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Abstract. The blow-up formula for Chow groups of smooth varieties is known; for
smooth projective varieties there is a similar formula for motives. We generalize these and
prove blow-up formulas for higher Chow groups and for mixed motives of smooth quasi-
projective varieties.

Introduction. In the theory of ordinary Chow groups, there are the projective bundle
formula, the self-intersection formula, and the blow-up formula. The first proof of the self-
intersection formula and the blow-up formula for the integral Chow group is due to A. T.
Lascu, D. Mumford and D. B. Scott [LMS]; the argument is reproduced in [SGA]. A key idea
is the use of the deformation to the normal cone. For a modern treatment see [Fu, Chap. 6];
the self-intersection and the blow-up formulas are part of the properties of the refined Gysin
maps.

In Section 1 we consider these formulas for higher Chow groups CHr (X, n). The state-
ments are parallel to those for ordinary Chow groups (the case n = 0). The projective bundle
formula is known to hold. In Theorems 1.1 and 1.2, we consider the self-intersection formula
and the blow-up formula; for the proof we almost follow that in [SGA], using now the lo-
calization sequence for higher Chow groups. From the blow-up formula one can derive the
contravariant descent property for higher Chow groups, Theorem 1.5. This is used in [Ha 2]
where we show the contravariant descent property for cubical hyperresolutions of a variety.

In the rest of this paper, where Section 1 is not be used except for the case n = 0, we
will:

(A) Formulate and prove the analogues of Theorems 1.1 and 1.2 for relative motives,
and derive the original Theorems 1.1 and 1.2 from them;

(B) Derive from (A) the analogues of Theorems 1.1 and 1.2 for mixed motives.
In Section 2, we briefly recall the definition of D(k), the triangulated category of mixed

motives over a field k, and, assuming the characteristic of k is zero, the construction of the
functor h from the category of smooth quasi-projective varieties to D(k). To each smooth
variety X there corresponds an object h(X) (also denoted L(X)) of D(k), and to each map
f : X→ Y there is a corresponding morphism f ∗ : h(Y )→ h(X).

Further, we show X �→ h(X) is a “functor” on an appropriate correspondence category
of smooth quasi-projective varieties: For a cycle u on X× Y , which is proper over Y , there is
an induced morphism L(u) : h(X)(r)[2r] → h(Y )(s)[2s], if codimu = dimX+ s − r . Here
(r) denotes the Tate twist, and [2r] is the shift in the triangulated category.
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For example if α ∈ CHr (X) there corresponds a morphismC(α) : h(X)→ h(X)(r)[2r].
A proper map f : X → Y induces a morphism f∗ : h(X)(dimX)[2 dimX] → h(Y )(dimY )
[2 dimY ]. There is partial functoriality for morphisms L(u) in the following sense. If Z is
another smooth variety, v a cycle on Y × Z proper over Z, and if the composition v ◦ u is
defined as a cycle on X × Z, then one has L(v ◦ u) = L(v)L(u).

We record some formulas involving f ∗, f∗ and C(α), recall the localization sequence
from [Ha 2], and prove the projective bundle formula. All these are refinements of the known
formulas for Chow groups. For example if f : X → Y is a map of smooth quasi-projective
varieties and α ∈ CHr (Y ), we have f ∗ ◦ C(α) = C(f ∗α) ◦ f ∗ as morphisms h(Y ) →
h(X)(r)[2r]. This reflects the identity f ∗(α · y) = f ∗(α) · f ∗(y) for y ∈ CH∗(Y ).

In Section 3, after recalling the definition of the additive category of relative pure mo-
tives CHM(S), where S is a variety, we show the projective bundle, the self-intersection
and the blow-up formulas in the relative setting. A typical object of CHM(S) is of the form
h(X/S)(r), where X is a smooth quasi-projective variety equipped with a projective map to
S, and r ∈ Z. For the prototype of these results, see [Ma] where the blow-up of smooth
projective varieties is studied. Our results and proofs in this section are analogous to those in
[Ma]; the identity principle and the split exact sequence principle play fundamental roles.

We also show that the association h(X/S)(r) �→ CHr+p(X, n) is a partial functor. Using
this we show the formulas Theorems 1.1 and 1.2 for higher Chow groups follow from the
formulas for relative motives.

We naturally expect analogous self-intersection and blow-up formulas to hold for mixed
motives. In Sections 4 and 5 we prove them. In Section 4 we show the functor X �→ h(X)

explained in Section 2 can be extended to a “partial” functor L from CHM(S) to D(k). Thus
to each objectM of CHM(S) there corresponds an object L(M) of D(k); ifM = h(X/S)(r),
then L(M) = h(X)(r)[2r]. In addition, if (M,N) is a pair of objects satisfying the condition
of admissibility, and u ∈ HomCHM(S)(M,N), there is an induced map L(u) : L(M) →
L(N).

As explained in Section 5, if we take, say, the blow-up formula for relative motives, and
apply the partial functor L, we obtain the blow-up formula for mixed motives.

At the end of Section 5 we indicate an alternative proof of the formulas for mixed mo-
tives. It proceeds by repeating the proof of [SGA], with Chow groups CHr (X) replaced with
motives h(X)(r). One must use the formulas proven in Section 2. Since the argument is
lengthy and not along the main line of this paper, we only write it down for the self-intersection
formula.

We would like to thank the referee who carefully read the manuscript, gave us useful
suggestions, and asked for clarification of the proof of Theorem 3.6.

1. The blow-up formula for higher Chow groups. In this paper we consider
schemes over a field k.

We refer to [Bl 1] and [Bl 2] for the details of the theory of higher Chow groups. The
following is a list of their properties we will use in this paper.
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(1) Let �1 = P 1
k −{1} and �n = (�1)n with coordinates (x1, . . . , xn). Faces of �n are

intersections of codimension one faces, and the latter are divisors of the form �n−1
i,a = {xi =

a} where a = 0 or∞. A face of dimensionm is canonically isomorphic to �m.
LetX be an equi-dimensional variety (or a scheme). Let Zr (X×�n) be the free abelian

group on the set of codimension r irreducible subvarieties of X × �n meeting each X ×
face properly. An element of Zr (X × �n) is called an admissible cycle. The inclusions of
codimension one faces δi,a : �n−1

i,a ↪→ �n induce the map

∂ =
∑

(−1)i(δ∗i,0 − δ∗i,∞) : Zr (X ×�n)→ Zr (X ×�n−1) .

One has ∂ ◦ ∂ = 0. Let πi : X × �n → X × �n−1, i = 1, . . . , n be the projections, and
π∗i : Zr (X × �n−1) → Zr (X × �n) be the pull-backs. Let Zr (X, n) be the quotient of
Zr (X × �n) by the sum of the images of π∗i . Thus an element of Zr (X, n) is represented
uniquely by a cycle whose irreducible components are non-degenerate (not a pull-back by
πi ). The map ∂ induces a map ∂ : Zr (X, n)→ Zr (X, n − 1), and ∂ ◦ ∂ = 0. The complex
Zr (X, ·) thus defined is the cycle complex of X in codimension r . The higher Chow groups
are the homology groups of this complex:

CHr (X, n) = HnZr (X, ·) .

