
Tohoku Math. J.
63 (2011), 877–898

SMALL NOISE ASYMPTOTIC EXPANSIONS FOR STOCHASTIC PDE’S, I.
THE CASE OF A DISSIPATIVE POLYNOMIALLY

BOUNDED NONLINEARITY

SERGIO ALBEVERIO, LUCA DI PERSIO AND ELISA MASTROGIACOMO

(Received November 30, 2010, revised September 1, 2011)

Abstract. We study a reaction-diffusion evolution equation perturbed by a Gaussian
noise. Here the leading operator is the infinitesimal generator of a C0-semigroup of strictly
negative type, the nonlinear term has at most polynomial growth and is such that the whole
system is dissipative.

The corresponding Itô stochastic equation describes a process on a Hilbert space with
dissipative nonlinear, non globally Lipschitz drift and a Gaussian noise.

Under smoothness assumptions on the nonlinearity, asymptotics to all orders in a small
parameter in front of the noise are given, with uniform estimates on the remainders. Appli-
cations to nonlinear SPDEs with a linear term in the drift given by a Laplacian in a bounded
domain are included. As a particular example we consider the small noise asymptotic ex-
pansions for the stochastic FitzHugh-Nagumo equations of neurobiology around deterministic
solutions.

1. Introduction. In many problems of natural sciences and engineerings, modeling
of dynamical systems by nonlinear deterministic partial differential equations (PDEs) is heav-
ily used. This is for example the case for the equations of classical hydrodynamics and more
generally classical field theory, as well as for the equations used in the description of cer-
tain neurodynamical processes (see, e.g., [4] and [15], respectively). Due to the uncertainty
concerning stochastic influences on the systems (for example by additive random forcing)
an addition of stochastic terms in the equations describing such systems is appropriate. This
generates the necessity to study stochastic partial differential equations.

The problem of the study of a deterministic evolution equation of first order in time and
finite dimensional state spaces perturbed by an additive Gaussian noise and the associated
small noise expansions has been discussed by several authors. Roughly speaking, the work
concerning this problem discusses either individual solutions or expectations of functionals
of the solution process. For the first category let us mention [41, 37], [24] for example. Work
concerning the second category uses methods which go back to Donsker’s school (see for
example [35, 8, 11, 3] and references therein). To the latter category belongs also the Laplace
method for infinite dimensional integrals (see for example [8, 11, 5, 32, 36, 22, 23]) and work
related to semiclassical expansions for Wiener type integrals (see for example [8]). These
expansions go beyond the large deviations estimates which are on the other hand valid without
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smoothness assumption on the drift (see e.g. [17, 18, 20] and [19, 20]). Astonishing enough
corresponding work for the case of evolving systems with infinite dimensional state space, i.e.,
for SPDEs, is much more sparse, see however for example, [14, 10, 34]. R. Marcus studied in
[31, 30] problems of this type in the case of globally Lipschitz nonlinear terms.

Our present paper extends the latter work in the direction of dropping the global Lipschitz
condition and allowing for nonlinearities of at most polynomial growth and of dissipative
character, like the ones occurring in the case of the stochastic FitzHugh-Nagumo equation
studied in stochastic neurodynamics (see [12] and references therein). More precisely our
paper considers a system whose deterministic part corresponds to a nonlinear PDEs of the
semilinear type with an (unbounded) linear term and a nonlinearity which is smooth and at
most polynomially growing at infinity. This deterministic PDEs is perturbed additively by
a space-time noise term of the Gaussian type, with a small positive coefficient ε in front of
it. Mathematically the problem can be looked upon as described by a stochastic differential
equation for an infinite dimensional stochastic process with a small parameter in front of the
noise term, given by an infinite dimensional Wiener process. Since we allow for polynomial
growth of the nonlinear part of the drift, in order to assure existence and uniqueness of mild
solutions (in the sense of [18]) we assume that the total drift term is dissipative. In turn this is
assured by assumptions on the linear drift term and by one sided dissipative type conditions
on the nonlinear term.

The study of such equations was from the very beginning influenced by motivations from
areas like quantum field theory (such as stochastic quantization equation (see [9, 6, 16, 26, 33])
and the references therein, the Ginzburg-Landau equation of classical statistical mechanics
(the equation describing growth of surfaces in solid state physics), biology (for example in
the study of stochastic neurodynamics [38, 39, 40, 12]) and economics (for example interest
rate models [7, 21]).

In many problems it is interesting to know how the solutions of the perturbed problem
depend on the small parameter ε describing the random forcing. For example, in connection
with FitzHugh-Nagumo models of neurodynamics this has been discussed heuristically by
Tuckwell (see [38, 39, 40], and also [28] for motivations in connection with the description of
phenomena in the study of epilepsy and [1] for connections with problems of synchronization
in neuronal systems). The exploitation of the dissipativity permits to compensate for the lack
of a global Lipschitz condition on the nonlinear drift.

Our aim is to provide asymptotic expansions of the solution to all orders in the perturba-
tion parameter ε, with explicit expressions both for the expansion coefficients and the remain-
der. The technique used is general and also covers the case of deterministic forcing terms. An
application to models of stochastic FitzHugh-Nagumo dynamics on networks, used for the
description of systems of biological neurons, will be given in a subsequent paper [2].

In a further paper we shall extend our method to study other SPDEs having other types
of nonlinear polynomially growing drifts.
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2. Outline of the paper. Let us consider the following deterministic problem{
dφ(t) = [Aφ(t) + F(φ(t))]dt , t ∈ [0,+∞)

φ(0) = u0 , u0 ∈ H ,
(2.1)

where A is a linear operator on a separable Hilbert space H which generates a C0-semigroup
of strict negative type. The term F is a smooth nonlinear, quasi-m-dissipative mapping from
the domain D(F) ⊂ H (dense in H ) with values in H ; this means that there exists ω ∈ R such
that (F − ωI) is m-dissipative in the sense of [18, p. 73], with (at most) polynomial growth
at infinity (and satisfying some further assumptions which will be specified in Hypothesis 3.1
below) while D(F) is the domain of F , assumed to be dense in H . Existence and uniqueness
of solutions for equation (2.1) is discussed in Proposition 3.7 below.

