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FUNCTIONS OF VANISHING MEAN OSCILLATION ASSOCIATED
TO NON-NEGATIVE SELF-ADJOINT OPERATORS

SATISFYING DAVIES-GAFFNEY ESTIMATES

THE ANH BUI
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Abstract. Let L be a nonnegative self-adjoint operator satisfying Davies-Gaffney es-
timates on L2(X), where X is a metric space. In this paper, we introduce and develop a new
function space VMOL(X) of vanishing mean oscillation type associated to L. We then prove
that the dual of VMOL(X) is the Hardy space HL(X) which was investigated in [18]. Some
characterizations of VMOL(X) are also established.

1. Introduction. A locally integrable function f defined on Rn is said to be in
BMO(Rn), the space of functions of bounded mean oscillation, if

‖f ‖BMO = sup
B

1

|B|
∫

B

|f (y) − fB |dy < ∞ ,

where the supremum is taken over all balls B in Rn, and fB stands for the mean of f over B,
i.e.,

fB = 1

|B|
∫

B

f (y)dy

(see [21]).
In [23], Sarason introduced the space of functions of vanishing mean oscillation, that is,

the set of all functions of BMO(Rn) satisfying the limiting condition

lim
a→0

(
sup

B:rB≤a

1

|B|
∫

B

|f (y) − fB |dy
)

= 0 ,

which is denoted by VMO(Rn). We endow VMO(Rn) with the norm of BMO(Rn).
In 1972, Fefferman and Stein [15] showed that BMO(Rn) is the dual of the Hardy space

H 1(Rn). Coifman and Weiss [11] then introduced a modified version of VMO(Rn), de-
noted by CMO(Rn), the closure of the space C0(R

n) with respect to the BMO norm, where
C0(R

n) is the spaces of continuous functions with compact support. They proved that the
space H 1(Rn) is the dual of CMO(Rn).

In recent years, the study of Hardy spaces and BMO spaces associated to operators has
attracted a lot of attentions (see for example [2, 4, 5, 13, 14, 17, 18, 19] and their references).
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In [2], the authors studied the Hardy spaces associated to an operator whose heat kernel sat-
isfies a pointwise Poisson upper bound. Later, the BMO spaces associated to such an L were
introduced in [13, 14]. Recently, Auscher, McIntosh and Russ treated the Hardy space H 1 as-
sociated to Hodge Laplacian on a Riemannian manifold (see [4]). Meanwhile, Hofmann and
Mayboroda introduced the Hardy spaces associated to a second order divergence form elliptic
operator L on Rn with complex coefficients (see [17]). Then Hofmann et al. [18] introduced
new Hardy spaces H

p
L , 1 ≤ p < ∞, on a metric space X associated to a non-negative self-

adjoint operator L satisfying Davies-Gaffney estimates. In the same setting as in [18], the
authors in [19] introduced the Orlicz-Hardy spaces associated to L, a generalization of the
Hardy space H 1

L introduced in [18].
Continuing the line of study in [2, 13, 17], the authors in [12, 20] introduced and devel-

oped a new function space VMOL(X) of vanishing mean oscillation associated to an operator
L whose heat kernel satisfies a pointwise Poisson upper bound or a second order divergence
form elliptic operator L on Rn with complex coefficients, respectively. Motivated by these
previous works, this paper is devoted to studying the new function spaces VMOL(X) of van-
ishing mean oscillation associated to a non-negative self-adjoint operator satisfying so called
Davies-Gaffney estimates. Compared with the work of [12], we do not require the pointwise
estimate of the heat kernel. This is replaced by weaker estimates Davies-Gaffney estimates.
This kind of estimates is common in the works of [17, 18, 19, 20]. Let us remind you that
the generalized vanishing mean oscillation spaces were investigated by R. Jiang and D. Yang
[20] in Euclidean space Rn setting. Therefore, in some sense, the work in this paper can be
considered to be an extension of those in [20].

The organization of this paper is as follows. In Section 2, we give some preliminaries.
An important covering lemma (Lemma 2.1) is addressed in this section. In Section 3, we
introduce the space VMOL(X) and then establishes some characterizations of VMOL(X).
The main result of this paper is given in Section 4. It is shown that the dual of the space
VMOL(X) is the Hardy space HL(X) introduced in [18].

Throughout the paper, we always use C and c to denote positive constants that are inde-
pendent of the main parameters involved but whose values may differ from line to line.

2. Notations and preliminaries. Let X be a metric space with a distance d and
a nonnegative, doubling, Borel measure μ on X. Throughout this paper, we assume that
μ(X) = ∞. Denote by B(x, r) the open ball of radius r > 0 and center x ∈ X, and by
V (x, r) its measure μ(B(x, r)). The doubling property of μ provides that there exists a con-
stant C1 > 0 so that

(1) V (x, 2r) ≤ C1V (x, r)

for all x ∈ X and r > 0. Notice that the doubling property (1) implies that there exists positive
constants n and C2 so that

(2) V (x, λr) ≤ C2λ
nV (x, r) ,
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for some positive constant n uniformly for all λ ≥ 1, x ∈ X and r > 0. There also exist
constants 0 ≤ N ≤ n and C3 such that

(3) V (x, r) ≤ C3

(
1 + d(x, y)

r

)N

V (y, r) ,

uniformly for all x, y ∈ X and r > 0.
To simplify notation, we will often just use B for B(xB, rB). Given λ > 0, we will

write λB for the λ-dilated ball, which is the ball with the same center as B and with radius
rλB = λrB . For each ball B ⊂ X we set

S0(B) = B and Sj (B) = 2jB\2j−1B for j ∈ N .

The following covering lemma plays a key role in sequel.

