MULTIPLE AND NODAL SOLUTIONS FOR NONLINEAR EQUATIONS WITH A NONHOMOGENEOUS DIFFERENTIAL OPERATOR AND CONCAVE-CONVEX TERMS

M. E. Filippakis, D. O’Regan and N. S. Papageorgiou

(Received April 3, 2013, revised November 25, 2013)

Abstract

In this paper we consider a nonlinear parametric Dirichlet problem driven by a nonhomogeneous differential operator (special cases are the p-Laplacian and the (p, q) differential operator) and with a reaction which has the combined effects of concave ($(p-$ $1)$-sublinear) and convex (($p-1$)-superlinear) terms. We do not employ the usual in such cases AR-condition. Using variational methods based on critical point theory, together with truncation and comparison techniques and Morse theory (critical groups), we show that for all small $\lambda>0$ (λ is a parameter), the problem has at least five nontrivial smooth solutions (two positive, two negative and the fifth nodal). We also prove two auxiliary results of independent interest. The first is a strong comparison principle and the second relates Sobolev and Hölder local minimizers for C^{1} functionals.

1. Introduction. Let $\Omega \subseteq \boldsymbol{R}^{n}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this paper, we study the following nonlinear parametric Dirichlet problem:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a(D u(z))=\lambda|u(z)|^{q-2} u(z)+f(z, u(z)) \text { in } \Omega,\right. \tag{1}\\
\left.u\right|_{\partial \Omega}=0, \quad \lambda>0 .
\end{array}\right\}
$$

Here the map $a: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ involved in the differential operator of (1), is strictly monotone and satisfies certain regularity conditions (see hypotheses H_{0}). The p-Laplacian ($p>1$) defined by $\Delta_{p} u=\operatorname{div}\left(\|D u\|^{p-2} D u\right)$ for all $u \in W_{0}^{1, p}(\Omega)$ and the (p, τ)-differential operator $(2 \leq \tau<p)$ defined by $\Delta_{p} u+\mu \Delta_{\tau} u$ for all $u \in W_{0}^{1, p}(\Omega)$ with $\mu \geq 0$, are special cases of the differential operator in problem (1). We stress that the differential operator in (1) need not be homogeneous and this is the source of many technical difficulties. In (1), $q \in(1, p)$ and so the first term in the right-hand side of (1) is "concave" (i.e., ($p-1$)-sublinear). On the other hand, for $f(z, x)$ we assume that it is a Caratheodory function (i.e., for all $x \in \boldsymbol{R}$ $x \rightarrow f(z, x)$ is measurable and for a.e. $z \in \Omega x \rightarrow f(z, x)$ is continuous), which exhibits ($p-1$)-superlinear growth near $\pm \infty$ in the x-variable. So, in the reaction of problem (1) we have the combined effects of "concave" and "convex" nonlinearities and a special case of the right-hand side of (1), is the following function which we encounter in the literature

$$
g(x, \lambda)=\lambda|x|^{q-2} x+|x|^{r-2} x \quad \text { with } 1<q<p<r<p^{*},
$$

[^0]where
\[

p^{*}=\left\{$$
\begin{array}{ll}
\frac{N p}{N-p} & \text { if } p<N \\
+\infty & \text { if } p \geq N
\end{array}
$$\right. (the critical Sobolev exponent).
\]

This particular reaction can be found in the semilinear works (i.e., equations driven by the Laplacian) of Ambrosetti-Brezis-Cerami [2], Bartsch-Willem [5] and Tang [31], who focus on the existence and multiplicity of positive solutions. Their work was extended to equations driven by the p-Laplacian by Garcia Azorero-Manfredi-Peral Alonso [15], Guo-Zhang [20] and Kyritsi-Papageorgiou [23].

In this paper, using a combination of variational methods based on critical point theory, with suitable truncation and comparison techniques and with Morse Theory (critical groups), we produce five nontrivial smooth solutions and provide precise sign information for all of them (two positive, two negative and the fifth is nodal (sign changing)). We mention that all previous results concerning the existence of nodal solutions, deal with equations driven by the Laplacian or p-Laplacian and the reaction satisfies the well known Ambrosetti-Rabinowitz condition (AR-condition for short), see Bartsch-Liu-Weth [4], Dancer-Du [10] and Filippakis-Kristaly-Papageorgiou [14]. The fact that the differential operator in problem (1) is not homogeneous, does not allow the use of the techniques employed in the aforementioned papers. It seems that our result here is the first one on the existence of nodal solutions for nonlinear equations driven by a nonhomogeneous differential operator.
2. Mathematical background. In this section, we briefly review the main mathematical tools which we will use in the sequel. We also prove two auxiliary results, which are of independent interest. So, let X be a Banach space and X^{*} its topological dual. By $\langle\cdot, \cdot\rangle$, we denote the duality brackets for the pair $\left(X, X^{*}\right)$. Let $\varphi \in C^{1}(X)$. We say that φ satisfies the "Cerami condition" (the " C -condition" for short), if the following holds "every sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left\{\varphi\left(x_{n}\right)\right\}_{n \geq 1} \subseteq \boldsymbol{R}$ is bounded and $\left(1+\left\|x_{n}\right\|\right) \varphi^{\prime}\left(x_{n}\right) \rightarrow 0$ in X^{*} as $n \rightarrow \infty$, admits a strongly convergent subsequence."

This compactness type condition, is in general weaker that the usual Palais-Smale condition (PS-condition for short). However, the C-condition suffices to prove a deformation theorem and from it derive the minimax theory for certain critical values of $\varphi \in C^{1}(X)$ (see, for example, Papageorgiou-Kyritsi [29]). In particular, we have the following result, known in the literature as the "mountain pass theorem."

Theorem 2.1. If $\varphi \in C^{1}(X)$ satisfies the C-condition, $x_{0}, x_{1} \in X, \rho>0, \| x_{1}-$ $x_{0} \|>\rho$

$$
\max \left\{\varphi\left(\mathrm{x}_{0}\right), \varphi\left(\mathrm{x}_{1}\right)\right\}<\inf \left[\varphi(\mathrm{x}) ;\left\|\mathrm{x}-\mathrm{x}_{0}\right\|=\rho\right]=\eta_{\rho}
$$

and $c=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} \varphi(\gamma(t))$, where $\Gamma=\left\{\gamma \in C([0,1], X) ; \gamma(0)=x_{0}, \gamma(1)=x_{1}\right\}$, then $c \geq \eta_{\rho}$ and c is a critical value of φ (i.e., there exists $x \in X$ such that $\varphi^{\prime}(x)=0$ and $\varphi(x)=c$).

Given $\varphi \in C^{1}(X)$ and $c \in \boldsymbol{R}$, we introduce the following sets:

$$
\begin{aligned}
K_{\varphi} & =\left\{x \in X ; \varphi^{\prime}(x)=0\right\}, K_{\varphi}^{c}=\left\{x \in K_{\varphi} ; \varphi(x)=c\right\} \\
\text { and } \varphi^{c} & =\{x \in X ; \varphi(x) \leq c\} .
\end{aligned}
$$

Let $\left(Y_{1}, Y_{2}\right)$ be a topological pair with $Y_{2} \subseteq Y_{1} \subseteq X$. For every integer $k \geq 0$, by $H_{k}\left(Y_{1}, Y_{2}\right)$ we denote the kth-relative singular homology group for the pair $\left(Y_{1}, Y_{2}\right)$ with integer coefficients. The critical groups at an isolated point $x \in K_{\varphi}^{c}$ are defined by

$$
C_{k}(\varphi, x)=H_{k}\left(\varphi^{c} \cap U, \varphi^{c} \cap U \backslash\{x\}\right) \text { for all } k \geq 0,
$$

where U is a neighborhood of x such that $K_{\varphi} \cap \varphi^{c} \cap U=\{x\}$. The excision property of singular homology, implies that this definition is independent of the particular choice of the neighborhood U.

In the analysis of problem (1), in addition to the Sobolev space $W_{0}^{1, p}(\Omega)$, we will also use the ordered Banach space $C_{0}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}) ;\left.u\right|_{\partial \Omega}=0\right\}$. The order cone of $C_{0}^{1}(\bar{\Omega})$ is $C_{+}=\left\{u \in C_{0}^{1}(\bar{\Omega}) ; u(z) \geq 0\right.$ for all $\left.z \in \bar{\Omega}\right\}$. This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+} ; u(z)>0 \quad \text { for all } z \in \Omega, \frac{\partial u}{\partial n}(z)<0 \quad \text { for all } z \in \partial \Omega\right\}
$$

where $n(\cdot)$ denotes the outward unit normal on $\partial \Omega$.
Next we prove two auxiliary results, which are of independent interest. The first is a comparison principle, while the second relates local $C_{0}^{1}(\bar{\Omega})$ and $W_{0}^{1, p}(\Omega)$ minimizers for a large class of C^{1}-functionals. To this end we introduce the following hypotheses:

H: $G: \bar{\Omega} \times \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}$ is a C^{1}-function such that for all $z \in \bar{\Omega}, G(z, 0)=0, \nabla_{y} G(z, y)=$ $a(z, y), a(z, 0)=0$ and
(i) $a \in C^{1}\left(\bar{\Omega} \times\left(\boldsymbol{R}^{n} \backslash\{0\}\right), \boldsymbol{R}^{n}\right)$ and for every $K \subseteq \boldsymbol{R}^{n} \backslash\{0\}$ compact, there exists $a \in(0,1)$ such that $a \in C^{a}\left(\bar{\Omega} \times K, \boldsymbol{R}^{n}\right)$;
(ii) for every $z \in \bar{\Omega}$ and every $y \in \boldsymbol{R}^{n} \backslash\{0\}$, we have

$$
c_{0}(\eta+\|y\|)^{p-2}\|\xi\|^{2} \leq\left(\nabla_{y} a(z, y) \xi, \xi\right)_{\boldsymbol{R}^{n}} \text { for all } \xi \in \boldsymbol{R}^{n}
$$

and some $c_{0}>0, \eta \geq 0$;
(iii) for every $z \in \bar{\Omega}$ and every $y \in \boldsymbol{R}^{n} \backslash\{0\}$, we have

$$
\left\|\nabla_{y} a(z, y)\right\| \leq c_{1}(\eta+\|y\|)^{p-2} \text { for some } c_{1}>0
$$

and with $\eta \geq 0$ as in (ii);
(iv) for every $\rho>0$, there exists $c_{2}=c_{2}(\rho)>0$ such that

$$
\left|a(z, y)-a\left(z^{\prime}, y\right)\right| \leq c_{2}(1+\|y\|)^{p-1}\left\|z-z^{\prime}\right\|
$$

for all $z, z^{\prime} \in \Omega$, all $\|y\| \leq \rho$.
From these hypotheses and using the integral form of the mean value theorem we can have:

Lemma 2.2. If hypotheses H hold, then for all $z \in \bar{\Omega}, a(z, \cdot)$ is strictly monotone and there exist $c_{3}, c_{4}>0$ such that

$$
\|a(z, y)\| \leq c_{3}(1+\|y\|)^{p-1} \quad \text { and }(a(z, y), y) \geq c_{4}\|y\|^{p} \text { for all }(z, y) \in \bar{\Omega} \times \boldsymbol{R}^{n}
$$

An immediate consequence of this lemma is the following growth estimate for the potential function $G(z, \cdot)$:

Corollary 2.3. If hypotheses H hold, then for all $z \in \bar{\Omega}, G(z, \cdot)$ is strictly convex and there exist $c_{5}, c_{6}>0$ such that

$$
c_{5}\|y\|^{p} \leq G(z, y) \leq c_{6}\left(1+\|y\|^{p}\right) \quad \text { for all }(z, y) \in \bar{\Omega} \times \boldsymbol{R}^{n} .
$$

As we already mentioned, the first auxiliary result is a strong comparison principle. It extends Proposition 2.2 of Guedda-Veron [19] and Proposition 2.6 of Arcoya-Ruiz [3], who deal with the p-Laplacian (i.e., $G(y)=\frac{1}{p}\|y\|^{p}$ for all $y \in \boldsymbol{R}^{n}$.) Other comparison results, can be found in the works of Cuesta-Takac [9] and Lucia-Prashanth [26]. So, we consider the following two nonlinear Dirichlet problems:

$$
\begin{align*}
& -\operatorname{div} a(z, D u(z))+\gamma|u(z)|^{p-2} u(z)=h_{1}(z) \text { in } \Omega,\left.u\right|_{\partial \Omega}=0 . \tag{2}\\
& -\operatorname{div} a(z, D v(z))+\gamma|v(z)|^{p-2} v(z)=h_{2}(z) \quad \text { in } \Omega,\left.v\right|_{\partial \Omega}=0, \tag{3}
\end{align*}
$$

where $\gamma \geq 0$ and $h_{1}, h_{2} \in L^{\infty}(\Omega)$. We assume that $h_{1} \prec h_{2}$ meaning that for every compact $K \subseteq \Omega$, we can find $\varepsilon=\varepsilon(K)>0$ such that $h_{1}(z)+\varepsilon \leq h_{2}(z)$ for a.e. $z \in K$. Note that if $h_{1}, h_{2} \in C(\Omega)$ and $h_{1}(z)<h_{2}(z)$, then $h_{1} \prec h_{2}$.

Proposition 2.4. If $u, v \in W_{0}^{1, p}(\Omega)$ are nontrivial solutions of (2) and (3) respectively, $u, v \geq 0$ and $h_{1} \prec h_{2}$, then $v-u \in \operatorname{int} C_{+}$.