Our aim is to study a stochastic (white noise) perturbation of (2.1) and to write its
(unique) solution as an expansion in powers of a parameter ε > 0, which controls the strength
of the noise, as ε goes to zero. More precisely, we are concerned with the following stochastic
Cauchy problem on the Hilbert space H{

du(t) = [Au(t) + F(u(t))]dt + ε
√

QdW(t) , t ∈ [0,+∞)

u(0) = u0 , u0 ∈ K ,
(2.2)

where A and F are as described above, W is a cylindrical Wiener process on H , Q is a positive
trace class linear operator from H to H and ε > 0 is the parameter which determines the
magnitude of the stochastic perturbation. The initial datum u0 takes value into a continuously
embedded Banach space K of H . A unique solution of the problem (2.2) can be shown to exist
exploiting as in [12] results on stochastic differential equations (contained, e.g., in [17, 18]).
Our purpose is to show that the solution of the equation (2.2), which will be denoted by
u = u(t), t ∈ [0,+∞), can be written as

u(t) = φ(t) + εu1(t) + · · · + εnun(t) + Rn(t, ε) ,

where n depends on the differentiability order of F . Further, Rn(t, ε) is a suitable pro-
cess which goes to 0 with order εn as ε goes to 0. The function φ(t) solves the associated
deterministic problem (2.1), u1(t) is the stochastic process which solves the following linear
stochastic (non-autonomous) equation{

du1(t) = [Au1(t) + ∇F(φ(t))[u1(t)]]dt + √
QdW(t) ,t ∈ [0,+∞)

u1(0) = 0 ,
(2.3)

while for each k = 2, . . . , n , uk(t) solves the following non-homogeneous linear differential
equation with stochastic coefficients{

duk(t) = [Auk(t) + ∇F(φ(t))[uk(t)]]dt + Φk(t)dt ,

uk(0) = 0 .
(2.4)

Φk(t) is a stochastic process which depends on u1(t), . . . , uk−1(t) and the Fréchet derivatives
of F up to order k, see Section 4 for details.

The paper is organized as follows. In Section 3 we recall standard results for the solution
of equations of types (2.1), (2.2), (2.3) and (2.4). Section 4 is devoted to the study of some
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properties of the nonlinear term F , in particular the n-th remainder of its Taylor expansion.
Section 5 is concerned with the proof of the main result on the asymptotic expansion in powers
of ε of the solution of the stochastic equation (2.2), with explicit coefficients and remainders,
and estimates thereof. We conclude with some remarks on applications of the results, in
particular concerning the stochastic FitzHugh-Nagumo equation.

3. Assumptions and basic estimates. Before recalling some known results on prob-
lems of the types (2.1), (2.2), (2.3) and (2.4), we begin by presenting our notation and as-
sumptions. We are concerned with a real separable Hilbert space, with the inner product
〈·, ·〉; on H there are given a linear operator A : D(A) ⊂ H → H , a nonlinear operator
F : D(F) ⊂ H → H with dense domain in H and a bounded linear operator Q. More-
over, we are given a complete probability space (Ω,F , (Ft )t≥0,P ) which satisfies the usual
conditions, i.e., the probability space is complete, F contains all P -null subsets of sets in F
and the filtration (Ft )t≥0 is right continuous. Further, for any trace-class linear operator Q,
we will denote by Tr Q its trace; if f is any mapping on H which is Fréchet differentiable
up to order n, n ∈ N , we will denote by f (i), i = 1, . . . , n its i-th Fréchet derivative and by
D(f (i)) its domain (for a short survey on Fréchet differentiable mappings we refer to Section
4). For any j ∈ N , L(Hj ; H) denotes the space of j -linear bounded mappings from Hj into
H while the space of linear bounded mappings from H into L(Hj ; H) is denoted by Lj (H).
We denote by | · |H the norm on H , by ‖ · ‖Lj (H) the norm of any j -linear operator on H and
by ‖ · ‖HS the Hilbert-Schmidt norm of any linear operator on H . Finally, we will denote by
Lp(Ω; C([0, T ]; H)) the space of continuous and adapted processes taking values in H such
that the following norm is finite

|||u||| = E

(
sup

t∈[0,T ]
|u(t)|pH

)1/p

< ∞ .

HYPOTHESIS 3.1.
1. The operator A : D(A) ⊂ H → H generates an analytic semigroup (etA)t≥0, on H

of strict negative type such that

‖etA‖L(H) ≤ e−ωt , t ≥ 0

with ω a strictly positive, real constant.
Let assume that there exists a Banach space K , densely and continuously embedded (as a
Borel subset) into H , endowed with the norm | · |K . Moreover, if AK denotes the part of A in
K , that is

D(AK) := {x ∈ D(A) ∩ K; Ax ∈ K} , AKx = Ax ,

then AK generates an analytic semigroup (of negative type) etAK , t ≥ 0 on K .
2. The mapping F : D(F) ⊂ H → H is continuous, nonlinear, Fréchet differentiable

up to order n for some positive integer n and quasi-m-dissipative, i.e., there exist η > 0 such
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that

〈F(u) − F(v) − η(u − v), u − v〉 < 0 , f or all u, v ∈ D(F) .

3. If F
(j)

K , j = 1, . . . , n denotes the part of F (j) in K , that is

D(F
(j)
K ) := {

x ∈ D(F (j)) ∩ K; F
(j)
K (x) ∈ K

}
, F

(j)
K (x) = F (j)(x) ,

then the following estimates hold
(a) there exist a positive real number γ and a natural positive number m such that

|FK(u)|K ≤ γ (1 + |u|mK) , u ∈ K ,

(b) for some n ∈ N and any u ∈ D(F
(i)
K ), i = 1, . . . , n, there exist positive real

constants γi, i = 1, . . . , n such that

‖F (i)
K (u)‖Lj (K) ≤ γi(1 + |u|m−i

K ) , with m as in (3a), u ∈ K .

4. The constants ω, η satisfy the inequality ω−η > 0; this implies that the term A+F

is m-dissipative in the sense of [17], [18, p. 73].
5. The term W is an H -cylindrical Wiener process (for example in the sense of

[17, 18]).
6. Q is a positive linear bounded operator on H of trace class, that is Tr Q < ∞.

EXAMPLE 3.2. Let us give an example of a mapping F satisfying the above hypothesis
(in view of the application to stochastic neuronal models). Let H = L2(Λ) with Λ ⊂ Rn,
bounded and open; set K := C(Λ̄) (with Λ̄ the closure of Λ in Rn) and let F be a multinomial
of degree m ∈ N , i.e., a mapping of the form F(u) = gm(u), where gm(u), u ∈ H , is a
polynomial of degree m, that is, gm(u) = a0 + a1u+ · · · + amum, with ai ∈ R, i = 0, . . . ,m.
Then it is easy to prove that D(F) = L2m(Λ) ⊆ L2(Λ),m > 0, D(F) = L2m(Λ) = H,m =
0 and (by using the Hölder inequality) D(F (i)) = L2i(Λ). Moreover, it turns out that, for
any u ∈ D(F), F (i)(u) can be identified with the element g(i)

m (u) (both in D(F) and K).
Consequently,

|F(u)|K = sup
ξ∈Λ̄

|F(u(ξ))|

= sup
ξ∈Λ̄

|gm(u(ξ))|

≤ Cm(1 + sup
ξ∈Λ̄

|u(ξ)|m)

= Cm(1 + |u|mK)

and, similarly,

|∇(j)F (u)|Lj (K) ≤ Cm(1 + sup
ξ∈Λ̄

|u(ξ)|m−j )

= Cm(1 + |u|m−j
K ) , j = 0, 1, . . . ,m.