LEMMA 2.1. Let l and r be two positive constants. For any ball B(xB, lr) in X, there
exists a set of balls {B(xk1, r), . . . , B(xkNk

, r)} such that

(a) B(xB, lr) ⊂ ∪Nk

j=1B(xkj , r);
(b) Nk ≤ Cln;
(c)

∑Nk

j=1 χB(xkj
,r) ≤ C, where C is independent of l and r .

PROOF. We consider the case when l ≥ 1. Otherwise, there is nothing to prove. By
Vitali covering lemma, we can pick from the family of balls {B(x, r

3 ); x ∈ B(xB, lr)} a

disjoint family {B(xk1 ,
r
3 ), . . . , B(xkNk

, r
3 )} such that B(xB, lr) ⊂ ∪Nk

j=1B(xkj , r). Obviously,
B(xkj ,

r
3 ) ⊂ B(xB, 2lr) and B(xB, lr) ⊂ B(xkj , 6l r

3 ) for all j = 1, . . . , Nk . This together
with (2) gives

V (xB, lr) ≥ C1V (xB, 2lr) ≥ C

Nk∑
j=1

V

(
xkj ,

r

3

)

≥ C

Nk∑
j=1

(6l)−nV

(
xkj , 6l

r

3

)
≥ C

Nk∑
j=1

l−nV (xB, lr) = CNkl
−nV (xB, lr) .

This implies (b).
For any x ∈ X, set Ix = {i; x ∈ B(xi, r), i ∈ {k1, . . . , kNk }}. Then, ∪i∈Ix B(xi ,

r
3 ) ⊂

∪i∈Ix B(xi , r) ⊂ B(x, 2r). This implies

V (x, r) ≥ CV (x, 2r) ≥
∑
i∈Ix

V

(
xi,

r

3

)

≥ C
∑
i∈Ix

V (xi, 12
r

3
) ≥ |Ix |V (x, r) .

It therefore follows that
∑Nk

j=1 χB(xkj
,r) ≤ C, where C is independent of l and r . �
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REMARK 2.2. It is easy to see that

max
{ V (xkj , r)

V (xB, lr)
,
V (xB, lr)

V (xkj , r)

}
≤ C(1 + l)N .

2.1. Assumptions. The following will be assumed throughout the paper unless oth-
erwise specified:

(H1) L is a non-negative self-adjoint operator on L2(X).
(H2) The operator L generates an analytic semigroup {e−tL}t>0 which satisfies the

Davies-Gaffney estimate, i.e., there exist positive constants C and c such that for all closed
sets E and F in X, t ∈ (0,∞) and f ∈ L2(X) supported in E,

(4) ‖e−tLf ‖L2(F ) ≤ C exp

{
− d(E,F )2

ct

}
‖f ‖L2(E) ,

where d(E,F ) is the distance between the sets E and F .

LEMMA 2.3 ([16]). If two families of operators, {St }t>0 and {Tt }t>0 satisfy the
Davies-Gaffney estimate (4). Then there exist two constants C ≥ 0 and c > 0 such that,
for every t > 0, every closed subsets E and F of X and every function f supported in E,

‖SsTtf ‖L2(F ) ≤ C exp

{
− d(E,F )2

c max{s, t}
}
‖f ‖L2(E) .

Examples of operators satisfying the assumptions (H1) and (H2) include degenerate
Schrödinger operators with nonnegative potential, Schrödinger operators with nonnegative
potential and magnetic field and Laplace-Beltrami operators on all complete Riemannian man-
ifolds (see [1, 3, 8]).

PROPOSITION 2.4 ([18]). For every K ∈ N , the family of operators {(tL)ke−tL}t>0

satisfies the Davies-Gaffney estimate (4).

The proof is similar to one in [18] and hence we omit it here.

3. The spaces VMOL(X).
3.1. Hardy spaces associated to operators. The theory of Hardy spaces associated

to non-negative self-adjoint operators satisfying Davies-Gaffney estimates was developed re-
cently by Hofmann et. al. [18]. Here, we use the definitions and characterizations of Hardy
spaces HL(X) in [18].

3.1.1. The atomic Hardy spaces HL,at,M(X). We now recall the notion of a
(1, 2,M)-atom associated to operators on spaces (X, d,μ). In what follows, denote by D(T )

the domain of an operator T .

DEFINITION 3.1 ([18]). A function a(x) ∈ L2(X) is called a (1, 2,M)-atom associ-
ated to an operator L if there exist a function b ∈ D(LM) and a ball B of X such that

(i) a = LMb;
(ii) supp Lkb ⊂ B, k = 0, 1, . . . ,M;

(iii) ‖(r2
BL)kb‖L2(X) ≤ r2M

B V (B)−1/2, k = 0, 1, . . . ,M .
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In the case μ(X) < ∞ the constant function having value [μ(X)]−1 is also considered to be
an atom.

DEFINITION 3.2. Given M > n/4, the atomic Hardy space HL,at,M(X) is defined as
follows. We shall say that f = ∑

λj aj is an atomic (1, 2,M)-representation if {λj }∞j=0 ∈ l1,

each aj is a (1, 2,M)-atom, and the sum converges in L2(X). Set

HL,at,M(X) = {f ; f has an atomic (1, 2,M)-representation} ,

with the norm given by

‖f ‖HL,at,M (X) = inf

{ ∞∑
j=0

|λj |; f =
∞∑

j=0

λj aj is an atomic (1, 2,M)-representation

}
.

The space HL,at,M(X) is then defined as the completion of HL,at,M(X) with respect to the
quasi-metric d defined by d(h, g) = ‖h − g‖HL,at,M (X) for h, g ∈ HL,at,M(X).

A basic result concerning these spaces is the following proposition.