Note CHr (X, 0) = CHr (X), the Chow group of X. In this paper we would rather use the in-
dexing by dimensions: for s ∈ Z, Zs(X, ·) = ZdimX−r (X, ·), and CHs (X, n) is the homology
group.

(2) For a proper map f : X → Y of k-schemes, the push-forward f∗ : Zs (X, ·) →
Zs (Y, ·), hence also f∗ : CHs (X, n)→ CHs(Y, n) is defined.

(3) For a flat map f : X → Y of (relative) equi-dimension d , the pull-backs f ∗ :
Zs (Y, ·) → Zs+d (X, ·) and f ∗ : CHs(Y, n) → CHs+d(X, n) are defined. If f : X → Y

be a map where Y is smooth and X equi-dimensional, there is a map f ∗ : CHr (Y, n) →
CHr (X, n). In fact there is a quasi-isomorphic subcomplex Zr (Y, ·)′ of Zr (Y, ·) on which
f ∗ : Zr (Y, ·)′ → Zr (X, ·) is defined.

(4) If X is smooth quasi-projective and equi-dimensional, one has the intersection prod-
uct CHs(X, n)⊗ CHt (X,m)→ CHs+t−dimX(X, n+m).

(5) Projection formula.
(6) Projective bundle formula.
(7) Localization sequence. If X is a quasi-projective variety and U is an open set,

letting Z = X − U , one has an exact sequence of complexes 0 → Zs (Z, ·) → Zs (X, ·) →
Zs (U, ·). The localization theorem [Bl-2] asserts that the induced map Zs (X, ·)/Zs(Z, ·)→
Zs (U, ·) is a quasi-isomorphism.

For the basic notions of intersection theory, see [Fu]. For a locally free sheaf of O-
modules of finite rank E on a scheme X, let g : P (E) = Proj Sym(E∨) → X be the
associated projective bundle. So there is a canonical surjection g∗E∨ → O(1).
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We will show the self-intersection formula Theorem 1.1 and the blow-up formula The-
orem 1.2 for higher Chow groups. For ordinary Chow groups, these are in [SGA] or [Fu,
§6.7].

More precisely, for ordinary Chow groups, [SGA, 9.1–9.8] proves Theorem 1.1 and (a)
of Theorem 1.2, and [loc. cit. 9.9] proves Theorem 1.2, (b), (c), (e) and (f). For higher Chow
groups, reading CH∗(X, n) for CH∗(X) and changing nothing otherwise in [loc. cit. 9.1–9.8],
one obtains the proof of Theorems 1.1 and 1.2, (a). (The argument is based only on the
projection formula and the projective bundle formula.) The proof of the rest of Theorem 1.2
for n ≥ 0, given below, is not the same as [loc. cit. 9.9], and one needs to show Theorem 1.2,
(d) using the localization theorem.

THEOREM 1.1 (Self-intersection formula). Let X be a smooth quasi-projective vari-
ety and Y ⊂ X a smooth closed subvariety of codimension d , i : Y → X the closed immer-
sion, and N = NYX the normal bundle. Then

i∗i∗(y) = cd(N) · y
for y ∈ CHk(Y, n). (In [SGA], N denotes the conormal sheaf, which is dual to the normal
bundle.)

THEOREM 1.2. Let Y be a smooth quasi-projective variety, X ⊂ Y a closed smooth
subvariety of codimension d . Let f : Ỹ → Y be the blow-up of Y along X, X̃ = f−1(X) the
exceptional divisor, g : X̃→ X the induced map, and i : X→ Y and j : X̃→ Ỹ the closed
immersions.

X̃
j−−−−→ Ỹ�g �f

X
i−−−−→ Y

Let N = NXY denote the normal bundle of X in Y , and E := g∗N/ON(−1) the excess
bundle. Then

(a) For x ∈ CHk(X, n), f ∗i∗x = j∗(cd−1(E) · g∗x).
(b) For y ∈ CHk(Y, n), f∗f ∗y = y.
(c) If x̃ ∈ CHk(X̃, n), g∗(x̃) = j∗j∗(x̃) = 0, then x̃ = 0.
(d) There is an exact sequence

0→ CHk(X̃, n)
a−−−−→ CHk(X, n)⊕ CHk(Ỹ , n)

b−−−−→ CHk(Y, n)→ 0

where

a(x̃) = (g∗x̃,−j∗x̃) ,
b(x, ỹ) = i∗(x̃)+ f∗(ỹ) .

(e) If ỹ ∈ CHk(Ỹ , n) satisfies f∗ỹ = j∗ỹ = 0, then ỹ = 0.
(f) There is an exact sequence

0→ CHk(X, n)
α−−−−→ CHk(X̃, n)⊕ CHk(Y, n)

β−−−−→ CHk(Ỹ , n)→ 0
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where

α(x) = (cd−1(E) · g∗x,−i∗(x)) ,
β(x̃, y) = j∗(x̃)+ f ∗y .

A left inverse of α is given by γ (x̃, y) = g∗x̃.

PROOF. (b) Obvious from the definition.
(c) By the projective bundle formula

x̃ =
d−1∑
i=0

c1(ON(1))i · g∗xi

with xi ∈ CHk−d+1+i(X, n). Since g∗(c1(ON(1))i) = 0 for i < d−1 and= [X] for i = d−1
(see [Fu, Proposition (3.1)]) one has

0 = g∗(x̃) = xd−1 .

Using this and the self-intersection formula for j ,

0 = j∗j∗(x̃) =
d−2∑
i=0

c1(ON(1))i+1 · g∗xi .

So xi = 0 for all i, thus x̃ = 0.
(d) From the localization sequences of i : X → Y and j : X̃ → Ỹ , one deduces the

long exact sequence

→ CHk(X̃, n)
a→ CHk(X, n)⊕ CHk(Ỹ , n)

b→ CHk(X̃, n)→ · · · .
By (c), the map a is injective. So the map b is surjective.

(e) Since f∗(ỹ) = 0, by (d), there exists x̃ such that ỹ = j∗(x̃) and g∗(x̃) = 0. Then
j∗j∗(x̃) = j∗(ỹ) = 0. By (c) x̃ = 0; hence ỹ = 0.

(f) For an arbitrary element ỹ ∈ CHk(Ỹ , n), z := ỹ − f ∗f∗(ỹ) satisfies f∗(z) = 0. As
in (e), there is x̃ such that z = j∗(x̃). So ỹ = f ∗f∗(ỹ) + j∗(x̃); hence the surjectivity of the
map β.

(a) implies β ◦ α = 0. There remains the exactness in the middle. Suppose

j∗(x̃)+ f ∗(y) = 0 .

Then y = −f∗j∗(x̃) = −i∗g∗(x̃). Let

x̃ ′ := x̃ − cd−1(E) · g∗g∗x̃ ;
then g∗(x̃ ′) = 0 since g∗(cd−1(E) · g∗g∗x̃) = g∗(x̃), [Fu, Example 3.3.3]. We have

j∗(x̃ ′) = j∗(x̃)− f ∗i∗(g∗x̃) = j∗(x̃)+ f∗y = 0 .

