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ON SINGULAR INTEGRALS ASSOCIATED TO SURFACES
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Abstract. This paper is devoted to studying the singular integral with rough kernel
associated to surfaces, which contain many classical surfaces as model examples. Also, the
kernel of our operator lacks smoothness on the unit sphere as well as in the radial direction. We
obtain the Lp boundedness of the singular integral under a sharp size condition on its kernels
in an extrapolation argument. In addition, the corresponding results for maximal truncated
singular integral operators are also established.

1. Introduction. Let n be a positive integer greater than two and Sn−1 denote the unit
sphere in Rn equipped with the normalized Lebesgue measure dσ . Let Ω be homogeneous
of degree zero on Rn that is integrable on Sn−1 and satisfy

(1.1)
∫
Sn−1

Ω(u)dσ(u) = 0 .

For a suitable mapping Γ : Rn → Rd , we define the singular integral operators Th,Γ
associated to surfaces {Γ (y); y ∈ Rn} by

(1.2) Th,Γ (f )(x) := p.v.
∫

Rn

Ω(y)h(|y|)
|y|n f (x − Γ (y))dy .

The maximal truncated singular integral operator T ∗
h,Γ is defined by

(1.3) T ∗
h,Γ (f )(x) := sup

ε>0

∣∣∣∣
∫

|y|>ε
Ω(y)h(|y|)

|y|n f (x − Γ (y))dy

∣∣∣∣ ,
where f ∈ S (Rd) (the Schwartz class) and h(·) ∈ Δ1(R

+). Here Δγ , γ > 0, is the set of
all measurable functions h on R+ = (0,∞) satisfying

‖h‖Δγ (R+) = sup
j∈Z

( ∫ 2j+1

2j
|h(t)|γ dt

t

)1/γ

< ∞ .

One can easily check that L∞(R+) = Δ∞(R+) � Δγ2(R
+) � Δγ1(R

+) for 0 < γ1 < γ2 <

∞.
If n = d , Γ (y) = (y1, y2, . . . , yn) and h(t) ≡ 1, the operator Th,Γ is the classical

singular integral operator which was discussed extensively by many authors. For example,
see [2] for the case Ω ∈ L log+ L(Sn−1), [1, 12] for the case Ω ∈ H 1(Sn−1). For n = d

and Γ (y) = (y1, y2, . . . , yn), we denote Th,Γ by Th. Fefferman [6] firstly introduced the case
of rough radial and proved that Th is bounded on Lp(Rn) for 1 < p < ∞ if Ω satisfies
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a Lipschitz condition of positive order on Sn−1 and h ∈ L∞(R). Namazi [10] improved
Fefferman’s result to the case Ω ∈ Lq(Sn−1). Subsequently, Duoandikoetxea and Francia
[4] obtained that Th is of type (p, p) for 1 < p < ∞ provided that Ω ∈ Lq(Sn−1) and
h ∈ Δ2(R

+). For Γ (y) = P(y), where P is a polynomial mapping from Rn to Rd , Al-
Salman and Pan [3] extended the result of [4] and proved that if P(y) = −P(−y), then Th,Γ
is bounded on Lp(Rd ) for 1 < p < ∞ provided that h ∈ Δγ (R

+) for some γ > 1 and
Ω ∈ L log+ L(Sn−1). In particular, Fan and Pan [8] showed that if h ∈ Δγ (R

+) for some
γ > 1 and Ω ∈ H 1(Sn−1), Th,Γ is bounded on Lp(Rd ) for p satisfying |1/p − 1/2| <
min{1/2, 1/γ ′}, where 1/γ + 1/γ ′ = 1. Recently, Sato [14] improved the result of [3] to the
case h ∈ N1 or h ∈ La for some a > 2, which are more general than Δγ (R+) for γ > 1.
Here Lα, α > 0, is the set of all measurable functions h on R+ satisfying

Lα(h) = sup
k∈Z

( ∫ 2k+1

2k
|h(t)|(log(|h(t)| + 2))α

dt

t

)
< ∞ ,

and Nα , α > 0, is the set of all measurable functions h on R+ satisfying Nα(h) =∑
m=1m

α2mdm(h) < ∞ with dm(h) = supk∈Z 2−k|E(k,m)|, where E(k, 1) = {t ∈
(2k, 2k+1]; |h(t)| ≤ 2} and

E(k,m) = {t ∈ (2k, 2k+1]; 2m−1 < |h(t)| ≤ 2m} for m ≥ 2 .

It is easy to check that for any α > 0 and 1 < γ < ∞,

Δγ (R
+) � Nα(R

+)

and

Lα+β(R+) � Nα(R
+) � Lα(R+) � Δ1(R

+) for any β > 1 .

Now we introduce the result of [14] as follows:

THEOREM A ([14]). Let Γ (y) = P(y) = (P1(y), P2(y), . . . , Pd(y)) with Pj being
polynomials on Rn and P(y) = −P(−y). Let Th,Γ and T ∗

h,Γ be given as in (1.2) and (1.3),

respectively. Suppose that Ω is an element of L log+ L(Sn−1) with satisfying (1.1) and h ∈
La for some a > 2 or h ∈ N1, then Th,Γ and T ∗

h,Γ are bounded on Lp(Rd) for 1 < p <

∞, and the bounds are independent of the coefficients of Pj , but depend on deg(Pj ), j =
1, 2, . . . , d .

