bt is the self intersection number of the t-th irreducible exceptional curve Ct in the
minimal resolution Y of A2/G.

Special representations are described as follows:

THEOREM 3.2 (Wunram [Wun87]). Special representations are ρi0 = ρir+1 , ρi1 , . . . ,

ρir .

For an integer d with 0 ≤ d < n, there is a unique expression

(3.1) d = d1i1 + d2i2 + · · · + drir

where di ∈ Z≥0 are non-negative integers satisfying

0 ≤
∑
t>t0

dt it < it0

for any t0.

LEMMA 3.3 (Wunram [Wun87, Lemma 1]). A sequence (d1, . . . , dr) ∈ (Z≥0)
r is ob-

tained from an integer d ∈ [0, n − 1] as above if and only if the following hold:

• 0 ≤ dt ≤ bt − 1 for any t .



596 A. ISHII AND K. UEDA

• If ds = bs −1 and dt = bt −1 for s < t , then there is l with s < l < t and dl ≤ bl −3.

Let q ′ ∈ [0, n − 1] be the integer with qq ′ ≡ 1 mod n. Then 〈 1
n
(1, q)〉 coincides with

〈 1
n
(q ′, 1)〉 as a subgroup of GL2(C). Introduce the dual sequence j0, . . . , jr+1 by j0 = 0,

j1 = 1 and jt = jt−1bt−1 − jt−2 for t > 1. Then one has jr = q ′ and jr+1 = n.

LEMMA 3.4 (Wunram [Wun87, Lemma 2]). Let d = d1i1 + · · · + drir be as in (3.1)
and put f = d1j1 + · · · + drjr . Then one has 0 ≤ f ≤ n − 1 and qf ≡ d mod n.

Let R = C[x, y] be the coordinate ring of A2 and put

Rk = R/(x, yk) .

For an integer d ∈ [0, n − 1] with ρd non-special, take t with it−1 > d > it . Then we define

Ed = Rjt ⊗ ρd−(jt−1)q .

Note that the socle of Ed is O0 ⊗ ρd and one has the direct sum decomposition Ed
∼=⊕

0≤l<jt
ρd−lq as a representation of G. We show that {Ed | ρd : non-special} is a desired

exceptional collection (with respect to the order of d ∈ [1, n − 1]).
We first show the following:

PROPOSITION 3.5. The following two triangulated subcategories are equal:

〈O0 ⊗ ρ〉ρ:non-special = 〈Ed〉ρd :non-special .

We introduce the following order � on Z/nZ: for a, b ∈ Z/nZ, we write a � b if
a′ ≤ b′ holds for the representatives a′, b′ ∈ Z ∩ [0, n − 1] of a, b. We also write x � y for
x, y ∈ Z if the inequality holds for their classes in Z/nZ.

LEMMA 3.6. If 0 < l < jt , then one has it−1 � lq .

PROOF. We can write l = d1j1 + · · · + dt−1jt−1 as in (3.1) by using {jt } instead
of {it }, where (d1, . . . , dt−1, 0, . . . , 0) satisfies the condition in Lemma 3.3. Then we have
lq ≡ d1i1 + · · · + dt−1it−1 mod n. Since (d1, . . . , dt−1, 0, . . . , 0) satisfies the condition in
Lemma 3.3 and is non-zero, d1i1 + · · · + dt−1it−1 is an integer in [it−1, n − 1]. This implies
the desired inequality. �

Note that the following hold by the definition of �.

LEMMA 3.7. If b �= 0, a + b � a implies a + b � b.

COROLLARY 3.8. If it−1 > d > it , then we have d ≺ d − lq for 0 < l < jt .

PROOF. Since it−1 � lq by Lemma 3.6, we apply Lemma 3.7 for a = lq and b = d−lq

to obtain d � d − lq . The equality does not hold since (n, q) = 1. �

LEMMA 3.9. If it−1 > d > it , then ρd−lq is non-special for 0 ≤ l < jt .

PROOF. Write d = dt it +dt+1it+1+· · ·+drir as in (3.1) and put f = dtjt +dt+1jt+1+
· · · + drjr . Then since ρd is non-special, we have f ≥ 2jt .
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Assume that ρd−lq is special. Then d − lq ≡ is for some s and the above corollary
implies s < t . Moreover, d ≡ is + lq yields f ≡ js + l. On the other hand, since js and l are
smaller than jt , we see js + l < 2jt . This contradicts n > f ≥ 2jt . �

PROOF OF PROPOSITION 3.5. Lemma 3.9 implies that Ed belongs to
〈O0 ⊗ρ〉ρ:non-special. Moreover, note that the socle of Ed is O0 ⊗ρd . Then, for non-special ρf ,
it follows from Corollary 3.8 and the reverse induction on f with respect to � that O0 ⊗ ρf

belongs to 〈Ed〉ρd :non-special. �

PROPOSITION 3.10. {Ed}ρd :non-special forms an exceptional collection.

PROOF. Take Ed,Ed ′ with d ′ ≤ d and suppose it−1 > d > it and it ′−1 > d ′ > it ′ . To
compute Exti (Ed,Ed ′), consider the following projective resolution of Ed :

0 → R ⊗ ρ1+d+q

(
yjt

−x

)
−−−−→ R ⊗ ρ1+d+q−jt q ⊕ R ⊗ ρd+q(
x yjt

)
−−−−−→ R ⊗ ρd+q−jt q → Ed → 0 .