882 S. ALBEVERIO, L. DI PERSIO AND E. MASTROGIACOMO

Hence F satisfies Hypothesis 3.1 (2), (3). Further, in the case g3(u) = −u(u−1)(u− ξ), 0 <

ξ < 1 the corresponding mapping F coincides with the nonlinear term of the first equation in
the FitzHugh-Nagumo system (see Example 5.4 below).

We recall the notion of mild solution for the deterministic and stochastic problems (2.1),
(2.2); next we recall the definition of stochastic convolution and we list some of its properties

DEFINITION 3.3. Let u0 ∈ K; we say that the function φ : [0,∞) → H is a mild
solution of equation (2.1) if it is continuous (in t), with values in H and it satisfies

φ(t) = etAu0 +
∫ t

0
e(t−s)AF (φ(s))ds , t ∈ [0,+∞) ,(3.1)

with the integral existing in the sense of Bochner integrals on Hilbert spaces.

DEFINITION 3.4. Let u0 ∈ K . A predictable H -valued process u := (u(t))t≥0 is
called a mild solution to the Cauchy problem (2.2) with initial condition u0 ∈ D(F) if for
arbitrary t ≥ 0 we have

u(t) = etAu0 +
∫ t

0
e(t−s)AF (u(s))ds + ε

∫ t

0
e(t−s)A

√
QdW(s) , P -a.s.

Moreover WA(t) := ∫ t

0 e(t−s)A
√

QdW(s) is called a stochastic convolution and under our
hypothesis it is a well defined mean square continuous Ft -adapted Gaussian process with
values in H (see e.g., [17, Theorem 5.2, p. 119]).

The first integral on the right-hand side is defined pathwise in the Bochner sense, P -
almost surely.

For further use, in the following we introduce some additional condition on the stochastic
convolution:

HYPOTHESIS 3.5. The stochastic convolution WA(t), t ≥ 0 introduced in Definition
3.4, admits a K-valued version such that, for any T > 0 and m ∈ N , it satisfies the following
estimate

E

(
sup

t∈[0,T ]
|WA(t)|2m

K

)
≤ CT(3.2)

for some positive constant CT (possibly depending on T ).

EXAMPLE 3.6. Let us give an example for the setting (H,L,A,Q) where WA is
well-defined and Hypothesis 3.5 is satisfied. This example is related to the application to
the stochastic FitzHugh-Nagumo model which we discuss in Example 5.4. Let H,K be as
in Example 3.2. Let A = 
 be the Laplacian in L2(Λ) with Neumann boundary condi-
tions. Let Q be a bounded trace class operator commuting with A. By [17, Proposition 5.15]
WA(t) ∈ D((−A)γ ), γ ∈ (0, 1/2); in particular WA(t) ∈ K , WA being in addition a Gaussian
process. This implies the bound in Hypothesis 3.5.

We shall use Hypothesis 3.5 below concerning the solution of the stochastic equation
(2.2). First, let us have a look at the deterministic equation.
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PROPOSITION 3.7. Under Hypothesis 3.1 there exists a unique mild solution φ =
φ(t), t ∈ [0,∞) of the deterministic problem (2.1) such that

|φ(t)|H ≤ e−2(ω−η)t |u0|H , t ≥ 0 .(3.3)

PROOF. The proof of the existence and the uniqueness can be found, among the oth-
ers, in [17, Theorem 7.13, p. 203], while the estimate (3.3) is a direct consequence of the
application of Gronwall’s lemma to the following inequality

d

dt
|φ(t)|2H = 2〈Aφ(t), φ(t)〉dt + 2〈F(φ(t)), φ(t)〉

≤ −2(ω − η)|φ(t)|2H . �

REMARK 3.8. It can be shown that, under Hypothesis 3.1 there exists a K-continuous
version of the unique solution of equation (3.1) such that, for any T > 0, p ≥ 1

sup
t∈[0,T ]

|φ(t)|pK < ∞

(see [18, Section 5.5.2, Proposition 5.5.6]). Hence, in the following, by φ we will understand
this K-valued version of the solution of (2.1).

PROPOSITION 3.9. Assume that A and F satisfy Hypothesis 3.1. Assume that A and
Q satisfy Hypothesis 3.5. Then for any u0 ∈ D(F) and T > 0, there exists a unique mild
solution u = (u(t))0≤t≤T of the equation (2.2) (cf. Definition 3.4) which belongs to the space
Lp(Ω; C([0, T ]; H)), i.e., such that

E

(
sup

t∈[0,T ]
|u(t)|pH

)
< +∞ ,(3.4)

for any p ∈ [2,∞).

PROOF. For the existence and the uniqueness of the solution see for instance, [17, The-
orem 7.13, p. 203]. Hence we only have to prove the estimate (3.4). Let z(t) := u(t)−WA(t);
then it is not difficult to show that z(t) is the unique solution of the following deterministic
equation:

{
z′(t) = Az(t) + F(z(t) + WA(t))

z(0) = u0

with z′(t) := d
dt

z(t).
With no loss of generality (because of inclusion results for Lp-spaces with respect to

bounded measures) we can assume that p = 2a, a ∈ N . Now combining condition (1) with
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(2) in Hypothesis 3.1 and recalling Newton’s binomial formula we have

d

dt
|z(t)|2a

H = 2a〈z′(t), z(t)〉|z(t)|2a−2
H

= 2a〈Az(t) + F(z(t) + WA(t)), z(t)〉|z(t)|2a−2
H

≤ −2aω|z(t)|2aH + 2a〈F(z(t) + WA(t)), z(t)〉|z(t)|2a−2
H

≤ −2a(ω − η)|z(t)|2a
H + 2a|F(WA(t))|H |z(t)|2a−1

H

≤ −2a(ω − η)|z(t)|2a
H + 2a

Ca

ξ
|F(WA(t))|2a

H + Ca2aξ |z(t)|2aH ,

(3.5)

for some constant Ca > 0 and a sufficiently small ξ > 0 such that −2a(ω− η)+ 2aξCa < 0.
Applying the previous inequality and Gronwall’s lemma we get:

|z(t)|2a
H ≤ e(−2a(ω−η)+ξCa2a)t |u0|2a

H + 2aCa

ξ

∫ t

0
e−2a(ω−η)(t−s)|F(WA(s))|2a

H ds .

Then there exists a positive constant C such that:

|u(t)|2a
H ≤ C

(
e(−2a(ω−η)+ξCa2a)t |u0|2a

H

+ 2a

∫ t

0
e−2a(ω−η)(t−s)|F(WA(s))|2a

H ds + |WA(t)|2a
H

)
.