In light of the aforementioned facts concerning the above singular integrals, our main
focus in this paper is to investigate the Lp mapping properties of Th,Γ with Γ (y) = P(|y|)y ′,
where P is a polynomial on R+. More precisely, we let Γ (y) = PN(ϕ(|y|))y ′ with PN(t) =∑N
i=1 ait

i on R+ and ϕ satisfy one of the following conditions:
(i) ϕ : R+ → (0,∞) is a positive increasing C1 function such that tϕ′(t) ≥ Cϕϕ(t)

and ϕ(2t) ≤ cϕϕ(t) for all t > 0, where Cϕ and cϕ are independent of t .
(ii) ϕ : R+ → (0,∞) is a positive decreasing C1 function such that tϕ′(t) ≤ −Cϕϕ(t)

and ϕ(t) ≤ cϕϕ(2t) for all t > 0, where Cϕ and cϕ are independent of t .
For convenience, we denote by F1 (or F2) the set of all functions which satisfy the con-

dition (i) (or (ii)).
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REMARK 1.1. There are some model examples in the class F1, such as tα (α > 0),
tα(ln(1 + t))β (α, β > 0), t ln ln(e + t), real-valued polynomials P on R with positive
coefficients and P(0) = 0 and so on. We now give examples in the class F2 such as tδ(δ < 0)
and t−1 ln(1 + 1/t). It should be pointed out that there are two important facts as follows:

(a) If ϕ(t) ∈ C1(R+) is nonnegative and increasing (resp. decreasing) on R+ and
ϕ(t)/(tϕ′(t)) is bounded on R+, then limt→0 ϕ(t) = 0 (resp. limt→0 ϕ(t) = +∞) and
limt→+∞ ϕ(t) = +∞ (resp. limt→+∞ ϕ(t) = 0) (see [5]).

(b) For ϕ ∈ F1 (or F2), there exists a constant Bϕ > 1 such that ϕ(2t) ≥ Bϕϕ(t) (or
ϕ(t) ≥ Bϕϕ(2t)) (see [9]).

Our main results can be formulated as follows:

THEOREM 1.2. Let n = d and Γ (y) = PN(ϕ(|y|))y ′ with PN(t) = ∑N
i=1 ait

i and
ϕ ∈ F1 or F2. Let Th,Γ be given as in (1.2). Suppose thatΩ ∈ Lq(Sn−1) with satisfying (1.1)
and h ∈ Δγ (R+) for some q, γ ∈ (1, 2]. Then

‖Th,Γ (f )‖Lp(Rn) ≤ Cp(q − 1)−1(γ − 1)−1‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)‖f ‖Lp(Rn)
for 1 < p < ∞, where the constant Cp is independent of q, γ, Ω, h and the coefficients of
PN , but depends on ϕ and N .

THEOREM 1.3. Let d, Γ, PN, ϕ, Ω, h be as in Theorem 1.2 and T ∗
h,Γ be given as

in (1.3). Then

‖T ∗
h,Γ (f )‖Lp(Rn) ≤ Cp(q − 1)−1(γ − 1)−1‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)‖f ‖Lp(Rn)

for 1 < p < ∞, where the constant Cp is independent of q, γ, Ω, h and the coefficients of
PN , but depends on ϕ and N .

THEOREM 1.4. Let d, Γ, PN , ϕ be as in Theorem 1.2. Let Th,Γ and T ∗
h,Γ be given

as in (1.2) and (1.3), respectively. Suppose that Ω ∈ L log+ L(Sn−1) with satisfying (1.1)
and h ∈ La for some a > 2 or h ∈ N1, then Th,Γ and T ∗

h,Γ are bounded on Lp(Rn) for
1 < p < ∞, and the bounds are independent of the coefficients of PN , but depend on ϕ and
N .

As several applications of Theorem 1.4, we have the following corollaries.

COROLLARY 1.5. Let n = d and Γ (y) = PN(|y|)y ′ with PN(t) = ∑N
i=1 ait

i . Let
Th,Γ and T ∗

h,Γ be given as in (1.2) and (1.3), respectively. Suppose thatΩ ∈ L log+ L(Sn−1)

with satisfying (1.1) and h ∈ La for some a > 2 or h ∈ N1, then Th,Γ and T ∗
h,Γ are bounded

on Lp(Rn) for 1 < p < ∞, and the bounds are independent of the coefficients of PN , but
depend on N .

COROLLARY 1.6. Let n = d and Γ (y) = ϕ(|y|)y ′ with ϕ ∈ F1 or F2. Let Th,Γ and
T ∗
h,Γ be given as in (1.2) and (1.3), respectively. Suppose that Ω ∈ L log+ L(Sn−1) with

satisfying (1.1) and h ∈ La for some a > 2 or h ∈ N1, then Th,Γ and T ∗
h,Γ are bounded on

Lp(Rn) for 1 < p < ∞, and the bounds depend on ϕ.
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This paper is organized as follows. In Section 2 we shall establish some preliminary
lemmas. The proofs of main results will be given in Section 3. We remark that the proof
of Theorem 1.2 is based on the method of [14]. Employing the idea in [7], we shall prove
Theorem 1.3. The proof of Theorem 1.4 is based on an extrapolation method which was
originally introduced by Yano (see [16]) and developed by Sato (see [13, 14]).