Then RHomR(Ed,Ed ′) splits into the direct sum of

Rjt ′ ⊗ ρd ′−d+(jt−jt ′ )q
α→ Rjt ′ ⊗ ρd ′−d−jt ′q

and

Rjt ′ ⊗ ρd ′−d−1+(jt−tt ′ )q
β→ Rjt ′ ⊗ ρd ′−d−1−jt ′q

where α and β are the multiplications by yjt . The degrees of terms of these complexes are
determined so that Hom(Ed,Ed ′) = (ker α)G, Ext1(Ed,Ed ′) = (coker α)G ⊕ (ker β)G and
Ext2(Ed,Ed ′) = (coker β)G.

As a representation of G, ker α is the direct sum of ρd ′−d+lq for 0 ≤ l < jt . Assume
that ρd ′−d+lq is trivial, i.e., d − d ′ ≡ lq . If l �= 0, then Lemma 3.6 implies it−1 � lq , which
contradicts 0 ≤ d ′ ≤ d < it−1 and d − d ′ ≡ lq . Therefore, we obtain l = 0 and d = d ′.
Thus (ker α)G = 0 if d �= d ′ and it is one-dimensional if d = d ′. coker α is the direct sum of
ρd ′−d−(jt ′−l)q for 0 ≤ l < jt . Assume ρd ′−d−(jt ′−l)q is trivial. Then we see d − d ′ + it ′ ≡ lq ,
which again contradicts Lemma 3.6. Hence we obtain (coker α)G = 0. In a similar way, we
can show (ker β)G = (coker β)G = 0 and we are done. �

Since 〈O0 ⊗ ρ〉ρ:non-special is the right orthogonal complement of the essential image of
Φ, Propositions 3.5 and 3.10 imply Theorem 3.1.

4. Equivariant McKay correspondence. Let G be a finite subgroup of GL2(C) and
put G0 := G ∩ SL(2,C). Then G0 is a normal subgroup of G and A := G/G0 is a cyclic
group, since det : GL2(C) → C

× identifies it with a subgroup of C×. There is a natural G-
action on Y0 := G0-HilbA2 such that an element g ∈ G sends a subscheme Z ∈ G0-HilbA2

to its image g · Z by the action g : A2 → A2. Since Z is G0-invariant by the definition of
G0-HilbA2, this G-action on Y0 descends to an A = G/G0-action on the scheme Y0.
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THEOREM 4.1. There is a derived equivalence

Φ0 : Db coh[Y0/A] ∼−→ Db coh[A2/G] .

PROOF. The groups G and A acts naturally on Y0, and there is a natural morphism

ϕ : [Y0/G] → [Y0/A]
coming from the surjection G � A The push-forward functor

ϕ∗ : Db coh[Y0/G] → Db coh[Y0/A]
sends a G-equivariant cohenrent sheaf E on Y0 to the G0-invariant subsheaf EG0 equipped
with the natural A-equivariant structure. The pull-back functor

ϕ∗ : Db coh[Y0/A] → Db coh[Y0/G]
sends an A-equivariant coherent sheaf on Y0 to the same sheaf considered as a G-equivariant
coherent sheaf through the surjective homomorphism G � A.

Consider the diagram

Z⊂

Y0 × A
2

Y0 A
2

πY0 πA2

where Z ⊂ Y0 × A2 is the universal subscheme and πA2 and πY0 are the natural projections.
By taking the quotient of the whole diagram with respect to the action of G, one obtains
another diagram [Z/G

]

⊂

[
Y0 × A

2/G
]

[
Y0/G

] [
A

2/G
]
.

π[Y0/G] π[A2/G]

Then we can define an integral functor

Φ0 : Db coh[Y0/A] → Db coh[A2/G]
by

Φ0(−) = π[A2/G]∗(O[Z/G] ⊗ π∗[Y0/G](ϕ∗(−))) ,

and another functor
Ψ0 : Db coh[A2/G] → Db coh[Y0/A]

by
Ψ0(−) = ϕ∗(π[Y0/G]∗(O∨

[Z/G][2] ⊗ det ρNat ⊗ π∗
[A2/G](−))),
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where
O∨

[Z/G] = RHomO[Y0×A2/G](O[Z/G],O[Y0×A2/G]).
The functor Ψ0 is both left and right adjoint to Φ0 since

• the functor π[A2/G]∗ is right adjoint to π∗
[A2/G] and left adjoint to

π !
[A2/G](−) = π∗

[A2/G](−) ⊗ π∗[Y/G](ω[YG])[2] = π∗
[A2/G](−) ⊗ det ρNat[2] ,

• the functor π[Y0/G]∗ is right adjoint to π∗[Y0/G] and left adjoint to

π !
[Y0/G](−) = π∗[Y0/G](−) ⊗ π∗

[A2/G](ω[A2/G])[2] = π∗[Y0/G](−) ⊗ det ρNat[2] ,

• the functor − ⊗ O[Z/G] is both left and right adjoint to − ⊗ O∨
[Z/G], and

• the functor ϕ∗ is both left and right adjoint to ϕ∗.