(3.6)

Since by condition (3a) in Hypothesis 3.1, the restriction of F to K has (at most) polynomial
growth at infinity in the K-norm and, by the assumption on WA(t) made in Hypothesis 3.5,
WA takes value in K , for any a ∈ N we have:

|F(WA(t))|2a
H ≤ Ca,m(1 + |WA(t)|mK)2a ≤ Ca,m(1 + |WA(t)|2am

K ) ,

for some positive constant Ca,m depending on m and a. Moreover, we observe that, again by
Hypothesis 3.5, it holds that

E

(
sup

t∈[0,T ]
|WA(t)|2am

K

)
≤ C′

a,m,T ,

where C′
a,m,T is again a positive constant depending on m, a and T ; hence

E

[
sup

t∈[0,T ]

∫ t

0
e−2a(ω−η)(t−s)|F(WA(s))|2a

H ds

]

≤ C̃E

[
sup

t∈[0,T ]

∫ t

0
e−2a(ω−η)(t−s)(1 + |WA(t)|2am

K )ds

]

≤ C̃E

[
sup

t∈[0,T ]

∫ t

0
e−2a(ω−η)(t−s)ds + C′

a,m

∫ t

0
e−2a(ω−η)ds

]
≤ C̄ ,

(3.7)
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for some positive constants C̃, C̄ depending on a, m and T . Consequently, putting together
inequalities (3.6), (3.7), we obtain

E

(
sup

t∈[0,T ]
|u(t)|2a

H

)
≤ C|u0|2a

H + ¯̄C ,

for some positive constant ¯̄C, so that the proposition follows. �

4. Properties of the nonlinear term F and Taylor expansions. In this section we
study the nonlinear term F in order to write its Taylor expansion around the solution φ(t) of
(3.1) with respect to an increment given in terms of powers of ε. In order to do that we recall
some basic properties of Fréchet differentiable functions.

Let U and V be two real Banach spaces. For a mapping F : U → V the Gâteaux
differential at u ∈ U in the direction h ∈ U is defined as

∇F(u)[h] = lim
s→0

F(u + sh) − F(u)

s
,

whenever the limit exists in the topology of V (see for example [29, p. 12]).
We notice that if ∇F(u)[h] exists in a neighborhood of u0 ∈ U and is continuous in

u at u0 and also continuous in h at h = 0, then ∇F(u)[h] is linear in h (see for instance
[29, Problem 1.6.1, p. 15]). If in addition h �→ ∇F(u)[h] is bounded from U to V , then
∇F ≡ F ′(u) is called Gâteaux derivative of F at u. If ∇F(u0)[h] has this property for all u0 ∈
U0 ⊆ U and all h ∈ U we shall say that F belongs to the space G1(U0; V ). If F is continuous
from U to V and F ∈ G1(U0; V ) and one has F(u + h) = F(u) + ∇F(u)[h] + R(u, h), for
any u ∈ U0 with

lim|h|U →0

|R(u, h)|V
|h|U = 0 ,(4.1)

with | · |V and | · |U denoting respectively the norm in V and U , then the map h → ∇F(u)[h]
is a bounded linear operator from U0 to V , and ∇F(u)[h] is, by definition, the unique Fréchet
differential of F at u ∈ U0 with increment h ∈ U . The function R(u, h) is called the remain-
der of this Fréchet differential, while the operator sending h into ∇F(u)[h] is then called the
Fréchet derivative of F at u and is usually denoted by F ′(u) (see for instance [29, pp. 15–16,
Problem 1.6.2 and Lemma 1.6.3]). We have then ∇F(u)[h] = F ′(u) · h, with the symbol ·
denoting the action of the linear bounded operator F ′(u) on h.

The mapping F ′(u) is also called the gradient of F at u (see for example [29, p. 15])
and it coincides with the Gâteaux derivative of F at u. We shall denote by F (1)(U0, V ) the
subset of G1(U0, V ) such that the Fréchet derivative exists at any point of U0. Similarly we
introduce the Fréchet derivative F ′′(u) of F ′ at u ∈ U . This is a bounded linear map from a
subset D(F ′) of U into L(U,V ) (L(U,V ) being the space of bounded linear operators from
U to V ). One has thus F ′′ ∈ L(U,L(U, V )). If we choose h, k ∈ U then F ′′(u)·k ∈ L(U,V )

and
(
F ′′(u) · k

) · h ∈ V . The latter is also written F ′′(u) h k or F ′′(u)[h, k]. The mapping
F ′′(u)[h, k] is bilinear in h, k, for any given u ∈ D(F ′′) and it can be identified with the
Gâteaux differential ∇(2)F (u)[h, k] of ∇F(u)[h] in the direction k, the latter looked upon
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as a map from U to L(U,V ). Similarly one defines the j -th Fréchet derivative F (j)(u) and
the j -th Gâteaux differential ∇F (j)(u)[h1, . . . , hj ]. The function F (j)(u) acts j -linearly on
h1, . . . , hj with hi ∈ U for any i = 1, . . . , j . Let U0 be an open subset of U and consider
the space F (j)(U0, V ) of maps F from U to V such that F (j)(u) exists at all u ∈ U0 and
is uniformly continuous on U0. The following Taylor formula holds for any u, h ∈ U for
which F(h) and F(u + h) are well defined (i.e., h and u + h are elements of D(F)), and
j = 1, . . . , n + 1 with u ∈ ⋂n+1

j=1 F (j)(U0, V )

F (u + h) = F(u) + ∇F(u)[h] + 1

2
∇(2)F (u)[h, h] + · · ·

+ 1

n!∇
(n)F (u) [h, . . . , h]︸ ︷︷ ︸

n-terms

+R(n)(u; h) ,
(4.2)

where |R(n)(u; h)|U ≤ Cu,n · |h|nU for some constant Cu,n depending only on u and n (see for
example [27, Theorem X.1.2]).

Now let us consider the case U = H , with H being the same Hilbert space appearing in
problem (2.1). Let F be as in Hypothesis 3.1 and set U0 = D(F). Let us define for 0 < ε ≤ 1
the function h(t), t ≥ 0

h(t) =
n∑

k=1

εkuk(t) + r(n)(t; ε) ,

where the functions uk(t), k = 1, . . . , n and r(n)(t; ε) are p-mean integrable continuous sto-
chastic processes with values in H , defined on the whole interval [0, T ] for p ∈ [2,∞).
Moreover we suppose r(n)(·; ε) = o(εn), i.e.,

lim
ε→0

E

[
sup

t∈[0,T ]
|r(n)(t; ε)|p

εn

]
= 0 , f or any T > 0 .

