
Tohoku Math. J.
64 (2012), 261–268
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Abstract. We apply the concept of castling transform of prehomogeneous vector
spaces to produce new examples of minimal homogeneous Lagrangian submanifolds in the
complex projective space. Furthermore we verify the Hamiltonian stability of a low dimen-
sional example that can be obtained in this way.

1. Introduction. Given a 2n-dimensional Kähler manifold (M, g, J ) with Kähler
form ω, an n-dimensional submanifold L is said to be Lagrangian if the pull back of ω to
L vanishes. If there exists a connected Lie subgroup G of Kähler automorphisms of M such
that L is a G-orbit, then L is said to be a homogeneous Lagrangian submanifold. Such a class
provides a large number of examples of Lagrangian submanifolds. Throughout this paper we
assume that a Lagrangian submanifold is closed, namely, compact without boundary.

When M = CPn and the group G is compact and simple, a full classification of La-
grangian G-orbits has been obtained in [2], while a full classification of homogeneous La-
grangian submanifolds of the quadrics has been achieved by Ma and Ohnita [11]. Our first
result gives a way of producing new homogeneous Lagrangian submanifolds of the com-
plex projective space starting from known ones. The construction is based on the main
result of [3] and the castling transform, which will be explained in Section 2, of a triple
(G,ρ, V ) consisting of a compact Lie group G, a complex vector space V and a representa-
tion ρ : G → GL(V ).

THEOREM 1.1. Let (G, ρ, V ) and (G′, ρ′, V ′) be two irreducible triplets related by
the castling transform, where G and G′ are compact connected semisimple Lie groups. Then
the induced action of G on P(V ) admits a Lagrangian orbit if and only if so does the G′-action
on P(V ′).

In [15], Oh introduced the notion of Hamiltonian stability for minimal Lagrangian sub-
manifolds of a Kähler manifold (M, g, ω). Given a minimal Lagrangian submanifold ı : L →
M , it is said to be Hamiltonian stable if the second variation of the volume functional through
Hamiltonian variations is nonnegative, where Hamiltonian variations correspond to normal
vector fields V such that the one form ı∗(iV ω) is exact. Hamiltonian stability for Lagrangian
submanifolds of the complex projective space turns out to be a strictly simpler condition than
the usual stability, since for example the standard real projective space RPn ⊂ CPn is minimal
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and Hamiltonian stable, but not stable in the usual sense. If we endow CPn with the standard
Fubini-Study metric gFS with holomorphic sectional curvature c, then Oh [15] proved that
a minimal Lagrangian submanifold L is Hamiltonian stable if and only if the first ei gen-
value λ1(L) for the Laplacian � relative to the induced metric and acting on C∞(L) satisfies
λ1(L) ≥ (n + 1)c/2. Actually, since λ1(L) ≤ (n + 1)c/2 for every minimal Lagrangian
submanifold of CPn by a result due to Ono [14] (see also [6], [17]), we see that Hamiltonian
stability is equivalent to λ1(L) = (n + 1)c/2.

It is a natural and interesting problem to classify all minimal, Hamiltonian stable La-
grangian submanifolds of CPn. In [1], Amarzaya and Ohnita prove that every minimal La-
grangian submanifold with parallel second fundamental form is actually Hamiltonian stable,
while Bedulli and Gori [3] and independently Ohnita [16] exhibited the first example of a
Hamiltonian stable Lagrangian submanifold which has non-parallel second fundamental form.
This example sits inside CP3 and is homogeneous under the action of the group SU(2). Again
using the castling transform, we are able to provide a new, low dimensional example,

THEOREM 1.2. The group G = SU(2) × SU(2) acts in a standard way on V =
S2(C2) ⊗ C2 ∼= C6 and its induced action on CP5 has a minimal, Hamiltonian stable La-
grangian orbit L with non-parallel second fundamental form. The fundamental group π1(L)

is isomorphic to Z4.

We remark that any Lagrangian orbit of a semisimple Lie group is minimal, whenever
the ambient manifold is Kähler-Einstein (see [2]). We formulate the following conjecture.

CONJECTURE If a compact (semi)simple subgroup G ⊂ SU(N) for some N admits a
Lagrangian orbit O in CPN−1, then O is Hamiltonian stable.

