ON THE QUATERNIONIC MANIFOLDS WHOSE TWISTOR SPACES ARE FANO MANIFOLDS

Radu Pantilie

(Received March 19, 2014, revised May 29, 2014)

Abstract

Let M be a quaternionic manifold, $\operatorname{dim} M=4 k$, whose twistor space is a Fano manifold. We prove the following: (a) M admits a reduction to $\mathrm{Sp}(1) \times \mathrm{GL}(k, \mathbb{H})$ if and only if $M=\mathbb{H} P^{k}$, (b) either $b_{2}(M)=0$ or $M=\operatorname{Gr}_{2}(k+2, \mathbb{C})$.

This generalizes results of S. Salamon and C. R. LeBrun, respectively, who obtained the same conclusions under the assumption that M is a complete quaternionic-Kähler manifold with positive scalar curvature.

1. Introduction. An almost quaternionic structure on a manifold M is a reduction of its frame bundle to $\operatorname{Sp}(1) \cdot \mathrm{GL}(k, \mathbb{H})$. Then the obstruction for M to admit a 'reduction' to $\operatorname{Sp}(1) \times \operatorname{GL}(k, \mathbb{H})$ is an element of $H^{2}\left(M, \mathbb{Z}_{2}\right)$ [8]. Equivalently, this is the second Stiefel-Whitney class of the oriented Riemannian vector bundle Q induced by the Lie groups morphism $\operatorname{Sp}(1) \cdot \mathrm{GL}(k, \mathbb{H}) \rightarrow \mathrm{SO}(3), \pm(a, A) \mapsto \pm a$.

If $\operatorname{dim} M \geq 8$ then the almost quaternionic structure is integrable if there exists a torsion free connection on M which is compatible (with the structural group) [12]. Equivalently (see [3]), there exists a compatible connection ∇ on M such that the almost complex structure induced by ∇ on the sphere bundle Z of Q is integrable. Then the complex manifold Z is the twistor space of M and the fibres of $\pi: Z \rightarrow M$ are the 'real' twistor lines; furthermore, Z is endowed with a conjugation (given by the antipodal map on the fibres of π). Conversely, Z together with its conjugation and a real twistor line determines M (see [9]). Furthermore, by [12] and [10], there exists a holomorphic line bundle \mathcal{L} over Z whose restriction to any twistor line has Chern number 2. It follows quickly that M admits a reduction to $\operatorname{Sp}(1) \times \operatorname{GL}(k, \mathbb{H})$ if and only if \mathcal{L} admits a square root.

Further natural restrictions can be obtained by assuming that there exists a Riemannian metric on M for which the holonomy group of its Levi-Civita connection is contained by $\mathrm{Sp}(1) \cdot \mathrm{Sp}(k)$; then M is called quaternionic-Kähler. It follows [11] that any quaternionicKähler manifold is an Einstein manifold, and, assuming, further, completeness and the scalar curvature positive, the corresponding twistor space is a Fano manifold. Also, by [11, Theorem 6.3], $\mathbb{H} P^{k}$ is the only such quaternionic-Kähler manifold which admits a reduction to $\operatorname{Sp}(1) \times$ $\mathrm{GL}(k, \mathbb{H})$.

[^0]Another result, in the same vein, is [7] that for any complete quaternionic-Kähler manifold M with positive scalar curvature we have that either its second Betti number $b_{2}(M)$ is zero, or M is the Grassmannian $\operatorname{Gr}_{2}(k+2, \mathbb{C})$, where, as above, $\operatorname{dim} M=4 k$.

In this paper, we generalize these two results of [11] and [7], respectively, to the class of quaternionic manifolds whose twistor spaces are Fano manifolds.

I am very grateful to Paltin Ionescu for an illuminating exchange of e-mail messages, during which he generously provided, for example, the proof of Proposition 2.3. I am, also, grateful to Liviu Ornea and to Victor Vuletescu for useful comments on a preliminary version of the paper.
2. The results. As the four-dimensional case was elucidated in [2], we consider only quaternionic manifolds of dimension at least 8 .