Let φ be a p-mean integrable continuous stochastic process with values in the Banach space
K . Then using the above Taylor formula we have

F(φ(t) + h(t)) = F(φ(t)) + ∇F(φ(t))[h(t)] + 1

2
∇(2)F [h(t), h(t)] + · · ·

+ 1

n!∇
(n)F (u) [h(t), . . . , h(t)]︸ ︷︷ ︸

n-terms

+R(n)(φ(t); h(t)) ,
(4.3)

and, recalling that for any j = 1, . . . , n, ∇(j)F (φ(t)) is multilinear, we have

1

j !∇
(j)F (φ(t)) [h(t), . . . , h(t)]︸ ︷︷ ︸

j -terms

= 1

j !
nj∑

k1+···+kj =j

εk1+···+kj ∇(j)F (φ(t))[uk1(t), . . . , ukj (t)] + oj (ε
nj )

(4.4)
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where oj (ε
nj ) is the contribution to the right member of the above equality coming from the

term r(n)(t; ε) and satisfies the estimate

lim
ε→0

E

[
sup

t∈[0,T ]
|oj (ε

nj )|p
εnj

]
= 0 , f or any T > 0 .

We notice that any derivative appearing in the member on the right-hand side of (4.4) is
multiplied by the parameter ε raised to a power between j and nj .

Taking into account the above equality we can rewrite (4.3) as

F(φ(t) + h(t)) = F(φ(t)) +
n∑

k=1

εk∇F(φ(t))[uk(t)]

+
n∑

j1+j2=2

εj1+j2

2! ∇(2)F (φ(t))[uj1(t), uj2(t)] + · · ·

+
n∑

j1+···+jk=k

εj1+···+jk

k! ∇(k)F (φ(t))[uj1(t), . . . , ujk (t)] + · · ·

+ εn

n! ∇
(n)F (φ(t))[u1(t), . . . , u1(t)] + R

(n)
1 (φ(t); h(t), ε) ,

(4.5)

where the quantity R
(n)
1 (φ(t); h(t), ε) is given in terms of the derivatives of F with the pa-

rameter ε raised to powers greater than n, in terms of the n-th remainder R(n)(φ(t); h(t)) in
the Taylor expansion of the map F (as stated in equation (4.2)) and in terms of the remainders
oj (ε

nj ), j = 2, . . . , n introduced in (4.4). Namely, we have:

R
(n)
1 (φ(t); h(t), ε) =

n∑
j=2

nj∑
i1+···+ij =n+1

εi1+···+ij
1

j !∇
(j)F (φ(t))[ui1(t), . . . , uij (t)]

+
n∑

j=2

oj (ε
nj ) + R(n)(φ(t); h(t)) ,

(4.6)

R(n)(φ(t); h(t)) being as in (4.2) (with u replaced by φ). In this way equation (4.5) can be
rearranged as

F(φ(t) + h(t)) = F(φ(t)) +
n∑

j=2

εj

( n∑
i1+···+ij =j

1

j !∇
(j)F (φ(t))[ui1(t), . . . , uij (t)]

)

+ R
(n)
1 (φ(t); h(t), ε) .

(4.7)

LEMMA 4.1. Let R
(n)
1 be as in formula (4.6). Then for all p ∈ [2,∞) and T > 0

there exists a constant C > 0, depending on |φ|K, |u1|, . . . , |un|H ,∇(1)F, . . . ,∇(n)F, p, n,
such that:

E

[
sup

t∈[0,T ]
|R(n)

1 (φ(t); h(t), ε)|pH
]

≤ Cεp(n+1)
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for all 0 < ε ≤ 1.

PROOF. First of all we notice that
n∑

j=2

oj (ε
nj ) = O(ε2n) ,

meaning that ∣∣∣∣
n∑

j=2

o(εnj )

∣∣∣∣ ≤ Cnε
2n , ε → 0 ,(4.8)

for some constant Cn > 0. Now since:

R
(n)
1 (φ(t); h(t), ε) =

n∑
j=2

nj∑
i1+···+ij =n+1

εi1+···+ij
1

j !∇
(j)F (φ(t))[ui1(t), . . . , uij (t)]

+
n∑

j=2

oj (ε
nj ) + R(n)(φ(t); h(t)) ,

using the estimate given in condition (3.b) in Hypothesis 3.1 and (4.8), for ε ∈ (0, 1] we have

|R(n)
1 (φ(t); h(t), ε)|pH

≤ C1
n,pε(n+1)p

[(
max

j=1,...,n
‖∇(j)F (φ(t))‖Lj (K)

)p( n∑
i=1

|ui(t)|pH
)]

+ (O(ε2n))p + C2
n,p

∣∣R(n) (φ(t); h(t))
∣∣p
H

≤ C(1)
n,pε(n+1)p max

j=1,...,n

[
γ

p
j (1 + |φ(t)|m−j

K )p
]( n∑

i=1

|ui(t)|pH
)

+ Cnε
2np + C(2)

n,p|R(n)(φ(t); h(t))|pH
≤ C̃nε

(n+1)p + C(2)
n,p|R(n)(φ(t); h(t))|pH ,

(4.9)

where C1
n,p, C

(1)
n,p, C

(2)
n,p are constants depending only on n, p and the constant Cn in (4.8)

while C̃n is a suitable positive constant depending on p, n, maxj=1,...,n[γ p
j (1 + |φ(t)|m−j

K )p]
(γi being the constants appearing in Hypothesis 3.1, condition (3)) and |ui(t)|pH , i = 1, . . . , n.
We notice that the above inequality follows by recalling that the deterministic function φ(t)

is bounded in the H -norm (see Proposition 3.7).
Now by the bound on R(n) in the equation (4.2) we have that

|R(n)(φ(t); h(t))|pH ≤ Ĉn|h(t)|(n+1)p

H

with Ĉn depending on φ(t) and n but independent of h(t). Since h(t) = ∑n
k=1 εkuk(t) +

r(n)(t; ε) with |r(n)(t; ε)| ≤ Cnε
n+1 for some C̃n, then:

|R(n)(φ(t); h(t))|pH ≤ ε(n+1)pĈn,p(|u1(t)|H , . . . , |un(t)|H )(4.10)
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with Ĉn,p = Ĉn,p(|u1(t)|H , . . . , |un(t)|H ) independent of ε.
Hence by (4.9) and (4.10) we have that

E

[
sup

t∈[0,T ]
|R(n)

1 (φ(t); h(t), ε)|pH
]

≤ C′
nε

n+1 ,

where C′
n := C′

n(p,∇(1)F, . . . ,∇(n)F, |φ|H , . . . , |un|H) is independent of ε. This gives the
lemma, with C = C′

n. �

As we said before, we want to expand the solution of the equation (2.2) around φ(t), that
is we want to write u(t) as:

u(t) = φ(t) + εu1(t) + · · · + εnun(t) + Rn(t, ε) ,(4.11)