Throughout the rest of the paper, the letter C will stand for a positive constant not neces-
sarily the same one at each occurrence but is independent of the essential variables. Also, we
let x ′ = x/|x| for x ∈ Rn\{0} and p′ denote the conjugate index of p, that is, 1/p+1/p′ = 1.

2. Preliminary lemmas. Let us begin by introducing some notations and establishing
some lemmas. We denote Pλ(t) = ∑λ

i=1 ait
i for λ ∈ {1, 2, . . . , N} and P0(t) = 0.

LEMMA 2.1 ([11, p. 186, Corollary]). Suppose that Φ(t) = tα1 + μ2t
α2 + · · · +

μnt
αn and Ψ ∈ C1[a, b], where μ2, . . . , μn are real parameters, and α1, . . . , αn are distinct

positive (not necessarily integer) exponents. Then
∣∣∣∣
∫ b

a

exp(iλΦ(t))Ψ (t)dt

∣∣∣∣ ≤ Cλ−ε
{

sup
a≤t≤b

|Ψ (t)| +
∫ b

a

|Ψ ′(t)|dt
}
,

with ε = min{1/α1, 1/n} and C does not depend on μ2, . . . , μn as long as 0 ≤ a < b ≤ 1.

Applying Lemma 2.1, we have the following results, which will play a key role in the
estimates about Fourier transforms of some measures on Rn.

LEMMA 2.2. Let Ω ∈ Lq(Sn−1) for some q > 1 and Pλ be as above. If ϕ ∈ F1, then
for any 0 < ε < min{1/q ′, 1/λ}, we have

∫ r

r/2

∣∣∣∣
∫
Sn−1

Ω(u′)e−iPλ(ϕ(t))ξ ·u′
dσ(u′)

∣∣∣∣
2
dt

t
≤ C(ϕ)‖Ω‖2

Lq(Sn−1)
|ϕ(r)λaλξ |−ε

for λ ∈ {1, 2, . . . , N} and any r > 0. The constant C(ϕ) is independent of Ω, q and the
coefficients of Pλ, but depends on ϕ.

PROOF. By the change of the variables, we have

(2.1)

∫ r

r/2

∣∣∣∣
∫
Sn−1

Ω(u′)e−iPλ(ϕ(t))ξ ·u′
dσ(u′)

∣∣∣∣
2
dt

t

=
∫ ϕ(r)

ϕ(r/2)

∣∣∣∣
∫
Sn−1

Ω(u′)e−iPλ(t)ξ ·u′
dσ(u′)

∣∣∣∣
2

dt

ϕ−1(t)ϕ′(ϕ−1(t))

≤ 1

Cϕ

∫ ϕ(r)

ϕ(r/2)

∣∣∣∣
∫
Sn−1

Ω(u′)e−iPλ(t)ξ ·u′
dσ(u′)

∣∣∣∣
2
dt

t

≤ 1

Cϕϕ(r/2)

∫ ϕ(r)

ϕ(r/2)

∣∣∣∣
∫
Sn−1

Ω(u′)e−iPλ(t)ξ ·u′
dσ(u′)

∣∣∣∣
2

dt

≤ cϕ

Cϕ

∫ 1

ς

∣∣∣∣
∫
Sn−1

Ω(u′)e−iPλ(ϕ(r)t)ξ ·u′
dσ(u′)

∣∣∣∣
2

dt ,
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where ς = ϕ(r/2)/ϕ(r) ∈ [1/cϕ, 1). By Lemma 2.1 and Hölder inequality, we have
∫ 1

ς

∣∣∣∣
∫
Sn−1

Ω(u′)e−iPλ(ϕ(r)t)ξ ·u′
dσ(u′)

∣∣∣∣
2

dt

=
∫ 1

ς

∫∫
(Sn−1)2

Ω(u′)Ω(θ)e−iPλ(ϕ(r)t)ξ ·(u′−θ)dσ (u′)dσ(θ)dt

≤
∫∫

(Sn−1)2
|Ω(u′)Ω(θ)|

∣∣∣∣
∫ 1

ς

e−iPλ(ϕ(r)t)ξ ·(u′−θ)dt
∣∣∣∣dσ(u′)dσ(θ)

≤
∫∫

(Sn−1)2
|Ω(u′)Ω(θ)| min{log cϕ, |ϕ(r)λaλξ · (u′ − θ)|−1/λ}dσ(u′)dσ(θ)

≤ Cε(log cϕ)1−ε‖Ω‖2
Lq(Sn−1)

|ϕ(r)λaλξ |−ε ,
which combining with (2.1) yields Lemma 2.2. �

By an argument similar to that of Lemma 2.2, we obtain

LEMMA 2.3. Let Ω ∈ Lq(Sn−1) for some q > 1 and Pλ be as above. If ϕ ∈ F2, then
for any 0 < ε < min{1/q ′, 1/λ}, we have

∫ r

r/2

∣∣∣∣
∫
Sn−1

Ω(u′)e−iPλ(ϕ(t))ξ ·u′
dσ(u′)

∣∣∣∣
2
dt

t
≤ C(ϕ)‖Ω‖2

Lq(Sn−1)
|ϕ(r/2)λaλξ |−ε

for λ ∈ {1, 2, . . . , N} and any r > 0. The constant C(ϕ) is independent of Ω and the
coefficients of Pλ, but depends on ϕ.