Proof. From Theorem 7.1 (p. 286) of Ladyzhenskaya-Uraltseva [24], we know that $u, v \in L^{\infty}(\Omega)$. So, applying Theorem 1 of Lieberman [25], we have $u, v \in C_{+} \backslash\{0\}$. Moreover, invoking Theorem 2.4.1 (p. 30) of Pucci-Serrin [30], we have that

$$
u(z) \leq v(z) \quad \text { for all } z \in \bar{\Omega} .
$$

For small $\delta>0$ let $\Omega_{\delta} \subseteq \Omega$ be the δ-neighborhood of $\partial \Omega$ in Ω defined by

$$
\Omega_{\delta}=\{z \in \Omega ; d(z)<\delta\}
$$

where $d(z)=d(z, \partial \Omega)$ (the distance of $z \in \Omega$ from $\partial \Omega$). From the proof of Lemma 14.16 (p.355) of Gilbarg-Trundinger [18], we know that $d \in C^{2}\left(\overline{\Omega_{\delta}}\right)$. Hence, $\partial \Omega_{\delta}$ is a C^{2}-manifold. From Cuesta-Takac [9] (see (2.2) in the proof of Proposition 2.4), we know that $w=v-u$ satisfies in the sense of distributions the following nonlinear elliptic inequality

$$
\begin{equation*}
-\sum_{i, j=1}^{N} \frac{\partial}{\partial z_{i}}\left(a_{i j}(z) \frac{\partial w}{\partial z_{j}}\right)+\theta(z) w=h_{2}-h_{1} \geq 0 \text { in } \Omega_{\delta}, \tag{4}
\end{equation*}
$$

where the coefficients $a_{i j}$ belong in $C\left(\overline{\Omega_{\delta}}\right)$, the differential operator in (4) is uniformly elliptic in Ω_{δ} and $\theta \in C\left(\overline{\Omega_{\delta}}\right), \theta \geq 0$. Invoking Theorem 4 of Vazquez [32], we infer that

$$
\begin{equation*}
\frac{\partial w}{\partial n}(z)<0 \text { for all } z \in \partial \Omega \subseteq \partial \Omega_{\delta} \tag{5}
\end{equation*}
$$

Let $C=\{z \in \Omega ; u(z)=v(z)\}$ (the coincidence set). From (5) it follows that C is a compact set in Ω. Let Ω^{\prime} be an open set such that $C \subseteq \Omega^{\prime} \subseteq \overline{\Omega^{\prime}} \subseteq \Omega$. For small $\varepsilon \in(0,1)$, we have

$$
\begin{equation*}
u(z)+\varepsilon \leq v(z) \text { for all } z \in \partial \Omega^{\prime} \text { and } h_{1}(z)+\varepsilon \leq h_{2}(z) \text { for all } z \in \Omega^{\prime} \tag{6}
\end{equation*}
$$

We choose $\delta \in(0, \varepsilon)$ such that
(7) $\gamma\left||x|^{p-2} x-|y|^{p-2} y\right| \leq \varepsilon$ for all $x, y \in\left[\frac{\min }{\Omega^{\prime}} u, \frac{\max }{\bar{\Omega}^{\prime}} u+1\right]$ with $|x-y| \leq 2 \delta$.

Then we have

$$
\begin{align*}
-\operatorname{div} a(z, D(u+\delta))+\gamma(u+\delta)^{p-1} & =-\operatorname{div} a(z, D u)+\gamma(u+\delta)^{p-1} \\
& =\gamma\left[(u+\delta)^{p-1}-u^{p-1}\right]+h_{1} \quad(\operatorname{see}(2)) \\
& \leq \varepsilon+h_{1}(\operatorname{see}(7)) \\
& \leq h_{2}(\operatorname{see}(6)) \tag{8}\\
& =-\operatorname{div} a(z, D v)+\gamma v^{p-1} \text { a.e. in } \Omega^{\prime}
\end{align*}
$$

$$
(\text { see }(2))
$$

Using once more Theorem 2.4.1 (p. 30) of Pucci-Serrin [30], we infer that $u(z)+\delta \leq v(z)$ for all $z \in \Omega^{\prime}$. Since $C \subseteq \Omega^{\prime}$, it follows that $C=\emptyset$. Therefore

$$
\begin{equation*}
w(z)=v(z)-u(z)>0 \quad \text { for all } z \in \Omega \tag{9}
\end{equation*}
$$

From (5) and (9), we conclude that $w=v-u \in \operatorname{int} C_{+}$.
REMARK 2.5. A careful reading of the above proof reveals that we may replace the term $\gamma|x|^{p-2} x$ by a Caratheodory function $\beta(z, x)$ which is locally Lipschitz in $x \in \boldsymbol{R}$, $\frac{\partial}{\partial x} \beta(z, x) \geq 0$ for a.e. $z \in \Omega \times \boldsymbol{R}$ and there exists $r>0$ such that

$$
\frac{\partial \beta}{\partial x}(z, x)=\left\{\begin{array}{cc}
\eta|x|^{p-2} & \text { if } 1<p \leq 2 \\
\eta & \text { if } 2<p
\end{array} \quad \text { for a.e. }(z, x) \in \Omega \times(0, r)\right.
$$

with $\eta \geq 0$ as in hypotheses H (ii) (iii) (see Cuesta-Takac [9]).
The next auxiliary result compares local $C_{0}^{1}(\bar{\Omega})$ and $W_{0}^{1, p}(\Omega)$-minimizers for a large class of C^{1}-functionals. Our result generalizes those of Brezis-Nirenberg [6], where $G(y)=$ $\frac{1}{2}\|y\|^{2}$ for all $y \in \boldsymbol{R}^{n}$ and of Garcia Azorero-Manfredi-Peral Alonso [15] and Guo-Zhang [20], where $G(y)=\frac{1}{p}\|y\|^{p}$ (in [15] $1<p<\infty$ and in [20] $p \geq 2$). Moreover, our proof is simpler.

Let $f_{0}: \Omega \times \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a Caratheodory function with subcritical growth in $x \in \boldsymbol{R}$, i.e.,

$$
\begin{array}{ll}
& \left|f_{0}(z, x)\right| \leq a(z)+c|x|^{r-1} \quad \text { for a.e. } z \in \Omega, \text { all } x \in \boldsymbol{R}, \\
\text { with } & a \in L^{\infty}(\Omega)_{+}, c>0,1<r<p^{*} .
\end{array}
$$

We let $F_{0}(z, x)=\int_{0}^{x} f_{0}(z, s) d s$ and consider the C^{1}-functional

$$
\psi_{0}: W_{0}^{1, p}(\Omega) \rightarrow \boldsymbol{R}
$$

defined by

$$
\psi_{0}(u)=\int_{\Omega} G(z, D u(z)) d z-\int_{\Omega} F_{0}(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

Proposition 2.6. If hypotheses H hold and $u_{0} \in W_{0}^{1, p}(\Omega)$ is a local $C_{0}^{1}(\bar{\Omega})$-minimizer of ψ_{0}, i.e., there exists $\rho_{0}>0$ such that

$$
\psi_{0}\left(u_{0}\right) \leq \psi_{0}\left(u_{0}+h\right) \quad \text { for all } h \in C_{0}^{1}(\bar{\Omega}) \text { with }\|h\|_{C_{0}^{1}(\bar{\Omega})} \leq \rho_{0},
$$

then $u_{0} \in C_{0}^{1, \beta}(\bar{\Omega})$ for some $\beta \in(0,1)$ and it is also a local $W_{0}^{1, p}(\Omega)$-minimizer of ψ_{0}, i.e., there exists $\rho_{1}>0$ such that

$$
\psi_{0}\left(u_{0}\right) \leq \psi_{0}\left(u_{0}+h\right) \quad \text { for all } h \in W_{0}^{1, p}(\Omega) \text { with }\|h\| \leq \rho_{1}
$$

Proof. Let $h \in C_{0}^{1}(\bar{\Omega})$ and let $t>0$ be small. By hypothesis we have

$$
\begin{equation*}
\psi_{0}\left(u_{0}\right) \leq \psi_{0}\left(u_{0}+t h\right) \Rightarrow 0 \leq\left\langle\psi_{0}^{\prime}\left(u_{0}\right), h\right\rangle . \tag{10}
\end{equation*}
$$

Since $h \in C_{0}^{1}(\bar{\Omega})$ is arbitrary and $C_{0}^{1}(\bar{\Omega})$ is dense in $W_{0}^{1, p}(\Omega)$, from (10) it follows that

$$
\begin{equation*}
\psi_{0}^{\prime}\left(u_{0}\right)=0, \Rightarrow V\left(u_{0}\right)=N_{f_{0}}\left(u_{0}\right), \tag{11}
\end{equation*}
$$

where $V: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)=W_{0}^{1, p}(\Omega)^{*}\left(1 / p+1 / p^{\prime}=1\right)$ is the map defined by

$$
\langle V(u), y\rangle=\int_{\Omega}(a(z, D u), D y)_{R^{n}} d z \quad \text { for all } u, y \in W_{0}^{1, p}(\Omega)
$$

and $N_{f_{0}}(u)(\cdot)=f_{0}(\cdot, u(\cdot))$ for all $u \in W_{0}^{1, p}(\Omega)$. From (11) it follows that

$$
\begin{equation*}
-\operatorname{div} a\left(z, D u_{0}(z)\right)=f_{0}\left(z, u_{0}(z)\right) \text { a.e. in } \Omega,\left.u_{0}\right|_{\partial \Omega}=0 \tag{12}
\end{equation*}
$$

As before, invoking Theorem 7.1 (p. 286) of Ladyzhenskaya-Uraltseva [24], we have that $u_{0} \in$ $L^{\infty}(\Omega)$. So, we can apply Theorem 1 of Lieberman [25] and conclude that $u_{0} \in C_{0}^{1, \beta}(\bar{\Omega})$ for some $\beta \in(0,1)$.

Next we show that u_{0} is also a $W_{0}^{1, p}(\Omega)$-minimizer of ψ_{0}. We argue by contradiction. So, we suppose that u_{0} is not a local $W_{0}^{1, p}(\Omega)$-minimizer of ψ_{0}. Let $\varepsilon>0$ and set $\bar{B}_{\varepsilon}^{r}=\{u \in$ $\left.W_{0}^{1, p}(\Omega) ;\|u\|_{r} \leq \varepsilon\right\}$. We consider the following minimization problem

$$
\begin{equation*}
\inf \left[\psi_{0}\left(u_{0}+h\right) ; h \in \bar{B}_{\varepsilon}^{r}\right]=m_{0}^{\varepsilon}>-\infty . \tag{13}
\end{equation*}
$$

Since we have assumed that u_{0} is not a local $W_{0}^{1, p}(\Omega)$-minimizer of ψ_{0}, we have

$$
\begin{equation*}
m_{0}^{\varepsilon}<\psi_{0}\left(u_{0}\right) \tag{14}
\end{equation*}
$$

Let $\left\{h_{n}\right\}_{n \geq 1} \subseteq \bar{B}_{\varepsilon}^{r}$ be a minimizing sequence for problem (13). From Corollary 2.3 and the growth condition on $f_{0}(z, \cdot)$ we see that $\left\{h_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ is bounded. So, we may assume that

$$
\begin{equation*}
h_{n} \xrightarrow{w} h_{\varepsilon} \text { in } W_{0}^{1, p}(\Omega) \text { and } h_{n} \rightarrow h_{\varepsilon} \text { in } L^{r}(\Omega) \text { as } n \rightarrow \infty . \tag{15}
\end{equation*}
$$

Exploiting the compact embedding of $W_{0}^{1, p}(\Omega)$ into $L^{r}(\Omega)$ (recall that $r<p^{*}$), we can easily check that ψ_{0} is sequentially weakly lower semicontinuous on $W_{0}^{1, p}(\Omega)$. So, from (15) it follows that

$$
\begin{aligned}
& \psi_{0}\left(u_{0}+h_{\varepsilon}\right) \leq \liminf _{n \rightarrow \infty} \psi_{0}\left(u_{0}+h_{n}\right) \text { and } h_{\varepsilon} \in \bar{B}_{\varepsilon}^{r} \\
\Rightarrow & \psi_{0}\left(u_{0}+h_{\varepsilon}\right)=m_{0}^{\varepsilon} \quad \text { and so } \quad h_{\varepsilon} \neq 0(\text { see (14)) } .
\end{aligned}
$$

Hence, in problem (13) the infimum is attained at some $h_{\varepsilon} \in \bar{B}_{\varepsilon}^{r} \backslash\{0\}$. By virtue of the Lagrange multiplier rule (see, for example, Ioffe-Tichomirov [21] (p. 74)), we can find $\lambda_{\varepsilon} \leq 0$ such that

$$
\begin{aligned}
& \psi^{\prime}\left(u_{0}+h_{\varepsilon}\right)=\lambda_{\varepsilon}\left|h_{\varepsilon}\right|^{r-2} h_{\varepsilon} \\
\Rightarrow & V\left(u_{0}+h_{\varepsilon}\right)=N_{f_{0}}\left(u_{0}+h_{\varepsilon}\right)+\lambda_{\varepsilon}\left|h_{\varepsilon}\right|^{r-2} h_{\varepsilon}
\end{aligned}
$$

Hence

$$
\left\{\begin{array}{l}
-\operatorname{div} a\left(z, D\left(u_{0}+h_{\varepsilon}\right)(z)\right)=f_{0}\left(z,\left(u_{0}+h_{\varepsilon}\right)(z)\right)+\lambda_{\varepsilon}\left|h_{\varepsilon}(z)\right|^{r-2} h_{\varepsilon}(z), \tag{16}\\
\text { a.e. in } \Omega,\left.h_{\varepsilon}\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

From (12) and (16) we have

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a\left(z, D\left(u_{0}+h_{\varepsilon}\right)(z)\right)-a\left(z, D u_{0}(z)\right)\right) \tag{17}\\
=f_{0}\left(z,\left(u_{0}+h_{\varepsilon}\right)(z)\right)-f_{0}\left(z, u_{0}(z)\right)+\lambda_{\varepsilon}\left|h_{\varepsilon}(z)\right|^{p-2} h_{\varepsilon}(z) \text { a.e. in } \Omega .
\end{array}\right\}
$$