PROPOSITION 3.3 ([18]). If an operator L satisfies conditions (H1) and (H2), then
for all integers M ∈ N with M > n/4, the spaces HL,at,M(X) coincide and their norms are
equivalent.

We next recall the notion of a (1, 2,M, ε)-molecule associated to an operator L.

DEFINITION 3.4 ([18]). Let ε > 0 and M ∈ N . We say that a function α ∈ L2(X) is
called a (1, 2,M, ε)-molecule associated to L if there exist a function b ∈ D(LM) and a ball
B such that

(i) α = LMb;
(ii) ‖(r2

BL)kb‖L2(Sj (B)) ≤ r2M
B 2−jεV (2jB)−1/2, for all k = 0, 1, . . . ,M and j ∈ N .

DEFINITION 3.5. We shall say that f = ∑
λj aj is an atomic (1, 2,M)-representation

if {λj }∞j=0 ∈ l1, each aj is a (1, 2,M, ε)-molecule, and the sum converges in L2(X). Set

HL,mol,M(X) = {f ; f has a molecular (1, 2,M, ε)-representation}
with the norm given by

‖f ‖HL,mol,M (X) = inf

{ ∞∑
j=0

|λj |; f =
∞∑

j=0

λjaj is a molecular (1, 2,M, ε)-representation

}
.

The space HL,mol,M(X) is then defined as the completion of HL,mol,M(X) with respect to the
quasi-metric d defined by d(h, g) = ‖h − g‖HL,mol,M (X) for h, g ∈ HL,mol,M(X).

3.2. A characterization of Hardy spaces in terms of square functions. Set
H 2(X) = R(L), where R(L) := {Lu; u ∈ L2(X)}. The space HL,SL(X) is defined as
the completion of

{f ∈ H 2(X); ‖SLf ‖L1(X) < ∞}
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with respect to the norms given by

‖f ‖H 1
L,SL

(X) = ‖Shf ‖L1(X) ,

where

SLf (x) :=
( ∫ ∞

0

∫
d(x,y)<t

|t2Le−t2Lf (y)|2 dμ(y)

V (x, t)

dt

t

)1/2

.

Then the Hardy spaces HL,SL , HL,at,M(X) and HL,mol,M(X) are equivalent, if the parameter
M > n/4. In fact, we have the following result.

PROPOSITION 3.6 ([18]). Suppose M > n/4. Then HL,SL(X) = HL,at,M(X) =
HL,mol,M(X) and their norms are equivalent.

Consequently, as in the next definition, when M > n/4, one may write HL,at and HL,mol

in place of HL,at,M and HL,mol,M , respectively. Precisely, we have the following definition.

DEFINITION 3.7. The Hardy space HL(X) is defined by

HL(X) := HL,SL(X) .

Note that for M > n/4, HL(X) is identical with HL,at,M(X) := HL,mol,M(X).

3.3. The space BMOL(X). Let φ = LMv be a function in L2(X), where v ∈ D(LM).
Following [17, 18] for ε > 0, M ∈ N and fixed x0 ∈ X we introduce the norm

‖φ‖MM,ε
0 (L)

= sup
j∈Z+

{
2jεV (x0, 2j )1/2

M∑
k=0

‖Lkv‖L2(Sj (B(x0,1)))

}

and the set

MM,ε
0 (L) = {φ = LMv ∈ L2(X); ‖φ‖MM,ε

0 (L)
< ∞} .

Let (MM,ε
0 (L))∗ be the dual of MM,ε

0 (L), and denote either (I + t2L)−1 or e−t2L by At .

Let f ∈ (MM,ε
0 (L))∗. Then (I − At)

Mf belongs to L2
loc(X) in the sense of distribution (see

[17, 18]).

For any M ∈ N define

EM =
⋂
ε>0

(MM,ε
0 (L))∗ .

DEFINITION 3.8 ([18]). Let L satisfy assumptions (H1) and (H2) and M > n/4. A
functional f ∈ EM is said to be in BMOL,M(X) if

‖f ‖BMOL,M (X) = sup
B⊂X

[
1

V (B)

∫
B

|(I − e−r2
BL)Mf (x)|2dμ(x)

]1/2
< ∞ ,

where the supremum is taken over all balls B of X.

We have the following characterizations of the spaces BMOL,M(X).
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PROPOSITION 3.9 ([18]). Let L satisfy assumptions (H1) and (H2) and M > n/4.
Then f ∈ BMOL,M(X) if and only if f ∈ EM and

‖f ‖BMOL,M (X) = sup
B⊂X

[
1

V (B)

∫
B

|(I − (I + r2
BL)−1)Mf (x)|2dμ(x)

]1/2

< ∞ .

Moreover,

‖f ‖BMOL,M (X) ≈ sup
B⊂X

[
1

V (B)

∫
B

|(I − (I + r2
BL)−1)Mf (x)|2dμ(x)

]1/2

.

Since the spaces BMOL,M(X) coincide for all M > n/4 (see [18]), in what follows, we
denote BMOL,M(X) simply by BMOL(X).

PROPOSITION 3.10. Let L satisfy assumptions (H1), (H2) and M > n/4. Then there
exists a positive constant C such that for all f ∈ BMOL,M(X),

(5) sup
B⊂X

[
1

V (B)

∫
B̂

|(t2L)Me−t2Lf (x)|2 dμ(x)dt

t

]1/2

≤ C‖f ‖BMOL,M (X) .

Conversely, for M̃ > M + n/4, if f ∈ EM̃ and

(6) sup
B⊂X

[
1

V (B)

∫
B̂

|(t2L)M̃e−t2Lf (x)|2 dμ(x)dt

t

]1/2

< ∞ ,

then f ∈ BMOL(X).

For the proof of (5) and (6) we refer the reader to [19, Proposition 4.5] and [17, Lemma
8.3], respectively.