In Section 2, we prove Theorem 1.1, while in Section 3 we prove the Hamiltonian stabil-
ity of our new example by using Oh’s criterion and a direct computation of the first eigenvalue
λ1(L).

NOTATION. We use capital Latin letters for Lie groups and the corresponding lower-
case Gothic letter for their Lie algebras. If G is a group acting isometrically on the Riemannian
manifold M , for any X ∈ g we denote by X̂ the induced Killing field on M .

Acknowledgments. The authors thank an anonymous referee for his/her careful reading and con-
structive comments.

2. Proof of Theorem 1.1. We first recall some notions that can be found in [8, 18]
and their application used in [2].

Let U a complex algebraic group, V a complex vector space and ρ a rational represen-
tation of U on V . The triplet (U, ρ, V ) is said to be a prehomogeneous triplet (PVS) if V

admits a Zariski-dense U -orbit Ω . The isotropy subgroups of points in Ω are all conjugate to
a subgroup H ⊆ U , which is called the generic isotropy subgroup. The triplet is said to be
irreducible if ρ is.
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Two triplets (U, ρ, V ), (U ′, ρ′, V ′) are said to be equivalent if there is a rational isomor-
phism φ : ρ(U) → ρ′(U ′) and a linear isomorphism τ : V → V ′ such that for all g ∈ U we
have τ ◦ ρ(g) = φ(ρ(g)) ◦ τ .

We can now define the important notion of castling. We say that two irreducible triplets
(U, ρ, V ) and (U ′, ρ′, V ′) are castling transforms of each other if there exists a third triplet
(Ũ , ρ̃, V m) and a positive integer m > n ≥ 1 such that

(U, ρ, V ) ∼= (Ũ × SL(n), ρ̃ ⊗ Λ1, V
m ⊗ Cn) ,

(U ′, ρ′, V ′) ∼= (Ũ × SL(m − n), ρ̃∗ ⊗ Λ1, V
m∗ ⊗ Cm−n) .

A triplet is said to be reduced if it is not a castling transform of any other triplet having a
lower dimensional vector space. It is also known that two castling-related irreducible preho-
mogeneous triplets have isomorphic generic isotropy subgroups ([18, §2, Prop. 9]).

Given two compact connected Lie groups G,G′ together with two irreducible represen-
tations (ρ, V ) and (ρ′, V ), we say that the triplets (G, ρ, V ) and (G′, ρ′, V ′) are castling
related if the triplets (GC, ρ, V ) and (G′C, ρ′, V ) are prehomogeneous and castling related in
the sense explained above.

In order to prove Theorem 1.1, we first prove a lemma which has its own interest.

LEMMA 2.1. Let G a compact connected semisimple Lie group acting linearly on
some complex vector space endowed with the canonical symplectic structure. Then there is
no Lagrangian G-orbit.

PROOF. If L is any G-orbit, the semisimplicity of G implies that π1(L) is finite, by
the long exact homotopy sequence. Therefore H 1(L, R) = 0. On the other hand, a classical
result due to Gromov [4] states that any compact Lagrangian submanifold of a complex vector
space has nontrivial first cohomology group. �

We now have all the tools to give the proof.

PROOF OF THEOREM 1. Suppose that the G-orbit through [p] ∈ P(V ) is Lagrangian.
Then GC · [p] is open Stein by [2]. If U = GC × GL(1) we claim that the orbit U · p is open
Stein in V . In particular, we claim that up = gC[p], which is reductive and therefore U · p is
Stein by Matsushima’s characterization [10]. Indeed

up = {(X, z) ∈ gC ⊕ C ; Xp = −zp} ,

in particular X ∈ gC[p], hence X ∈ (g[p])C because G · [p] is Lagrangian. Now consider the
orbit G · p ⊂ V and note that it is isotropic by a simple argument involving the expression
of the moment map for actions in projective spaces (see, e.g., [5]). By Lemma 2.1 it cannot
be Lagrangian, so by dimensional reasons, it is a finite covering of the Lagrangian orbit in
P(V ). In particular gp = g[p]. So (X, z) ∈ up if and only if X ∈ gC

p and z = 0, therefore

up = (g[p])C as we claimed. Furthermore, U · p is open for dimensional reasons.
Now we apply a castling transformation to get a triplet (U ′, ρ′, V ′), where U ′ = G′C ×