The following result generalizes [11, Theorem 6.3].
THEOREM 2.1. Let M be a quaternionic manifold, $\operatorname{dim} M=4 k \geq 8$, which admits a reduction to $\mathrm{Sp}(1) \times \mathrm{GL}(k, \mathbb{H})$; denote by Z the twistor space of M.

Then the following assertions are equivalent:
(i) $M=\mathbb{H} P^{k}$;
(ii) M is simply-connected, $b_{2}(M)=0$ and Z is projective (that is, Z can be embedded as a compact complex submanifold of a complex projective space);
(iii) Z is a Fano manifold (that is, Z is compact and its anticanonical line bundle is ample).

Proof. It is obvious that if (i) holds then both (ii) and (iii) are statisfied, as $Z=$ $\mathbb{C} P^{2 k+1}$ and $M=\mathbb{H} P^{k}$.

Further, as the restriction of the holomorphic cotangent bundle to each twistor line is $\mathcal{O}(-2) \oplus 2 k \mathcal{O}(-1)$, where $\mathcal{O}(-1)$ is the tautological line bundle, essentially the same proof as for [2, Proposition 2.2(ii)] implies that any holomorphic form of positive degree on Z is zero. Consequently, if Z is projective, from the exact sequence of cohomology groups associated to the exact sequence of complex Lie groups $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\} \rightarrow 0$ (determined by the exponential) we deduce that the $\operatorname{Picard} \operatorname{group} \operatorname{Pic}(Z)$ is isomorphic to $H^{2}(Z, \mathbb{Z})$. Furthermore, if (ii) holds then, also, Z is simply-connected (by the homotopy exact sequence determined by the smooth bundle $Z \rightarrow M$), and, hence, $\operatorname{Pic}(Z)$ has no torsion. Also, as $b_{2}(Z)=b_{2}(M)+1($ see $[7]), \operatorname{Pic}(Z)$ has rank 1 . We have, thus, proved that $\operatorname{Pic}(Z)$ is isomorphic to \mathbb{Z}.

Let \mathcal{L} be the restriction to Z of the dual of the tautological line bundle over the complex projective space in which Z is embedded. As both the restriction of \mathcal{L} and of the anticanonical line bundle K_{Z}^{*} of Z, to a twistor line, are positive we deduce that $\left(K_{Z}^{*}\right)^{p}=\mathcal{L}^{q}$, for some positive integers p and q. Thus, also $\left(K_{Z}^{*}\right)^{p}$ is very ample, and (ii) \Longrightarrow (iii) is proved.

To complete the proof it is sufficient to show that $($ iii $) \Longrightarrow$ (i). We claim that, if (iii) holds, there exists a holomorphic line bundle \mathcal{L} over Z such that:
(a) \mathcal{L} is ample;
(b) \mathcal{L} restricted to each twistor line is (isomorphic to) $\mathcal{O}(1)$.

Indeed, from the assumption that M admits a reduction to $\operatorname{Sp}(1) \times \mathrm{GL}(k, \mathbb{H})$, by [12] and [10] there exists a holomorphic line bundle \mathcal{L}_{1} over Z which satisfies condition (b), above; moreover, \mathcal{L}_{1} is endowed with a morphism of (real) vector bundles whose square is -1 and which is an anti-holomorphic diffeomorphism covering the conjugation of Z (given, on each fibre of $Z \rightarrow M$, by the antipodal map). We shall show that after tensorising, if necessary, \mathcal{L}_{1} with a holomorphic line bundle, whose restriction to each twitor line is trivial, we obtain a line bundle satisfying (a).