(with the term Rn(t, ε) = O(εn+1)), for any t ≥ 0), where the processes (ui(t))t≥0, i =
1, . . . , n can be found by using the Taylor expansion of F around φ(t) and matching terms
in the equation (2.2) for u. Given predictable H -valued stochastic processes w(t), v1(t), . . . ,

vn(t) let us use the notation:

Φk(w(t))[v1(t), . . . , vk(t)] :=
k∑

j=2

∑
i1+···+ij =k

∇(j)F (w(t))[vi1 (t), . . . , vij (t)] ,(4.12)

with i1, . . . , ij , running from 0 to k and the given restriction i1 +· · ·+ in = k. With the above
notation the processes u1(t), . . . , un(t) occurring in (4.11) satisfy the following equations:{

du1(t) = [Au1(t) + ∇F(φ(t))[u1(t)]]dt + √
QdW(t) ,

u1(0) = 0 ,

and {
duk(t) = [Auk(t) + ∇F(φ(t))[uk(t)]]dt + Φk(t)dt ,

uk(0) = 0 ,
(4.13)

with

Φk(t) := Φk(φ(t))[u1(t), . . . , uk−1(t)] : , k ∈ N , n ≥ k ≥ 2 .(4.14)

Notice that while u1(t) is the solution of a linear stochastic differential equation (with time
dependent drift operator A + ∇F(φ(t))), the processes u2, . . . , un are solutions of non-
homogenous differential equations with random coefficients whose meaning is given below.

DEFINITION 4.2. Let 2 ≤ k ≤ n. Then a predictable H -valued stochastic process
uk = uk(t) , t ≥ 0 is a solution of the problem (2.4) (i.e., (4.13)) if almost surely it satisfies
the following integral equation

uk(t) =
∫ t

0
e(t−s)A∇F(φ(s))[uk(s)]ds +

∫ t

0
Φk(s)ds , t ≥ 0 , 2 ≤ k ≤ n ,

with φ as in Proposition 3.7 and Φk as in (4.12) and (4.14).
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In the following result we estimate the norm of Φk in H by means of the norms of the
Frechet derivatives of F and the norms of vj (t), j = 1, . . . , k − 1, where vj (t) are H -valued
stochastic processes.

LEMMA 4.3. Let us fix 2 ≤ k ≤ n; let w(t) and v1(t), . . . , vk−1(t) be respectively a
K-valued process and H -valued stochastic processes. Then Φk(w(t))

[
v1(t), . . . , vk−1(t)

]
as

in (4.12) satisfies the following inequality

|Φk(w(t))[v1(t), . . . , vk−1(t)]|H ≤C(1 + |w(t)|m−2
K )k2(k + |v1(t)|k−1

H +· · ·+|vk−1(t)|k−1
H ) ,

where C is some positive constants depending on k and the constant γj , j = 2, . . . , k intro-
duced in Hypothesis 3.1.

PROOF. We have

|Φk(w(t))[v1(t), . . . , vk−1(t)]|H

=
∣∣∣∣

k∑
j=2

∑
i1+···+ij =k

∇(j)F (w(t))[vi1 (t), . . . , vij (t)]
j !

∣∣∣∣
H

≤
k∑

j=2

∑
i1+···+ij =k

∣∣∣∣∇(j)F (w(t))[vi1 (t), . . . , vij (t)]
j !

∣∣∣∣
H

(4.15)

and using the assumption (3) in Hypothesis 3.1, we get

|Φk(t)|H ≤
k∑

j=2

∑
i1+···+ij =k

1

j !‖∇F (j)(w(t))‖Lj (H)

j∏
l=1

|vil (t)|H

≤
k∑

j=2

1

j !γj (1 + |w(t)|K)m−j
∑

i1+···+ij =k

j∑
l=1

|vil (t)|jH

≤
k∑

j=2

1

j !γj (1 + |w(t)|K)m−j
∑

i1+···+ij =k

(
j +

k−1∑
l=1

|vl(t)|k−1
H

)

≤
k∑

j=2

1

j !γj (1 + |w(t)|K)m−j k2
(

k +
k−1∑
l=1

|vl(t)|k−1
H

)

≤ C(1 + |w(t)|m−2
K )k2

(
k +

k−1∑
l=1

|vl(t)|k−1
H

)
,

(4.16)

for some positive constant C, from which the assertion in Lemma 4.3 follows. �

REMARK 4.4. Notice that by Lemma 4.3, if v1, . . . , vk−1 are p-mean (p ∈ [2,∞)),
integrable continuous stochastic processes then the same holds for Φk .
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5. Main results.

PROPOSITION 5.1. Under Hypothesis 3.1 the following stochastic differential equa-
tion: {

du1(t) = [Au1(t) + ∇F(φ(t))[u1(t)]]dt + √
QdW(t) , t ∈ [0,+∞) ,

u1(0) = 0 ,
(5.1)

has, with φ as in Proposition 3.7, a unique mild solution satisfying, for any p ≥ 2, the
following estimate:

E

[
sup

t∈[0,T ]
|u1(t)|pH

]
< +∞ , for any T > 0 .(5.2)

PROOF. First we show the uniqueness. Let us suppose that w1(t) and w2(t) are two
solutions of (5.1). Then by Itô’s formula we have:

d|w1(t) − w2(t)|2H = 〈A(w1(t) − w2(t)), w1(t) − w2(t)〉 dt

+ 〈∇F(φ(t))[w1(t) − w2(t)] , w1(t) − w2(t)〉 dt,

so that, by the dissipativity condition on A and the estimate on ∇F in Hypothesis 3.1, (3), we
have

d|w1(t) − w2(t)|2H ≤ −ω|w1(t) − w2(t)|2H + γ1(1 + |φ|m−1
K )|w1(t) − w2(t)|2H .

Now uniqueness follows by applying Gronwall’s lemma.
As far as the existence is concerned, we proceed by a fixed point argument. We introduce

the mapping Γ from Lp(Ω; C([0, T ]; H)) into itself defined by

Γ (w(t)) :=
∫ t

0
e(t−s)A∇F(φ(s)))[w(s)]ds + WA(t) .