By restricting G-actions to G0-actions and forgetting A-actions, we can also define the
functor Φ ′

0 : Db coh Y0 → Db coh[A2/G0] and its adjoint Ψ ′
0 in the same way as above,

which are equivalences by [KV00, BKR01].
Let α be any object of Db coh[Y0/A] and consider the adjunction morphism ν : α →

Ψ0Φ0(α). If we send the morphism ν by the pull-back functor

ϕ∗
A : Db coh[Y0/A] → Db coh Y0

along the morphism ϕA : Y0 → [Y0/A], then the resulting morphism ϕ∗
A(ν) is an isomorphism

in Db coh Y0 since Φ ′
0 and Ψ ′

0 are equivalences. Although the functor ϕ∗
A is not full, it is

faithful and this shows that the morphisms ν is an isomorphism. We can also show that the
adjunction morphism Φ0Ψ0(β) → β is an isomorphism for any object β of Db coh[A2/G] in
the same way, so that Φ0 and Ψ0 are equivalences. �

5. The root stack of a line bundle. For a line bundle L on a Deligne-Mumford stack
X and a positive integer r , the r-th root of L is the stack π : r

√L/X → X over X such that

• an object over a scheme T is a triple (ϕ,M, φ) consisting of a morphism ϕ : T → X
of stacks, a line bundle M on T , and an isomorphism φ : M⊗r ∼−→ ϕ∗L of line
bundles on T , and

• a morphism is a commutative diagram

T T ′

X

ϕ′′

ϕ ϕ′

and an isomorphism φ′′ : M⊗r ∼−→ ϕ′′∗M′⊗r making the diagram

M⊗r ϕ′′∗M′⊗r

ϕ∗L ∼= (ϕ′ ◦ ϕ′′)∗L

φ′′

φ ϕ′′∗(φ′)
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commute.

Let (M,Φ) be the universal object on r
√L/X , so that M is a line bundle on r

√L/D and
Φ : M⊗r → π∗L is an isomorphism of line bundles.

The structure morphism π : r
√L/X → X makes the root stack r

√L/X into an essentially
trivial gerb over X banded by μr , where μr is the kernel of the r-th power map Gm → Gm

between the multiplicative groups. This means that r
√L/X is the [pt/μr ]-bundle associated

with the principal Gm-bundle L := L \ (the zero section).
Now we prove Theorem 1.5:

PROOF OF THEOREM 1.5. For any coherent sheaf F on r
√L/X and any integer i, one

has the adjunction morphism π∗π∗(F ⊗ M⊗i ) → F ⊗ M⊗i , whose direct sum gives the
morphism

r−1⊕
i=0

π∗(π∗(F ⊗ M⊗(−i))) ⊗ M⊗i → F .(5.1)

Since this is a morphism of sheaves, one can work locally to show that it is an isomorphism.
Take an open set U ⊂ X where the line bundle L is trivial, so that the root stack is the trivial
gerb given by the direct productU×[pt/μr ] with the classifying stack. Then the sheaf M⊗i |U
corresponds to OU ⊗ρi under the equivalence coh(U×[pt/μr ]) ∼= (cohU)⊗(rep μr), where
rep μr is the category of finite-dimensional representations of μr and ρi is the representation
sending α ∈ μr to αi ∈ Gm. This immediately shows that (5.1) is an isomorphism. The same
local consideration also shows that (π∗ cohX ) ⊗ M⊗i for i = 0, . . . , r − 1 are mutually
orthogonal, and Theorem 1.5 is proved. �

6. The root stack of a line bundle with a section. Let (L, σ ) be a pair of a line
bundle L → X and a section σ : X → L. The stack r

√
(L, σ )/X of the r-th roots of (L, σ )

is the stack such that

• an object over T is a quadruple (ϕ,M, φ, τ ) consisting of an object (ϕ,M, φ) of
r
√L/X over T and a section τ of M such that φ(τ⊗r ) = ϕ∗σ , and

• a morphism is a morphism (ϕ′′, φ′′) of r
√L/X such that φ′′(τ ) = τ ′.

Assume that X is a smooth Deligne-Mumford stack and j : D → X is a closed embed-
ding of a smooth divisor. The canonical section of the line bundle O(D) associated with the
divisor D will be denoted by 1 ∈ Γ (O(D)). Let

r
√

(O(D), 1)/X
∣∣∣D ⊂ r

√
(O(D), 1)/X(6.1)

be the substack consisting of objects (ϕ,M, φ) such that the morphism ϕ : T → X factors
through j . There is a closed embedding

r
√
OD(D)/D ↪→ r

√
(O(D), 1)/X

∣∣∣D
sending an r-th root M of OD(D) to the same M together with the zero section. The com-
position of this morphism with the embedding (6.1) will be denoted by j , which fits into the



THE SPECIAL McKAY CORRESPONDENCE 601

commutative diagram
r
√OD(D)/D j−−−−→ r

√
(O(D), 1)/X

πD
⏐⏐� ⏐⏐�πX

D j−−−−→ X .

The universal line bundle on r
√

(O(D), 1)/X will be denoted by M.
The following proposition gives Theorem 1.6:

PROPOSITION 6.1.

(i) The functor j∗π∗
D : Db(cohD) → Db(coh r

√
(O(D), 1)/X ) is fully faithful if r > 1.

(ii) One has a semiorthogonal decomposition

Db coh r
√

(O(D), 1)/X = 〈j∗π∗
DDb(cohD) ⊗ M⊗r−1, . . . ,

j∗π∗
DDb(cohD) ⊗ M, π∗

XDb cohX 〉 .