GL(1). This triplet has generic isotropy isomorphic to the subgroup H = Up, hence still
reductive.
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Let Ω = U ′/H be the open Stein orbit in V ′. This U ′-orbit projects onto an open U ′-
orbit Ω ′ = U ′/H ′ ⊂ P(V ′). In order to prove that G′ admits a Lagrangian orbit in P(V ′), we
apply the main result in [2], according to which it is enough to show that Ω ′ is Stein. Now, Ω ′
is Stein because H ′ is reductive and this follows from standard arguments. Indeed we notice
that H ≤ H ′ is normal and that dimC H ′/H = 1. By reductiveness we have h′ = h ⊕ m

for some subspace m with [m, h] ⊂ m. Also [h,m] ⊂ h since h ⊆ h′ is an ideal. Hence
[h,m] = 0 and m is a one-dimensional and central in h′. Therefore h′ is reductive as we
claimed. �

3. The Example and its Hamiltonian stability. Consider the group G = SU(2) ×
SU(2) acting on V = S2(C2) ⊗ C2 ∼= C6 with the standard representation ρ. We consider
the induced action on P(V ) = CP5. Let {e1, e2} the standard basis of C2. We may define a
unitary structure on S2(C2) with an orthonormal basis given by {e2

1,
√

2e1e2, e
2
2} with respect

to which the induced action of SU(2) becomes unitary. By tensoring with the standard basis
of C2 we get an orthonormal basis of V . It is known that this action is Hamiltonian and that
the moment map µ : CP5 → g∗ has the form (see, e.g., again [5])

µ([v])(X, Y ) = − i

2

〈dρ(X, Y )v, v〉
〈v, v〉 ,

where v ∈ V \ {0}, (X, Y ) ∈ g = su(2) ⊕ su(2).
We consider the point p = (1/

√
2)(e2

1 ⊗ e1 + e2
2 ⊗ e2) ∈ V . A straightforward computa-

tion shows that µ([p]) = 0 and, since g is semisimple, we conclude that the L := G · [p] ⊂
CP5 is isotropic.

A direct computation shows that the isotropy subgroup K := G[p] has the Lie algebra
k = R · H , where

H =
((

i 0
0 −i

)
,

(−2i 0
0 2i

))
and K/Ko = Z4, generated by the coset of the element

σ =
((

0 1
−1 0

)
,

(
0 i

i 0

))
∈ K .

By dimensional reasons L is Lagrangian and moreover π1(L) = Z4. Furthermore, being
homogeneous under a semisimple Lie group, the submanifold L is also minimal by [2]. It is
also clear that its second fundamental form is not parallel by the classification in [13].

3.1. The metric on L. We now compute explicitly the metric g induced on L by gFS.
We denote with B the Killing-Cartan form on g and we consider the B-orthonormal vectors
of g given by

X1 = (X, 0) , X2 = (0,X) , Y1 = (Y, 0) , Y2 = (0, Y ) ,

where

X = 1√
8

(
0 1

−1 0

)
, Y = 1√

8

(
0 i

i 0

)
.
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We also define the unit vector

V = 1

2
√

10

((
2i 0
0 −2i

)
,

(−i 0
0 i

))
.

If we put mj := Span{Xj , Yj } we have the B-orthogonal splitting

g = k ⊕ R · V ⊕ m1 ⊕ m2 .

We now compute the corresponding Killing vector fields at p ∈ S11. We see that

X̂1p = 1

2
√

2
(−√

2e1e2 ⊗ e1 + √
2e1e2 ⊗ e2) , X̂2p = 1

4
(−e2

1 ⊗ e2 + e2
2 ⊗ e2) ,

Ŷ1p = i

2
√

2
(
√

2e1e2 ⊗ e1 + √
2e1e2 ⊗ e2) , Ŷ2p = i

4
(e2

1 ⊗ e2 + e2
2 ⊗ e2)

and

V̂p = 3i
√

5

20
(e2

1 ⊗ e1 − e2
2 ⊗ e2) .