By (c), x̃ ′ = 0, so x̃ = cd−1(E) · g∗g∗x̃, thus (x̃, y) = α(g∗x̃). �
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COROLLARY 1.3. The map

β : Ker[CHk(X̃, n)
g∗−−−−→ CHk(X, n)] ⊕ CHk(Y, n)→ CHk(Ỹ , n)

is an isomorphism.

COROLLARY 1.4. Let Zr (X) be the cycle complex of codimension r . The maps

Zr−1(X̃)⊕ Zr (Y )→ Zr−d(X)⊕ Zr (Ỹ ) ,

(x̃, y) �→ (g∗x̃, j∗x̃ + f ∗y)
and

Ker[Zr−1(X̃)
g∗−−−−→Zr−d(X)] ⊕Zr (Y )→ Zr (Ỹ ) ,

(x̃, y) �→ j∗x̃ + f ∗y
are quasi-isomorphisms.

In the above, more precisely one has to replaceZr (Y ) by a quasi-isomorphic subcomplex
in order for f ∗ to be defined. The same remark applies to the following statement, which is
an important case where contravariant descent property for cycle complex holds. For further
development, see [Ha 2].

THEOREM 1.5. Under the same hypothesis the map

(f ∗, g∗) : Cone[Zr (Y )
i∗−−−−→Zr (X)] → Cone[Zr (Ỹ )

j∗−−−−→Zr (X̃)]
is a quasi-isomorphism.

PROOF. By the next lemma, the statement is equivalent to the map

(i∗, j∗) : Conef ∗ → Cone g∗

being a quasi-isomorphism. Since f ∗ : CHr (Y, n) → CHr (Ỹ , n) and g∗ : CHr (X, n) →
CHr (X̃, n) are injective, one has to show the map

(i∗, j∗) : Cok[f ∗ : CHr (Y, n)→ CHr (Ỹ , n)] → Cok[g∗ : CHr (X, n)→ CHr (X̃, n)]
is an isomorphism.

The following square is commutative:

Ker[CHr−1(X̃, n)
g∗→ CHr−d(X, n)] ⊕ CHr (Y, n)

(j∗,f ∗)−−−−→ CHr (Ỹ , n)�id⊕i∗
�j∗

Ker[CHr−1(X̃, n)
g∗→ CHr−d(X, n)] ⊕ CHr (X, n)

(j∗j∗,g∗)−−−−→ CHr (X̃, n) .

The upper horizontal arrow is an isomorphism. So is the lower horizontal arrow by the self-
intersection formula and the projective bundle formula. Hence the assertion follows. �

LEMMA 1.6. Let
X

v−−−−→ Y�u �u′
Z

v′−−−−→ W
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be a commutative diagram of complexes of abelian groups. Then (v, v′) : Coneu→ Coneu′
is a quasi-isomorphism if and only if (u, u′) : Cone v→ Cone v′ is a quasi-isomorphism.

PROOF. Easy and left to the reader. �

2. The motives of smooth varieties. We review the notion of a distinguished sub-
complex of the cycle complex. See [Ha 1, Part II, §1] for the case of smooth projective
varieties. The generalization to smooth quasi-projective varieties was communicated to us by
M. Levine, and included in [Ha 1, Part I, §1].

Let X be a smooth quasi-projective variety. Let Y be another smooth quasi-projective
variety andW = {Wi} a finite set whereWi is an irreducible closed set ofX×Y×�li meeting
faces properly. Let Zr

W (X, ·) be the subcomplex of Zr (X, ·) generated by irreducible cycles
z in Zr (X, n) satisfying the following condition: For each face F ⊂ �n,

z× Y ×�li and Wi × F meet properly in X × Y ×�n+li .

The inclusion of the subcomplex ZW(X, ·) ↪→ Z(X, ·) is a quasi-isomorphism. A subcom-
plex of this form is called a distinguished subcomplex; it is simply written Zr (X, ·)′ when it
is not necessary to specify W .

For X,Y smooth quasi-projective, let Zr
pr(X, Y, ·) be the subcomplex of Zr (X × Y, ·)

generated by irreducible subvarieties z whose support |z| is proper over Y . As a consequence
of the moving lemma, one has:

(1) For f ∈ Zs
pr(X, Y, l), there is a distinguished subcomplex Zr (X, ·)′ such that the

map of graded abelian groups

f∗ : Zr (X, ·)′ → Zr+s−dimY (Y, · + l) ,
f∗(z) = pY ∗[(f ×�n) · (z × Y × �l)], is defined. More generally for any T smooth quasi-
projective, there is a distinguished subcomplex Zr (T ×X, ·)′ such that the map

f∗ : Zr (T ×X, ·)′ → Zr+s−dimY (T × Y, · + l) ,
is defined. One has

(∂f )∗(z) = ∂(f∗(z))− (−1)lf∗(∂z) .

For l = 0, f∗ is a map of complexes. If f1, f2 ∈ Zs
pr(X, Y, 0) and f1 − f2 = ∂F for an

element F ∈ Zs
pr(X, Y, 1), then (f1)∗ and (f2)∗ are homotopy equivalent.

(2) Let f ∈ Zs
pr(X, Y, l), g ∈ Z t

pr(Y,Z,m) be elements such that {f × Z, X × g}
is properly intersecting in X × Y × Z; then g ◦ f ∈ Zs+t−dimY

pr (X,Z, l + m) is defined.
Let T be another smooth quasi-projective variety. We then have distinguished subcomplexes
Z(T ×X, ·)′, Z(T × Y, ·)′ such that the maps

f∗ :Z(T ×X, ·)′ → Z(T × Y, · + l)′ ,
g∗ :Z(T × Y, ·)′ → Z(T × Z, · +m) ,

(g ◦ f )∗ :Z(T ×X, ·)′ → Z(T × Z, · + l +m) ,
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are all defined and (g ◦ f )∗ = g∗f∗. This can be generalized to the case of a finite sequence
of composable correspondences.

Let α ∈ CHr (X). Take a representative α̃ ∈ Zr (X, 0) of α, and consider

δ∗(α̃) ∈ Zr+dimX(X ×X, 0)

where δ : X→ X×X is the diagonal embedding. Note δ∗(α̃) ∈ Zr+dimX
pr (X,X, 0). We have

the induced map
(δ∗(α̃))∗ : Zs(X, ·)′ → Zs+r (X, ·) ;

its homotopy class is independent of the choice of a representative.
Let ϕ : X→ Y be a map of smooth quasi-projective varieties. Its graph Γϕ ⊂ Y ×X is

an element of ZdimY
pr (Y,X, 0), and induces the map

ϕ∗ = (Γϕ)∗ : Zr (Y )′ → Zr (X) .

If ϕ is proper, taking the transpose one has a correspondence tΓϕ ⊂ X×Y ∈ ZdimY
pr (X, Y, 0).

It induces the map
ϕ∗ = (tΓϕ)∗ : Zr (X)→ Zr−dimX+dimY (Y ) .

We refer to [Ha 1] or [Ha 2, §4] for the details about the triangulated category of mixed
motives D(k). In [Ha 1] we took the rational cycle complex and considered a Q-linear cat-
egory, but if we take the integral cycle complex as in §1, we obtain a Z-linear category. (In
this case, however, we do not have duals or internal Hom’s.) For the purposes of this paper,
we recall some definitions.