We are going to prove that there exists T̃ > 0 such that Γ is a contraction on Lp(Ω; C([0, T̃ ];
H)). In fact, for any v,w ∈ Lp(Ω; C([0, T̃ ]; H)) we have, for any 0 ≤ t ≤ T̃ :

‖Γ (v(t)) − Γ (w(t))‖p = E

[
sup

t∈[0,T̃ ]

∣∣∣∣
∫ t

0
e(t−s)A∇F(φ(s)))[v(s) − w(s)]ds

∣∣∣∣
p

H

]

≤ E

[
sup

t∈[0,T̃ ]

∫ t

0
‖e(t−s)A‖p

L(H)

∣∣∇F(φ(s))[v(s) − w(s)]∣∣p
H

ds

]

≤ E

[
sup

s∈[0,T̃ ]
|∇F(φ(s))[v(s) − w(s)]|pH

] ∫ T̃

0
‖e(T̃ −s ′)A‖p

L(H)ds′

≤ E

[
sup

s∈[0,T̃ ]
|v(s) − w(s)|pH

]
γ

p

1

(
1 + |φ(s)|m−1

K

)p 1

ωp

(
1 − e−ωpT̃

)

≤ γ
p

1 (1 + |u0|m−1
K )p‖v − w‖p 1

ωp

(
1 − e−ωpT̃

)
,
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where we used condition (3) in Hypothesis 3.1 for the third inequality and Proposition 3.7 for
the last inequality. Then if T̃ is sufficiently small (depending on ω,p, γ1, φ), we see that Γ

is a contraction on Lp(Ω; C([0, T̃ ]; H)).
By considering the map Γ on intervals [0, T̃ ], [T̃ , 2T̃ ], . . . , [(N − 1)T̃ , T ], T̃ ≡ T/N ,

N ∈ N , we have that Γ is a contraction on Lp(Ω; C([0, T ]; H)) and hence we have the exis-
tence and the uniqueness of the solution for the equation (5.1) in the space Lp(Ω; C([0, T ];
H)) for any p ∈ [2,∞).

Let us now consider the estimate (5.2). By condition (3) in Hypothesis 3.1 we have for
all points in the probability space and p = 2a with a ∈ N :

d

dt
|u1(t)|2a

H = 2a〈Au1(t), u1(t)〉|u1(t)|2a−2
H + 2a〈∇F(φ(t))[u1(t)], u1(t)〉|u1(t)|2a−2

H

+ 2a〈WA(t), u1(t)〉|u1(t)|2a−2
H

≤ −2aω|u1(t)|2a
H + 2aγ (1 + |u0|m−1

K )|u1(t)|2a
H + 2a〈WA(t), u1(t)〉|u1(t)|2a−1

H

≤ −2aω̃|u1(t)|2a
H + Ca |WA(t)|2a

H ,

(5.3)

where ω̃ := ω − γ (1 + |u0|H). By Hypothesis 3.5 we have that:

E

[
sup

t∈[0,T ]
|WA(t)|2a

H

]
≤ C′

a , T > 0

(first with K replacing H , but then with H , due to the assumption on H,K). C′
a is some

positive constant. Integrating on [0, T ] both sides in (5.3), taking the expectation of both
members in the inequality and applying Gronwall’s lemma to (5.3) we obtain:

E

[
sup

t∈[0,T ]
|u1(t)|2a

H

]
≤ C′

a,T e−2 a ω̃T < Ca,T ,

where Ca,T is a positive constant and (5.2) follows. �

THEOREM 5.2. Let us fix 2 ≤ k ≤ n, assume that Hypothesis 3.1 holds, and let u1 be
the solution of the problem (2.3). Suppose moreover that uj is the unique mild solution of the
following Abstract Cauchy Problem (ACP):{

duj (t) = [Auj (t) + ∇F(φ(t))[uj (t)]]dt + Φj (t)dt ,

uj (0) = 0
(ACPj)

for j = 2, . . . , k − 1 satisfying:

E

[
sup

t∈[0,T ]
|uj (t)|pH

]
< +∞ , T > 0, f or any p ∈ [2,∞) ;(5.4)

then there exists a unique mild solution uk(t) of the following non-homogeneous linear differ-
ential equation with stochastic coefficients (in the sense of Definition 4.2) :{

duk(t) = [Auk(t) + ∇F(φ(t))[uk(t)]]dt + Φk(t)dt , t ∈ [0,+∞) ,

uk(0) = 0
(ACPk)



SMALL NOISE ASYMPTOTIC EXPANSIONS FOR STOCHASTIC PDE’S 893

and it satisfies the following estimate, for any T > 0 :

E

[
sup

t∈[0,T ]
|uk(t)|pH

]
< +∞ .(5.5)

PROOF. We proceed by a fixed point argument, where the contraction is given by

Γ (y(t)) :=
∫ t

0
e(t−s)A∇F(φ(t))[y(t)]ds +

∫ t

0
e(t−s)AΦk(s)ds

on Lp(Ω; C([0, T ]; H)). In fact, arguing as in Proposition 5.1, we see that for T̃ ∈ [0, T ] suf-
ficiently small, Γ is a contraction on Lp(Ω; C([0, T̃ ]; H)), p ∈ [2,∞), so that the existence
and the uniqueness of the solution for (ACPk) follows.

Let us consider the estimate (5.5). By the condition (4) in Hypothesis 3.1 we have, for
p = 2a with a ∈ N (and all points in the probability space) :

d

dt
|uk(t)|2a

H = 2a〈Auk(t), uk(t)〉|uk(t)|2a−2
H + 2a〈∇F(φ(t))[uk(t)], uk(t)〉|uk(t)|2a−2

H

+ 2a〈Φk(t), uk(t)〉|uk(t)|2a−2
H

≤ −2aω|uk(t)|2a
H + 2aγ (1 + |u0|K)|uk(t)|2a

H + 2a|Φk(t)|H |uk(t)|2a−1
H

≤ −2aω̃|uk(t)|2a
H + Ca |Φk(t)|2a

H ,

(5.6)

where ω̃ := ω − γ (1 + |u0|K) as in the proof of Proposition (5.1). By the assumption (5.4)
made on uj (t), j = 1, . . . , k − 1 and Lemma 4.3 we have that:

E

[
sup

t∈[0,T ]
|Φk(t)|2a

H

]
≤ C′

a , T > 0 ,

so that taking the expectation of inequality (5.6) and applying Gronwall’s lemma (similarly as
in the proof of Proposition 5.1) we obtain:

E

[
sup

t∈[0,T ]
|uk(t)|2a

H

]
≤ C′

ae
−2 a ω̃T < Ca ,

where Ca is a positive constant, and the theorem follows. �

We are now able to state the main result of this section:

THEOREM 5.3. Under Hypothesis 3.1 the mild solution u(t) of (2.2) (in the sense of
Definition 3.4) can be expanded in powers of ε > 0 in the following form

u(t) = φ(t) + εu1(t) + · · · + εnun(t) + Rn(t, ε) , n ∈ N ,

where u1 is the solution of{
du1(t) = [Au1(t) + ∇F(φ(t))[u1(t)]]dt + √

QdW(t) ,

u1(0) = 0 ,
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while uk , k = 2, . . . , n is the solution of{
duk(t) = [Auk(t) + ∇F(φ(t))[uk(t)]]dt + Φk(t)dt ,

uk(0) = 0 .
(ACPk)

The remainder Rn(t, ε) is defined by

Rn(t, ε): =u(t) − φ(t) −
∑
k=1

n
εkuk(t)

=
∫ t

0
e(t−s)A

(
F(u(s)) − F(φ(s)) −

∑
k=1

n
εk∇F(φ(s))[uk(s)]

−
∑
k=2

n
εkΦk(s)

)
ds ,

(5.7)

and verifies the following inequality

E

[
sup

t∈[0,T ]
|Rn(t, ε)|pH

]
≤ Cpεn+1 ,

with a constant Cp > 0.