Starting from the Riemannian submersion S11 → CP5 for the construction of the Fubini-
Study metric gFS with constant holomorphic sectional curvature c = 4 [9, vol. II], we compute
their lengths with respect to the Riemannian metric g induced on L:∥∥X̂1[p]

∥∥
g = ∥∥Ŷ1[p]

∥∥
g = 1

2
,

∥∥X̂2[p]
∥∥
g = ∥∥Ŷ2[p]

∥∥
g = 1

2
√

2
,

∥∥V̂[p]
∥∥
g = 3

√
10

20
.

Define now

V1 = 2
√

10

3
V

and

F1 = 2X1 , F2 = 2
√

2X2 , G1 = 2Y1 , G2 = 2
√

2Y2 .

The metric g , induced on G/K from the Fubini-Study metric on CP5, induces a metric go on
m := R · V ⊕ m1 ⊕ m2. Note that these three submodules are mutually Ad(K)-inequivalent
and therefore mutually orthogonal and the vectors V1, F1, F2,G1,G2 form a go-orthonormal
basis.

3.2. The Laplace operator on C∞(L). We claim that the first eigenvalue λ1(L) of
the Laplacian �g on L is equal to the Einstein constant κ = 12 of gFS on CP5.

We now recall some general facts about invariant operators on homogeneous spaces. If
Mn = G/K is a compact homogeneous space and g = k ⊕ m is an orthogonal splitting with
respect to some Ad(G)-invariant inner product on g, we let S(m) the symmetric algebra of m,
S(m)C

K the complexification of the Ad(K)-invariant subspace of S(m) and D(M) the space
of G-invariant differential operators on M . In this notation we recall a well-known result that
can be found in [7, 12].
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THEOREM 3.1. Let Y1, . . . , Yn be a basis of m and identify S(m) with polynomials in
those indeterminates. Then the map λ̂ : S(m)C

K −→ D(M) defined by

P(Y1, . . . , Yn)f (xK) = P

(
∂

∂y1
, . . . ,

∂

∂yn

)
f

(
x exp

(∑
i

yiYi

)
K

)
(0)

is a linear isomorphism. Furthermore, if Y1, . . . , Yn is an orthonormal basis with respect to
an Ad(K)-invariant scalar product go on m and �g is the Laplacian corresponding to the
G-invariant metric g on M induced by go , then

�g = −̂λ

(∑
i

Y 2
i

)
.

Let ρ : G → U(V ) be a unitary representation of degree dρ of the Lie group G, V K

the subspace of V of vectors fixed by the subgroup K and mρ = dim V K . A representation
such that mρ > 0 is said to be a spherical representation of the pair (G,K). Let {v1, . . . , vdρ }
be an orthonormal basis of V such that the first mρ elements are a basis of V K . Define the
functions ρij on G/K by ρij (xK) = 〈ρ(x)vj , vi〉 for 1 ≤ j ≤ mρ and 1 ≤ i ≤ dρ .

The Peter-Weyl Theorem (see e.g. [7]) states that the set of functions {√dρρij }, as ρ

varies among all spherical representations of (G,K), is a complete orthonormal system of
L2(M, C) with respect to the standard L2-norm corresponding to the G-invariant Riemannian
metric g .

We now classify all the spherical irreducible representations of our pair (G,K). Any
irreducible representation space is of the form Vk,m = Sk(C2) ⊗ Sm(C2) for some k,m ∈
{0} ∪ N. Since (−id, id), (id,−id) ∈ K we see that, if V K

k,m �= {0}, k and m must be even, say
k = 2l and m = 2n. We have

H · e
p

1 e
k−p

2 ⊗ e
q

1e
2n−q

2 = [(2p − k)i + 4(n − q)i]ep

1 e
k−p

2 ⊗ e
q

1e
2n−q

2 .

Computing also σ · (e
p
1 e

2l−p
2 ⊗ e

q
1e

2n−q
2 ) = (−1)n+pe

2l−p
1 e

p
2 ⊗ e

2n−q
1 e

q
2 , we can conclude

that

V K
2l,2n = Span{vpq := e

p
1 e

2l−p
2 ⊗ e

q
1e

2n−q
2 + (−1)n+pe

2l−p
1 e

p
2 ⊗ e

2n−q
1 e

q
2 }

with the relations

(3.1) p = l − 2(n − q), 0 ≤ q ≤ 2n, 2n − l ≤ 2q ≤ 2n + l .