(1) A finite symbol K over k is a finite formal sum
⊕

α(Xα, rα), where Xα is a smooth
projective variety and rα an integer. One has the direct sum and the tensor product for finite
symbols: (X, r)⊗ (X′, r ′) = (X ×X′, r + r ′). For finite symbols K , K ′, one has a complex
of abelian groups Hom(K,K ′)•. If K = (X, r) and K ′ = (Y, s), then

Hom((X, r), (Y, s))• = ZdimX+s−r (X × Y,−•) .
For finite symbolsK,K ′ and K ′′, there is a partially defined, associative composition map

Hom(K,K ′)• ⊗ Hom(K ′,K ′′)• − − → Hom(K,K ′′)• .

(2) The category D(k) is a pseudo-abelian triangulated category with tensor product.
It is the pseudo-abelianization of a slightly smaller triangulated tensor category Dfinite(k)

which we now describe. An object of Dfinite(k) is of the form K = (Km; fm,n) where
Km are finite symbols indexed by m ∈ Z, almost all of which being zero, and f m,n ∈
Hom(Km,Kn)−n+m+1, m < n, are elements satisfying the condition

(−1)n∂f m,n +
∑
m<l<n

f l,n ◦ fm,l = 0 .

For objects K,L in Dfinite(k), one has a complex of abelian groups Hom(K,L)•, gener-
alizing Hom(K,L)• for finite symbols. For three objectsK,L,M , there is a partially defined
composition map

Hom(K,L)• ⊗ Hom(L,N)• − − → Hom(K,L)•
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defined on a quasi-isomorphic subcomplex. The homomorphism group in Dfinite(k) is defined
by

HomDfinite(k)(K,L) = H 0 Hom(K,L)• ,
and the composition of morphisms induced from the above composition map by taking the
0-th cohomology.

It is a theorem that Dfinite(k) thus defined has the structure of a tensor triangulated cate-
gory (see [Ha 1, II, §4]).

We have the Tate object Z(r) defined as (pt, r) placed in degree 2r . Thus for K in
Dfinite(k), the Tate twist K(r) = K ⊗ Z(r) is defined. Specifically, K ⊗ Z(r) is the object
(L; gm,n), where

Lm = Km−2r ⊗ (pt, r) ,

gm,n = f m−2r,n−2r ∈ Hom(Lm,Ln)• = Hom(Km−2r ,Kn−2r )• .
So K(r)[2r] is the object (Km ⊗ (pt, r); fm,n).

In this paper we work in Dfinite(k), so write it simply D(k).
(4) There is a natural functor from the category of smooth projective varieties

h : (Smooth Proj /k)opp→ D(k) ,
which takes X to (X, 0) placed in degree 0. There is a functor

CHr (−, n) = HomD(k)(Z(0), (−)(r)[2r − n]) : D(k)→ (Ab) ,

so that for X smooth projective CHr (h(X), n) = CHr (X, n).
We recall the definition of the functor of cohomological motives for smooth quasi-pro-

jective varieties. This is mostly taken from [Ha 2, §5]. For the rest of this paper we assume
the characteristic of k is zero. Let (Smooth Q-Proj /k) denote the category of smooth quasi-
projective varieties over k.

For a smooth projective variety T , t ∈ Z, X in (Smooth Q-Proj /k) and r ∈ Z define a
complex

H((T , t), (X, r))• := ZdimX−r+t (T ×X,−•)
(“correspondences” from (T , t) to (X, r)). For an objectK ∈ D(k) define

H(K, (X, r))• = Tot (Km, (X, r))• ,

where the right-hand side is the total complex of a collection of complexes, defined in [Ha 2,
§4]. SetH(K, (X, r)) = H 0H(K, (X, r))•, the 0-th cohomology. When r = 0, we also write
H(K,X) for H(K, (X, 0)). We have a partially defined map (K ′ another object of ObD(k))

Hom(K ′,K)• ⊗H(K, (X, r))• − − → H(K ′, (X, r))•

v ⊗ α �→ α ◦ v .
It can be shown this map is defined on quasi-isomorphic subcomplexes by an argument similar
to [Ha 2, II, §1]. Passing to cohomology one has

HomDfinite(k)(K
′,K)⊗H(K, (X, r))→ H(K ′, (X, r)) .
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We have the following functoriality in v, both at the chain level and on cohomology: α ◦ (v ◦
v′) = (α ◦ v) ◦ v′.

For X, Y smooth quasi-projective, let

Hom((X, r), (Y, s))• = ZdimX+s−r
pr (X, Y,−•) .

For T smooth projective and f ∈ Hom((X, r), (Y, s))l , one has the map

f∗ : H((T , t), (X, r))• → H((T , t), (Y, s))•+l ;
here we take an appropriate distinguished subcomplex of H((T , t), (X, r))• denoted by the
same notation. Thus for an object K ∈ D(k) we have

f∗ : H(K, (X, r))• → H(K, (Y, s))•+l .

One has (∂f )∗ = ∂ ◦ f∗ − (−1)lf∗ ◦ ∂ . If g ∈ Hom((Y, s), (Z, t))m and g ◦ f is defined, then
the maps g∗, (g ◦ f )∗ are also defined and one has the identity g∗f∗ = (g ◦ f )∗. Here one
must take appropriate quasi-isomorphic subcomplexes of H(K, (X, r))• and H(K, (Y, s))•.
The same for a composable sequence of correspondences.

If f ∈ Hom((X, r), (Y, s))0, then f∗ is a map of complexes, so there is an induced map
on cohomology, denoted by the same f∗ : H(K, (X, r))→ H(K, (Y, s)). It depends only on
the class [f ] ∈ H 0 Hom((X, r), (Y, s))•. The following associativity holds, both at the chain
level and on cohomology:

α ◦ (v ◦ v′) = (α ◦ v) ◦ v′ if v and v′ are compolable,

(f∗α) ◦ v = f∗(α ◦ v) .
DEFINITION 2.1. Let X ∈ Ob(Smooth Q-Proj /k) and r ∈ Z. A pair (L, α) where

L ∈ D(k), α ∈ H(L, (X, r)) is a left resolution of (X, r) if for any K ∈ D(k) the map

α ◦ (−) : HomD(k)(K,L)→ H(K, (X, r))

is an isomorphism. A left resolution is unique up to unique isomorphism.

THEOREM 2.2. (1) For any object X of (Smooth Q-Proj /k) and r ∈ Z, its left res-
olution L((X, r)) exists. When r = 0, we write L(X) or h(X) for L((X, 0)). One has
L((X, r)) = L(X)(r)[2r].

(2) For u ∈ H 0 Hom((X, r), (Y, s)), there is a unique morphism L(u) : L((X, r)) →
L((Y, s)) such that the diagram

HomD(k)(K,L((X, r))
∼→ H(K, (X, r))�L(u)

�u∗
HomD(k)(K,L((Y, s))

∼→ H(K, (Y, s))

commutes. If elements u ∈ Hom((X, r), (Y, s))0 and v ∈ Hom((Y, s), (Z, t))0 are compos-
able, then L(v ◦ u) = L(v)L(u).