3. Proofs of main results. Let Γ be as in Theorem 1.2 and Pλ as in Section 2. Let
β ≥ 2 and Ek = {u ∈ Rn; βk < |u| ≤ βk+1}. Define the measures {σk,λ}k∈Z and {|σk,λ|}k∈Z

by ∫
Rn

f (x)dσk,λ(x) =
∫
Ek

Ω(u)h(|u|)
|u|n f (Pλ(ϕ(|u|))u′)du ,

∫
Rn

f (x)d|σk,λ|(x) =
∫
Ek

|Ω(u)h(|u|)|
|u|n f (Pλ(ϕ(|u|))u′)du

for λ ∈ {0, 1, . . . , N}. It is easy to see that

(3.1) Th,Γ (f )(x) =
∑
k∈Z

σk,N ∗ f (x) .

LEMMA 3.1. Let Ω ∈ Lq(Sn−1) with satisfying (1.1) and h ∈ Δγ (R
+) for some

q, γ ∈ (1, 2]. Suppose ϕ ∈ F1 or F2. For any λ ∈ {1, 2, . . . , N}, there exists a constant
C > 0 such that

(i)

(3.2) ‖σk,λ‖ ≤ C logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+) ,

(ii) if ϕ ∈ F1, then

(3.3) |σ̂k,λ(ξ)− σ̂k,λ−1(ξ)| ≤ C logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)|ϕ(βk+1)λaλξ |1/(λq ′γ ′) ,
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(3.4) |σ̂k,λ(ξ)| ≤ C logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)|ϕ(βk)λaλξ |−1/(2λq ′γ ′) ,

(iii) if ϕ ∈ F2, then

(3.5) |σ̂k,λ(ξ)− σ̂k,λ−1(ξ)| ≤ C logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)|ϕ(βk)λaλξ |1/(λq ′γ ′) ,

(3.6) |σ̂k,λ(ξ)| ≤ C logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)|ϕ(βk+1)λaλξ |−1/(2λq ′γ ′) .

The constant C is independent of β, q, γ and the coefficients of PN , but depends on ϕ.

PROOF. (3.2) is obvious. We only prove (ii) since we can obtain (iii) similarly. Since
ϕ is increasing, then

|σ̂k,λ(ξ)− σ̂k,λ−1(ξ)| ≤
∫
Ek

|Ω(u)h(|u|)|
|u|n

∣∣∣∣e−2πiPλ(ϕ(|u|))u′·ξ − e−2πiPλ−1(ϕ(|u|))u′·ξ
∣∣∣∣du

≤ Cmin
{
1, |ϕ(βk+1)λaλξ |

} ∫ βk+1

βk
|h(t)|dt

t
‖Ω‖L1(Sn−1)

≤ C logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)(|ϕ(βk+1)λaλξ |)1/(λq ′γ ′) .

Thus (3.3) is proved. We now prove (3.4). By the change of the variables and the Hölder
inequality, we have
(3.7)
|σ̂k,λ(ξ)|

=
∣∣∣∣
∫ βk+1

βk

∫
Sn−1

Ω(u′)e−2πiPλ(ϕ(t))u′·ξdσ (u′)h(t)dt
t

∣∣∣∣
≤ (logβ)1/γ ‖h‖Δγ (R+)

( ∫ βk+1

βk

∣∣∣∣
∫
Sn−1

Ω(u′)e−2πiPλ(ϕ(t))u′·ξ dσ (u′)
∣∣∣∣
γ ′
dt

t

)1/γ ′

≤ (logβ)1/γ‖h‖Δγ (R+)‖Ω‖(γ ′−2)/γ ′
L1(Sn−1)

(∫ βk+1

βk

∣∣∣∣
∫
Sn−1

Ω(u′)e−2πiPλ(ϕ(t))u′·ξ dσ (u′)
∣∣∣∣
2
dt

t

)1/γ ′

.

For any β ≥ 2, choosing v ∈ Z such that 2v < β ≤ 2v+1, we have from Lemma 2.2 that

∫ βk+1

βk

∣∣∣∣
∫
Sn−1

Ω(u′)e−2πiPλ(ϕ(t))u′·ξ dσ (u′)
∣∣∣∣
2
dt

t

≤
v∑
j=0

∫ βk2j+1

βk2j

∣∣∣∣
∫
Sn−1

Ω(u′)e−2πiPλ(ϕ(t))u′·ξ dσ (u′)
∣∣∣∣
2
dt

t

≤
v∑
j=0

C(ϕ)‖Ω‖2
Lq(Sn−1)

|ϕ(βk2j+1)λaλξ |−ε

≤ C(ϕ) logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)|ϕ(βk)λaλξ |−ε

for 0 < ε < min{1/q ′, 1/λ}. (3.4) follows from this inequality with taking ε = 1/(2q ′λ) and
(3.7). Lemma 3.1 is completed. �
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Let ψ ∈ C∞
0 (R) be supported in {|t| ≤ 1} and ψ(t) ≡ 1 for |t| < 1/2. Define the

measures {μik,λ}k∈Z (i = 1, 2) on Rn by

μ̂1
k,λ(ξ) = σ̂k,λ(ξ)