PROOF. (i) For any objects α and β of Db(cohD) and any q ∈ Z, we show that the
natural morphism

(6.2) Homq(α, β) → Homq(j∗π∗
Dα, j∗π∗

Dβ) ∼= Homq(j∗j∗π∗
Dα, π∗

Dβ)

is an isomorphism. We may assume that α and β are sheaves. Then we have

(6.3) Hi(j∗j∗π∗
Dα) ∼=

⎧⎪⎪⎨
⎪⎪⎩

π∗
Dα i = 0 ,

π∗
Dα ⊗ M−1 i = −1 ,

0 otherwise .

If r > 1, Theorem 1.5 shows

Homq(π∗
Dα ⊗ M−1, π∗

Dβ) ∼= 0

and

Homq(π∗
Dα, π∗

Dβ) ∼= Homq(α, β)

for any q . It follows that the spectral sequence

Homp(H−q(j∗j∗π∗
Dα), π∗

Dβ) ⇒ Homp+q(j∗j∗π∗
Dα, π∗

Dβ)

degenerates and (6.2) is an isomorphism.
(ii) The subcategory π∗

X (Db(cohX )) is admissible since the functor π∗
X has both right

and left adjoints. The subcategories j∗π∗
DDb(cohD) ⊗ M⊗i are also admissible since the

functor j∗π∗
D has both left and right adjoints and the functor (−) ⊗ M⊗i is an equivalence.

We can deduce that j∗π∗
DDb(cohD)⊗M⊗i are right orthogonal to π∗

X (Db(coh X)) for
1 ≤ i ≤ r − 1 from

Hom(π∗
Xα, j∗(π∗

Dβ ⊗ M⊗i )) ∼= Hom(j∗π∗
Xα, π∗

Dβ ⊗ M⊗i )

∼= Hom(π∗
Dj∗α, π∗

Dβ ⊗ M⊗i )

= 0 ,
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where j : D → X is the closed immersion. Similarly, (6.3) implies

Hom(j∗π∗
Dα ⊗ M⊗k, j∗π∗

Dβ ⊗ M⊗l ) = 0

for 1 ≤ k < l ≤ r − 1.
It remains to show that any object E of Db coh r

√
(O(D), 1)/X is obtained from objects

of j∗π∗
D(Db cohD) ⊗ M⊗i for 1 ≤ i ≤ r − 1 and π∗

XDb cohX by taking shifts and cones.
Since πX is an isomorphism outside D, the mapping cone Cone(π∗

XπX ∗E → E) of the
adjunction morphism is supported on r

√OD(D)/D. It follows that E can be obtained from
π∗
XπX ∗E and an object supported on r

√OD(D)/D by taking cones.
An object supported on r

√OD(D)/D is obtained from objects of j∗Db coh r
√OD(D)/D

by taking cones, which in turn can be obtained from objects of j∗π∗
DDb(cohD) ⊗ M⊗i for

0 ≤ i ≤ r − 1 by Theorem 1.5. Finally, we have to show that an object of j∗π∗
DDb(cohD)

is obtained from objects of π∗
XDb cohX and j∗π∗

DDb(cohD) ⊗ M⊗i for 1 ≤ i ≤ r − 1. If
α is a sheaf in Db(cohD), then π∗

X j̄∗α has a filtration whose factors are j∗π∗
Dα ⊗ M⊗i for

0 ≤ i ≤ r − 1. Thus j∗π∗
Dα is obtained from π∗

X j̄∗α and j∗π∗
Dα ⊗ M⊗i for 1 ≤ i ≤ r − 1

by taking shifts and cones. This concludes the proof of Proposition 6.1. �

COROLLARY 6.2. If both X and D have full exceptional collections, then so does the
root stack r

√
(O(D), 1)/X .

7. Iterations of root constructions. A smooth Deligne-Mumford stack Y is said to
be canonical if the locus where the structure morphism Y → Y to the coarse moduli space Y

is not an isomorphism has codimension greater than one [FMN10, Definition 4.4]. The canon-
ical stack has the universal property [FMN10, Theorem 4.6] that any dominant codimension-
preserving morphism f : X → Y from a smooth stack X without generic stabilizers factors
through Y → Y uniquely up to unique 2-arrow;

X Y

Y .

∃!g

ε
f

For a variety X with at worst quotient singularities, there is a canonical stack X can whose
coarse moduli space is isomorphic to X, which is determined uniquely up to isomorphism
[FMN10, Remark 4.9]. For effective divisors D1, . . . ,Ds on X can and positive integers
r1, . . . , rs , the fiber product

X = r1
√

(O(D1), 1)/X can ×X can · · · ×X can
rs
√

(O(Ds ), 1)/X can ϕ−−−−→ X can(7.1)

is obtained by iterating root constructions [Cad07, Remark 2.2.5]. If we write the reduced
closed substack (ϕ−1(Di ))red as D̃i , then one has ϕ∗Di = riD̃i . The numbers (r1, . . . , rs) are
called the divisor multiplicities of X [FMN10, Remark 3.7]. If each Di is smooth and

∑
i Di

is a simple normal crossing divisor, then X and D̃i are smooth and
∑

i D̃i is a simple normal
crossing divisor [FMN10, Section 1.3.b].
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The following lemma can be proved in just the same way as (2) of [FMN10, Theorem
5.2]. We give a proof for the reader’s convinience.