Case 1: Suppose that $\lambda_{\varepsilon} \in[-1,0]$ for all $\varepsilon \in(0,1]$. Set $v_{\varepsilon}(z)=\left(u_{0}+h_{\varepsilon}\right)(z)$ and $\xi_{\varepsilon}(z, y)=a(z, y)-a\left(z, D u_{0}(z)\right)$. Then (17) becomes

$$
\left\{\begin{array}{l}
-\operatorname{div} \xi_{\varepsilon}\left(z, D v_{\varepsilon}(z)\right)=f_{0}\left(z, v_{\varepsilon}(z)\right)-f_{0}\left(z, u_{0}(z)\right) \tag{18}\\
+\lambda_{\varepsilon}\left|\left(v_{\varepsilon}-u_{0}\right)(z)\right|^{p-2}\left(v_{\varepsilon}-u_{0}\right)(z) \text { a.e. in } \Omega .
\end{array}\right\}
$$

By virtue of Theorem 7.1 (p. 286) of Ladyzhenskaya-Uraltseva [24], we can find $M_{1}>0$ such that

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{\infty} \leq M_{1} \quad \text { for all } \varepsilon \in(0,1] \tag{19}
\end{equation*}
$$

Using Lemma 2, we can easily check that $\xi_{\varepsilon}(z, y)$ verifies hypotheses H. This fact and (19), permit the use of Theorem 1 of Lieberman [25]. So, we can find $\gamma \in(0,1)$ and $M_{2}>0$ such that

$$
\begin{equation*}
v_{\varepsilon} \in C_{0}^{1, \gamma}(\bar{\Omega}) \text { and }\left\|v_{\varepsilon}\right\|_{C_{0}^{1, \gamma}(\bar{\Omega})} \leq M_{2} \quad \text { for all } \varepsilon \in(0,1] \tag{20}
\end{equation*}
$$

Case 2: Suppose that $\lambda_{\varepsilon_{n}}<-1$ for all $n \geq 1$, with $\varepsilon_{n} \downarrow 0$. In this case, we set $\widehat{\xi}_{\varepsilon_{n}}(z, y)=\frac{1}{\left|\lambda_{\varepsilon_{n}}\right|}\left[a(z, y)-a\left(z, D u_{0}(z)\right)\right]$. Then (17) becomes

$$
\left\{\begin{array}{l}
-\operatorname{div} \widehat{\xi}_{\varepsilon_{n}}\left(z, D v_{\varepsilon_{n}}(z)\right) \tag{21}\\
=\frac{1}{\mid \lambda \varepsilon_{\varepsilon_{n}}}\left[f_{0}\left(z, v_{\varepsilon_{n}}(z)\right)-f_{0}\left(z, u_{0}(z)\right)\right]-\left|\left(v_{\varepsilon_{n}}-u_{0}\right)(z)\right|^{p-2}\left(v_{\varepsilon_{n}}-u_{0}\right)(z) \\
\text { a.e. in } \Omega
\end{array}\right\}
$$

where $v_{\varepsilon_{n}}=u_{0}+h_{\varepsilon_{n}}$. For all $w \in W_{0}^{1, p}(\Omega)$, we have

$$
\begin{equation*}
\left\langle V\left(u_{0}\right), w\right\rangle=\int_{\Omega} f_{0}\left(z, u_{0}(z)\right) w(z) d z(\text { see }(11)) \tag{22}
\end{equation*}
$$

(23) $\left\langle V\left(v_{\varepsilon_{n}}\right), w\right\rangle=\int_{\Omega} f_{0}\left(z, v_{\varepsilon_{n}}(z)\right) w(z) d z+\lambda_{\varepsilon_{n}} \int_{\Omega}\left|\left(v_{\varepsilon_{n}}-u_{0}\right)\right|^{r-2}\left(v_{\varepsilon_{n}}-u_{0}\right)(z) d z$
(see (16)).
For $\tau \geq 1$ we consider the function $\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau}\left(v_{\varepsilon_{n}}-u_{0}\right)$. We have

$$
\begin{aligned}
& D\left(\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau}\left(v_{\varepsilon_{n}}-u_{0}\right)\right) \\
& \quad=\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau} D\left(v_{\varepsilon_{n}}-u_{0}\right)+\tau\left(v_{\varepsilon_{n}}-u_{0}\right) \frac{v_{\varepsilon_{n}}-u_{0}}{\left|v_{\varepsilon_{n}}-u_{0}\right|}\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau-1} D\left(v_{\varepsilon_{n}}-u_{0}\right) \\
& \quad=(\tau+1)\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau} D\left(v_{\varepsilon_{n}}-u_{0}\right) \\
& \quad \Rightarrow\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau}\left(v_{\varepsilon_{n}}-u_{0}\right) \in W_{0}^{1, p}(\Omega)\left(\text { recall that } v_{\varepsilon_{n}}, u_{0} \in C_{0}^{1}(\bar{\Omega})\right) .
\end{aligned}
$$

We use $\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau}\left(v_{\varepsilon_{n}}-u_{0}\right)$ as the test function w in both (22) and (23). Then we subtract (22) from (23). We obtain

$$
\begin{align*}
0 \leq & (\tau+1) \int_{\Omega}\left(a\left(z, D v_{\varepsilon_{n}}\right)-a\left(z, D u_{0}\right), D v_{\varepsilon_{n}}-D u_{0}\right){R^{n}}\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau} d z \\
= & \int_{\Omega}\left(f_{0}\left(z, v_{\varepsilon_{n}}\right)-f_{0}\left(z, u_{0}\right)\right)\left(v_{\varepsilon_{n}}-u_{0}\right)\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau} d z \tag{24}\\
& +\lambda_{\varepsilon_{n}} \int_{\Omega}\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau+r} d z \text { for all } n \geq 1
\end{align*}
$$

Recall that $\left\|v_{\mathcal{E}_{n}}\right\|_{\infty} \leq M_{1}$ for all $n \geq 1$ (see (19)) and that $u_{0} \in C_{0}^{1}(\bar{\Omega})$. Therefore

$$
\begin{align*}
& \int_{\Omega}\left(f_{0}\left(z, v_{\varepsilon_{n}}\right)-f_{0}\left(z, u_{0}\right)\right)\left(v_{\varepsilon_{n}}-u_{0}\right)\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau} d z \\
& \quad \leq M_{3} \int_{\Omega}\left|v_{\varepsilon_{n}}-u_{0}\right|^{\tau+1} d z \text { for some } M_{3}>0, \text { all } n \geq 1, \\
& \quad \leq M_{3}|\Omega|_{N}^{\frac{r-1}{\tau+r}}\left\|v_{\varepsilon_{n}}-u_{0}\right\|_{\tau+r}^{\tau+1} \tag{25}\\
& \quad\left(\text { using Hölder's inequality with exponents } \frac{\tau+r}{\tau+1} \text { and } \frac{\tau+r}{r-1}\right),
\end{align*}
$$

where $|\cdot|_{N}$ denotes the Lebesgue measure on \boldsymbol{R}^{n}. Using (25) in (24), we obtain

$$
-\lambda_{\varepsilon_{n}}\left\|v_{\varepsilon_{n}}-u_{0}\right\|_{\tau+r}^{\tau+r} \leq M_{3}|\Omega|_{N}^{\frac{r-1}{\tau+r}}\left\|v_{\varepsilon_{n}}-u_{0}\right\|_{\tau+r}^{\tau+1}
$$

$$
\Rightarrow-\lambda_{\varepsilon_{n}}\left\|v_{\varepsilon_{n}}-u_{0}\right\|_{\tau+r}^{r-1} \leq M_{3}|\Omega|_{N}^{\frac{r-1}{\tau+r}} \text { for all } \tau \geq 1 \text {, all } n \geq 1 .
$$

Let $\tau \rightarrow+\infty$. We obtain

$$
\begin{align*}
& -\lambda_{\varepsilon_{n}}\left\|v_{\varepsilon_{n}}-u_{0}\right\|_{\infty}^{r-1} \leq M_{3} \text { for all } n \geq 1 \\
\Rightarrow & \left\|v_{\varepsilon_{n}}-u_{0}\right\|_{\infty}^{r-1} \leq \frac{M_{3}}{\left|\lambda_{\varepsilon_{n}}\right|} \text { for all } n \geq 1 . \tag{26}
\end{align*}
$$

We return to (21) and denote the right-hand side function by $g_{\varepsilon_{n}}(z, x)$. Then for a.e. $z \in \Omega$ and all $x \in\left[-M_{4}, M_{4}\right.$,] where $M_{4}=\left\|u_{0}\right\|_{\infty}+M_{1}$, we have

$$
\left|g_{\varepsilon_{n}}(z, x)\right| \leq \frac{1}{\left|\lambda_{\varepsilon_{n}}\right|}\left[M_{5}+M_{3}\right] \quad \text { for some } M_{5}>0, \text { all } n \geq 1
$$

Therefore, we can apply Theorem 1 of Lieberman [25] and obtain $\beta_{0} \in(0,1)$ and $M_{6}>0$ such that

$$
\begin{equation*}
h_{\varepsilon_{n}} \in C_{0}^{1, \beta_{0}}(\bar{\Omega}) \quad \text { and } \quad\left\|h_{\varepsilon_{n}}\right\|_{C_{0}^{1, \beta_{0}}(\bar{\Omega})} \leq M_{6} \text { for all } n \geq 1 \tag{27}
\end{equation*}
$$

Recall that for every $\beta^{\prime} \in(0,1)$, the space $C_{0}^{1, \beta^{\prime}}(\bar{\Omega})$ is embedded compactly in $C_{0}^{1}(\bar{\Omega})$. Then, from (20) and (27) it follows that for a suitable subsequence, we have

$$
u_{0}+h_{\varepsilon_{n}} \rightarrow u_{0} \quad \text { in } C_{0}^{1}(\bar{\Omega}) \text { as } n \rightarrow \infty
$$

Since by hypothesis u_{0} is a local $C_{0}^{1}(\bar{\Omega})$-minimizer of ψ_{0}, we can find $n_{0} \geq 1$ such that

$$
\begin{equation*}
\psi_{0}\left(u_{0}\right) \leq \psi_{0}\left(u_{0}+h_{\varepsilon_{n}}\right) \quad \text { for all } n \geq n_{0} . \tag{28}
\end{equation*}
$$

On the other hand, since $h_{\varepsilon_{n}} n \geq 1$ solves problem (13) and because of (14), we have

$$
\begin{equation*}
\psi_{0}\left(u_{0}+h_{\varepsilon_{n}}\right)<\psi_{0}\left(u_{0}\right) \text { for all } n \geq 1 \tag{29}
\end{equation*}
$$

Comparing (28) and (29) we reach a contradiction. This concludes the proof.
As in the above proof, let $V: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ be the nonlinear map defined by

$$
\begin{equation*}
\langle V(u), y\rangle=\int_{\Omega}(a(z, D u), D y)_{R^{n}} d z \quad \text { for all } u, y \in W_{0}^{1, p}(\Omega) . \tag{30}
\end{equation*}
$$

From Gasinski-Papageorgiou [16] (p. 591), we have:
Proposition 2.7. If $V: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ is the nonlinear map defined by (30), then V is bounded, continuous, strictly monotone (hence maximal monotone too) and of type $(S)_{+}$, i.e., if $u_{n} \xrightarrow{w} u$ in $W_{0}^{1, p}(\Omega)$ and $\lim \sup _{n \rightarrow \infty}\left\langle V\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$, then $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$.

In what follows, for every $r \in \boldsymbol{R}$, we set $r^{ \pm}=\max \{ \pm r, 0\}$. Recall that, if $u \in W_{0}^{1, p}(\Omega)$, then $|u|, u^{+}, u^{-} \in W_{0}^{1, p}(\Omega)$ and we have $|u|=u^{+}+u^{-}, u=u^{+}-u^{-}$. As we already mentioned in the proof of Proposition 2.6, by $|\cdot|_{N}$ we denote the Lebesgue measure on \boldsymbol{R}^{n}. Note that by $\|\cdot\|$ we will denote both the norm of the Sobolev space $W_{0}^{1, p}(\Omega)(\|u\|=$ $\|D u\|_{p}$ for all $u \in W_{0}^{1, p}(\Omega)$, by Poincare's inequality) and the norm of \boldsymbol{R}^{n}. It will always be
clear from the context which one is used. Finally, let $\widehat{\lambda}_{1}>0$ be the principal eigenvalue of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$. Recall that $\widehat{\lambda}_{1}\|u\|_{p}^{p} \leq\|D u\|_{p}^{p}$ for all $u \in W_{0}^{1, p}(\Omega)$.
3. Solutions of constant sign. In this section, for $\lambda>0$ sufficiently small we show that problem (1) has at least four nontrivial smooth solutions of constant sign (two positive and two negative). To this end we introduce the following conditions on the map $a(y) y \in \boldsymbol{R}^{n}$ and on the nonlinearity $f(z, x)(z, x) \in \Omega \times \boldsymbol{R}$.
$\underline{\mathrm{H}_{0}}: \quad G \in C^{1}\left(\boldsymbol{R}^{n}, \boldsymbol{R}\right)$ such that $G(0)=0, \nabla G(y)=a(y)=a_{0}(\|y\|) y$ with $a_{0}(t)>0$ for all $t>0, a(0)=0, a$ satisfies hypotheses $\mathrm{H}(\mathrm{i})$, (ii), (iii) (without the z dependence) and
(iv) $p G(y)-(a(y), y)_{\boldsymbol{R}^{n}} \geq \beta$ for some $\beta \in \boldsymbol{R}$ and all $y \in \boldsymbol{R}^{n}$.