3.4. The space VMOL(X).

DEFINITION 3.11. Let L satisfy (H1) and (H2) and M > n/4. A function f ∈
BMOL(X) is said to be in VMOL,M(X) if γ1(f ) = γ2(f ) = γ3(f ) = 0, where

γ1(f ) = lim
a→0

sup
B:rB<a

[
1

V (B)

∫
B

|(I − e−r2
BL)Mf (x)|2dμ(x)

]1/2

,

γ2(f ) = lim
b→∞ sup

B:rB>b

[
1

V (B)

∫
B

|(I − e−r2
BL)Mf (x)|2dμ(x)

]1/2

,

and

γ3(f ) = lim
c→∞ sup

B:B⊂B(x0,c)
c

[
1

V (B)

∫
B

|(I − e−r2
BL)Mf (x)|2dμ(x)

]1/2

.

For f ∈ VMOL,M(X), define ‖f ‖VMOL,M (X) := ‖f ‖BMOL(X).

PROPOSITION 3.12. Assume that M > n/4 and f ∈ BMOL(X). Then, f ∈
VMOL,M(X) iff γ̃1(f ) = γ̃2(f ) = γ̃3(f ) = 0, where

(7) γ̃1(f ) = lim
a→0

sup
B:rB<a

[
1

V (B)

∫
B

|(I − (I + r2
BL)−1)Mf (x)|2dμ(x)

]1/2

,
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(8) γ̃2(f ) = lim
b→∞ sup

B:rB>b

[
1

V (B)

∫
B

|(I − (I + r2
BL)−1)Mf (x)|2dμ(x)

]1/2

,

and

(9) γ̃3(f ) = lim
c→∞ sup

B:B⊂B(x0,c)
c

[
1

V (B)

∫
B

|(I − (I + r2
BL)−1)Mf (x)|2dμ(x)

]1/2

.

PROOF. For the sake of simplicity, we denote the set of all functions in BMOL(X)

satisfying (7), (8) and (9) by VMOres
L,M(X).

STEP 1. VMOres
L,M(X) ⊂ VMOL,M(X).

For f ∈ VMOres
L,M(X), we break

f = (I − (I + r2
BL)−1)Mf + (I − (I − (I + r2

BL)−1)M)f .

Then, for any ball B ⊂ X, we have

I1 :=
(

1

V (B)

∫
B

|(I − e−r2
BL)M(I − (I + r2

BL)−1)Mf (x)|2dμ(x)

)1/2

≤ C

M∑
k=0

∞∑
j=0

(
1

V (B)

∫
B

|e−kr2
BL[χSj (B)(I − (I + r2

BL)−1)Mf ](x)|2dμ(x)

)1/2

≤
(

1

V (B)

∫
B

|(I − (I + r2
BL)−1)Mf (x)|2dμ(x)

)1/2

+ C

∞∑
j=2

e−c2j

(
1

V (B)

∫
Sj (B)

|(I − (I + r2
BL)−1)Mf (x)|2dμ(x)

)1/2

.

At this stage, by Lemma 2.1 and Remark 2.2, I1 is dominated by

C

∞∑
j=0

e−c2j

2(n+N)j/2δj (f, B)

where

δj (f, B) := sup
B ′:B ′⊂2j+1B,rB′=rB

(
1

V (B ′)

∫
B ′

|(I − (I + r2
BL)−1)Mf (x)|2dμ(x)

)1/2

.

To estimate the term

I2 :=
(

1

V (B)

∫
B

|(I − e−r2
BL)M(I − (I − (I + r2

BL)−1)M)f (x)|2dμ(x)

)1/2

,

we write

I − (I − (I + r2
BL)−1)M =

M∑
k=1

M!
(M − k)!k! (r

2
BL)−k(I − (I + r2

BL)−1)M .
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Therefore,

I2 ≤ C

M∑
j=1

(
1

V (B)

∫
B

|(I − e−r2
BL)M−k

(
−

∫ rB

0

τ

r2
B

e−τ 2Ldτ

)j

× (r2
BL)−k(I − (I + r2

BL)−1)Mf (x)|2dμ(x)

)1/2

.

By changing the order of integration above, using the annular decomposition and Davies-
Gaffney estimates and repeating the argument above, we also obtain

I2 ≤ C

∞∑
j=0

e−c2j

2(n+N)j/2δj (f, B) .

Therefore,(
1

V (B)

∫
B

|(I − e−r2
BL)Mf (x)|2dμ(x)

)1/2

≤ C

∞∑
j=0

e−c2j

2(n+N)j/2δj (f, B)

≤ C

k0∑
j=0

e−c2j

2(n+N)j/2δj (f, B) + C

∞∑
k0

e−c2j

2(n+N)j/2‖f ‖BMOL

≤ C

k0∑
j=0

e−c2j

2(n+N)j/2δj (f, B) + Ce−c2k
02(n+N)k0/2‖f ‖BMOL

.

So, when k0 is sufficiently large, γ1(f ) = γ2(f ) = γ3(f ) = 0. This implies f ∈
VMOL,M(X).

STEP 2. VMOL,M(X) ⊂ VMOres
L,M(X).

The proof of this step is just a simple combination one in Step 1 and one of [17, Lemma
8.1] and hence we omit detail here. �

3.5. Characterization of VMOL(X) via tent spaces. For any x ∈ X and α > 0, the
cone of aperture α and vertex x is the set

Γ α(x) = {(y, t) ∈ X × (0,∞); d(y, x) < αt} .

For any closed subset F ⊂ X, define a saw-tooth region Rα(F ) = ⋃
x∈F Γ α(x). For simplic-

ity, we will often write R(F) instead of R1(F ). If O is an open subset of X, and we denote
by Ec the complement of a set E, then the tent over O , denoted by Ô , is defined as

Ô = [R(Oc)]c = {(x, t) ∈ X × (0,∞); d(x,Oc) < αt} .