PROPOSITION 7.1 (cf. [FMN10, Theorem 5.2]). Let X be a variety over C with at
worst quotient singularities, X can be its canonical stack, and

∑
i Di be an effective simple

normal crossing divisor on X can such that each irreducible component Di is smooth. Let fur-
ther (r1, . . . , rs) be a sequence of positive integers and X be the smooth Deligne-Mumford
stack obtained by iterated root constructions as in (7.1). Then X is characterized by the
following properties up to isomorphism:

• X is a smooth separated Deligne-Mumford stack without generic stabilizers.
• X has the same coarse moduli space as X can.
• The canonical morphism ϕ : X → X can is an isomorphism outside

⋃
i Di .

• The pull-back of Di is ri times a prime divisor.

PROOF. Let ϕ : X → X can be the stack obtained as in (7.1). Then it follows from
[BC10, Section 2.1] that X has the four properties in the statement.

Conversely, suppose f : X ′ → X can is an arbitrary smooth Deligne-Mumford stack with
the above properties. Then, by the universal property of the root stack, one has a morphism
g : X ′ → X with ϕ ◦ g = f . Since X ′ has the same coarse moduli space as X can, g is a
surjective morphism. Let S → X be an étale atlas and let Y be the fiber product of S and X ′
over X with the induced morphism g̃ : Y → S:

(7.2)

Y X ′

X can

S X

f

ϕ

g̃ g

STEP 1. g̃ is étale.

Let U → Y be an étale atlas. The morphism U → S is flat since U and S are smooth
and U → S has 0-dimensional fibers. It is also étale over X can \ ⋃

i Di by our assumption.
Moreover, the pull-back of a prime divisor of S to U is a reduced divisor and thus U → S is
unramified in codimension one. Therefore U → S is étale in codimension one. Then it must
be étale by the purity of the branch locus. This implies that g̃ is étale.

STEP 2. Y is an algebraic space.

The étale morphism g̃ : Y → S factors through the coarse moduli space Y of Y by our
assumption that S is a scheme. This implies that the morphism from Y to Y is unramified.
Take an étale covering {Yα → Y } of Y such that Y ×Y Yα is isomorphic to the quotient stack
[Uα/Γα], where Uα is a scheme for each α and Γα is a finite group acting on Uα [AV02,
Lemma 2.2.3]. By the unramifiedness of the morphism Y → Y , the quotient morphism
Uα → Uα/Γα is also unramified and hence the action of Γα on Uα is free. (Suppose a
subgroup H ⊂ Γα fixes a closed point P of Uα. Then the quotient morphism h : Uα → Uα/H
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is unramified and therefore H acts trivially on the tangent space of P . This implies that H

acts trivially on a neighbourhood of P . Since Y doesn’t have a generic stabilizer, H must be
trivial.) This implies that Y = Y is an algebraic space.

STEP 3. g̃ is an isomorphism.

Since g̃ is an étale surjective separeted morphism of algebraic spaces, the diagonal mor-
phism Δg̃ of g̃ is an open and closed immersion. Moreover, g̃ is an isomorphism over an open
dense subset of S and therefore Δg̃ is actually an isomorphism. This means that g̃ becomes
an isomorphism if we take a base change by g̃ itself. Since g̃ is étale surjective, g̃ is actually
an isomoprhism. This proves that g is an isomorphism. �

The following is the main result in this section:

PROPOSITION 7.2. Let X be a two-dimensional smooth separated Deligne-Mumford
stack without generic stabilizers. Assume that

• the canonical morphism ϕ : X → X can to the canonical stack X can of the coarse
moduli space X is an isomorphism outside a simple normal crossing divisor

∑
i Di

on X can,
• the pull-back ϕ∗Di is a multiple of a prime divisor, and
• each irreducible component Di is a smooth rational stack.

Then there exists an exceptional collection (E1, . . . , E�) and a semiorthogonal decomposition

(7.3) Db cohX = 〈E1, . . . , E�, ϕ
∗Db cohX can〉 .

PROOF. Put

X1 = r2
√

(O(D2), 1)/X can ×X can · · · ×X can
rs
√

(O(Ds ), 1)/X can

and let D ⊂ X1 be the prime divisor corresponding to D1. Then X is isomorphic to
r1
√

(O(D), 1)/X1 and one has a semiorthogonal decomposition

Db cohX = 〈j∗π∗
DDb(cohD) ⊗ M⊗r1−1, . . . , j∗π∗

DDb(cohD) ⊗ M, ϕ∗Db cohX1〉
by Proposition 6.1. Since D1 is a smooth rational curve and

∑
i Di is a simple normal cross-

ing divisor, the divisor D is smooth and its coarse moduli space is a smooth rational curve. It
follows that D is isomorphic to a weighted projective line in the sense of Geigle and Lenzing
[GL87], so that the derived category Db cohD and hence the right orthogonal to ϕ∗Db cohX1

in Db cohX has a full exceptional collection. Now the assertion follows from induction
on s. �

We end this section with the following lemma:

LEMMA 7.3. The stack [Y0/A] satisfies the assumption of Proposition 7.2.