(3) For α ∈ CHr (X) there is the associated map Cα : h(X) → h(X)(r)[2r]. For
a proper map f : X → Y of smooth quasi-projective equi-dimensional varieties, there is
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the associated map f∗ : h(X)(dimX)[2 dimX] → h(Y )(dimY )[2 dimY ]. The association
X �→ L(X) uniquely extends to a functor

h : (Smooth Q-Proj /k)opp → D(k)
such that the isomorphism

HomD(k)(K,L(X))→ H(K,X)

is contravariantly functorial in X. Similarly X �→ L(X)(dimX)[2 dimX] extends to a func-
tor

h′ : (Smooth Q-Proj /k; proper)→ D(k)
such that the isomorphism

HomD(k)(K,L(X)(dimX)[2 dimX])→ H(K, (X, dimX))

is covariantly functorial for proper maps in X.

REMARK. We call h(X) = L(X) the cohomological motive of X.
For f : X → Y , f ∗ = h(f ) : h(Y )→ h(X) induces the pull-back f ∗ : CHr (Y, n) →

CHr (X, n) under the functor CHr (−, n). The Cα in (2) induces the multiplication by α:
CHp(X, n) → CHr+p(X, n). The f∗ induces the push-forward f∗ : CHs(X, n) →
CHs(Y, n).

PROOF. (1) Let X ∈ (Smooth Q-Proj /k), irreducible, and take its smooth compactifi-
cation, namely an open immersion j : X→ X̄ where X̄ is smooth projective andD = X̄−X
is a divisor with normal crossings. Let D(i) be the i-fold intersection of the components ofD
so one has a strict simplicial variety augmented to X̄

· · · →→→ D(1)
d0
⇒
d1

D(0) → X̄ .

Taking its associated diagram (take the alternating sum of the transposes of the graphs of the
face maps) one obtains an object of D(k)

(X̄&D) := [· · · → (D(1),−2)→ (D(0),−1)→ (X̄, 0)]
where X̄ in degree 0. It follows from the localization theorem that for any T smooth projective
and any s, the restriction

j∗ : Zs (T × (X̄&D))−−−−→Zs (T ×X)
is a quasi-isomorphism. So if we define α = [Γj ] (the graph of j ) then ((X̄&D), α) is a left
resolution of X.

Since H(K, (X, r))• = H(K(−r)[−2r], (X, 0))•, if L(X) and α ∈ H(L(X), (X, 0)) is
a left resolution of X, then L(X)(r)[2r] and α ∈ H(L(X)(r)[2r], (X, r)) is a left resolution
of (X, r).

(2) is obvious from the definitions and the Yoneda lemma.
(3) follows from (2) applied to δ∗(α), Γf , and tΓf . �
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We often write h(X)((r)) instead of h(X)(r)[2r]. The morphism Cα is also denoted by
C(α), or just α.

PROPOSITION 2.3. (1) For α ∈ CHr (X) and β ∈ CHs(X),

(2.3.1) C(β) ◦ C(α) = C(α · β) : h(X)→ h(X)((r + s)) .
(2) For a proper map f : X→ Y and α ∈ CHr (X), one has

(2.3.2) f∗ ◦ C(α) ◦ f ∗ = C(f∗α) : h(Y )→ h(X)((r − dimX + dimY )) .

Here f∗α ∈ CHr−dimX+dimY (Y ).
(3) For a proper map f : X→ Y and α ∈ CHr (Y ),

(2.3.3) f∗ ◦ C(f ∗α) = C(α) ◦ f∗ : h(X)→ h(Y )((r − dimY + dimX)) .

(4) For a map f : X→ Y and α ∈ CHr (Y ),

(2.3.4) f ∗ ◦ C(α) = C(f ∗α) ◦ f ∗ : h(Y )→ h(X)((r)) .

(5) Let
X

f−−−−→ Y�g ′
�g

X′ f ′−−−−→ Y ′

be a Cartesian diagram of equi-dimensional smooth quasi-projective varieties such that g , g ′
are closed immersions with the same codimension d . Then

(2.3.5) f ∗ ◦ g∗ = g ′∗ ◦ f ′∗ : h(Y ′)→ h(X)((d)) .

(6) Let
X

f−−−−→ Y�g ′
�g

X′ f ′−−−−→ Y ′

be a Cartesian diagram of equi-dimensional smooth quasi-projective varieties such that f , f ′
are proper and g , g ′ are open immersions. Then

(2.3.6) f∗ ◦ g ′∗ = g∗ ◦ f∗ .
PROOF. In each case the proof is reduced to the equality of the cycles representing the

two sides of the identity. We show (1) and (2) to illustrate the method.
For (1), take representatives α̃ ∈ Zr (X, 0) and β̃ ∈ Zs(X, 0) for α, β, which meet

properly inX. Then δ∗(α̃)×X andX×δ∗(β̃)meet properly inX×X×X, and δ∗(β̃)◦δ∗(α̃) =
δ∗(α̃ · β̃). This shows (1).

For (2), let α̃ ∈ Zr (Y, 0) be a representative of α such that f ∗α̃ ∈ Zr (X, 0) is defined.
Then δX∗(f ∗α̃) ∈ Hom((X, 0), (X, r))0 represents C(f ∗α). Recall tΓf ∈ Hom((X, dimX),
(Y, dim Y ))0 represents f∗. The composition

t Γf ◦ δX∗(f ∗α̃) ∈ H((X, 0), (Y, r − dimX + dimY ))0
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is defined and equal to (tγf )∗(f ∗α̃). Here t γf : X ↪→ X × Y is (the transpose of) the graph
of f . So f∗ ◦ C(f ∗α) is represented by (t γf )∗(f ∗α̃). On the other hand the composition
δY ∗(α̃) ◦ t Γf is also defined, and also equal to (t γf )∗(f ∗α̃). �

PROPOSITION 2.4. Let X be a smooth quasi-projective variety, i : Z ↪→ X a smooth
closed subvariety of codimension d , and j : U = X − Z → X the open immersion of the
complement. Then there is a distinguished triangle of the form

h(Z)((−d)) i∗−−−−→h(X)
j∗−−−−→h(U)

[1]−−−−→ .

This follows from [Ha 2, Theorem 2.9].

PROPOSITION 2.5. Let X be a smooth quasi-projective variety. For E a locally free
sheaf of rank r + 1, one has p : P = P (E) → X the associated projective bundle, and
ξ = c1(O(1)) ∈ CH1(X). Then the morphism∑

0≤i≤r
C(ξ i) ◦ p∗ :

r⊕
i=0

h(X)((−i))→ h(P )

is an isomorphism.

PROOF. We show
∑

0≤i≤r C(ξ i) ◦ p∗ is an isomorphism, its inverse being given by
(p∗ ◦ C(ξr−i ))i=0,...,r . That it gives a left inverse follows from:

p∗ ◦ C(ξi ) ◦ p∗ = C(p∗ξ i) =
{
[X] if i = r ,
0 if i �= r .

To show
∑

0≤i≤r C(ξ i )◦p∗ is an isomorphism we proceed by induction on dimX; using
the preceding proposition reduce to the case of the trivial bundle P = X × P r . Then one can
verify

(2.5.1)
r∑
i=0

C(ξi) ◦ p∗ ◦ p∗ ◦ C(ξr−i ) = idh(P )

as follows. IfHi ⊂ P r is a codimension r subspace, ξ i is represented byX×Hi ⊂ X×P r =
P . The composition

δ∗(X ×Hi) ◦ Γp ◦ tΓp ◦ δ∗(X ×Hr−i)
equalsX×Hr−i ×Hi , so (2.5.1) is represented by

∑
X×Hi ×Hr−i on P ×X P ⊂ P ×P .