LEMMA 3.13 ([18]). For a measurable function F defined on X × (0,∞), define

Aα(F )(x) =
( ∫

Γ α(x)

|F(y, t)|2 dμ(y)

V (x, t)

dt

t

)1/2

, α > 0 ,
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and set A(F )(x) = A1(F )(x). Then there exists a constant C > 0 depending only on n and
N such that

‖Aα(F )‖L1 ≤ C‖A(F )‖L1 .

When X = Rn Coifman, Meyer and Stein [9] introduced the tent space T
p

2 (Rn+1+ )

for p ∈ (0,∞). The tent space T
p
2 (X) on homogeneous type spaces was studied by Russ

[22]. A function F is said to belong to the spaces T
p

2 (X) with p ∈ (0,∞) if ‖F‖T
p
2 (X) =

‖A(F )‖Lp < ∞. We define

C(F )(x) = sup
Bx

(
1

V (B)

∫
B̂

|F(y, t)|2dμ(y)
dt

t

)1/2

,

where the supremum is taken over all balls B containing x and we say that F ∈ T ∞
2 (X) if

‖F‖T ∞
2 (X) = ‖C(F )‖L∞ < ∞. Next, a function a(x, t) is called a T 1

2 (X)-atom if

(i) the function a(x, t) is supported in B̂ (for some ball B);

(ii)
∫

B̂

|a(x, t)|2dμ(x)
dt

t
≤ 1

V (B)
.

We now state some basic facts for tent spaces, which are shown in [9] for Rn and in [4] for
the spaces of homogenous type.

PROPOSITION 3.14. (i) There exists C > 0 such that for all F ∈ T 1
2 (X) and all

G ∈ T ∞
2 (X),∫

X×(0,∞)

|F(x, t)G(x, t)|dμ(x)
dt

t
≤ C

∫
X

A(F )(x)C(G)(x)dμ(x) .

(ii) The paring 〈F,G〉 �→ ∫
X×(0,∞)

F (x, t)G(x, t)dμ(x)dt
t

realizes T ∞
2 (X) as equiv-

alent with the dual of T 1
2 (X).

In what follows, let T
p
2,b be the set of all f ∈ T

p
2 with bounded support in X × (0,∞).

We denote by T ∞
2,0 the linear subspace of T ∞

2 consisting of those functions satisfying the
condition

ν1(f ) = lim
a→0

[
sup

B:rB≤a

1

V (B)

∫
B̂

|f (y, t)|2dμ(y)
dt

t

]
= 0 ,

and we endow T ∞
2,0 with norm of T ∞

2 . Then, we denote by T ∞
2,V the closure of the set T ∞

2,b in
T ∞

2,0 with respect to the norm of T ∞
2 .

Let T be the set of all functions satisfying the three following conditions:
(i) f ∈ T ∞

2,0;

(ii) ν2(f ) = lim
b→∞

[
sup

B:rB≥b

1

V (B)

∫
B̂

|f (y, t)|2dμ(y)
dt

t

]
= 0 ,

(iii) ν3(f ) = lim
c→∞

[
sup

B:B⊂B(x0,c)
c

1

V (B)

∫
B̂

|f (y, t)|2dμ(y)
dt

t

]
= 0 .

We can verify that T is a closed linear subspace of T ∞
2 . Note that conditions (ii) and (iii) are

not consequences of (i), see [12]. The following lemma show that the coincidence of T and
T ∞

2,V . Let us remind that the similar result was obtained in [12], but in Rn setting.
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LEMMA 3.15. The following statements hold:
(i) (T ∞

2,V )∗ = T 1
2 ;

(ii) f ∈ T ∞
2,V iff f ∈ T .

PROOF. The proof of (i) is analogous to [24, Theorem 1.7] and hence we omit the detail
here.

(ii) It is easy to see that T ∞
2,b ⊂ T . This together with T is closed on T ∞

2 gives T ∞
2,V ⊂ T .

Conversely, for f ∈ T , by definition, for any ε there exist a0, b0, c0 such that

sup
B:rB≤a0

V (B)−1
∫

B̂

|f (y, t)|2dμ(y)
dt

t
≤ ε ,

sup
B:rB≥b0

V (B)−1
∫

B̂

|f (y, t)|2dμ(y)
dt

t
≤ ε ,

and

sup
B:B⊂B(x0,c0)

c

V (B)−1
∫

B̂

|f (y, t)|2dμ(y)
dt

t
≤ ε .

By standard argument, set K0 = max{a−1
0 , b0, c0} and define

g(y, t) = f (y, t)χB(0,2K0)×((2K0)
−1,2K0)

(y, t) .

Then, g ∈ T 2
2,b. To complete the proof, we need to show that ‖f − g‖2

T ∞
2

≤ cε. We consider

the following three cases:
CASE 1: rB < a0 or rB > b0. We have,

‖f − g‖2
T ∞

2
≤ 2 ≤ 2V (B)−1

∫
B̂

|f (y, t)|2dμ(y)
dt

t
≤ 2ε .

CASE 2: a0 ≤ rB < b0 and B ⊂ B(x0, c0)
c. We have,

‖f − g‖2
T ∞

2
≤ 2V (B)

∫
B̂

|f (y, t)|2dμ(y)
dt

t
≤ 2ε .