PROOF. Y0 is isomorphic to the minimal resolution of A
2/G0, and let E = ⋃

i Di

be the exceptional divisor. The canonical morphism is clearly an isomorphism outside E,
which is a normal crossing divisor. Since A is a cyclic group whose action on Y0 has no
generic stabilizers, and E is a simple normal crossing divisor, the locus of [Y0/A] where the



THE SPECIAL McKAY CORRESPONDENCE 605

canonical morphism [Y0/A] → [Y0/A]can is not an isomorphism consists of disjoint union of
irreducible exceptional divisors. Each of these irreducible divisors are smooth rational curves,
and Lemma 7.3 is proved. �

8. Cyclic case of Theorem 1.4. Let X be a surface with at worst quotient singularities
and consider the diagram

Z q−−−−→ X
p

⏐⏐� ⏐⏐�π

Y
τ−−−−→ X

where X is the canonical stack associated with X, τ : Y → X is the minimal resolution, and
Z is the reduced part of the fiber product Y ×X X . We consider the integral functor

Φ := q∗ ◦ p∗ : Db(coh Y ) → Db(cohX ) ,

whose right adjoint will be denoted by Ψ .

PROPOSITION 8.1. Assume X has only cyclic quotient singularities. Then Φ is fully
faithful and there is a semiorthogonal decomposition

Db cohX = 〈E1, . . . , E�,Φ(Db coh Y )〉
where E1, . . . , E� is an exceptional collection.

PROOF. If X is the global quotient A2/G for a finite small subgroup G of GL2(C), the
proof of [Ish02, Theorem 3.1] shows that Z is the quotient stack of the universal subscheme in
Y ×A2 by the action of G under the identification of Y with G-Hilb(A2). Hence the assertion
in this case follows from Theorem 3.1.

In the general case, the composition Ψ ◦ Φ is an integral functor with respect to some
kernel object P on Y ×Y . By the local case above, P is etale locally the structure sheaf of the
diagonal. Hence the kernel of Ψ ◦ Φ is a line bundle on the diagonal, which implies that Φ

is fully faithful. Since the singularities of X are isolated, the semiorthogonal decomposition
comes from local contributions around each singular points, where the assertion holds by the
global quotient case above. �

This yields Step 4 in Introduction.

9. Proofs of Theorem 1.3 and Theorem 1.4. To prove Theorem 1.3, it remains to
show the isomorphism of functors between

Φ ′ : Db coh Y → Db coh[A2/G]
and the composition

Db coh Y
Φ3−−→ Db coh Y2

Φ2−−→ Db cohY1
Φ1−−→ Db coh[Y0/A] Φ0−−→ Db coh[A2/G] .

It suffices to show that the functor Φ0 ◦ Φ1 ◦ Φ2 is isomorphic to the functor defined by the
universal family parameterized by the moduli space Y2 = A -Hilb(G0 -Hilb(A2)). Since Φ2 is
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the integral functor defined by the kernel object O(Y2×Y1Y1)red and Φ1 is the pull-back functor,
Φ1 ◦ Φ2 is an integral functor whose kernel object is the pull-back of O(Y2×Y1Y1)red by the flat
morphism Y2 ×[Y0/A] → Y2 ×Y1. This object is isomorphic to O(Y2×[Y0/A])red and therefore
Φ1 ◦ Φ2 is isomorphic to the functor defined by the universal family of Y2 = A-Hilb(Y0).
Then by [IINdC13, Lemma 2.2], Φ0 ◦ Φ1 ◦ Φ2 is isomorphic to the functor defined by the
universal family parameterized by the moduli space Y2 = A-Hilb(G0-Hilb(A2)).

To prove Theorem 1.4, we want to replace Theorem 3.1 with Theorem 1.3 in the proof
of Proposition 8.1. In order to do that, consider the resolution τ2 : Y2 → X obtained by
successively blowing up Y so that it is isomorphic to A-Hilb(G0-Hilb(A2)) over an etale
neighbourhood of a singular point of X (whose corresponding point in X has stabilizer group
G). Let Z̃ be the reduced part of the fiber product Y2 ×X X . By the lemma below, for each
singular point P of X whose neighbourhood is the quotient by a group GP ⊂ GL(2,C), there
is a sheaf FP on Y2 × X supported on τ−1(P ) × BGP with an extension

0 → OZ̃ → E →
⊕
P

FP → 0

such that E is isomorphic to the universal family parameterized by A-Hilb(G0-Hilb(A2)) for
G = GP in an etale neighbourhood of each P . If we define Φ as the integral functor whose
kernel object is E , then we can argue as in the proof of Proposition 8.1 to obtain Theorem 1.4.

LEMMA 9.1. Consider the local situation X = A2/G with Y = G-Hilb(A2) and
Y2 = A-Hilb(G0-Hilb(A2)). Let Z̃ be the reduced part of the figer product Y2 ×X A2 and let
E be the universal family parameterized by Y2. Then there is an exact sequence

0 → OZ̃ → E → F → 0

where F is a G-equivariant coherent sheaf on Y2 × A
2 supported on τ−1

2 (0) × {0}.
PROOF. The universal sheaf E is the structure sheaf of the reduced part of the fiber

product Y2 ×Y1 Y0 ×A2/G0
A2 and there is a morphism Y2 ×Y1 Y0 ×A2/G0

A2 → Z which
implies a map OZ̃ → E . It is an isomorphism over the smooth locus of X and since OZ̃ is
torsion-free as a coherent sheaf of OY2 -modules, this map is injective. �

10. Invertible polynomials. Let n be a positive integer. An integer n × n-matrix
A = (aij )

n
i,j=1 with non-zero determinant gives a polynomial W ∈ C[x1, . . . , xn] by

W =
n∑

i=1

x
ai1
1 · · · xain

n .