Since
∑
Hr−i ×Hi ∼ ∆P r (rational equivalence on P r × P r ), one has∑

X ×Hr−i ×Hi ∼ ∆P
in Zpr(P, P, 0), hence follows (2.5.1). �

3. The blow-up formula for relative motives. We will state and prove the projective
bundle formula and the blow-up formula in the relative setting. It is then shown the association
(X/S, r) �→ CHp+r (X, n) is a partial functor. From this we derive the projective bundle
formula and the blow-up formula for higher Chow groups, reproving the results in §1.
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Let S be a quasi-projective variety over k. There is the theory of Chow motives over S,
generalizing Chow motives over Spec k as in [Ma]. For the details see [CH]. In this section
we consider ordinary (integral) Chow groups as in [Fu].

The category of Chow motives over S is denoted by CHM(S). It is a pseudo-abelian cat-
egory. A typical object is of the form (X/S, r) where X is a smooth variety with a projective
map to S and r is an integer. Morphisms between such objects are

Hom((X/S, r), (Y/S, s)) =
⊕
j

CHdimYj−s+r (X ×S Yj )

where Yj are the components of Y . Composition of morphisms can be adequately defined,
which we will not recall here. One must add images of projectors of objects as above to arrive
at a pseudo-abelian category. We let h(X/S)(r) = (X/S, r).

For convenience write (Smooth Q-Proj ; proj/S) for the category of smooth
quasi-projective varieties equipped with projective maps to S. If X and Y are in (Smooth
Q-Proj ; proj/S) and f : X→ Y is an S-morphism, there is an induced morphism

f ∗ : h(Y/S)→ h(X/S)

and if moreoverX and Y are equi-dimensional there is a morphism

f∗ : h(X/S)(dimX)→ h(Y/S)(dim Y ) .

For α ∈ CHr (X) let Cα = δ∗(α) ∈ CHdimX−r (X ×S X) where δ : X → X ×S X is the
diagonal; it gives a map Cα , or just α, from h(X/S) to h(X/S)(r).

One states an identity principle (the proof is obvious).

PROPOSITION 3.1. Let

u : (X/S, r)→ (Y/S, s)

be a morphism in CHM(S). It is zero if and only if the induced map under Hom((Z/S, i),−),
for each (Z/S, i)

u∗ : CHdimX+i−r (Z ×S X)→ CHdimY+i−s (Z ×S Y )
is zero.

The following Proposition is [Ma, Proposition in §5].

PROPOSITION 3.2. Let D be a pseudo-abelian category,

(3.2.1) Y
a→←
c
X

b→ Z

be objects and morphisms in D such that ca = idY and for any object T the sequence

0→ HomD(T , Y )
a◦(−)−−−−→ HomD(T ,X)

b◦(−)−−−−→ HomD(T ,Z)→ 0

is exact. Then the sequence (3.2.1) is split exact, i.e., isomorphic to

Y
(idY ,0)−−−−→Y ⊕ Z p2−−−−→Z .
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THEOREM 3.3. Let X be a smooth quasi-projective variety with a projective map to
S, E a locally free sheaf of rank r+1 onX, and P (E) the associated projective bundle. Then
there is a canonical isomorphism in CHM(S)

h(P (E)/S) = h(X/S)⊕ h(X/S)(−1)⊕ · · · ⊕ h(X/S)(−r) .
PROOF. Let P = P (E), π : P → X the projection, and h = c1(O(1)) ∈ CH1(P ).

Let, for j = 0, . . . , r ,

ϕj = Chj ◦ π∗ : h(X/S)(−j)→ h(P/S) , and

ψj : π∗ ◦ Chr−j : h(P/S)→ h(X/S)(−j) .
One has the identities

ψj ◦ ϕj = id and
∑
j

ϕj ◦ ψj = id .

To verify this, by the identity principle, one reduces to the projective bundle formula for Chow
groups for the projective bundle P×S Z→ Z. Thus ϕ = ϕ0+· · ·+ϕr andψ = (ψ0, . . . , ψr )

give mutually inverse isomorphisms between h(X/S)⊕ · · · ⊕ h(X/S)(−r) and h(P/S). �

To state the blow-up sequence, in the situation of Theorem 1.2, we further assume Y is
equipped with a projective map to a quasi-projective variety S. Then the varieties Y ,X, Ỹ and
X̃ may be viewed as relative motives h(Y/S), etc.

THEOREM 3.4. There is a split exact sequence in CHM(S)

h(X/S)(−d) α−−−−→h(X̃/S)(−1)⊕ h(Y/S) β−−−−→h(Ỹ /S)

where

α = (cd−1(E) ◦ g∗,−i∗) , β = j∗ + f ∗ .
A left inverse of α is given by γ = g∗.

PROOF. If f : X → Y is a map over S and f ∗ : h(Y/S) → h(X/S), then the map it
induces CHdimY+i (Z×S Y )→ CHdimX+i (Z×S X) coincides with the refined Gysin map f !
(see [Fu, §6]). We leave the proof of this fact to the reader.

In order to prove the theorem, we have to note that the blow-up formula for ordinary
Chow groups holds universally in the following sense. Let Y ′ → Y be a map from a not
necessarily smooth variety Y ′. By base change one obtains a Cartesian square

X̃′ j ′−−−−→ Ỹ ′�g ′
�f ′

X′ i′−−−−→ Y ′ .
Then all the statements in Theorem 1.2 holds for the ordinary Chow groups (n = 0) if one
replaces f, g, i, j by f ′, g ′, i ′, j ′ respectively, E by its pull-back E′ to X′, g∗ by g ′∗, and f ∗
by f ! (the refined Gysin map). In particular one has an exact sequence

0→ CHk(X′)
α−−−−→CHk(X̃′)⊕ CHk(Y ′)

β−−−−→CHk(Ỹ
′)→ 0



766 M. HANAMURA

where
α(x) = (cd−1(E

′) · g ′∗x,−i ′∗(x)), β(x̃, y) = j ′∗(x̃)+ f !y ,
with left inverse of α given by γ (x̃, y) = g ′∗x̃. The proof is the same as in [Fu, §6].

Thus for each (Z/S, i) in CHM(S), the induced sequence

0→ Hom((Z/S, i), h(X/S)(−d))→Hom((Z/S, i), h(X̃/S)(−1)⊕ h(Y/S))
→Hom((Z/S, i), h(Ỹ /S))→ 0

is exact. The identity γ ◦ α = id also is verified using the identity principle and reducing to
the corresponding identity for Chow groups. �

COROLLARY 3.5. There is a canonical isomorphism in CHM(S)

h(Ỹ /S) = h(Y/S)⊕
d−1⊕
i=1

h(X/S)(−i) .