CASE 3: a0 ≤ rB < b0 and B ∩ B(x0, c0)
c �= ∅. By a simple calculation, one

has ∫
B̂

|f (y, t) − g(y, t)|2dμ(y)
dt

t
≤

∫ (2K0)
−1

0

∫
B

|f (y, t)|2dμ(y)
dt

t

≤
∫ (2K0)

−1

0

∫
B(xB,2ka0)

|f (y, t)|2dμ(y)
dt

t

where k is the smallest integer such that 2ka0 ≥ rB .
At this stage, applying Lemma 2.1, we can pick an almost disjoint family of balls with

the same radius a0, {Bk1 , . . . , BkNk
} such that B(xB, 2ka0) ⊂ ∪Nk

j=1Bkj , Nk ≤ C2−kn and∑Nk

j=1 χBkj
≤ C0 (C0 is independent of k and a0). Therefore,∫
B̂

|f (y, t) − g(y, t)|2dμ(y)
dt

t
≤

∫ (2K0)
−1

0

∫
∪Nk

j=1Bkj

|f (y, t)|2dμ(y)
dt

t
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≤
Nk∑
j=1

∫ (2K0)
−1

0

∫
Bkj

|f (y, t)|2dμ(y)
dt

t

≤
Nk∑
j=1

∫
B̂kj

|f (y, t)|2dμ(y)
dt

t

≤ cε

Nk∑
j=1

μ(Bkj )

≤ cεμ(2B)

≤ cεμ(B) .

This completes our proof. �

PROPOSITION 3.16. Let L satisfy (H1) and (H2). Assume that M > n/4 and M̃ >

M + n/4. Then the following statements are equivalent
(a) f ∈ VMOL,M(X);

(b) f ∈ EM̃ and (t2L)M̃e−t2Lf ∈ T ∞
2,V .

Therefore, ‖(t2L)M̃e−t2Lf ‖T ∞
2,V

≈ ‖f ‖BMOL(X).

Note that from this proposition, all spaces VMOL,M(X) are coincide provided M > n/4.
So, for the rest of the paper, we write simply VMOL(X) instead of VMOL,M(X).

PROOF. (a) ⇒ (b): Since f ∈ VMOL,M(X), f ∈ BMOL,M(X). By Proposition 3.10,

(t2L)M̃e−t2Lf ∈ T ∞
2 . To show (t2L)M̃e−t2Lf ∈ T ∞

2,V , by similar argument in the proof of
Proposition 3.12, it is sufficient to claim that, for any ball B ⊂ X, there holds

(
1

V (B)

∫
B̂

|(t2L)M̃e−t2Lf |2dμ(y)
dt

t

)1/2

≤ Cδ0(f, 4B) + C

∞∑
j=0

2−j/2δj (f, B) .

To do this, we put f1 = (I − (I + r2
BL)−1)M̃f and f2 = f − f1. We then have

(
1

V (B)

∫
B̂

|(t2L)M̃e−t2Lf1|2dμ(y)
dt

t

)1/2

≤
∞∑

j=0

(
1

V (B)

∫
B̂

|(t2L)M̃e−t2Lf1χSj (B)|2dμ(y)
dt

t

)1/2

≤ C

(
1

V (4B)

∫
4B

|f1|2dμ(x)

)1/2

+
∞∑

j=2

1

V (B)1/2

( ∫
Sj (B)

|f1|2dμ(x)

)1/2( ∫ rB

0
exp

{
− (2j rB)2

ct2

}
dt

t

)1/2
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≤ Cδ0(f, 4B) +
∞∑

j=2

1

V (B)1/2

( ∫
Sj (B)

|f1|2dμ(x)

)1/2

×
( ∫ rB

0

[
ct2

(2j rB)2

](n+N+1)/2
dt

t

)1/2

≤ Cδ0(f, 4B) +
∞∑

j=2

(
2−j (n+N+1)

V (B)

∫
Sj (B)

|f1|2dμ(x)

)1/2

.

Applying Lemma 2.1 and Remark 2.2, we can pick the almost disjoint family of balls
{B(xk1 , rB), . . . , B(xkNk

, rB)} which covers 2jB satisfying Nk ≤ C2jn and V (B)−1 ≤
2jNV (xkj , rB). Therefore, we obtain

(
1

V (B)

∫
B̂

|(t2L)M̃e−t2Lf1|2dμ(y)
dt

t

)1/2

≤ Cδ0(f, 4B) +
∞∑

j=2

( Nk∑
j=1

2−j (n+1)

V (xkj , rB)

∫
Bxkj

,rB

|f1|2dμ(x)

)1/2

≤ Cδ0(f, 4B) + C

∞∑
j=0

2−j/2δj (f, B) .

By similar argument above, by using the decomposition as in Proposition 3.12

I − (I − (I + r2
BL)−1)M =

M∑
k=1

M!
(M − k)!k! (r

2
BL)−k(I − (I + r2

BL)−1)M .

We also get that(
1

V (B)

∫
B̂

|(t2L)M̃e−t2Lf2|2dμ(y)
dt

t

)1/2

≤ Cδ0(f, 4B) + C

∞∑
j=0

2−j/2δj (f, B) .

This follows therefore (b).
(b) ⇒ (a) : From f ∈ EM̃ an (t2L)M̃e−t2Lf ∈ T ∞

2,V together with Proposition 3.10, f ∈
BMOL(X). Let g ∈ L2(B) with norm 1. By using the argument in [17, p. 43] , (I −e−r2

BL)Mg
is a multiple (1, 2,M, ε)-molecule. Therefore, one has( ∫

B

|(I − e−r2
BL)Mf |2dμ(x)

)1/2

= sup
‖g‖

L2(B)
=1

∫
B

f (x)(I − e−r2
BL)Mg(x)dμ(x)

= sup
‖g‖

L2(B)
=1

∫ ∫
X×(0,∞)