Remark 3.1. Hypotheses H_{0} are a restricted version of hypotheses H. So, in particular, the estimates in Lemma 2.2 and Corollary 2.3 remain valid and $G(\cdot)$ is strictly convex. Since $G(0)=0$ and $\nabla G(y)=a(y)$, we have

$$
\begin{equation*}
(a(y), y)_{\boldsymbol{R}^{n}} \geq G(y) \text { for all } y \in \boldsymbol{R}^{n} \tag{31}
\end{equation*}
$$

Examples: The following maps satisfy hypotheses H_{0} :
$a_{1}(y)=\|y\|^{p-2} y \quad$ with $1<p<\infty$ (corresponds to the p-Laplacian),
$a_{2}(y)=\|y\|^{p-2} y+\mu\|y\|^{\tau-2} y \quad$ with $2 \leq \tau<p<+\infty$
(corresponds to the (p, τ)-equations)
$a_{3}(y)=\left(1+\|y\|^{2}\right)^{\frac{p-2}{2}} y$ with $p \geq 2$
(corresponds to the generalized mean curvature operator),
$a_{4}(y)=\|y\|^{p-2} y+\ln \left(1+\|y\|^{p-2}\right) y$ with $p \geq 2$.
Now the hypotheses for $f(z, x)$ are the following:
$\underline{\mathrm{H}_{1}}: f: \Omega \times \boldsymbol{R} \rightarrow \boldsymbol{R}$ is Carathodory function such that $f(z, 0)=0$ for a.e. $z \in \Omega$ and
(i) $|f(z, x)| \leq a(z)+c|x|^{r-1}$ for a.e. $z \in \Omega$, all $x \in \boldsymbol{R}$ with $a \in L^{\infty}(\Omega)_{+}, c>0$ and $p<r<p^{*}$;
(ii) If $F(z, x)=\int_{0}^{x} f(z, s) d s$, then $\lim _{x \rightarrow \pm \infty} \frac{F(z, x)}{|x|^{p}}=+\infty$ uniformly for a.e. $z \in$ Ω;
(iii) there exist $\tau \in\left((r-p) \max \left\{1, \frac{N}{p}\right\}, p^{*}\right), \tau>q$ and $\beta_{0}>0$ such that

$$
\beta_{0} \leq \liminf _{x \rightarrow \pm \infty} \frac{f(z, x) x-p F(z, x)}{|x|^{\tau}} \quad \text { uniformly for a.e. } z \in \Omega ;
$$

(iv)

$$
\lim _{x \rightarrow 0} \frac{f(z, x)}{|x|^{p-2} x}=0 \text { uniformly for a.e. } z \in \Omega ;
$$

(v) $f(z, x) x>0$ for a.e. $z \in \Omega$, all $x \neq 0$ and for every $\rho>0$, there exists $\gamma_{\rho}>0$ such that for a.e. $z \in \Omega, x \rightarrow f(z, x)+\gamma_{\rho}|x|^{p-2} x$ is nondecreasing on $[-\rho, \rho]$.

REmARK 3.2. Hypothesis H_{1} (iii) implies that for a.e. $z \in \Omega$, the primitive $x \rightarrow$ $F(z, x)$ is p-superlinear. Clearly H_{1} (iii) is satisfied if

$$
\lim _{x \rightarrow \pm \infty} \frac{f(z, x)}{|x|^{p-2} x}=+\infty \quad \text { uniformly for a.e. } z \in \Omega
$$

i.e., for a.e. $z \in \Omega$, the nonlinearity $x \rightarrow f(z, x)$ is ($p-1$)-superlinear. We emphasize that we do not employ the usual in such cases Ambrosetti-Rabinowitz condition (AR-condition for short). We recall that the AR-condition says that there exist $\mu>p$ and $M>0$ such that (32) $0<\mu F(z, x) \leq f(z, x) x \quad$ for a.e. $z \in \Omega$, all $|x| \geq M$ and $\underset{\Omega}{\operatorname{ess} \inf } F(\cdot, \pm M)>0$.

Integrating (32), we obtain the following weaker condition

$$
\begin{equation*}
c_{7}|x|^{\mu} \leq F(z, x) \quad \text { for a.e. } z \in \Omega, \text { all }|x| \geq M \text { and some } c_{7}>0 . \tag{33}
\end{equation*}
$$

Evidently (33) implies the much weaker condition

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \frac{F(z, x)}{|x|^{p}}=+\infty \quad \text { uniformly for a.e. } z \in \Omega\left(\text { see } \mathrm{H}_{1}(\mathrm{iii})\right) . \tag{34}
\end{equation*}
$$

The AR-condition although quite natural and very helpful in verifying the PS-condition for the energy functional of the problem, is rather restrictive and excludes from consideration ($p-1$)-superlinear functions with "slow" growth near $\pm \infty$ (see (33)). For this reason there have been efforts to replace (32). A survey of the relevant literature, can be found in MiyagakiSouto [27]. Here, instead of the AR-condition, we use H_{1} (iii), which covers new situations. Similar conditions were first used by Costa-Magalhaes [8] and Fei [13]. The second part of hypothesis $\mathrm{H}_{1}(\mathrm{v})$ is more general than assuming that for a.e. $z \in \Omega, x \rightarrow f(z, x)$ is nondecreasing.

Examples: The following functions satisfy hypotheses H_{1} (for the sake of simplicity we drop the z dependence):

$$
\begin{aligned}
& f_{1}(z)=|x|^{r-2} x \quad \text { where } p<r<p^{*} \\
& f_{2}(z)=|x|^{p-2} x \log \left(1+|x|^{p}\right)
\end{aligned}
$$

Note that f_{1} satisfies the AR-condition, but f_{2} does not. For $\lambda>0$, let $\varphi_{\lambda}^{ \pm}: W_{0}^{1, p}(\Omega) \rightarrow \boldsymbol{R}$ be the C^{1}-functionals defined by

$$
\varphi_{\lambda}^{ \pm}(u)=\int_{\Omega} G(D u(z)) d z-\frac{\lambda}{q}\left\|u^{ \pm}\right\|_{q}^{q}-\int_{\Omega} F\left(z, \pm u^{ \pm}(z)\right) d z \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

Proposition 3.3. If hypotheses H_{0} and H_{1} hold and $\lambda>0$ then $\varphi_{\lambda}^{ \pm}$satisfy the C condition.

Proof. We do the proof for φ_{λ}^{+}, the proof for φ_{λ}^{-}being similar.
Let $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ be a sequence such that

$$
\begin{equation*}
\left|\varphi_{\lambda}^{+}\left(u_{n}\right)\right| \leq M_{1} \quad \text { for some } M_{1}>0, \text { all } n \geq 1, \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\text { and }\left(1+\left\|u_{n}\right\|\right)\left(\varphi_{\lambda}^{+}\right)^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W^{-1, p^{\prime}}(\Omega) \text { as } n \rightarrow \infty . \tag{36}
\end{equation*}
$$

From (36) we have

$$
\begin{aligned}
& \left|\left\langle\left(\varphi_{\lambda}^{+}\right)^{\prime}\left(u_{n}\right), h\right\rangle\right| \leq \frac{\varepsilon_{n}}{1+\left\|u_{n}\right\|}\|h\| \text { for all } h \in W_{0}^{1, p}(\Omega) \text { with } \varepsilon_{n} \downarrow 0 \\
\Rightarrow & \left|\left\langle V\left(u_{n}\right), h\right\rangle-\lambda \int_{\Omega}\left(u_{n}^{+}\right)^{q-1} h d z-\int_{\Omega} f\left(z, u_{n}^{+}\right) h d z\right| \\
& \leq \frac{\varepsilon_{n}}{1+\left\|u_{n}\right\|}\|h\| \text { for all } n \geq 1 .
\end{aligned}
$$

In (37) we choose $h=-u_{n}^{-} \in W_{0}^{1, p}(\Omega)$ and have

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(-D u_{n}^{-}\right),-D u_{n}^{-}\right)_{\boldsymbol{R}^{n}} d z \leq \varepsilon_{n} \text { for all } n \geq 1 \\
\Rightarrow & c_{4}\left\|D u_{n}^{-}\right\|_{p}^{p} \leq \varepsilon_{n} \text { for all } n \geq 1(\text { see Lemma 2.2) } \\
\Rightarrow & u_{n}^{-} \rightarrow 0 \text { in } W_{0}^{1, p}(\Omega) \text { as } n \rightarrow \infty
\end{aligned}
$$

From (35) we have
(39) $\int_{\Omega} p G\left(D u_{n}\right) d z-\frac{\lambda p}{q}\left\|u_{n}^{+}\right\|_{q}^{q}-\int_{\Omega} p F\left(z, u_{n}^{+}\right) d z \leq p M_{1} \quad$ for all $n \geq 1$.

Also, if in (37) we choose $h=u_{n}^{+} \in W_{0}^{1, p}(\Omega)$, then
(40) $\quad-\int_{\Omega}\left(a\left(D u_{n}^{+}\right), D u_{n}^{+}\right)_{\boldsymbol{R}^{n}} d z+\lambda\left\|u_{n}^{+}\right\|_{q}^{q}+\int_{\Omega} f\left(z, u_{n}^{+}\right) u_{n}^{+} d z \leq \varepsilon_{n} \quad$ for all $n \geq 1$.

Adding (39) and (40) and since $G \geq 0$ (see Corollary 2.3), we obtain

$$
\begin{align*}
& \int_{\Omega}\left(p G\left(D u_{n}^{+}\right)-\left(a\left(D u_{n}^{+}\right), D u_{n}^{+}\right)_{R^{n}}\right) d z+\int_{\Omega}\left(f\left(z, u_{n}^{+}\right) u_{n}^{+}-p F\left(z, u_{n}^{+}\right)\right) d z \\
& \leq M_{2}+\lambda\left(\frac{p}{q}-1\right)\left\|u_{n}^{+}\right\|_{q}^{q} \text { for some } M_{2}>0, \text { all } n \geq 1 \\
\Rightarrow & \int_{\Omega}\left(f\left(z, u_{n}^{+}\right) u_{n}^{+}-p F\left(z, u_{n}^{+}\right)\right) d z \leq M_{3}+\lambda\left(\frac{p}{q}-1\right)\left\|u_{n}^{+}\right\|_{q}^{q} \tag{41}\\
& \text { for some } M_{3}>0, \text { all } n \geq 1\left(\text { see } H_{0}(\mathrm{iv})\right) .
\end{align*}
$$

By virtue of hypotheses H_{1} (i), (iii), we can find $\beta_{1} \in\left(0, \beta_{0}\right)$ and $c_{8}>0$ such that

$$
\begin{equation*}
\beta_{1} x^{\tau}-c_{8} \leq f(z, x) x-p F(z, x) \quad \text { for a.e. } z \in \Omega \text {, all } x \geq 0 . \tag{42}
\end{equation*}
$$

If we use (42) in (41), we obtain

$$
\begin{align*}
& \beta_{1}\left\|u_{n}^{+}\right\|_{\tau}^{\tau} \leq M_{4}+\lambda\left(\frac{p}{q}-1\right)\left\|u_{n}^{+}\right\|_{q}^{q} \text { for some } M_{4}>0, \text { all } n \geq 1 \\
\Rightarrow & \left\|u_{n}^{+}\right\|_{\tau}^{\tau} \leq M_{5}+c_{9}\left\|u_{n}^{+}\right\|_{\tau}^{q} \\
& \text { for some } M_{4}>0, c_{9}>0 \text { and all } n \geq 1 \\
\Rightarrow & \left.\left\{u_{n}^{+}\right\}_{n \geq 1} \subseteq L^{\tau}(\Omega) \text { is bounded (since } q<\tau\right) . \tag{43}
\end{align*}
$$

It is clear that in hypothesis H_{1} (iii), we may assume that $\tau \leq r<p^{*}$. First suppose that $N \neq p$ and let $t \in[0,1)$ such that

$$
\frac{1}{r}=\frac{1-t}{\tau}+\frac{t}{p^{*}}
$$

By virtue of the interpolation inequality (see for example, Gasinski-Papageorgiou [17] (p. 905)), we have

$$
\begin{align*}
& \left\|u_{n}^{+}\right\|_{r} \leq\left\|u_{n}^{+}\right\|_{\tau}^{1-t}\left\|u_{n}^{+}\right\|_{p^{*}}^{t} \\
\Rightarrow & \left\|u_{n}^{+}\right\|_{r}^{r} \leq M_{10}\left\|u_{n}^{+}\right\|^{t r} \text { for some } M_{10}>0, \text { all } n \geq 1 \text { (see (43)). } \tag{44}
\end{align*}
$$

Hypothesis $\mathrm{H}_{1}(\mathrm{i})$ implies that
(45) $|f(z, x) x| \leq \widehat{a}(z)+\widehat{c}|x|^{r}$ for a.e. $z \in \Omega$, all $x \in \boldsymbol{R}$, with $\widehat{a} \in L^{\infty}(\Omega)_{+}, \widehat{c}>0$.