For this, firstly, note that $K_{Z}^{*}\left(=\Lambda_{\mathbb{C}}^{2 k+1} T Z\right)$ restricted to each twistor line is $\mathcal{O}(2 k+2)$. Hence, $K_{Z} \otimes \mathcal{L}_{1}^{2 k+2}$ restricted to each twistor line is trivial; moreover, this holomorphic line bundle is endowed with a conjugation (that is, an involutive morphism of vector bundles which is an anti-holomorphic diffeomorphism) covering the conjugation of Z. Therefore $K_{Z} \otimes \mathcal{L}_{1}^{2 k+2}$ corresponds, through the Ward transform, to a (real) line bundle L over M endowed with an anti-self-dual connection (that is, a connection whose curvature form is such that its $(0,2)$ part, with respect to any admissible linear complex structure on M, is zero).

As M is simply-connected (because Z is Fano and therefore simply-connected, and the fibres of the projection $Z \rightarrow M$ are connected), L is orientable and, hence, there exists a line bundle L_{1} such that $L=L_{1}^{2 k+2}$; furthermore, this isomorphism is connection preserving with respect to a unique anti-self-dual connection on L_{1}. Hence, L_{1} corresponds to a holomorphic line bundle \mathcal{L}_{2} over Z whose restriction to each twistor line is trivial, and such that $K_{Z} \otimes$ $\mathcal{L}_{1}^{2 k+2}=\mathcal{L}_{2}^{2 k+2}$.

Thus, since K_{Z}^{*} is ample, $\mathcal{L}=\mathcal{L}_{1} \otimes \mathcal{L}_{2}^{*}$ satisfies (a) and (b), above. Moreover, \mathcal{L} is endowed with a morphism of vector bundles τ whose square is -1 and which is an antiholomorphic diffeomorphism covering the conjugation of Z. Hence, τ induces a linear complex structure J on $H^{0}(Z, \mathcal{L})$ which anti-commutes with its canonical complex structure.

By [4, Corollary 2.4], Z is a complex projective space and the twistor lines are just the complex projective lines; moreover, Z is the projectivisation of the dual of $H^{0}(Z, \mathcal{L})$. Furthermore, J induces on the dual E of $H^{0}(Z, \mathcal{L})$ a linear quaternionic structure with respect to which the fibres of $Z \rightarrow M$ are those complex projective lines obtained through the complex projectivisation of the quaternionic vector subspaces of E of real dimension 4. Thus, $Z=P E, M$ is the quaternionic projective space $P_{\mathbb{H}} E$, and $Z \rightarrow M$ is the canonical projection $P E \rightarrow P_{\mathbb{H}} E$. The proof is complete.

The following result generalizes [7, Theorem 1].
Theorem 2.2. Let M be a quaternionic manifold, $\operatorname{dim} M=4 k \geq 8$, whose twistor space is a Fano manifold.

Then either $b_{2}(M)=0$ or $M=\operatorname{Gr}_{2}(k+2, \mathbb{C})$.
Proof. Let Z be the twistor space of M. Similarly to the proof of Theorem 2.1, we obtain a holomorphic line bundle \mathcal{L} over Z such that $\mathcal{L}^{k+1}=K_{Z}^{*}$. Furthermore, \mathcal{L} admits a square root if and only if M admits a reduction to $\operatorname{Sp}(1) \times \mathrm{GL}(k, \mathbb{H})$. Therefore, by Theorem
2.1, either $M=\mathbb{H} P^{k}$ or $k+1$ is the greatest natural number n for which K_{Z}^{*} admits an n-th root. From now on, in this proof, we shall assume that the latter holds.

Now, just like in the proof of [7, Theorem 1], by using [13], we obtain that if $b_{2}(M) \neq 0$ then one of the following three statements holds:
(i) $Z=\mathbb{C} P^{k} \times Q_{k+1}$, where Q_{k+1} is the nondegenerate hyperquadric in $\mathbb{C} P^{k+2}$,
(ii) Z is the projectivisation of the holomorphic cotangent bundle of $\mathbb{C} P^{k+1}$,
(iii) Z is $\mathbb{C} P^{2 k+1}$ blown up along $\mathbb{C} P^{k-1}$.