Non-zero coefficients of W can be absorbed by rescaling xi . A polynomial obtained in this
way is called an invertible polynomial if it has an isolated critical point at the origin. Invertible
polynomials play essential role in transposition mirror symmetry of Berglund and Hübsch
[BH93], which has attracted much attention recently (cf. e.g. [Bor13, CR11, Kra, Tak10] and
references therein). The quotient ring R = C[x1, . . . , xn]/(W) is naturally graded by the
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abelian group L generated by n + 1 elements �xi and �c with relations

ai1 �x1 + · · · + ain �xn = �c , i = 1, . . . , n .

The abelian group L is the group of characters of K defined by

K = {(α1, . . . , αn) ∈ (C×)n | α
a11
1 · · ·αa1n

n = · · · = α
an1
1 · · · αann

n } .

The group Gmax of maximal diagonal symmetries is defined as the kernel of the map

K → C×
∈ ∈

(α1, . . . , αn) �→ α
a11
1 · · · αa1n

n ,

so that there is an exact sequence

1 → Gmax → K → C
× → 1

of abelian groups. Let

X = [(W−1(0) \ {0})/K]
be the quotient stack of W−1(0) \ {0} by the natural action of K . It is a smooth Deligne-
Mumford stack since W has an isolated critical point at the origin and the action of K at any
point in W−1(0) \ {0} has a finite isotropy group.

LEMMA 10.1. The coarse moduli space of X is a rational variety. Moreover, each
codimension one irreducible component of the locus where X has non-trivial stabilizers is
also rational and these components form a simple normal crossing divisor.

PROOF. Since the K-action on (C×)n is free, the open dense substack

U = [(W−1(0) ∩ (C×)n)/K]
of X is a scheme, which is an affine linear subspace of

[(C×)n/K] ∼= (C×)n−1

considered as an open subscheme of Cn−1. This shows that X is rational. A divisor with a
non-trivial generic stabilizer is the closure of either

W−1(0) ∩ {xi = 0} ∩ {xk �= 0 for k �= i}
for some i or

{xi = xj = 0} ∩ {xk �= 0 for k �= i, j }
for some i �= j . (If {xi = xj = 0} is not contained in W−1(0), then W−1(0) ∩ {xi = xj = 0}
has codimension greater than one.) The quotient of the former also contains an affine subspace
of a tours, and the quotient of the latter is a toric stack. Hence they are rational.

Since the stabilizer group of any point on X are abelian and therefore locally diago-
nalizable, the union of such divisors has normal crossings. Moreover, at each point on the
union, different local components have different stabilizer subgroups in K . Hence the union
has simple normal crossings. �
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Now assume n = 4 so that dimX = 2 and let Y be the minimal resolution of the coarse
moduli space of X . Since Y is a rational surface, one has a full exceptional collection on Y by
Orlov [Orl92]. Let X can be the canonical stack associated with the coarse moduli space of X .
Then Theorem 1.4 gives a full exceptional collection on X can. Since X can be obtained by
successive root constructions from X can, Proposition 7.2 and Lemma 10.1 give the following:

THEOREM 10.2. The two-dimensional Deligne-Mumford stack associated with an in-
vertible polynomial in four variables has a full exceptional collection.

REFERENCES

[AGV08] D. ABRAMOVICH, T. GRABER AND A. VISTOLI, Gromov-Witten theory of Deligne-Mumford stacks,
Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR2450211 (2009k:14108)

[Aus86] M. AUSLANDER, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986),
no. 2, 511–531. MR816307 (87e:16073)

[AV02] D. ABRAMOVICH AND A. VISTOLI, Compactifying the space of stable maps, J. Amer. Math. Soc. 15
(2002), no. 1, 27–75 (electronic). MR1862797 (2002i:14030)

[BC10] A. BAYER AND C. CADMAN, Quantum cohomology of [CN /μr ], Compos. Math. 146 (2010), no. 5,
1291–1322. MR2684301 (2012d:14095)

[BCS05] L. A. BORISOV, L. CHEN AND G. G. SMITH, The orbifold Chow ring of toric Deligne-Mumford stacks,
J. Amer. Math. Soc. 18 (2005), no. 1, 193–215 (electronic). MR2114820 (2006a:14091)

[BD08] I. BURBAN AND Y. DROZD, Maximal Cohen-Macaulay modules over surface singularities, Trends in
representation theory of algebras and related topics, 101–166, EMS Ser. Congr. Rep., Eur. Math. Soc.,
Zürich, 2008. MR2484725 (2010a:13017)

[BH93] P. BERGLUND AND T. HÜBSCH, A generalized construction of mirror manifolds, Nuclear Phys. B 393
(1993), no. 1–2, 377–391. MR1214325 (94k:14031)

[BH09] L. BORISOV AND Z. HUA, On the conjecture of King for smooth toric Deligne-Mumford stacks, Adv.
Math. 221 (2009), no. 1, 277–301. MR2509327

[BKR01] T. BRIDGELAND, A. KING AND M. REID, The McKay correspondence as an equivalence of derived
categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554 (electronic). MR1824990 (2002f:14023)

[BO] A. BONDAL AND D. ORLOV, Semiorthogonal decomposition for algebraic varieties, arXiv:alg-
geom/9506012.