In (37) we choose $h=u_{n}^{+} \in W_{0}^{1, p}(\Omega)$ and have

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(D u^{+}\right), D u^{+}\right)_{R^{n}} d z-\lambda\left\|u_{n}^{+}\right\|_{q}^{q}-\int_{\Omega} f\left(z, u_{n}^{+}\right) u_{n}^{+} d z \leq \varepsilon_{n} \text { for all } n \geq 1 \\
\Rightarrow & c_{4}\left\|D u_{n}^{+}\right\|_{p}^{p} \leq c_{10}+\lambda\left\|u_{n}^{+}\right\|_{q}^{q}+c_{11}\left\|u_{n}^{+}\right\|_{r}^{r} \\
& \quad \text { for some } c_{10}, c_{11}>0, \text { all } n \geq 1 \text { (see Lemma } 2.2 \text { and (45)) } \\
(46) \Rightarrow & \left\|u_{n}^{+}\right\|^{p} \leq c_{12}\left(1+\lambda\left\|u_{n}^{+}\right\|^{q}+\left\|u_{n}^{+}\right\|^{t r}\right) \text { for some } c_{12}>0, \text { all } n \geq 1 \text { (see (44)). } .
\end{aligned}
$$

From the hypothesis on $\tau\left(\right.$ see $\mathrm{H}_{1}(\mathrm{iii})$) and an easy calculation, we infer that $t r<p$. So, from (46) it follows that

$$
\begin{align*}
& \left\{u_{n}^{+}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded } \\
\Rightarrow & \left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded (see (38)). } \tag{47}
\end{align*}
$$

If $N=p$, then by definition $p^{*}=+\infty$ and the Sobolev embedding theorem implies that $W_{0}^{1, p}(\Omega)$ is embedded compactly in $L^{\eta}(\Omega)$ for all $\eta \in[1,+\infty)$. Let $\tau \leq r<\eta$ and let $t \in[0,1)$ be such that

$$
\frac{1}{r}=\frac{1-t}{\tau} \Rightarrow t r=\frac{\eta(r-\tau)}{\eta-\tau} .
$$

Note that $\frac{\eta(r-\tau)}{\eta-\tau} \rightarrow r-\tau$ as $\eta \rightarrow+\infty=p^{*}$ and by hypothesis H_{1} (iii) $r-\tau<p$ (recall $N=p$). So, for $\eta>r$ large enough, we will have $t r<p$. Hence, if in the previous argument we replace p^{*} by such large $\eta \in(r,+\infty)$, then as above we reach (47). Because of (47) and by passing to a subsequence if necessary, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } W_{0}^{1, p}(\Omega) \text { and } u_{n} \rightarrow u \text { in } L^{r}(\Omega) \text { as } n \rightarrow \infty . \tag{48}
\end{equation*}
$$

In (37) we choose $h=u_{n}-u$, pass to the limit as $n \rightarrow \infty$ and use (48). Then

$$
\begin{aligned}
& \lim \sup _{n \rightarrow \infty}\left\langle V\left(u_{n}\right), u_{n}-u\right\rangle=0 \\
\Rightarrow & u_{n} \rightarrow u \text { in } W_{0}^{1, p}(\Omega) \text { (see Proposition 2.7) } \\
\Rightarrow & \varphi_{\lambda}^{+} \text {satisfies the C-condition. }
\end{aligned}
$$

A similar argument works for φ_{λ}^{-}.
Proposition 3.4. If hypotheses H_{0} and H_{1} hold, then there exists $\lambda^{*}>0$ such that to every $\lambda \in\left(0, \lambda^{*}\right)$ there corresponds $\rho_{\lambda}^{ \pm}>0$ for which

$$
\inf \left[\varphi_{\lambda}^{ \pm}(u) ;\|u\|=\rho_{\lambda}^{ \pm}\right]=\eta_{\lambda}^{ \pm}>0
$$

Proof. We do the proof for φ_{λ}^{+}, the proof for φ_{λ}^{-}being similar. By virtue of hypotheses $\mathrm{H}_{1}(\mathrm{i})$, (iv), given $\varepsilon>0$, we can find $c_{13}=c_{13}(\varepsilon)>0$ such that

$$
\begin{align*}
f(z, x) & \leq \varepsilon x^{p-1}+c_{13} x^{r-1} \quad \text { for a.e. } z \in \Omega, \text { all } x \geq 0 \\
\Rightarrow & F(z, x) \leq \frac{\varepsilon}{p} x^{p}+\frac{c_{13}}{r} x^{r} \quad \text { for a.e. } z \in \Omega, \text { all } x \geq 0 \tag{49}
\end{align*}
$$

Then for $u \in W_{0}^{1, p}(\Omega)$, we have

$$
\begin{aligned}
\varphi_{\lambda}^{+}(u) & =\int_{\Omega} G(D u) d z-\frac{\lambda}{q}\left\|u^{+}\right\|_{q}^{q}-\int_{\Omega} F\left(z, u^{+}\right) d z \\
& \geq c_{5}\|D u\|_{p}^{p}-\frac{\lambda}{q}\|u\|_{q}^{q}-\frac{\varepsilon}{p}\|u\|_{p}^{p}-\frac{c_{13}}{r}\|u\|_{r}^{r} \quad(\text { see Corollary } 2.3 \text { and (44)) } \\
& \geq\left(c_{5}-\frac{\varepsilon}{\hat{\lambda}_{1} p}\right)\|u\|^{p}-c_{14}\left(\lambda\|u\|^{q}+\|u\|^{r}\right) \quad \text { for some } c_{14}>0
\end{aligned}
$$

Choosing $\varepsilon \in\left(0, \widehat{\lambda}_{1} p c_{5}\right)$, we infer that

$$
\varphi_{\lambda}^{+}(u) \geq c_{15}\|u\|^{p}-c_{14}\left(\lambda\|u\|^{q}+\|u\|^{r}\right) \text { for some } c_{15}>0, \text { all } u \in W_{0}^{1, p}(\Omega)
$$

(50) $\Rightarrow \varphi_{\lambda}^{+}(u) \geq\left(c_{15}-c_{14}\left(\lambda\|u\|^{q-p}+\|u\|^{r-p}\right)\right)\|u\|^{p} \quad$ for all $u \in W_{0}^{1, p}(\Omega)$.

Consider the function

$$
\begin{equation*}
\xi(t)=\lambda t^{q-p}+t^{r-p} \quad \text { for all } t>0 . \tag{51}
\end{equation*}
$$

Evidently $\xi(\cdot)$ is continuous on $(0,+\infty)$ and since $q<p<r$, we see that

$$
\xi(t) \rightarrow+\infty \text { as } t \rightarrow 0^{+} \quad \text { and as } t \rightarrow+\infty
$$

So, we can find $t_{0} \in(0,+\infty)$ such that

$$
\begin{aligned}
& \xi\left(t_{0}\right)=\min [\xi(\mathrm{t}) ; \mathrm{t}>0]>0 \\
\Rightarrow & \xi^{\prime}\left(t_{0}\right)=(q-p) \lambda t_{0}^{q-p-1}+(r-p) t_{0}^{r-p-1}=0 \\
\Rightarrow & \lambda(p-q)=(r-p) t_{0}^{r-q} \\
\Rightarrow & t_{0}=t_{0}(\lambda)=\left[\frac{\lambda(p-q)}{r-p}\right]^{\frac{1}{r-q}} .
\end{aligned}
$$

Evidently $t_{0}(\lambda) \rightarrow 0^{+}$as $\lambda \rightarrow 0^{+}$and so from (51) it is clear that we can find $\lambda^{*}>0$ such that for every $\lambda \in\left(0, \lambda^{*}\right)$ we have $\xi\left(t_{0}\right)<c_{15} / c_{14}$. Hence from (49) we infer that

$$
\inf \left[\varphi_{\lambda}^{+}(u) ;\|u\|=\rho_{\lambda}^{+}\right]=\eta_{\lambda}^{+}>0
$$

A similar argument works for the functional φ_{λ}^{-}.

Proposition 3.5. If hypotheses H_{0} and H_{1} hold and $u \in C_{+} \backslash\{0\}$ with $\|u\|_{p}=1$, then $\varphi_{\lambda}^{ \pm}(t u) \rightarrow-\infty$ as $t \rightarrow \pm \infty$.

Proof. Again we do the proof for φ_{λ}^{+}, the proof for φ_{λ}^{-}being similar. By virtue of hypotheses H_{1} (i), (ii), given $\mu>0$, we can find $c_{16}=c_{16}(\mu)>0$ such that

$$
\begin{equation*}
F(z, x) \geq \mu x^{p}-c_{16} \text { for a.e. } z \in \Omega, \text { all } x \geq 0 . \tag{52}
\end{equation*}
$$

Then for $u \in C_{+} \backslash\{0\}$ with $\|u\|_{p}=1$ and $t>0$, we have

$$
\begin{align*}
\varphi_{\lambda}^{+}(t u) & =\int_{\Omega} G(D(t u)) d z-\frac{\lambda t^{q}}{q}\|u\|_{q}^{q}-\int_{\Omega} F(z, t u) d z \\
& \leq c_{17}\left(1+t^{p}\|u\|^{p}\right)-\mu t^{p} \quad(\text { see Corollary } 2.3 \text { and (52)) } \\
& =t^{p}\left(c_{17}\|u\|^{p}-\mu\right)+c_{17} \tag{53}
\end{align*}
$$

Choose $\mu>c_{17}\|u\|^{p}$. Then, from (53) it is clear that $\varphi_{\lambda}^{+}(t u) \rightarrow-\infty$ as $t \rightarrow+\infty$.
A similar argument works for the functional φ_{λ}^{-}.
Now we are ready to produce the constant sign smooth solutions of problem (1), $\lambda \in$ ($0, \lambda^{*}$).

Proposition 3.6. If hypotheses H_{0} and H_{1} hold and $\lambda \in\left(0, \lambda^{*}\right)\left(\lambda^{*}>0\right.$ as in Proposition 3.4), then problem (1) has at least four nontrivial smooth solutions of constant sign

$$
\begin{aligned}
& u_{0}, \widehat{u} \in \operatorname{int} C_{+}, u_{0} \leq \widehat{u}, u_{0} \neq \widehat{u} \\
& \text { and } v_{0}, \widehat{v} \in-\operatorname{int} C_{+}, \widehat{v} \leq v_{0}, \widehat{v} \neq v_{0} .
\end{aligned}
$$

Proof. First we establish the existence of the two positive smooth solutions. Propositions 3.3, 3.4 and 3.5, permit the application of Theorem 2.1 (the mountain pass theorem). So, we obtain $u_{0} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{gather*}
\varphi_{\lambda}^{+}(0)=0<\eta_{\lambda}^{+} \leq \varphi_{\lambda}^{+}\left(u_{0}\right) \tag{54}\\
\text { and }\left(\varphi_{\lambda}^{+}\right)^{\prime}\left(u_{0}\right)=0 . \tag{55}
\end{gather*}
$$

From (54) we see that $u_{0} \neq 0$. From (55) we have
(56) $V\left(u_{0}\right)=\lambda\left(u_{0}^{+}\right)^{q-1}+N_{f}\left(u_{0}^{+}\right) \quad$ where $N_{f}(u)(\cdot)=f(\cdot, u(\cdot))$ for all $u \in W_{0}^{1, p}(\Omega)$.

Acting on (56) with $-u_{0}^{-} \in W_{0}^{1, p}(\Omega)$, we obtain

$$
\begin{aligned}
& c_{4}\left\|D u_{0}^{-}\right\|_{p}^{p} \leq 0(\text { see Lemma 2.2) } \\
\Rightarrow & u_{0} \geq 0, u_{0} \neq 0
\end{aligned}
$$

So (56) becomes

$$
\begin{aligned}
& V\left(u_{0}\right)=\lambda u_{0}^{q-1}+N_{f}\left(u_{0}\right) \\
\Rightarrow & -\operatorname{div} a\left(D u_{0}(z)\right)=\lambda u_{0}(z)^{q-1}+f\left(z, u_{0}(z)\right) \text { a.e. in } \Omega,\left.u_{0}\right|_{\partial \Omega}=0 .
\end{aligned}
$$

Hence, u_{0} is a nontrivial solution of (1) and the nonlinear regularity theory (see [24] and [25]) implies that $u_{0} \in C_{+} \backslash\{0\}$. We have

$$
\begin{aligned}
& -\operatorname{div} a\left(D u_{0}(z)\right)=\lambda u_{0}(z)^{p-1}+f\left(z, u_{0}(z)\right) \geq 0 \text { a.e. in } \Omega \\
\Rightarrow & u_{0} \in \operatorname{int} C_{+} \text {(see Montenegro [28], Theorem 6). }
\end{aligned}
$$

Next consider the following truncation of the reaction

$$
h_{\lambda}^{+}(z, x)= \begin{cases}\lambda u_{0}(z)^{q-1}+f\left(z, u_{0}(z)\right) & \text { if } x \leq u_{0}(z) \tag{57}\\ \lambda x^{q-1}+f(z, x) & \text { if } u_{0}(z)<x\end{cases}
$$

This is a Caratheodory function. Let $H_{\lambda}^{+}(z, x)=\int_{\Omega} h_{\lambda}^{+}(z, s) d s$ and consider the C^{1}-functional $\psi_{\lambda}^{+}: W_{0}^{1, p}(\Omega) \rightarrow \boldsymbol{R}$ defined by

$$
\psi_{\lambda}^{+}(u)=\int_{\Omega} G(D u(z)) d z-\int_{\Omega} H_{\lambda}^{+}(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

CLaim 3.7. u_{0} is a local minimizer of the functional ψ_{λ}^{+}.
Proof. Let $\tilde{u} \in K_{\psi_{\lambda}^{+}}$. Then

$$
\begin{equation*}
V(\tilde{u})=N_{h_{\lambda}^{+}}(u)(\cdot) \text { where } N_{h_{\lambda}^{+}}(\tilde{u})=h_{\lambda}^{+}(\cdot, u(\cdot)) \quad \text { for all } u \in W_{0}^{1, p}(\Omega) \tag{58}
\end{equation*}
$$

On (58) we act with $\left(u_{0}-\tilde{u}\right)^{+} \in W_{0}^{1, p}(\Omega)$. We have

$$
\begin{aligned}
& \left\langle V(\tilde{u}), \begin{array}{rl}
\left.\left(u_{0}-\tilde{u}\right)^{+}\right\rangle & =\int_{\Omega} h_{\lambda}^{+}(z, \tilde{u})\left(u_{0}-\tilde{u}\right)^{+} d z \\
& =\int_{\Omega}\left(\lambda u_{0}^{q-1}+f\left(z, u_{0}\right)\right)\left(u_{0}-\tilde{u}\right)^{+} d z(\text { see (57)) } \\
& =\left\langle V\left(u_{0}\right),\left(u_{0}-\tilde{u}\right)^{+}\right\rangle
\end{array}\right. \\
& \Rightarrow \int_{\left\{u_{0}>\tilde{u}\right\}}\left(a\left(D u_{0}\right)-a(D \tilde{u}), D u_{0}-D \tilde{u}\right) R^{n} d z=0 \\
& \Rightarrow u_{0} \leq \tilde{u} \text { (since } a(\cdot) \text { is strictly monotone, see Lemma 2.2). }
\end{aligned}
$$

Let $\theta \in\left(\lambda, \lambda^{*}\right)$ and let $\bar{u}_{0} \in \operatorname{int} C_{+}$be a solution of problem (1) with the parameter being θ obtained as above via the use of the mountain pass theorem (see Theorem 2.1). We have

$$
\begin{equation*}
-\operatorname{div} a\left(D \bar{u}_{0}(z)\right)=\theta \bar{u}_{0}(z)+f\left(z, \bar{u}_{0}(z)\right)>\lambda \bar{u}_{0}(z)+f\left(z, \bar{u}_{0}(z)\right) \text { a.e. in } \Omega . \tag{59}
\end{equation*}
$$

Therefore $\bar{u}_{0} \in \operatorname{int} C_{+}$is an upper solution for (1) with the parameter being λ. Then by truncating at $\bar{u}_{0}(z)$ and using the direct method, we can produce a solution of (1) (with the parameter being λ), which is less than or equal to \bar{u}_{0}. So, we may assume $u_{0} \leq \bar{u}_{0}$.