N∏
j=λ+1

ψ(|ϕ(βk)j aj ξ |)− σ̂k,λ−1(ξ)

N∏
j=λ

ψ(|ϕ(βk)j aj ξ |) ,

μ̂2
k,λ(ξ) = σ̂k,λ(ξ)

N∏
j=λ+1

ψ(|ϕ(βk+1)j ajξ |)− σ̂k,λ−1(ξ)

N∏
j=λ

ψ(|ϕ(βk+1)j ajξ |)

for k ∈ Z and λ ∈ {1, 2, . . . , N}. It is easy to see that

(3.8) σk,N =
N∑
λ=1

μik,λ, if ϕ ∈ Fi

for i = 1, 2. Here we use the convention Πj∈∅aj = 1. By the definition of μik,λ(i = 1, 2),
Lemma 3.1, the change of the variables and a well-known result on maximal functions (see
[8]), we have

(i) if ϕ ∈ F1, then

(3.9)
|μ̂1
k,λ(ξ)| ≤ C logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)

× (
min{1, |ϕ(βk+1)λaλξ |, |ϕ(βk)λaλξ |−1})1/(λq ′γ ′)

,

(ii) if ϕ ∈ F2, then

(3.10)
|μ̂2
k,λ(ξ)| ≤ C logβ‖Ω‖Lq(Sn−1)‖h‖Δγ (R+)

× (
min{1, |ϕ(βk)λaλξ |, |ϕ(βk+1)λaλξ |−1})1/(λq ′γ ′)

,

and

(3.11) μ
∗,i
λ (f )(ξ) ≤ CM(σ ∗

λ (|f |))(ξ)+ CM(σ ∗
λ−1(|f |))(ξ)

for i = 1, 2 and λ ∈ {1, 2, . . . , N}, where M is the standard Hardy-Littlewood maximal
operator and

σ ∗
λ (f )(ξ) = sup

k∈Z

∣∣|σk,λ| ∗ f (ξ)∣∣ ,
μ

∗,i
λ (f )(ξ) = sup

k∈Z

∣∣|μik,λ| ∗ f (ξ)∣∣ , for i = 1, 2 .

In what follows, we set β = 2q
′γ ′

and A = q ′γ ′‖Ω‖Lq(Sn−1)‖h‖Δγ (R+). Then, we have
the following result.

LEMMA 3.2. Let ϕ ∈ F1 or F2. For λ ∈ {0, 1, . . . , N}, the operator σ ∗
λ satisfies

(3.12) ‖σ ∗
λ (f )‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn)

for all 1 < p < ∞. The constant Cp is independent of q, γ and the coefficients of Pλ, but
depends on ϕ.
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PROOF. We prove the estimate (3.12) provided that ϕ ∈ F1. The other case can be
proved similarly. We prove this lemma by induction on λ.

CASE 1. It is easy to check that σ ∗
0 (f )(ξ) ≤ CA|f (ξ)|, which implies the estimate

(3.12) for λ = 0.
CASE 2. Let m ∈ {1, 2, . . . , N} and suppose that (3.12) holds for λ = m− 1. We will

prove (3.12) for λ = m. Let ψ ∈ C∞
0 (R) be as above. Define the Borel measures {ωk,λ}k∈Z

on Rn by

ω̂k,λ(ξ) = |̂σk,λ|(ξ)− ψ(|ϕ(2q ′γ ′k)λaλξ |) ̂|σk,λ−1|(ξ)
for ξ ∈ Rn and λ ∈ {1, 2, . . . , N}. By the proof of Lemma 3.1, it is easy to obtain that

(3.13) |ω̂k,λ(ξ)| ≤ CA
(

min{1, |ϕ(2q ′γ ′(k+1))λaλξ |, |ϕ(2q ′γ ′k)λaλξ |−1})1/(λq ′γ ′)

and

(3.14) σ ∗
m(f )(ξ) ≤ Gm(f )(ξ)+ CM(σ ∗

m−1(f ))(ξ) ,

(3.15) ω∗
m(f )(ξ) ≤ Gm(f )(ξ)+ CM(σ ∗

m−1(f ))(ξ) ,

where

ω∗
λ(f )(ξ) = sup

k∈Z

∣∣|ωk,λ| ∗ f (ξ)∣∣ and Gλ(f )(ξ) =
( ∑
k∈Z

|ωk,λ ∗ f (ξ)|2
)1/2

for λ ∈ {1, 2, . . . , N}. It follows from our assumption and the Lp mapping properties of M
that

(3.16) ‖M(σ ∗
m−1(f ))‖Lp(Rn) ≤ Cp‖σ ∗

m−1(f )‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn)

for 1 < p < ∞, where the constant Cp is independent of q, γ and the coefficients of PN , but
depends on ϕ. By (3.14), it suffices to prove that

(3.17) ‖Gm(f )‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn)
for all p ∈ (1,∞) and the constant Cp is as above. By the well-known property of
Rademacher’s functions, (3.17) follows from the following lemma.