This follows from Theorems 3.3 and 3.4.
We also have the self-intersection formula in the relative setting; this is related to Theo-

rem 1.1 for ordinary Chow groups.
To state the self-intersection formula, in the situation of Theorem 1.1 assume X is

equipped with a projective map to S. The we have:

THEOREM 3.6. We have the identity

(3.6.1) i∗ ◦ i∗ = C(cd(N)) : h(Y/S)→ h(Y/S)(d) .

PROOF. The proof of this is similar to that of Theorem 3.4, using that of Theorem 1.1
for ordinary Chow groups holds universally, in the sense we specify below.

We apply the functor Hom((Z/S, i),−) and verify the two induced maps coincide. The
outline is as follows.

For an element α ∈ CHr (Y ), let C(α) : h(Y/S) → h(Y/S)(r) be the corresponding
map. For each (Z/S, i) in CHM(S), the induced map

C(α) ◦ (−) : CHdimY+i (Z ×S Y )→ CHdimY−r+i (Z ×S Y )
coincides with g∗(α)(−). Here g : Z ×S Y → Y is the projection and g∗(α) ∈ Ar(Z ×S Y )
(the latter is Chow cohomology, [Fu, §17.3]). Concretely g∗(α) is the collection of maps

g∗(α)(−) : CH∗(Z ×S Y )→ CH∗−r (Z ×S Y )
given by g∗(α)(u) = γ ∗(u × α), where γ : Z ×S Y → (Z ×S Y ) × Y is the graph of g
(since γ is a regular embedding the pull-back γ ∗ is defined). The proof is straightforward. If
α = cr (E), the Chern class of a vector bundle, then g∗(α) = cr (g∗E).

On the other hand consider any fiber square

Y ′ i′−−−−→ X′�g �f
Y

i−−−−→ X
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over i. For y ′ ∈ CH∗(Y ′)we have i !i ′∗(y ′) = cd(g∗N)∩y ′. This variant of the self-intersection
formula follows from [Fu, Corollary (6.3)], by an argument analogous to the one following
[Fu, Corollary (6.3)].

In particular for the fiber square

Z ×S Y i′−−−−→ Z ×S X�g �
Y

i−−−−→ X

and u ∈ CH∗(Z ×S Y ), one has i !i ′∗(u) = cd(g∗N) ∩ u.
Since the map i∗ ◦ i∗ induces the map i !i ′∗ on Chow groups upon applying the functor

Hom((Z/S, i),−), we obtain the assertion. �

3.7. Let (X/S, r), (Y/S, s) be a pair of objects in CHM(S). We say the pair is admis-
sible if X×S Y is smooth over k (the projections toX, Y need not be smooth). For such a pair
we define a map, for each p, n,

HomCHM(S)((X/S, r), (Y/S, s))→ Hom(CHp(X, n),CHp+s−r (Y, n)), u �→ u∗ ,

where u∗ is the composition

CHp(X, n)
pr∗X−−−−→ CHp(X ×S Y, n) u−−−−→ ⊕j CHdimYj−s+r−p(X ×S Yj , n)

prY ∗−−−−→ ⊕j CHdimYj−s+r−p(Yj , n) = CHp+s−r (Y, n) .

The map u �→ u∗ is additive.
A triple (X/S, r), (Y/S, s), (Z/S, t) of objects is said to be admissible if the products

X×SY , Y×SZ,X×SZ, andX×SY×SZ are all smooth. Then for u ∈ HomCHM(S)((X/S, r),

(Y/S, s)) and v ∈ HomCHM(S)((Y/S, s), (Z/S, t)), the composition

v ◦ u ∈ HomCHM(S)((X/S, r), (Z/S, t))

is defined by the usual formula v ◦ u = p13∗(p∗12u · p∗23v), where for example p12 : X ×S
Y ×S Z→ X ×S Y is the projection. It is easy to verify (v ◦ u)∗ = v∗ ◦ u∗.

This can be generalized to the case of more than three objects (X1/S, r1), . . . , (Xn/S, rn)

and ui ∈ HomCHM(S)((Xi, ri ), (Xi+1, ri+1)), i = 1, . . . , n − 1. One can further extend this
by linearity to a sequence of objectsM1, . . . ,Mn of CHM(S).

3.8. We give an alternative proof of Theorem 1.2, (a) and (f). We take S = Y in
Theorem 3.4, and get a split exact sequence in CHM(Y )

h(X/Y )(−d) α−−−−→h(X̃/Y )(−1)⊕ h(Y/Y ) β−−−−→h(Ỹ /Y )

where α = (cd−1(E) ◦ g∗,−i∗), β = j∗ + f ∗ , and γ = g∗ satisfies γ ◦ α = id.
Note the pairs (X, X̃), (X, Y ), (X̃, Ỹ ), and (Y, Ỹ ) are all admissible over Y ; in addition

the triples (X, X̃,X), (X, Y,X), (X, X̃, Ỹ ), and (X, Y, Ỹ ), which are relevant for the compo-
sitions γ ◦α and β ◦ α, are all admissible. Thus one can apply Theorem 3.6 and obtains maps
α∗, β∗, and γ∗ between the higher Chow groups, with the relation γ∗α∗ = id, β∗α∗ = 0.
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3.9. For an alternative proof of Theorem 1.1, we take the self-intersection formula in
(3.6.1), with S = X. The triple (X, Y,X) is admissible. Thus (3.6.1) implies the correspond-
ing equality for maps between higher Chow groups. (Recall Theorem 1.2, (b) through (e)
follows from Theorems 1.1 and 1.2(a), (f).)

4. Left resolutions of relative motives. We show the left resolution X �→ L(X) can
be extended to relative motives. Indeed we will construct a partial functor L : CHM(S) →
D(k). First note that the definition of the complexH(K,X)• and the notion of left resolution
can be extended in an obvious way to the case of objects in CHM(S). For a smooth projective
variety T , t ∈ Z and (X/S, r) in CHM(S), define

H((T , t), (X/S, r))• := ZdimX−r+t (T ×X,−•) .
It is no different fromH((T , t), (X, r))• defined in §2. By linearity one has the function

complex H((T , t),M)• for M ∈ CHM(S). For an object K ∈ D(k) define

H(K,M)• = Tot (Km,M)•

and H(K,M) := H 0H(K,M)•.
Define a complex of abelian groups

HomS((X/S, r), (Y/S, s))
• =

⊕
j

ZdimYj−s+r (X ×S Yj ,−•) ,

and extend it by linearity to define HomS(M,N)
• forM,N in CHM(S). Note that

H 0 HomS(M,N)
• = HomCHM(S)(M,N) .

Recall a pair (X, Y ) is said to be admissible if X×S Y is smooth. The notion of admissi-
bility obviously extends to pairs of objects in CHM(S). Similarly for three or more varieties
in (Smooth Q-Proj ; proj/S) (or objects of CHM(S)) we have the notion of admissibility.

Assume now (M,N,L) is an admissible triple in CHM(S). There is a partially defined
map (defined on a quasi-isomorphic subcomplex)

HomS(M,N)
• ⊗ HomS(N,L)

• − − → HomS(M,L)
• .