Let $\left[u_{0}\right)=\left\{u \in W_{0}^{1, p}(\Omega) ; u_{0}(z) \leq u(z)\right.$ a.e. in $\left.\Omega\right\}$ and $\left[0, \bar{u}_{0}\right]=\left\{u \in W_{0}^{1, p}(\Omega) ; 0 \leq\right.$ $u(z) \leq \bar{u}_{0}(z)$ a.e. in $\left.\Omega\right\}$. We have just seen that $K_{\psi_{\lambda}^{+}} \subseteq\left[u_{0}\right)$. Also we may assume that $K_{\psi_{\lambda^{+}}} \cap\left[0, \bar{u}_{0}\right]=\left\{u_{0}\right\}$ (otherwise we already have a second smooth positive solution as it is
evident from (57)). We consider the following truncation of $h_{\lambda}^{+}(z, \cdot)$:

$$
\widehat{h}_{\lambda}^{+}(z, x)= \begin{cases}h_{\lambda}^{+}\left(z, u_{0}(z)\right) & \text { if } x<u_{0}(z) \tag{60}\\ h_{\lambda}^{+}(z, x) & \text { if } u_{0}(z) \leq x \leq \bar{u}_{0}(z) \\ h_{\lambda}^{+}\left(z, \bar{u}_{0}(z)\right) & \text { if } \bar{u}_{0}(z)<x\end{cases}
$$

This is a Caratheodory function. We set $\widehat{H}_{\lambda}^{+}(z, x)=\int_{0}^{x} \widehat{h}_{\lambda}^{+}(z, s) d s$ and consider the C^{1} functional $\widehat{\psi}_{\lambda}^{+}: W_{0}^{1, p}(\Omega) \rightarrow \boldsymbol{R}$ defined by

$$
\widehat{\psi}_{\lambda}^{+}(u)=\int_{\Omega} G(D u(z)) d z-\int_{\Omega} \widehat{H}_{\lambda}^{+}(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

It is clear from (60) and Corollary 2.3 that $\widehat{\psi}_{\lambda}^{+}$is coercive. Also exploiting the compact embedding of $W_{0}^{1, p}(\Omega)$ into $L^{p}(\Omega)$, we can easily check that $\widehat{\psi}_{\lambda}^{+}$is sequentially weakly lower semicontinuous. So, from the Weierstrass theorem, we can find $\widehat{u_{0}} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{aligned}
& \widehat{\psi}_{\lambda}^{+}\left(\widehat{u}_{0}\right)=\inf \left[\widehat{\psi}_{\lambda}^{+}(u) ; u \in W_{0}^{1, p}(\Omega)\right] \\
\Rightarrow & \left(\widehat{\psi}_{\lambda}^{+}\right)^{\prime}\left(\widehat{u}_{0}\right)=0 \\
(61) \Rightarrow & V\left(\widehat{u}_{0}\right)=N_{\widehat{h}_{\lambda}^{+}}\left(\widehat{u}_{0}\right), \text { where } N_{\widehat{h}_{\lambda}^{+}}(u)(\cdot)=\widehat{h}_{\lambda}^{+}(\cdot, u(\cdot)) \text { for all } u \in W_{0}^{1, p}(\Omega) .
\end{aligned}
$$

On (61) we act with $\left(u_{0}-\widehat{u}_{0}\right)^{+} \in W_{0}^{1, p}(\Omega)$. Using (60) and (57), as before we obtain $u_{0} \leq \widehat{u}_{0}$. Also, on (61) we act with $\left(\widehat{u}_{0}-\bar{u}_{0}\right)^{+} \in W_{0}^{1, p}(\Omega)$. Then

$$
\begin{aligned}
&\left\langle V\left(\widehat{u}_{0}\right),\left(\widehat{u}_{0}-\bar{u}_{0}\right)^{+}\right\rangle=\int_{\Omega} \widehat{h}_{\lambda}^{+}\left(z, \widehat{u}_{0}\right)\left(\widehat{u}_{0}-\bar{u}_{0}\right)^{+} d z \\
&=\int_{\Omega}\left(\lambda \bar{u}_{0}^{q-1}+f\left(z, \bar{u}_{0}\right)\right)\left(\widehat{u}_{0}-\bar{u}_{0}\right)^{+} d z \quad(\text { see }(60) \text { and }(57)) \\
&<\int_{\Omega}\left(\theta \bar{u}_{0}^{q-1}+f\left(z, \bar{u}_{0}\right)\right)\left(\widehat{u}_{0}-\bar{u}_{0}\right)^{+} d z \text { since } \lambda<\theta \\
&=\left\langle V\left(\bar{u}_{0}\right),\left(\widehat{u}_{0}-\bar{u}_{0}\right)^{+}\right\rangle(\text {see }(59)), \\
& \Rightarrow \int_{\left\{\widehat{u}_{0}>\bar{u}_{0}\right\}}\left(a\left(D \widehat{u}_{0}\right)-a\left(D \bar{u}_{0}\right), D \widehat{u}_{0}-D \bar{u}_{0}\right)_{R^{n}} d z<0 \\
& \Rightarrow \widehat{u}_{0} \leq \bar{u}_{0}(\text { by virtue of the strict monotonicity of } a(\cdot), \text { see Lemma 2.2) }
\end{aligned}
$$

So, $\widehat{u}_{0} \in\left[u_{0}, \bar{u}_{0}\right]$ and (61) becomes

$$
\begin{aligned}
& V\left(\widehat{u}_{0}\right)=N_{h_{\lambda}^{+}}\left(\widehat{u}_{0}\right)(\text { see }(60)) \\
\Rightarrow & \widehat{u}_{0} \in K_{\psi_{\lambda}^{+}} \cap\left[0, \widehat{u}_{0}\right] \\
\Rightarrow & \widehat{u}_{0}=u_{0} .
\end{aligned}
$$

Let $\rho=\left\|\bar{u}_{0}\right\|_{\infty}$ and let $\gamma_{\rho}>0$ be as postulated by hypothesis $\mathrm{H}_{1}(\mathrm{v})$. We have

$$
-\operatorname{div} a\left(D u_{0}(z)\right)+\gamma_{\rho} u_{0}(z)^{p-1}=\lambda u_{0}(z)^{q-1}+f\left(z, u_{0}(z)\right)+\gamma_{\rho} u_{0}(z)^{p-1}
$$

$$
\begin{aligned}
& <\theta u_{0}(z)^{q-1}+f\left(z, u_{0}(z)\right)+\gamma_{\rho} u_{0}(z)^{p-1} \quad(\text { since } \lambda<\theta) \\
& \leq \theta \bar{u}_{0}(z)^{q-1}+f\left(z, \bar{u}_{0}(z)\right)+\gamma_{\rho} \bar{u}_{0}(z)^{p-1} \quad\left(\text { sence } u_{0} \leq \bar{u}_{0}, \text { see } \mathrm{H}_{1}(\mathrm{v})\right) \\
& =-\operatorname{div} a\left(D \bar{u}_{0}(z)\right)+\gamma_{\rho} \bar{u}_{0}(z)^{p-1} \text { a.e. in } \Omega .
\end{aligned}
$$

Invoking Proposition 2.4, we infer that $\bar{u}_{0}-u_{0} \in \operatorname{int} C_{+}$. Since $\left.\psi_{\lambda}^{+}\right|_{\left[0, \bar{u}_{0}\right]}=\left.\widehat{\psi}_{\lambda}^{+}\right|_{\left[0, \bar{u}_{0}\right]}$ and $u_{0} \in \operatorname{int} C_{+}, \bar{u}_{0}-u_{0} \in \operatorname{int} C_{+}$, we infer that u_{0} is a local $C_{0}^{1}(\bar{\Omega})$ minimizer of ψ_{λ}^{+}. Invoking Proposition 2.6, we have that u_{0} is a local $W_{0}^{1, p}(\Omega)$ minimizer of ψ_{λ}^{+}. This proves the Claim.

We may assume that u_{0} is isolated in $K_{\psi_{\lambda}^{+}}$(otherwise and since $K_{\psi_{\lambda}^{+}} \subseteq\left[u_{0}\right.$), we have a whole sequence of positive smooth solutions of problem (1), see (57)). Then reasoning as in Aizicovici-Papageorgiou-Staicu [1] (see the proof of Proposition 29) we can find $\rho \in(0,1)$ small such that

$$
\begin{equation*}
\psi_{\lambda}^{+}\left(u_{0}\right)<\inf \left[\psi_{\lambda}^{+}(u) ;\left\|u-u_{0}\right\|=\rho\right]=\tilde{\eta}_{\lambda}^{+} . \tag{62}
\end{equation*}
$$

Let $u \in C_{+} \backslash\{0\},\|u\|_{p}=1$. As in the proof of Proposition 3.4, using hypothesis H_{1} (ii) and (57) we can show that

$$
\begin{equation*}
\psi_{\lambda}^{+}(t u)=-\infty \text { as } t \rightarrow+\infty \tag{63}
\end{equation*}
$$

Finally, a slight modification of the proof of Proposition 3.3, reveals that ψ_{λ}^{+}satisfies the C-condition. This fact together with (62) and (63), permit the use of Theorem 2.1 (the mountain pass theorem). So, we obtain $\widehat{u} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{gather*}
\psi_{\lambda}^{+}\left(u_{0}\right)<\tilde{\eta}_{\lambda}^{+} \leq \widehat{\psi}_{\lambda}^{+}(\widehat{u}) \quad(\operatorname{see}(62)) \tag{64}\\
\text { and } \quad\left(\psi_{\lambda}^{+}\right)^{\prime}(\widehat{u})=0 . \tag{65}
\end{gather*}
$$

From (64) we have that $u_{0} \neq \widehat{u}$. From (65) and the nonlinear regularity theory we have $\widehat{u} \in K_{\psi_{\lambda}^{+}} \subseteq\left[u_{0}\right) \cap \operatorname{int} C_{+}$. Hence $\widehat{u} \in \operatorname{int} C_{+}$solves problem (1) and $u_{0} \leq \widehat{u}, u_{0} \neq \widehat{u}$.

Similarly, working with φ_{λ}^{-}, we obtain two nontrivial negative solutions of (1), $\widehat{v}, v_{0} \in$ - int $C+$, with $\widehat{v} \leq v_{0}, \widehat{v} \neq v_{0}$.
4. Nodal solutions. In this section we look for nodal solutions (i.e., sign changing) solutions. We start by considering the following auxiliary problem

$$
\begin{equation*}
-\operatorname{div} a(D u(z))=\widehat{f_{0}}(z, u(z)) \quad \text { in } \Omega,\left.u\right|_{\partial \Omega}=0 \tag{66}
\end{equation*}
$$

We strengthen hypotheses H_{0} as follows:
H ${ }^{\prime}$: Hypotheses H_{0} hold and
(v) if $G_{0}(t)=\int_{0}^{t} a_{0}(s) s d s$, then there exists $\tau \in(q, p)$ such that $t \rightarrow G_{0}\left(t^{\frac{1}{\tau}}\right)$ is convex on $(0,+\infty)$ (note that $G(y)=G_{0}(\|y\|)$ for all $\left.y \in \boldsymbol{R}^{n}\right)$.
The hypotheses on $\widehat{f_{0}}(z, x)$ are the following:
$\underline{\mathrm{H}_{2}}: \widehat{f_{0}}: \Omega \times \boldsymbol{R} \rightarrow \boldsymbol{R}$ is Caratheodory function such that $\widehat{f_{0}}(z, 0)=0$ for a.e. in Ω and
(i) $\left|\widehat{f_{0}}(z, x)\right| \leq a(z)+c|x|^{r-1}$ for a.e. in Ω, for all $x \in \boldsymbol{R}$ with $a \in L^{\infty}(\Omega)_{+}, c>0$ and $1<r<p^{*}$;
(ii) with $q \in(1, p)$ as in $\mathrm{H}_{0}^{\prime}(v)$, for a.e. $z \in \Omega x \rightarrow \widehat{f_{0}}(z, x) / x^{q-1}$ is strictly decreasing on $(0,+\infty), x \rightarrow \widehat{f_{0}}(z, x) /|x|^{q-2} x$ is strictly increasing on $(-\infty, 0)$ and $\widehat{f_{0}}(z, x) x \geq-\widehat{c}|x|^{\theta}$ for all $x \in \boldsymbol{R}$, with $\widehat{c}>0, \theta \geq p$.
The next result establishes the uniqueness of solutions of constant sign (when they exist) and extends an analogous result of Diaz-Saa [11], where the differential operator is p Laplacian.

Proposition 4.1. If hypotheses H_{0}^{\prime} and H_{2} hold, then problem (65) has at most one nontrivial positive solution and at most one nontrivial negative solution.

Proof. We show the uniqueness of the nontrivial positive solution (when it exists) the proof for the uniqueness of the nontrivial negative solution being similar.

Let $\xi: L^{1}(\Omega) \rightarrow \overline{\boldsymbol{R}}=\boldsymbol{R} \cup\{+\infty\}$ be the integral functional defined by

$$
\xi(u)= \begin{cases}\int_{\Omega} G\left(D u^{\frac{1}{\tau}}\right) d z & \text { if } u \geq 0, u^{\frac{1}{\tau}} \in W_{0}^{1, p}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

Then ξ is convex (see $\mathrm{H}_{0}^{\prime}(\mathrm{v})$ and Diaz-Saa [11]) and lower semicontinuous (by Fatou's lemma).