LEMMA 3.3. Let Vmε (f )(ξ) = ∑
k∈Z εkωk,m ∗ f (ξ) with ε = {εk}, εk = 1 or − 1.

Then

‖V mε (f )‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn)
for 1 < p < ∞. The constant Cp is independent of q, γ and the coefficients of PN , but
depends on ϕ.

PROOF OF LEMMA 3.3. Choose a sequence of nonnegative functions {Ψk}k∈Z in
C∞

0 (R) such that

supp(Ψk) ⊂ [ϕ(2q ′γ ′(k+1))−λ, ϕ(2q ′γ ′(k−1))−λ] ,
∑
k∈Z

Ψ 2
k (t) = 1 ,

∣∣(d/dt)jΨk(t)∣∣ ≤ Cj |t|−j (j = 1, 2, . . . ) for all t > 0 and j ∈ N ,
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where Cj are independent of q, γ, k. Define the Fourier multiplier operator Sj by

Ŝj (f )(ξ) = Ψj(|aλξ |)f̂ (ξ) , for j ∈ Z .

Then

(3.18)

V mε (f )(ξ)=
∑
k∈Z

εkωk,m ∗ f (ξ)

=
∑
k∈Z

εkωk,m ∗
∑
k∈Z

Sj+kSj+kf (ξ)

=
∑
j∈Z

∑
k∈Z

εkSj+k(ωk,m ∗ Sj+kf )(ξ)

:=
∑
j∈Z

V mj (f )(ξ) .

By the Littlewood-Paley theory, we have

(3.19) ‖V mj (f )‖Lp(Rn) ≤ Cp

∥∥∥∥
(∑
k∈Z

|ωk,m ∗ Sj+kf (·)|2
)1/2∥∥∥∥

Lp(Rn)

for 1 < p < ∞. This combining with the Plancherel theorem yields

‖V mj (f )‖2
L2(Rn)

≤ C

∥∥∥∥
( ∑
k∈Z

|ωk,m ∗ Sj+kf (·)|2
)1/2∥∥∥∥

2

L2(Rn)

≤ C
∑
k∈Z

∫
Dj+k

|ω̂k,m(ξ)|2|f̂ (ξ)|2dξ ,

where
Dk = {ξ ∈ Rn ; ϕ(2q ′γ ′(k+1))−λ ≤ |aλξ | ≤ ϕ(2q

′γ ′(k−1))−λ} .
By (3.13), we get

(3.20) ‖V mj (f )‖L2(Rn) ≤ CA(B−j+2
ϕ χ{j≥2} + Bj+1

ϕ χ{j<2})‖f ‖L2(Rn) .

This together with (3.18) implies

‖V mε (f )‖L2(Rn) ≤ C(ϕ)A‖f ‖L2(Rn) .

So
‖Gm(f )‖L2(Rn) ≤ C(ϕ)A‖f ‖L2(Rn) ,

which combining the Littlewood-Paley theory, (3.13), (3.15), (3.16) with the proof of [4,
p. 544, Lemma] leads to

(3.21) ‖V mj (f )‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn)
for 1/4 = |1/p − 1/2|. By interpolation between (3.20) and (3.21), we get from (3.18) that

‖V mε (f )‖Lp(Rn) ≤ C(ϕ)A‖f ‖Lp(Rn) for p ∈ (4/3, 4) .

Then

(3.22) ‖Gm(f )‖Lp(Rn) ≤ C(ϕ)A‖f ‖Lp(Rn) for p ∈ (4/3, 4) .
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Reasoning as above, (3.13) together with (3.15), (3.16), (3.22), the proof of [4, p. 544,
Lemma], the Littlewood-Paley theory and interpolation implies

‖V mε (f )‖Lp(Rn) ≤ C(ϕ)A‖f ‖Lp(Rn) for p ∈ (8/7, 8) .

By using this argument repeatedly, we can obtain ultimately that

‖V mε (f )‖Lp(Rn) ≤ C(ϕ)A‖f ‖Lp(Rn) for p ∈ (1,∞) .

This completes the proof of Lemma 3.3.
Now we return to the proof of Lemma 3.2. By Lemma 3.3, we have (3.17). This proves

(3.12) for λ = m. Therefore we have (3.12) for all λ ∈ {0, 1, . . . , N}. Lemma 3.2 is
proved. �

By Lemma 3.2 and (3.11), we obtain the following lemma.

LEMMA 3.4. Let ϕ ∈ F1 or F2. For λ ∈ {1, . . . , N} and i = 1, 2, the operator μ∗,i
λ

satisfies

‖μ∗,i
λ (f )‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn)

for 1 < p < ∞. The constant Cp is independent of q, γ and the coefficients of Pλ, but
depends on ϕ.

By combining the proof of [4, p. 544, Lemma] with (3.9) and (3.10), this lemma implies
the following result.