(t2L)M̃e−t2Lf (x)t2Le−t2L(I − e−r2
BL)Mg(x)dμ(x)

dt

t



282 T. A. BUI

≤
∞∑

j=0

( ∫
Vj (B)

|(t2L)M̃e−t2Lf (x)|2dμ(x)
dt

t

)1/2

×
(

sup
‖g‖

L2(B)
=1

( ∫
Vj (B)

|t2Le−t2L(I − e−r2
BL)Mg(x)|2dμ(x)

dt

t

)1/2)

≤
∞∑

j=0

σj (f, B)Aj

where V0(B) = B̂ and Vj (B) = 2̂jB\ ̂2j−1B. Note that in the first equality we apply Corol-
lary 4.2 in [19]. We would like to point out that it was prove in [19, Corollary 4.2] that the
first equality holds for all (1, 2,M) atoms. However, by a minor modification, the statement
is still true with (1, 2,M, ε) molecules.
For j = 0, 1, 2, it is easy to check that

Aj ≤ sup
‖g‖

L2(B)
=1

‖(I − e−r2
BL)Mg(x)‖L2 ≤ C .

For j ≥ 3, we have, by Proposition 2.4,(∫
Vj (B)

|t2Le−t2L(I − e−r2
BL)Mg(x)|2dμ(x)

dt

t

)1/2

=
(∫

Vj (B)

∣∣∣∣t2Le−t2L

( ∫ r2
B

0
. . .

∫ r2
B

0
LMe−(τ1+···+τM)Ldτ1 · · · dτM

)
g(x)

∣∣∣∣
2

dμ(x)
dt

t

)1/2

≤
∫ r2

B

0
. . .

∫ r2
B

0

( ∫
Vj (B)

|t2LM+1e−(t2+τ1+···+τM)Lg(x)|2dμ(x)
dt

t

)1/2

dτ1 · · · dτM

≤
∫ r2

B

0
. . .

∫ r2
B

0

( ∫ 2j rB

2j−1rB

|
t4‖g‖2

L2(B)

(t2 + τ1 + · · · + τM)2(M+1)
|2dμ(x)

dt

t

)1/2

dτ1 · · · dτM

≤ 2−2jM .

Therefore, Aj ≤ 2−2jM . Combining above estimates, we have(
1

V (B)

∫
B

|(I − e−r2
BL)Mf |2dμ(x)

)1/2

≤
∞∑

j=0

2−2jM

[
V (2jB)

V (B)

]1/2[ 1

V (2jB)1/2
σj (f, B)

]

≤
∞∑

j=0

2−2j (M−n/4)

[
1

V (2jB)1/2 σj (f, B)

]
.

We then follow the argument as in the proof of the implication (a) ⇒ (b) to show that f ∈
VMOL,M(X). �
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4. Duality between HL(X) and VMOL(X). When X = Rn and L is a divergence
form elliptic operator, the authors in [20] proved that the dual space of the Hardy space asso-
ciated to L is the space of VMO type associated to L. In this section we will study the duality
between HL(X) and VMOL(X). More precisely, the main result in this section is formulated
by the following theorem.

THEOREM 4.1. Assume that L satisfies (H1) and (H2) and M > n/4. Then the dual
space of VMOL(X) is the space HL(X) in the following sense.

(a) Suppose f ∈ HL(X). Then the linear functional l given by

l(g) =
∫

X

f (x)g(x)dμ(x)

initially defined on the dense subspace VMOL(X) ∩ L2(X), has a unique extension
to VMOL(X).

(b) Conversely, every continuous linear functional l on VMOL(X) can be realized
uniquely as in (a), with f ∈ HL(X) and

‖f ‖HL(X) ≤ c‖l‖(VMOL(X))∗ .

Before giving a proof of Theorem 4.1, we establish some technical lemmas. Let M ∈ N .
For an F ∈ L2(X × (0,∞)) with bounded support, define

πL,MF(x) = CM

∫ ∞

0
(t2L)Me−t2LF(·, t)(x)

dt

t
,

where CM is a constant satisfying CM

∫ ∞
0 t2(M+1)e−2t2 dt

t
= 1.

LEMMA 4.2. The operator πL,M initially defined on T
p

2,b extends to a bounded linear
operator:

(a) from T
p

2 to Lp if 1 < p < ∞;
(b) from T 1

2 to HL(X);
(c) from T ∞

2 to BMOL(X);
(d) from T ∞

2,V to VMOL(X).

PROOF. The proof of (a) and (b) can be found in [18, Proposition 9.3]. The proof of (c)
is analogous to one of [14, Lemma 4.3 (c)]. To prove (d), assume that f ∈ T ∞

2,V . We will claim

that πL,Mf ∈ VMOL(X). By Proposition 3.16, it is equivalent to that (t2L)Ke−t2LπL,Mf ∈
T ∞

2,V for K > M + n/4. Note that since T 2
2,b is dense in T ∞

2,V , we need only to treat functions

f ∈ T 2
2,b. By an argument similar to that above, it suffices to show that(

1

V (B)

∫
B̂

|(t2L)Ke−t2LπL,Mf |2dμ(x)
dt

t

)1/2

≤ c

∞∑
j=2

2−2j (K−n/4)wj (f, B) ,

where

wk(f,B) =
(

1

V (2kB)

∫
2̂kB

|f (x, t)|2dμ(x)
dt

t

)1/2

.
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To do this, split f into f := fχ4̂B + ∑∞
j=3 fχVj (B), where Vj (B) = 2̂jB\ ̂2j−1B. We then

have (
1

V (B)

∫
B̂

|(t2L)Ke−t2LπL,Mf |2dμ(x)
dt

t

)1/2

≤
(

1

V (B)

∫
B̂

|(t2L)Ke−t2LπL,Mf χ4̂B |2dμ(x)
dt

t

)1/2

+
∞∑

j=3

(
1

V (B)

∫
B̂

|(t2L)Ke−t2LπL,MfχVj (B)|2dμ(x)
dt

t

)1/2

≤ A +
∞∑

j=3

Bj .