Suppose u is a nontrivial positive solution of (66). As before, the nonlinear regularity theory (see [24], [25]) and the nonlinear maximum principle (see [32] and hypothesis H_{2} (ii)), imply $u \in \operatorname{int} C_{+}$. Note that $u^{\tau} \geq 0$ and $\left(u^{\tau}\right)^{\frac{1}{\tau}}=u \in W_{0}^{1, p}(\Omega)$. So u^{τ} is in the effective domain of the $\overline{\boldsymbol{R}}$-valued functional ξ. Let $h \in C_{0}^{1}(\bar{\Omega})$ and $\lambda>0$ small. Then $u^{\tau}+\lambda h \in C_{+}$ and so the Gateuax derivative of ξ at u^{τ} in the direction h exists. Moreover, using the chain rule we have

$$
\begin{equation*}
\xi^{\prime}\left(u^{\tau}\right)(h)=\int_{\Omega} \frac{-\operatorname{div} a(D u)}{u^{\tau-1}} h d z \tag{67}
\end{equation*}
$$

Let y be another nontrivial positive solution of (66). Again we have $y \in \operatorname{int} C_{+}$. By virtue of the convexity of $\xi(\cdot)$ and using (67), we have

$$
\begin{aligned}
& \int_{\Omega}\left(\frac{-\operatorname{div} a(D u)}{u^{\tau}-1}+\frac{\operatorname{div} a(D y)}{y^{\tau}-1}\right)\left(u^{\tau}-y^{\tau}\right) d z \geq 0 \\
\Rightarrow & \left.0 \geq \int_{\Omega}\left(\frac{\widehat{f_{0}}(z, u)}{u^{\tau-1}}-\frac{\widehat{f_{0}}(z, y)}{y^{\tau-1}}\right)\left(u^{\tau}-y^{\tau}\right) d z \geq 0 \quad \text { (see (66) and } \mathrm{H}_{2}(\mathrm{ii})\right) \\
\Rightarrow & u=y\left(\text { see } \mathrm{H}_{2}(\mathrm{iii})\right) .
\end{aligned}
$$

Similarly we can obtain the uniqueness of the nontrivial negative solution.
Now, let $\widehat{f_{0}}(z, x)=|x|^{q-2} x$ and consider the following auxiliary problem:

$$
\begin{equation*}
-\operatorname{div} a(D u(z))=\lambda|u(z)|^{q-2} u(z) \quad \text { in } \Omega,\left.u\right|_{\partial \Omega}=0, \quad \lambda>0 . \tag{68}
\end{equation*}
$$

Proposition 4.2. If hypotheses H_{0}^{\prime} hold, $1<q<p$ and $\lambda>0$, then problem (68) has a unique nontrivial positive solution $\tilde{u}_{+}^{\lambda} \in \operatorname{int} C_{+}$and a unique nontrivial negative solution $-\tilde{u}_{+}^{\lambda} \in-\operatorname{int} C_{+}$.

Proof. We do the proof for \tilde{u}_{+}^{λ}, and from this follows the uniqueness of a negative solution. Let $\theta_{\lambda}^{+}: W_{0}^{1, p}(\Omega) \rightarrow \boldsymbol{R}$ be the C^{1}-functional defined by

$$
\theta_{\lambda}^{+}(u)=\int_{\Omega} G(D u(z)) d z-\frac{\lambda}{q}\left\|u^{+}\right\|_{q}^{q} \quad \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Corollary 2.3 and the fact that $q<p$, imply that θ_{λ}^{+}is coercive. Also θ_{λ}^{+}is sequentially weakly lower semicontinuous. So, we can find $\tilde{u}_{+}^{\lambda} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\theta_{\lambda}^{+}\left(\tilde{u}_{+}^{\lambda}\right)=\inf \left[\theta_{\lambda}^{+}(u) ; u \in W_{0}^{1, p}(\Omega)\right]=\tilde{m}_{\lambda}^{+} . \tag{69}
\end{equation*}
$$

If $u \in \operatorname{int} C_{+}$and $t \in(0,1)$ is small, then since $q<p$ we have

$$
\begin{aligned}
& \theta_{\lambda}^{+}(t u)<0 \\
\Rightarrow & \theta_{\lambda}^{+}\left(\tilde{u}_{+}^{\lambda}\right)=\tilde{m}_{\lambda}^{+}<0=\theta_{\lambda}^{+}(0) \\
\Rightarrow & \tilde{u}_{+}^{\lambda} \neq 0 .
\end{aligned}
$$

From (69) we have

$$
\begin{align*}
& \left(\theta_{\lambda}^{+}\right)^{\prime}\left(\tilde{u}_{+}^{\lambda}\right)=0 \\
\Rightarrow & V\left(\tilde{u}_{+}^{\lambda}\right)=\lambda\left(\left(\tilde{u}_{+}^{\lambda}\right)^{+}\right)^{q-1} . \tag{70}
\end{align*}
$$

On (70) we act with $-\left(\tilde{u}_{+}^{\lambda}\right)^{-} \in W_{0}^{1, p}(\Omega)$ and via Lemma 2.2 we obtain $\tilde{u}_{+}^{\lambda} \geq 0, \tilde{u}_{+}^{\lambda} \neq 0$. Then (70) becomes

$$
\begin{aligned}
& V\left(\tilde{u}_{+}^{\lambda}\right)=\lambda\left(\tilde{u}_{+}^{\lambda}\right)^{q-1} \\
\Rightarrow & \tilde{u}_{+}^{\lambda} \in \operatorname{int} C_{+}(\text {see }[25],[28]) \text { solves }(68) .
\end{aligned}
$$

The uniqueness of \tilde{u}_{+}^{λ} follows from Proposition 4.1 (recall that $\tau>q$).
Similarly we have $-\tilde{u}_{+}^{\lambda} \in-\operatorname{int} C_{+}$.
Using this proposition, we can establish the existence of extremal constant sign smooth solutions for (1) $\left(\lambda \in\left(0, \lambda^{*}\right)\right)$, i.e., we show that there exist a smallest nontrivial positive solution and a biggest nontrivial negative solution for (1) $\left(\lambda \in\left(0, \lambda^{*}\right)\right.$, where $\lambda^{*}>0$ is as in Proposition 3.4).

Proposition 4.3. If hypotheses H_{0}^{\prime} and H_{1} hold and $\lambda \in\left(0, \lambda^{*}\right)\left(\lambda^{*}>0\right.$ as in Proposition 3.4), then problem (1) has a smallest nontrivial positive solution $u_{*}^{\lambda} \in \operatorname{int} C_{+}$and a biggest nontrivial negative solution $v_{*}^{\lambda} \in-\operatorname{int} C_{+}$.

PROOF. We do the proof for u_{*}^{λ}, the proof for v_{*}^{λ} being similar.
First we show that if u is a nontrivial positive solution of (1) $\left(\lambda \in\left(0, \lambda^{*}\right)\right)$, then $u \geq \tilde{u}_{+}^{\lambda}$. To this end, first note that $u \in \operatorname{int} C_{+}$(as before) and

$$
\begin{equation*}
-\operatorname{div} a(D u(z))=\lambda u(z)^{q-1}+f(z, u(z)) \geq \lambda u(z)^{q-1} \text { a.e. in } \Omega\left(\text { see } \mathrm{H}_{1}(\mathrm{v})\right) . \tag{71}
\end{equation*}
$$

We consider the following function

$$
\gamma_{\lambda}^{+}(z, x)= \begin{cases}0 & \text { if } x<0 \tag{72}\\ \lambda x^{q-1} & \text { if } 0 \leq x \leq u(z) \\ \lambda u(z)^{q-1} & \text { if } u(z)<x\end{cases}
$$

This is a Caratheodory function. Let $\Gamma_{\lambda}^{+}(z, x)=\int_{0}^{x} \gamma_{\lambda}^{+}(z, s) d s$ and consider the C^{1}-functional $\sigma_{\lambda}^{+}: W_{0}^{1, p}(\Omega) \rightarrow \boldsymbol{R}$ defined by

$$
\sigma_{\lambda}^{+}(u)=\int_{\Omega} G(D u(z)) d z-\int_{\Omega} \Gamma_{\lambda}^{+}(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

It is clear from Lemma 2.2 and (72), that σ_{λ}^{+}is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find $\tilde{u} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\sigma_{\lambda}^{+}(\tilde{u})=\inf \left[\sigma_{\lambda}^{+}(u) ; u \in W_{0}^{1, p}(\Omega)\right]=\widehat{m}_{\lambda}^{+} . \tag{73}
\end{equation*}
$$

As before, since $q<p$, we have

$$
\begin{aligned}
& \sigma_{\lambda}^{+}(\tilde{u})=\widehat{m}_{\lambda}^{+}<0=\sigma_{\lambda}^{+}(0) \\
\Rightarrow & \tilde{u} \neq 0 .
\end{aligned}
$$

From (73) we have

$$
\begin{align*}
& \left(\sigma_{\lambda}^{+}\right)^{\prime}(\tilde{u})=0 \\
\Rightarrow & V(\tilde{u})=N_{\gamma_{\lambda}^{+}}(\tilde{u}) \tag{74}
\end{align*}
$$

$$
\text { where } N_{\gamma_{\lambda}^{+}}(u)(\cdot)=\gamma_{\lambda}^{+}(\cdot, u(\cdot)) \quad \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

On (74) we act with $-\tilde{u}^{-} \in W_{0}^{1, p}(\Omega)$ and obtain $\tilde{u} \geq 0$ and in fact $\tilde{u} \in \operatorname{int} C_{+}$by nonlinear regularity theory and the nonlinear maximum principle (see [24] and [25]). Also acting on (74) with $(\tilde{u}-u)^{+} \in W_{0}^{1, p}(\Omega)$, we obtain

$$
\begin{aligned}
&\left\langle V(\tilde{u}),(\tilde{u}-u)^{+}\right\rangle=\int_{\Omega} \gamma_{\lambda}^{+}(z, \tilde{u})(\tilde{u}-u)^{+} d z \\
&= \int_{\Omega} \lambda u^{q-1}(\tilde{u}-u)^{+} d z(\text { see }(72)) \\
& \leq\left\langle V(u),(\tilde{u}-u)^{+}\right\rangle(\text {see }(71)) \\
& \Rightarrow \int_{\{\tilde{u}>u\}}(a(D \tilde{u})-a(D u), D \tilde{u}-D u)_{R^{n}} d z \leq 0 \\
& \Rightarrow \tilde{u} \leq u \text { (recall that } a(\cdot) \text { is strictly monotone, see Lemma 2.2). }
\end{aligned}
$$

Then $\tilde{u} \in[0, u] \cap \operatorname{int} C_{+}$and so (74) becomes $V(\tilde{u})=\lambda \tilde{u}^{q-1}$, hence $\tilde{u}=\tilde{u}_{+}^{\lambda}$ by virtue of Proposition 4.2. Therefore $\tilde{u}_{+}^{\lambda} \leq u$.

We introduce the set

$$
S_{+}(\lambda)=\{\lambda>0 ; \text { problem (1) has a nontrivial positive solution }\}
$$

From Proposition 3.6, we know that $S_{+}(\lambda) \neq \emptyset$. Also, $S_{+}(\lambda) \subseteq\left[\tilde{u}_{+}^{\lambda}\right) \cap \operatorname{int} C_{+}$where $\left[\tilde{u}_{+}^{\lambda}\right)=$ $\left\{u \in W_{0}^{1, p}(\Omega) ; \tilde{u}_{+}^{\lambda}(z) \leq u(z)\right.$ a.e. in $\left.\Omega\right\}$. Moreover, as in Filippakis-Kristaly-Papageorgiou [14] we can check that $S_{+}(\lambda)$ is downward directed (i.e., if $u_{1}, u_{2} \in S_{+}(\lambda)$, we can find $u \in S_{+}(\lambda)$ such that $u \leq \min \left\{u_{1}, u_{2}\right\}$). Let $C \subseteq S_{+}(\lambda)$ be a chain (i.e., a totally ordered subset of $S_{+}(\lambda)$). From Dunford-Schwartz [12] (p. 336), we know that we can find $\left\{u_{n}\right\}_{n \geq 1} \subseteq C$ such that

$$
\inf _{n \geq 1} u_{n}=\inf C .
$$

Evidently, we may assume that $u_{n} \leq u_{0}$ for all $n \geq 1$, with $u_{0} \in \operatorname{int} C_{+}$from Proposition 3.6. We have

$$
\begin{align*}
& V\left(u_{n}\right)=\lambda u_{n}^{q-1}+N_{f}\left(u_{n}\right) \text { for all } n \geq 1 \tag{75}\\
\Rightarrow & \left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded. }
\end{align*}
$$

We may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} \bar{u} \text { in } W_{0}^{1, p}(\Omega) \text { and } u_{n} \rightarrow \bar{u} \text { in } L^{p}(\Omega) \text { as } n \rightarrow \infty \tag{76}
\end{equation*}
$$

On (75) we act with $u_{n}-\bar{u} \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (76). We obtain

$$
\begin{align*}
& \lim \left\langle V\left(u_{n}\right), u_{n}-\bar{v}\right\rangle=0 \\
\Rightarrow & u_{n} \rightarrow \bar{u} \text { in } W_{0}^{1, p}(\Omega) \text { as } n \rightarrow \infty(\text { see Proposition 2.7). } \tag{77}
\end{align*}
$$

From the first part of the proof we have $\tilde{u}_{+}^{\lambda} \leq \bar{u}$. Also, passing to the limit as $n \rightarrow \infty$ in (75) and using (77), we obtain

$$
\begin{aligned}
& V(\bar{u})=\lambda \bar{u}^{q-1}+N_{f}(\bar{u}) \\
\Rightarrow & \bar{u} \in S_{+}(\lambda) \cap \operatorname{int} C_{+} \quad \text { and } \quad \bar{u}=\inf C .
\end{aligned}
$$

Since C is an arbitrary chain in $S_{+}(\lambda)$, from the Kuratowski-Zorn lemma, we infer that $S_{+}(\lambda)$ admits a minimal element $u_{*}^{\lambda} \geq \tilde{u}_{+}^{\lambda}$. Since $S_{+}(\lambda)$ is downward directed, it follows that u_{*}^{λ} is the smallest nontrivial positive solution of problem (1). Similarly, we produce $v_{*}^{\lambda} \in-\operatorname{int} C_{+}$, $v_{*}^{\lambda} \leq-\tilde{u}_{+}^{\lambda}$ the biggest nontrivial negative solution of (1).