The fact that (i) cannot occur is a consequence of Proposition 2.3, below.
In the remaining two cases, it follows that M can be locally identified (through quaternionic diffeomorphisms) with $\operatorname{Gr}_{2}(k+2, \mathbb{C})$ or with $\mathbb{H} P^{k}$, respectively. By using that M is compact and simply-connected, a standard argument shows that either $M=\operatorname{Gr}_{2}(k+2, \mathbb{C})$ or $M=\mathbb{H} P^{k}$. As the latter leads to a contradiction, the proof is complete.

The following result, also interesting in itself, was used in the proof of Theorem 2.2.
Proposition 2.3 ([6]). Let Q_{k+1} be the nondegenerate hyperquadric in $\mathbb{C} P^{k+2}$. Then no open subset of $\mathbb{C} P^{k} \times Q_{k+1}$ can be the twistor space of a quaternionic manifold.

Proof. We shall prove that $Y=\mathbb{C} P^{k} \times Q_{k+1}$ does not admit an embedded Riemann sphere whose normal bundle is $2 k \mathcal{O}(1)$. Indeed, let L_{1} and L_{2} be the restrictions to $\mathbb{C} P^{k}$ and Q_{k+1} of the duals of the tautological line bundles on $\mathbb{C} P^{k}$ and $\mathbb{C} P^{k+2}$, respectively. We have that both L_{1} and L_{2} are very ample and, also, $K_{\mathbb{C} P}^{*}=\left(L_{1}\right)^{k+1}, K_{Q_{k+1}}^{*}=\left(L_{2}\right)^{k+1}$ (for the latter, use the adjunction formula mentioned in [1, p. 147]). Thus, on denoting by π_{1} and π_{2} the projections from Y onto its factors, respectively, we obtain that, also, $L=\pi_{1}^{*} L_{1} \otimes \pi_{2}^{*} L_{2}$ is very ample, and $K_{Y}^{*}=L^{k+1}$. Therefore if Y would admit an embedded Riemann sphere t whose normal bundle is $2 k \mathcal{O}(1)$ then $\left.L\right|_{t}=\mathcal{O}(2)$. On embedding Y into the projectivisation of the dual of $H^{0}(Y, L)$, we obtain that t has degree two and therefore it is a conic. It follows that any two points of Y are joined by a conic. But, according to [5], Y cannot have this property, thus completing the proof.

References

[1] P. A. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1978.
[2] N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981), 133-150.
[3] S. Ianuş, S. Marchiafava, L. Ornea and R. Pantilie, Twistorial maps between quaternionic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), 47-67.
[4] P. Ionescu, Birational geometry of rationally connected manifolds via quasi-lines, Projective varieties with unexpected properties, 317-335, Walter de Gruyter GmbH \& Co. KG, Berlin, 2005.
[5] P. Ionescu and F. Russo, Conic-connected manifolds, J. Reine Angew. Math. 644 (2010), 145-157.
[6] P. IONESCU, Private correspondence.
[7] C. R. LeBrun, On the topology of quaternionic manifolds, Twistor Newsletter 32 (1991), 6-7.
[8] S. Marchiafava and G. Romani, Sui fibrati con struttura quaternionale generalizzata, Ann. Mat. Pura Appl. (4) 107 (1976), 131-157.
[9] R. Pantilie, On the twistor space of a (co-)CR quaternionic manifold, New York J. Math. 20 (2014), 959971.
[10] H. Pedersen, Y. S. Poon and A. F. SWann, Hypercomplex structures associated to quaternionic manifolds, Differential Geom. Appl. 9 (1998), 273-292.
[11] S. SALAMON, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171.
[12] S. SALAMON, Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. (4) 19 (1986), 31-55.
[13] J. A. Wieśniewski, On Fano manifolds of large index, Manuscripta Math. 70 (1991), 145-152.

Institutul de Matematică "Simion Stoilow" al Academiei Române
C.P. 1-764, 014700, BUCUREŞTI

RomÂNIA
E-mail address: radu.pantilie@imar.ro

[^0]: 2010 Mathematics Subject Classification. Primary 53C28, Secondary 53C26.
 Key words and phrases. Quaternionic manifolds.