PROOF. Let us define Rn(t, ε), n ∈ N , as stated in the theorem. Since by construction

• φ(t) = etAu0 + ∫ t

0 e(t−s)AF (φ(s))ds (cf. Definition 3.3);
• u(t) = etAu0 + ∫ t

0 e(t−s)AF (u(s))ds + εWA(t) (cf. Definition 3.4);
• u1(t) = ∫ t

0 e(t−s)A∇F(φ(s))[u1(s)]ds + WA(t) (cf. Proposition 5.1 and Definition
3.4);

• uk(t) = ∫ t

0 e(t−s)A∇F(φ(s))[uk(s)]ds + ∫ t

0 e(t−s)AΦk(s)ds for k = 2, . . . , n, with
Φk(s) := Φk(φ(s))[u1(s), . . . , uk−1(s)] defined in (4.14) (cf. Theorem 5.2 and Def-
inition 3.4);

we have

Rn(t, ε) =
∫ t

0
e(t−s)A

(
F(u(s)) − F(φ(s)) −

n∑
k=1

εk∇F(φ(s))[uk(s)] −
n∑

k=2

εkΦk(s)

)
ds .

Recalling that R
(n)
1 (φ(s); h(s), ε) = F(u(s)) − F(φ(s)) − ∑n

k=1 εk∇F(φ(s))[uk(s)] −∑n
k=2 εkΦk(s) we get:

E

[
sup

t∈[0,T ]
|Rn(t, ε)|pH

]
≤E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
e(t−s)AR

(n)
1 (φ(s); h(s), ε)ds

∣∣∣∣
p

H

]

≤E

[
sup

t∈[0,T ]

∫ t

0
‖e(t−s)A‖p

L(H)|R(n)
1 (φ(s); h(s), ε)|pH ds

]

≤ E

[
sup

t∈[0,T ]
|R(n)

1 (φ(t); h(t), ε)|pH
∫ t

0
e−ω(t−s)pds

]
≤ Cn,pεp(n+1),

(5.8)
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for some positive constant Cn,p (depending on n, p, but not on ε), where in the second and
third inequality we have used the contraction property of the semigroup generated by A. Now
recalling Lemma 4.1 the inequality in Theorem 5.3 follows. �

EXAMPLE 5.4. Our results apply in particular to stochastic PDEs describing the
FitzHugh-Nagumo equation with a Gaussian noise perturbation (as those studied, for exam-
ple, in [38, 39, 40] and [12]).

The reference equation is given by (see [12, equation (1.1)])


∂tv(t, x) = ∂x(c(x)∂xv(t, x)) − p(x)v(t, x) − w(t, x) + f (v(t, x)) + εβ̇1(t, x) ,

∂tw(t, x) = γ v(t, x) − αw(t, x) + εβ̇2(t, x) ,

∂xv(t, 0) = ∂xv(t, 1) = 0,

v(0, x) = v0(x) , w(0, x) = w0(x) ,

(5.9)

with the parameter ε > 0 in front of the noise, where u,w are real valued random variables,
α, γ are strictly positive phenomenological constants and c, p are strictly positive smooth
functions on [0, 1]. Moreover, the initial values v0, w0 are in C([0, 1]). The nonlinear term is
of the form f (v) = −v(v − 1)(v − ξ), where ξ ∈ (0, 1). Finally β1, β2 are independent Qi -
Brownian motions with values in L2(0, 1), with Qi positive trace class commuting operators,
commuting also with A0, A0 being defined below. The above equation can be rewritten in the
form of an infinite dimensional stochastic evolution equation on the space

H := L2(0, 1) × L2(0, 1)(5.10)

by introducing the following operators:

A0 := ∂xc(x)∂x ,

D(A0) := {u ∈ H 2(0, 1); vx(0) = vx(1)} ,

and

A =
(

A0 − p −I

γ I αI

)
,

with domain D(A) := D(A0) × L2(0, 1), and

F

(
v

w

)
=

(−v(v − 1)(v − ξ)

0

)
, with D(F) := L6(0, 1) × L2(0, 1) .

Further, we introduce the Banach space K := C[0, 1] × L2(0, 1), endowed with the norm
| · |K := | · |∞ + | · |2 and consider u0 ∈ K . In this way, the equation (5.9) can be rewritten as{

du(t) = Au(t) + F(u(t))dt + √
QdW(t) ,

u(0) = u0 := (v0, w0) ∈ K ,

with A and F satisfying Hypothesis 3.1 when ξ2−ξ+1 ≤ 3 minx∈[0,1] p(x). In fact, the prop-
erties of the two operators A and F can be determined starting from the problems considered
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in [12] and S. Cerrai [13]. In particular from [13, Section 2.2] the estimates on the nonlin-
ear term F and its derivatives can be easily deduced. Moreover we claim that the stochastic
convolution

WA(t) :=
∫ t

0
e(t−s)AdW(s) ,

(where etA, t ≥ 0 denotes the semigroup generated by A) is well-defined and admits a con-
tinuous version with values into the space K . This fact can be proved by an application of
[17, Theorem 5.16] and its proof, taking into account that the domain of fractional powers of
A are contained in K (cf. Appendix A - in particular Example A.5.2 - in [17]) and moreover
we are assuming Tr Q < ∞.

Then by Theorem 5.3 we get an asymptotic expansion in powers of ε > 0 of the solution,
in terms of solutions of the corresponding deterministic FitzHugh-Nagumo equation and the
solution of a system of (explicit) linear (non homogeneous) stochastic equations. The expan-
sion holds for all orders in ε > 0. The remainders are estimated according to Theorem 5.3.
We can use these results to carry through a discussion similar to the one made by Tuckwell
[37, 40] in the case where Q = (Q1,Q2) with Qi the identity. Tuckwell, in particular, has
made heuristic expansions up to second order in ε for the mean and the variance of the solution
process u = (u(t))t≥0 (see [37, 40]), proving in particular that one has enhancement (respec-
tively reduction) of the mean according to whether the expansion is around which stable point
of the stationary deterministic equation.

In a future work [2] we shall apply these results to the case of networks of FitzHugh-
Nagumo neurons. Moreover in the second part of the present work we shall study asymptotic
expansions for the case where the dissipativity condition is replaced by other conditions on
the non Lipschitz drift term.
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