Having these two extremal constant sign smooth solutions, we can now implement the strategy of Dancer-Du [10] (see also [14]). Namely, we focus on the order interval $\left[v_{*}^{\lambda}, u_{*}^{\lambda}\right]=$ $\left\{u \in W_{0}^{1, p}(\Omega) ; v_{*}^{\lambda}(z) \leq u(z) \leq u_{*}^{\lambda}(z)\right.$ a.e. in $\left.\Omega\right\}$. Using suitable truncation and variational techniques coupled with Morse Theory (critical groups), we show that problem (1) has a solution $y_{0} \in\left[v_{*}^{\lambda}, u_{*}^{\lambda}\right] \cap C_{0}^{1}(\bar{\Omega}), y_{0} \neq 0$. The extremality of $v_{*}^{\lambda}, u_{*}^{\lambda}$, implies that y must be nodal.

Proposition 4.4. If hypotheses H_{0}^{\prime} and H_{1} hold and $\lambda \in\left(0, \lambda^{*}\right)$, then problem (1) has a nodal solution $y_{0} \in C_{0}^{1}(\bar{\Omega})$.

Proof. Let $u_{*}^{\lambda} \in \operatorname{int} C_{+}$and $v_{*}^{\lambda} \in-\operatorname{int} C_{+}$be the two extremal constant sign solutions of (1) produced in Proposition 4.3. We introduce the following truncation of the reaction:

$$
\widehat{\beta}_{\lambda}(z, x)= \begin{cases}\lambda\left|v_{*}^{\lambda}(z)\right|^{q-2} v_{*}^{\lambda}(z)+f\left(z, v_{*}^{\lambda}(z)\right) & \text { if } x<v_{*}^{\lambda}(z) \tag{78}\\ \lambda|x|^{q-2} x+f(z, x) & \text { if } v_{*}^{\lambda}(z) \leq x \leq u_{*}^{\lambda}(z) \\ \lambda u_{*}^{\lambda}(z)^{q-1}+f\left(z, u_{*}^{\lambda}(z)\right) & \text { if } u_{*}^{\lambda}(z)<x\end{cases}
$$

This is a Caratheodory function. We set $\widehat{\mathrm{B}}_{\lambda}(z, x)=\int_{0}^{x} \widehat{\beta}_{\lambda}(z, s) d s$ and consider the C^{1} functional $j_{\lambda}: W_{0}^{1, p}(\Omega) \rightarrow \boldsymbol{R}$ defined by

$$
j_{\lambda}(u)=\int_{\Omega} G(D u(z)) d z-\int_{\Omega} \widehat{\mathrm{B}}_{\lambda}(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Also set $\widehat{\beta}_{\lambda}^{ \pm}(z, x)=\widehat{\beta}_{\lambda}\left(z, \pm x^{ \pm}\right), \widehat{\mathrm{B}}_{\lambda}^{ \pm}(z, x)=\int_{0}^{x} \widehat{\beta}_{\lambda}^{ \pm}(z, s) d s$ and consider the C^{1}-functionals $j_{\lambda}^{ \pm}: W_{0}^{1, p}(\Omega) \rightarrow \boldsymbol{R}$ defined by

$$
j_{\lambda}^{ \pm}(u)=\int_{\Omega} G(D u(z)) d z-\int_{\Omega} \widehat{\mathrm{B}}_{\lambda}^{ \pm}(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Reasoning as in the proof of Proposition 4.3, we can show that

$$
K_{j_{\lambda}} \subseteq\left[v_{*}^{\lambda}, u_{*}^{\lambda}\right], \quad K_{j_{\lambda}^{+}} \subseteq\left[0, u_{*}^{\lambda}\right], \quad K_{j_{\lambda}^{-}} \subseteq\left[v_{*}^{\lambda}, 0\right](\operatorname{see}(78)) .
$$

Taking into account the extremality of the solutions u_{*}^{λ} and v_{*}^{λ} (see Proposition 4.3), we have

$$
\begin{equation*}
K_{j_{\lambda}} \subseteq\left[v_{*}^{\lambda}, u_{*}^{\lambda}\right], \quad K_{j_{\lambda}^{+}}=\left\{0, u_{*}^{\lambda}\right\}, \quad K_{j_{\lambda}^{-}}=\left\{v_{*}^{\lambda}, 0\right\} . \tag{79}
\end{equation*}
$$

CLAIM 4.5. $u_{*}^{\lambda} \in \operatorname{int} C_{+}$and $v_{*}^{\lambda} \in-\operatorname{int} C_{+}$are local minimizers of j_{λ}.
Proof. Evidently j_{λ}^{+}is coercive and sequentially weakly lower semicontinuous. So, we can find $\tilde{u}_{0}^{\lambda} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
j_{\lambda}^{+}\left(\tilde{u}_{0}^{\lambda}\right)=\inf \left[j_{\lambda}^{+}(u) ; u \in W_{0}^{1, p}(\Omega)\right]=\overline{m_{\lambda}^{+}} . \tag{80}
\end{equation*}
$$

As before, the presence of the "concave" term $\lambda x^{q-1}, x \in\left[0, u_{*}^{\lambda}(z)\right]$, implies that

$$
\begin{aligned}
& j_{\lambda}^{+}\left(\tilde{u}_{0}^{\lambda}\right)=\bar{m}_{+}^{\lambda}<0=j_{\lambda}^{+}(0)(\operatorname{see}(80)), \\
& \tilde{u}_{0}^{\lambda} \neq 0 \text { and so } \tilde{u}_{0}^{\lambda}=u_{*}^{\lambda}(\operatorname{see}(80)) .
\end{aligned}
$$

Note that $j_{\lambda} \mid W_{+}=j_{\lambda}^{+}{ }_{W_{+}} W_{+}=\left\{u \in W_{0}^{1, p}(\Omega) ; u(z) \geq 0\right.$ a.e. in $\left.\Omega\right\}$ and recall that $u_{*}^{\lambda} \in \operatorname{int} C_{+}$(see Proposition 4.3). So, it follows that u_{*}^{λ} is a local $C_{0}^{1}(\bar{\Omega})$-minimizer of j_{λ}. Invoking Proposition 2.6 we have that u_{*}^{λ} is a local $W_{0}^{1, p}(\Omega)$-minimizer of j_{λ}. Similarly for $v_{*}^{\lambda} \in-\operatorname{int} C_{+}$using this time the functional j_{λ}^{-}. This proves the claim.

We may assume that $j_{\lambda}\left(v_{*}^{\lambda}\right) \leq j_{\lambda}\left(u_{*}^{\lambda}\right)$ (the analysis is similar if the opposite inequality holds). Also because of the claim and reasoning as in Aizicovici-Papageorgiou-Staicu [1] (see the proof of Proposition 29), we can find $\rho \in(0,1)$ small such that

$$
\begin{equation*}
j_{\lambda}\left(v_{*}^{\lambda}\right) \leq j_{\lambda}\left(u_{*}^{\lambda}\right)<\inf \left[j_{\lambda}(u) ;\left\|u-u_{*}^{\lambda}\right\|=\rho\right]=\eta_{\lambda},\left\|v_{*}^{\lambda}-u_{*}^{\lambda}\right\|>\rho . \tag{81}
\end{equation*}
$$

From Lemma 2.2 and (78), it is clear that j_{λ} is coercive, hence it satisfies the PS-condition. This fact together with (81) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find $y_{0} \in K_{j_{\lambda}} \backslash\left\{v_{*}^{\lambda}, u_{*}^{\lambda}\right\} \subseteq\left[v_{*}^{\lambda}, u_{*}^{\lambda}\right] \backslash\left\{v_{*}^{\lambda}, u_{*}^{\lambda}\right\}$ (see (79) and (81)). Then $y_{0} \in C_{0}^{1}(\bar{\Omega})$ and solves (1). Also, since y_{0} is a critical point of j_{λ} of mountain pass type, we have

$$
\begin{equation*}
C_{1}\left(j_{\lambda}, y_{0}\right) \neq 0(\text { see Chang [7] }(\text { p. 89) }) . \tag{82}
\end{equation*}
$$

On the other hand, from Jiu-Su [22] (Proposition 2.4), we know that

$$
\begin{equation*}
C_{k}\left(j_{\lambda}, 0\right)=0 \quad \text { for all } ; k \geq 0 \text { (due to the "concave" term). } \tag{83}
\end{equation*}
$$

Comparing (82) and (83), we conclude that $y_{0} \neq 0$. Therefore $y_{0} \in C_{0}^{1}(\bar{\Omega})$ is a nodal solution of $(1)\left(\lambda \in\left(0, \lambda^{*}\right)\right)$.

Summarizing the situation for problem (1), we have the following multiplicity theorem with precise sign information for all solutions.

THEOREM 4.6. If hypotheses H_{0}^{\prime} and H_{1} hold, then there exists $\lambda^{*}>0$ such that for all $\lambda \in\left(0, \lambda^{*}\right)$ problem (1) has at least five nontrivial smooth solutions

$$
\begin{aligned}
& \quad u_{0}, \widehat{u} \in \operatorname{int} C_{+}, \quad u_{0} \leq \widehat{u}, \quad u_{0} \neq \widehat{u} \\
& v_{0}, \widehat{v} \in-\operatorname{int} C_{+}, \quad \widehat{v} \leq v_{0}, \quad \widehat{v} \neq v_{0} \\
& \text { and } \quad y_{0} \in C_{0}^{1}(\bar{\Omega}) \text { nodal. }
\end{aligned}
$$

REmARK 4.7. It is interesting to know if the above theorem is still valid for differential operator satisfying hypotheses H . What is missing, is a nonlinear maximum principle for such operators.

References

[1] S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. (English summary), Mem. Amer. Math. Soc. 196 (2008), vi+70 pp.
[2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
[3] D. ARCOYA and D. RuIz, The Ambrosetti-Prodi problem for the p-Laplace operator, Comm. Partial Differential Equations 31 (2006), 849-865.
[4] T. Bartsch, Z. LiU and T. Weth, Nodal solutions of a p-Laplacian operator, Proc. London Math. Soc. 91 (2005), 129-152.
[5] T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995), 3555-3561.
[6] H. Brezis and L. Nirenberg, H^{1} versus C^{1} local minimizers, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 465-472.
[7] K. C. Chang, Infinite-dimensional Morse theory and multiple solution problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser Boston, Inc., Boston, MA, 1993.
[8] D. Costa and C. Magalhaes, Existence results for perturbations of the p-Laplacian, Nonlinear Anal. 24 (1995), 409-418.
[9] M. CUESTA AND P. TAKAC, A strong comparison principle for positive solutions of degenerate elliptic equations, Differential Integral Equations 13 (2000), 721-746.
[10] N. Dancer and Y. Du, On sign changing solutions of certain semilinear elliptic equations, Appl. Anal. 56 (1995), 193-206.
[11] J. I. Diaz and J. E. SaÁ, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521-524.
[12] N. Dunford and J. Schwartz, Linear Opearators I, General Theory, With the assistance of W. G. Bade and R. G. Bartle, Pure and Applied Mathematics Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958.
[13] G. FeI, On periodic solutions of superquadratic Hmiltonian systems, Electron. J. Differential Equations 8 (2002), pp. 12.
[14] M. E. Filippakis, A. Kristaly and N. S. Papageorgiou, Existence of five nonzero solutions with exact sign for a p-Laplacian equation, Discrete Contin. Dyn. Syst. 24 (2009), 405-440.
[15] J. Garcia Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385-404.
[16] L. Gasinski and N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Ser. Math. Anal. Appl. 8, Chapman \& Hall/CRC, Boca Raton, FL, 2005.
[17] L. Gasinski and N. S. Papageorgiou, Nonlinear analysis, Ser. Math. Anal. Appl. 9, Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[18] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften Vol. 224, Springer-Verlag, Berlin-New York, 1977.
[19] M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), 879-902.
[20] Z. Guo and Z. Zhang, $W^{1, p}$ versus C^{1} local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003), 32-50.
[21] A. Ioffe and V. Tichomirov, Theory of extremal problems, Stud. Math. Appl. 6. North-Holland Publishing Co., Amsterdam-New York, 1979.
[22] Q. Jiu and J. Su, Existence and multiplicity results for Dirichlet problems with p-Laplacian, J. Math. Anal. Appl. 281 (2003), 587-601.
[23] S. Kyritsiand N. S. Papageorgiou, Pairs of positive solutions for p-Laplacian equations with combined nonlinearities, Commun. Pure Appl. Anal. 8 (2009), 1957-1974.
[24] O. A. LADYZhenskaya and N. Uraltseva, Linear and quasilinear elliptic equations, Vol. 46 of Mathematics in Science and Engineering, Academic Press, New York, 1968.
[25] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[26] M. Lucia and S. Prashanth, Strong comparison principle for solutions of quasilinear equations, Proc. Amer. Math. Soc. 132 (2003), 1005-1011.
[27] O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti-Rabonowitz growth codition, J. Differential Equations 245 (2008), 3628-3638.
[28] M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal. 37 (1999), 431-448.
[29] N. S. Papageorgiou and S. Kyritsi, Handbook of applied analysis, Adv. Mech. Math. 19, SpringerVerlag, New York, 2009.
[30] P. Pucci and J. Serrin, The maximum principle, Progr. Nonlinear Differential Equations Appl. 73, Birkhäuser Verlag, Basel, 2007.
[31] M. TANG, Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 705-717.
[32] J. L. VÁzQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Department of Digital Systems

University of Piraeus

Piraeus 18536
Greece
E-mail address: mfilip@unipi.gr

School of Mathematics
Statistics and Applied Mathematics
National University of Ireland
Galway
Ireland
E-mail address: donal.oregan@nuigalway.ie

Department of Mathematics
National Technical University
Zografou Campus Athens 15780 Greece

E-mail address: npapg@math.ntua.gr

[^0]: 2010 Mathematics Subject Classification. Primary 35J20; Secondary 35J60, 35J70.
 Key words and phrases. Nonlinear nonhomogeneous differential operator, nonlinear regularity theory, nonlinear maximum principle, local minimizers, strong comparison principle, constant sign solutions, nodal solutions, concaveconvex nonlinearities