At this point we can compute the eigenvalues for the Laplace operator. Indeed we will explic-
itly write down the action of the operator

D = dρ(V 2
1 ) + dρ(F 2

1 ) + dρ(F 2
2 ) + dρ(G2

1) + dρ(G2
2)

on the vectors vpq ∈ V K
2l,2n.

We have, using the first equality in relations (3.1),

dρ(V1)
2(e

p

1 e
2l−p

2 ⊗ e
q

1e
2n−q

2 ) = −4(q − n)2(e
p

1 e
2l−p

2 ⊗ e
q

1e
2n−q

2 ) .
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Also we compute

dρ(F1)
2 · (e

p

1 e
2l−p

2 ⊗ e
q

1e
2n−q

2 ) = 1

2
[p(p − 1)e

p−2
1 e

2l−p+2
2

− [p(2l − p + 1) + (2l − p)(p + 1)]ep

1 e
2l−p

2

+ (2l − p)(2l − p − 1)e
p+2
1 e

2l−p+2
2 ] ⊗ e

q

1e
2n−q

2 .

In a similar way we compute

(dρ(F1)
2 + dρ(G1)

2) · (e
p
1 e

2l−p
2 ⊗ e

q
1e

2n−q
2 ) = 2(p2 − 2lp − l)(e

p
1 e

2l−p
2 ⊗ e

q
1e

2n−q
2 )

and

(dρ(F2)
2 + dρ(G2)

2) · (ep

1 e
2l−p

2 ⊗ e
q

1e
2n−q

2 ) = 4(q2 − 2nq − n)(e
p

1 e
2l−p

2 ⊗ e
q

1e
2n−q

2 ) .

A direct check shows that the vectors vpq ∈ V K
2l,2n are eigenvectors for the operator D,

and therefore

−�gρpq,αβ(xK) = 〈ρ(x)Dvpq, vαβ 〉
= λpqρpq,αβ(xK)

with eigenvalue

λpq = 2(2(q − n)2 − (p2 − 2lp − l) − 2(q2 − 2nq − n))

= 2(2n2 + 2n + l2 + l − (2q − 2n)2) .

For any nonnegative integers l, n let Fl,n be the set of pairs (p, q) satisfying the relations in
(3.1). Define

λ
l,n
1 := min

(p,q)∈Fl,n

λpq

so that the least eigenvalue for the Laplace operator is

λ1(L) = min
l,n

λ
l,n
1 ,

as (l, n) varies among the nonnegative integers giving rise to a spherical representation of
(G,K).

Now note that |2q − 2n| ≤ l and therefore λ
l,n
1 ≥ 2(2n2 + 2n + l) ≥ 24 if n ≥ 2, so we

analyze the following cases.

• If n = 0 then q = 0 and p = l so V Ko

2l,0 is spanned by the vector el
1e

l
2, and this vector

is fixed by σ if and only if l is even. Therefore V2l,0 is spherical only if l ≥ 2 and this
implies λ

l,0
1 = 2(l + l2) ≥ 12 with equality when l = 2. V K

4,0 is spanned by v2,0.

• If n = 1 and l ≥ 3 then λ
l,1
1 ≥ 2(4 + l) ≥ 14, so we can assume l ≤ 2.

If l = 0, then V Ko

0,2 is spanned by e1e2, but it is reversed by σ , so V K
0,2 is trivial.

If l = 1, then p = 2q − 1 with 1 ≤ 2q ≤ 3, hence p = q = 1. Then V K
2,2 is spanned

by e1e2 ⊗ e1e2 and therefore V2,2 is spherical and λ11 = 2(4 + 1 + 1) = 12.
If l = 2, then 0 ≤ q ≤ 2 and λp,q = 2(10 − 4(q − 1)2) ≥ 12 with equality when
q = 0 or q = 2. V K

4,2 is spanned by v0,0 = −v4,2.

So λ1(L) attains its lower bound which is equal to the Einstein constant κ = 12.
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REMARK. We note that the multiplicity of the eigenvalue λ1(L) = 12, which is the
nullity of L, is given by

dimC V4,0 + dimC V2,2 + dimC V4,2 = 29 = dim SU(6) − dim G .
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