LEMMA 3.5. Let ϕ ∈ F1 or F2. For λ ∈ {1, . . . , N} and i = 1, 2, the vector valued
inequality

∥∥∥∥
(∑
k∈Z

|μik,λ ∗ gk|2
)1/2∥∥∥∥

Lp(Rn)

≤ CpA

∥∥∥∥
( ∑
k∈Z

|gk|2
)1/2∥∥∥∥

Lp(Rn)

holds for 1 < p < ∞. The constant Cp is independent of q, γ and the coefficients of Pλ, but
depends on ϕ.

PROOF OF THEOREM 1.2. We only prove the case ϕ ∈ F1, since the other case can be
obtained similarly. Let the operator Sj be as in the proof of Lemma 3.3. It follows from (3.1)
and (3.8) that

(3.23)

Th,Γ (f )(ξ)=
∑
k∈Z

σk,N ∗ f (ξ)

=
N∑
λ=1

∑
k∈Z

μ1
k,λ ∗ f (ξ)

:=
N∑
λ=1

Tλ(f )(ξ) .

So it suffices to obtain that

(3.24) ‖Tλ(f )‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn)
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for 1 < p < ∞ and λ ∈ {1, 2, . . . , N}, where the constant Cp is independent of q, γ and the
coefficients of Pλ, but depends on ϕ. We can write

(3.25)

Tλ(f )(ξ)=
∑
k∈Z

μ1
k,λ ∗ f (ξ)

=
∑
k∈Z

μ1
k,λ ∗

∑
j∈Z

Sj+kSj+kf (ξ)

=
∑
j∈Z

∑
k∈Z

Sj+k(μ1
k,λ ∗ Sj+kf )(ξ)

:=
∑
j∈Z

Tj (f )(ξ) .

By (3.9) and the same argument as in getting (3.20), we have

(3.26) ‖Tj (f )‖L2(Rn) ≤ CA(B−j+2
ϕ χ{j≥2} + Bj+1

ϕ χ{j<2})‖f ‖L2(Rn) .

On the other hand, by the Littlewood-Paley theory and Lemma 3.5, we have

(3.27) ‖Tj (f )‖Lp(Rn) ≤ CA‖f ‖Lp(Rn)

for 1 < p < ∞. (3.25) and interpolation between (3.26) and (3.27) imply (3.24). Theorem
1.2 is finished. �

PROOF OF THEOREM 1.3. We only prove in the case ϕ ∈ F1. The other case can be
obtained by a similar argument. We shall use the method in [7]. For any ε > 0, there exists
an integer k such that βk−1 ≤ ε < βk . Then by (3.8)

(3.28)

T ∗
h,Γ (f )(ξ)≤ σ ∗

N(|f |)(ξ)+ sup
k∈Z

∣∣∣∣
∞∑
j=k

σj,N ∗ f (ξ)
∣∣∣∣

≤ σ ∗
N(|f |)(ξ)+

N∑
λ=1

sup
k∈Z

∣∣∣∣
∞∑
j=k

μ1
j,λ ∗ f (ξ)

∣∣∣∣ .

By Lemma 3.2, it suffices to obtain that

(3.29)

∥∥∥∥ sup
k∈Z

∣∣∣∣
∞∑
j=k

μ1
j,λ ∗ f (ξ)

∣∣∣∣
∥∥∥∥
Lp(Rn)

≤ CpA‖f ‖Lp(Rn)

for 1 < p < ∞ and λ ∈ {1, 2, . . . , N}, where the constant Cp is independent of q, γ and the
coefficients of Pλ, but depends on ϕ. Take β = 2q

′γ ′
and choose a radial function φ ∈ S (R)

(the Schwartz class) such that φ(ξ) ≡ 1 when |ξ | < 1 and φ(ξ) ≡ 0 when |ξ | > Bϕ . Let
Φ̂k(ξ) = φ(ϕ(2q

′γ ′k)λ|aλξ |), then

∞∑
j=k

μ1
j,λ ∗ f (ξ)= (δ −Φk) ∗

∞∑
j=k

μ1
j,λ ∗ f (ξ)+ Φk ∗ Tλ(f )(ξ)−Φk ∗

k−1∑
j=−∞

μ1
j,λ ∗ f (ξ)

:= Ik,1(f )(ξ)+ Ik,2(f )(ξ)+ Ik,3(f )(ξ) ,
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where δ is the Dirac delta function and Tλ is as in the proof of Theorem 1.2. So

(3.30) sup
k∈Z

∣∣∣∣
∞∑
j=k

μ1
j,λ ∗ f (ξ)

∣∣∣∣ ≤ sup
k∈Z

|Ik,1(f )(ξ)| + sup
k∈Z

|Ik,2(f )(ξ)| + sup
k∈Z

|Ik,3(f )(ξ)| .

We obtain from (3.24) that

(3.31)

∥∥∥∥ sup
k∈Z

|Ik,2(f )|
∥∥∥∥
Lp(Rn)

≤ C‖M(Tλ(f ))‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn)

for all 1 < p < ∞. Next, we estimate supk∈Z |Ik,1(f )|. It holds that

(3.32) sup
k∈Z

|Ik,1(f )(ξ)| ≤
∞∑
j=0

sup
k∈Z

|(δ − Φk) ∗ μ1
j+k,λ ∗ f (ξ)| :=

∞∑
j=0

Λj(f )(ξ) .