For the term A, we have

A ≤ 1

V (B)
‖πL,Mfχ4̂B‖L2(X)

≤ 1

V (4B)
‖f χ4̂B‖T 2

2
due to (a)

= cw2(f, B) .

For j ≥ 3, we have, by Minkowski’s inequality,

V (B)1/2Bj

=
( ∫

B̂

∣∣∣∣
∫ 2j rB

2j−1rB

(t2L)Ke−t2L(s2L)Me−s2Lf (·, s)χSj (B)

ds

s

∣∣∣∣
2

dμ(x)
dt

t

)1/2

≤
∫ 2j rB

2j−1rB

(∫
B̂

∣∣∣∣ t2Ks2M

(t2 + s2)K+M
((t2 + s2)L)K+Me−(t2+s2)Lf (·, s)χSj (B)

∣∣∣∣
2

dμ(x)
dt

t

)1/2
ds

s

≤ C

∫ 2j rB

2j−1rB

( ∫
B̂

∣∣∣∣ t4Ks4M

(t2 + s2)2K+2M

[
(t2 + s2)

(2j rB)2

]2K+2M

‖f (·, s)χSj (B)‖2
L2(X)

dt

t

)1/2
ds

s

≤ C

∫ 2j rB

2j−1rB

r2K
B (2j rB)2M

(2j rB)2(K+M)
‖f (·, s)χSj (B)‖L2(X)

ds

s

≤ C2−2jK

∫ 2j rB

2j−1rB

‖f (·, s)χSj (B)‖L2(X)

ds

s

≤ C2−2jK+j n
2 V (B)1/2wj(f,B) ,

where in the last inequality we apply Hölder’s inequality. This implies

Bj ≤ C2−2j (K−n/4)wj (f, B).

�
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The some ideas in following lemma are inspired by [20]. However, we need some im-
provements to adapt to our settings.

LEMMA 4.3. VMOL(X) ∩ L2(X) is dense in VMOL(X).

PROOF. For any f ∈ VMOL(X) and M > n/4. By Proposition 3.16, g :=
(t2L)Me−t2Lf ∈ T ∞

2,V . By the density of T 2
2,b in T ∞

2,V , we can pick a sequence {gk} in T 2
2,b

such that limk→ ‖g−gk‖T ∞
2,V

= 0. This follows, by Lemma 4.2, πL,1gk ∈ L2(X)∩VMOL(X)

and limk→ ‖πL,1(g − gk)‖BMOL(X) = 0.

Let α be a (1, 2,M)-atom in HL(X), by the definition of HL(X), t2Le−t2Lα ∈ T 1
2 . On

the other hand, (HL(X))∗ = BMOL(X), see [18], and (T 1
2 )∗ = T ∞

2 . Therefore, we have by
[19, Corollary 4.2]∫

X

f (x)α(x)dμ(x) = CM

∫
X×(0,∞)

(t2L)Me−t2Lf (x)t2Le−t2Lα(x)dμ(x)
dt

t

= CM lim
k→∞

∫
X×(0,∞)

gk(x)t2Le−t2Lα(x)dμ(x)
dt

t

= C lim
k→∞

∫
X

πL,1gk(x)α(x)dμ(x)

= C lim
k→∞〈πL,1gk, α〉 .

Since the subspace of all finite linear combination of atoms is dense in HL(X), ‖πL,1gk −
f ‖VMOL(X) = ‖πL,1gk − f ‖BMOL(X) = ‖πL,1gk − f ‖(HL(X))∗ → 0. �

We are now in position to prove the main result.

PROOF OF THEOREM 4.1. (a) Since VMOL(X) ⊂ BMOL(X)=(HL(X))∗, HL(X) ⊂
(HL(X))∗∗ ⊂ (VMOL(X))∗.

(b) We adapt some ideas in [14] to our present situation. For M sufficiently large, define

ΩL = {h; h = (t2L)Me−t2Lg for some g ∈ VMOL(X)} .

By Proposition 3.16, ΩL ⊂ T ∞
2,V . Moreover, for h ∈ T ∞

2,V , Lemma 4.2 shows that πL,Mh ∈
VMOL(X). Therefore, for any l ∈ (VMOL(X))∗ and g ∈ VMOL(X) ∩ L2(X), we have

l(g) = l ◦ πL,M ◦ (t2L)Me−t2Lg .

We can prove that l ◦ πL,M is a continuous linear functional on ΩL and satisfies

‖l ◦ πL,M‖(T ∞
2,V )∗ ≤ ‖l‖(VMOL(X))∗‖πL,M‖T ∞

2,V →VMOL(X) ≤ c‖l‖(VMOL(X))∗ .

By the Hahn-Banach theorem, l ◦ πL,M can be extended to a continuous linear functional on
T ∞

2,V . Since (T ∞
2,V )∗ = T 1

2 , there exists a w(x, t) ∈ T 1
2 with ‖w‖T 1

2
≤ c‖l ◦ πL,M‖ such that

l(g) = l ◦ πL,M ◦ (t2L)Me−t2Lg

=
∫

X×(0,∞)

w(x, t)(t2L)Me−t2Lg(x)dμ(x)
dt

t
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=
∫

X

g(x)

(∫ ∞

0
(t2L)Me−t2Lw(·, t)(x)

dt

t

)
dμ(x)

=
∫

X

g(x)πL,Mw(x)dμ(x).

According to Lemma 4.2, πL,Mw ∈ HL(X) and ‖πL,Mw‖ ≤ c‖w‖T 1
2

≤ c‖l ◦πL,M‖ ≤ c‖l‖.

�
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