[Bor13] L. A. BORISOV, Berglund-Hübsch mirror symmetry via vertex algebras, Comm. Math. Phys. 320 (2013),
no. 1, 73–99. MR3046990

[Cad07] C. CADMAN, Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007), no. 2,
405–427. MR2306040 (2008g:14016)

[CR11] A. CHIODO AND Y. RUAN, LG/CY correspondence: the state space isomorphism, Adv. Math. 227
(2011), no. 6, 2157–2188. MR2807086

[Cra11] A. CRAW, The special McKay correspondence as an equivalence of derived categories, Quarterly Journal
of Mathematics 62 (2011), 573–591, arXiv:0704.3627.

[Esn85] H. ESNAULT, Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985),
63–71. MR809966 (87e:14033)

[FMN10] B. FANTECHI, E. MANN AND F. NIRONI, Smooth toric Deligne-Mumford stacks, J. Reine Angew.
Math. 648 (2010), 201–244. MR2774310

[GL87] W. GEIGLE AND H. LENZING, A class of weighted projective curves arising in representation theory of
finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht,
1985), 265–297, Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, MR915180 (89b:14049)



THE SPECIAL McKAY CORRESPONDENCE 609

[IINdC13] A. ISHII, Y. ITO AND Á. NOLLA DE CELIS, On G/N -Hilb of N -Hilb, Kyoto J. Math. 53 (2013), no. 1,
91–130. MR3049308

[IN99] Y. ITO AND I. NAKAMURA, Hilbert schemes and simple singularities, New trends in algebraic geometry
(Warwick, 1996), 151–233, London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press,
Cambridge, 1999. MR1714824 (2000i:14004)

[Ish02] A. ISHII, On the McKay correspondence for a finite small subgroup of GL(2,C), J. Reine Angew. Math.
549 (2002), 221–233. MR1916656 (2003d:14021)

[IT13] O. IYAMA AND R. TAKAHASHI, Tilting and cluster tilting for quotient singularities, Math. Ann. 356
(2013), no. 3, 1065–1105. MR3063907

[Kaw05] Y. KAWAMATA, Log crepant birational maps and derived categories, J. Math. Sci. Univ. Tokyo 12 (2005),
no. 2, 211–231. MR2150737 (2006a:14021)

[Kaw06] Y. KAWAMATA, Derived categories of toric varieties, Michigan Math. J. 54 (2006), no. 3, 517–535.
MR2280493 (2008d:14079)

[Kaw13] Y. KAWAMATA, Derived categories of toric varieties II, Michigan Math. J. 62 (2013), no. 2, 353–363.
MR3079267

[Kra] M. KRAWITZ, FJRW rings and Landau-Ginzburg mirror symmetry, arXiv:0906.0796.
[KV00] M. KAPRANOV AND E. VASSEROT, Kleinian singularities, derived categories and Hall algebras, Math.

Ann. 316 (2000), no. 3, 565–576. MR1752785 (2001h:14012)
[Nak01] I. NAKAMURA, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), no. 4, 757–779.

MR1838978 (2002d:14006)
[Orl92] D. O. ORLOV, Projective bundles, monoidal transformations, and derived categories of coherent sheaves,

Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 4, 852–862. MR1208153 (94e:14024)
[Tak10] A. TAKAHASHI, Weighted projective lines associated to regular systems of weights of dual type, New

developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008),
371–388, Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010. MR2683215

[vdB04a] M. VAN DEN BERGH, Non-commutative crepant resolutions, The legacy of Niels Henrik Abel, 749–770,
Springer, Berlin, 2004, MR2077594 (2005e:14002)

[VdB04b] M. VAN DEN BERGH, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004),
no. 3, 423–455. MR2057015 (2005e:14023)

[Wem11] M. WEMYSS, The GL(2,C) McKay correspondence, Math. Ann. 350 (2011), no. 3, 631–659.
MR2805639 (2012f:14022)

[Wun87] J. WUNRAM, Reflexive modules on cyclic quotient surface singularities, Singularities, representation of
algebras, and vector bundles (Lambrecht, 1985), 221–231, Lecture Notes in Math., vol. 1273, Springer,
Berlin, 1987. MR915177 (88m:14023)

[Wun88] J. WUNRAM, Reflexive modules on quotient surface singularities, Math. Ann. 279 (1988), no. 4, 583–
598. MR926422 (89g:14029)

DEPARTMENT OF MATHEMATICS

GRADUATE SCHOOL OF SCIENCE

HIROSHIMA UNIVERSITY

1–7–1 KAGAMIYAMA

739–8521 HIGASHI-HIROSHIMA

JAPAN

E-mail address: akira141@hiroshima-u.ac.jp

DEPARTMENT OF MATHEMATICS

GRADUATE SCHOOL OF SCIENCE

OSAKA UNIVERSITY

MACHIKANEYAMA 1–1, TOYONAKA

560–0043 OSAKA

JAPAN

E-mail address: kazushi@math.sci.osaka-u.ac.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