By Lemma 3.4, we have

(3.33) ‖Λj (f )‖Lp(Rn) ≤ Cp‖μ∗,1
λ (|f |)‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn) for 1 < p < ∞ .

On the other hand, by the Plancherel theorem and the choice of Φk , we have

‖Λj (f )‖2
L2(Rn)

≤
∥∥∥∥
(

|(δ − Φk) ∗ μ1
j+k,λ ∗ f |2

)1/2∥∥∥∥
2

L2(Rn)

≤
∑
k∈Z

∫
{ϕ(2q′γ ′k)λ|aλξ |≥1}

|μ̂1
j+k,λ(ξ)|2|f̂ (ξ)|2dξ

≤
∑
k∈Z

k∑
i=−∞

∫
{ϕ(2q′γ ′i )−λ≤|aλξ |<ϕ(2q′γ ′(i−1))−λ}

|μ̂1
j+k,λ(ξ)|2|f̂ (ξ)|2dξ

≤ C
∑
k∈Z

k∑
i=−∞

(AB−j−k+i
ϕ )2

∫
{ϕ(2q′γ ′i )−λ≤|aλξ |<ϕ(2q′γ ′(i−1))−λ}

|f̂ (ξ)|2dξ

≤ CA2B
−2j
ϕ

∞∑
i=0

B−2i
ϕ ‖f ‖2

L2(Rn)

≤ C(ϕ)A2B
−2j
ϕ ‖f ‖2

L2(Rn)
.

Then

(3.34) ‖Λj(f )‖L2(Rn) ≤ C(ϕ)AB−j
ϕ ‖f ‖L2(Rn) .

It follows from (3.32) and interpolation between (3.33) and (3.34) that

(3.35)

∥∥∥∥ sup
k∈Z

|Ik,1(f )|
∥∥∥∥
Lp(Rn)

≤ C(ϕ)A‖f ‖Lp(Rn) .
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Finally, we estimate supk∈Z |Ik,3(f )|.

(3.36)

sup
k∈Z

|Ik,3(f )(ξ)| = sup
k∈Z

∣∣∣∣
∞∑
j=1

Φk ∗ μ1
k−j ∗ f (ξ)

∣∣∣∣

≤
∞∑
j=1

sup
k∈Z

|Φk ∗ μ1
k−j ∗ f (ξ)|

:=
∞∑
j=1

Hj(f )(ξ) .

By Lemma 3.4, we have

(3.37) ‖Hj(f )‖Lp(Rn) ≤ CpA‖f ‖Lp(Rn) for 1 < p < ∞ .

On the other hand, one can easily check that

Hj(f )(ξ) ≤
( ∑
k∈Z

|Φk ∗ μ1
k−j ∗ f (ξ)|2

)1/2

.

Thus by the Plancherel theorem and (3.9), we obtain

‖Hj(f )‖2
L2(Rn)

≤
∥∥∥∥
( ∑
k∈Z

|Φk ∗ μ1
k−j ∗ f |2

)1/2∥∥∥∥
2

L2(Rn)

≤
∑
k∈Z

∫
{ϕ(2q′γ ′k)λ|aλξ |≤Bϕ}

|μ̂1
k−j,λ(ξ)|2|f̂ (ξ)|2dξ

≤ C

∫

Rn

∑
k∈Z

|μ̂1
k−j,λ(ξ)|2χ{ϕ(2q′γ ′k)λ|aλξ |≤Bϕ}|f̂ (ξ)|2dξ

≤ CA2 sup
ξ∈Rn

∑
k∈Z

|ϕ(2q ′γ ′(k−j+1))λaλξ |1/(q ′γ ′λ)χ{ϕ(2q′γ ′k)λ|aλξ |≤Bϕ}‖f ‖2
L2(Rn)

≤ CA2B
2(−j+1)
ϕ sup

ξ∈Rn

∑
k∈Z

|ϕ(2q ′γ ′k)λaλξ |2/(q ′γ ′λ)χ{ϕ(2q′γ ′k)λ|aλξ |≤Bϕ}‖f ‖2
L2(Rn)

≤ C(ϕ)A2B
2(−j+1)
ϕ ‖f ‖2

L2(Rn)
,

where the last inequality is obtained by the properties of lacunary sequence. So

(3.38) ‖Hj(f )‖L2(Rn) ≤ C(ϕ)AB−j+1
ϕ ‖f ‖L2(Rn) .

The interpolation between (3.37) and (3.38) combining with (3.36) yields

(3.39)

∥∥∥∥ sup
k∈Z

|Ik,3(f )|
∥∥∥∥
Lp(Rn)

≤ C(ϕ)A‖f ‖Lp(Rn) .

(3.29) follows from (3.30), (3.31), (3.35) and (3.39). This proves Theorem 1.3. �

PROOF OF THEOREM 1.4. One can easily obtain the proof of Theorem 1.4 by Theo-
rems 1.2 and 1.3 and the same arguments as in [13, Theorem 1.4] and [14, Theorem 2]. The
details are omitted. �
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