On 0-th cohomology this induces the composition map in CHM(S).
There are compositions with H(K,M)• from right and left. One has partially defined

maps

Hom(K ′,K)• ⊗H(K,M)• − − → H(K ′,M)• , v ⊗ α �→ α ◦ v ,
H(K,M)• ⊗ HomS(M,M

′)• − − → H(K,M ′)• , α ⊗ u �→ u ◦ α .
Both are defined on quasi-isomorphic subcomplexes. We have associativity as follows at chain
level and on 0-th cohomology:

(u ◦ α) ◦ v = u ◦ (α ◦ v) ,
(u ◦ u′) ◦ α = u ◦ (u′ ◦ α) , α ◦ (v ◦ v′) = (α ◦ v) ◦ v′ .
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DEFINITION 4.1. Let M ∈ ObCHM(S). A pair (L, α) where L ∈ D(k), α ∈
H(L,M) is a left resolution of M if for anyK ∈ D(k) the map

α ◦ (−) : HomD(k)(K,L)→ H(K,M)

is an isomorphism. A left resolution is unique up to unique isomorphism.

The proof of the following theorem is parallel to that of Theorem 2.2.

THEOREM 4.2. (1) Each objectM ofCHM(S) has a left resolutionL(M). If (M,N)
is an admissible pair of objects of CHM(S) and u ∈ HomCHM(S)(M,N), there exists a
unique morphism L(u) : L(M)→ L(N) such that the following square commutes.

HomD(k)(K,L(M)) −−−−→ H(K,M)�L(u)

�u◦(−)
HomD(k)(K,L(N)) −−−−→ H(K,N) .

If (M,N,L) is an admissible triple, u ∈ Hom(M,N) and v ∈ Hom(N,L), then L(v ◦
u) = L(v)L(u).

(2) For X ∈ (Smooth Q-Proj ; proj/S) , one has

L((X/S, r)) = L((X, r)) = h(X)(r)[2r]
where L((X, r)) is the left resolution of (X, r) defined in §2.

(3) If f : X→ Y is a map of objects in (Smooth Q-Proj ; proj/S) , and f ∗ : h(Y/S)→
h(X/S) the corresponding morphism in CHM(S), then the induced morphism L(f ∗) :
h(Y ) → h(X) coincides with f ∗ in §2. For a proper map f : X → Y of such va-
rieties over S, and the morphism f∗ : h(X/S)(dimX) → h(Y/S)(dim Y ), the induced
L(f∗) : h(X)(dimX)[2 dimX] → h(Y )(dimY )[2 dimY ] coincides with the f∗ in §2.

For α ∈ CHr (X) and the corresponding morphism Cα : h(X/S) → h(X/S)(r), the
induced morphism L(Cα) : h(X)→ h(X)(r)[2r] coincides with the Cα in §2.

5. The blow-up formula for mixed motives. We give analogues of the results in §2
in the category D(k).

THEOREM 5.1. Let X be a smooth quasi-projective variety, E a locally free sheaf
of rank r + 1 on X, and P (E) the associated projective bundle. Then there is a canonical
isomorphism in D(k)

h(P (E)) = h(X)⊕ h(X)(−1)[−2] ⊕ · · · ⊕ h(X)(−r)[−2r] .
PROOF. Consider the projective bundle formula Theorem 3.3 for the projective bundle

P = P (E) over X, viewed as relative motives overX:

h(P (E)/X) = h(X/X)⊕ h(X/X)(−1)⊕ · · · ⊕ h(X/X)(−r) .
Recall the isomorphism is given by ϕ and ψ . Apply the left resolution L of §4 to the two
sides. Since the pairs (P (E),X) and (X,P (E)) are admissible over X, one has the induced
morphismsL(ϕ), L(ψ) between h(P (E)) and h(X)⊕h(X)(−1)[−2]⊕· · ·⊕h(X)(−r)[−2r].
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The triples (P (E),X,P (E)) and (X,P (E),X) are admissible, so the identities ψ ◦ ϕ = id,
ϕ ◦ ψ = id imply the corresponding identities for L(ϕ) and L(ψ). �

THEOREM 5.2. Let i : Y → X be as in Theorem 1.1. Then we have i∗ ◦ i∗ =
C(cd(N)) : h(Y )→ h(Y )(d)[2d] .

THEOREM 5.3. Under the same assumptions as in Theorem 1.2, there is a split exact
sequence in D(k)

h(X)(−d)[−2d] α−−−−→h(X̃)(−1)[−2] ⊕ h(Y ) β−−−−→h(Ỹ )

where α = (cd−1(E) ◦ g∗,−i∗), β = j∗ + f ∗. A left inverse of α is given by γ = g∗.

COROLLARY 5.4. There is a canonical isomorphism in D(k)

h(Ỹ ) = h(Y )⊕
d−1⊕
i=1

h(X)(−i)[−2i] .

REMARK 5.5. In [Ma] analogous results are proved for smooth projective varieties
and their motives (they are objects in the category of Chow motives – motives with respect to
Chow groups). The category of Chow motivesCHM(k) is a full subcategory of D(k), and the
natural functor h : (Smooth Proj /k)opp→ CHM(k) that exists by construction is compatible
with h : (Smooth Proj /k)opp → D(k). The Lefschetz object L in [Ma] is Z(−1)[−2] in
D(k). Thus the above results are compatible with those in [Ma].

See also [FV] and [Le] for the blow-up sequences similar to Theorem 5.3.
There is an alternative proof of Theorems 5.2 and 5.3, which is obtained by modifying

the proof in [SGA] as follows: change the Chow groups to motives, and maps f ∗, f∗, α · (−)
between Chow groups by morphisms f ∗, f∗, C(α) between motives. We include only the
proof of the self-intersection formula.

To avoid confusion, in the rest of this section P (E) denotes Proj Sym(E), as in [SGA].
But we keep writing N for NXY .

PROPOSITION 5.6. Let S be a smooth quasi-projective variety. For E a locally free
sheaf of rank r + 1, one has p : P = P (E) → S the associated projective bundle, and the
canonical invertible sheaf OP (1). Let F be the locally free sheaf of rank r determined by the
exact sequence

0→ F → p∗E→ OP (1)→ 0 .

Write ξ = c1(OP (1)) ∈ CH1(P ).
(1) One has

(5.6.1) p∗ ◦ cr (F∨) ◦ p∗ = id : h(S)→ h(S) .

(2) Assume E = N ⊕OS , where N is locally free of rank r . Then P (E) is a compacti-
fication of the vector bundle V (N). Let s : S → P (E) be the zero section. One has:
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(5.6.2) s∗ = cr(F∨) ◦ p∗ = C
( ∑

0≤i≤r
p∗(ci(N∨)) · ξr−i

)
◦ p∗ : h(S)→ h(P )((r)) ,

(5.6.3) s∗ ◦ s∗ = cr (N∨) : h(S)→ h(S)((r)) ,

(5.6.4) s∗ = p∗ ◦ cr (F∨) : h(P )→ h(S) .

PROOF. (1) One has p∗(cr (F∨)) = 1, the fundamental class of S, [Fu, Example
(3.3.1)]. Use (2.3.2).

(2) We have

s∗ = s∗ ◦ s∗ ◦ p∗
= C(s∗(1)) ◦ p∗ by (2.3.2) .

One has the following identity; the first equality holds by [Gro, Lemma 3], and the second
equality by the Whitney formula.

s∗(1) =
r∑
i=o

p∗(ci(N∨)) · ξr−i = cr (F∨) .

Next composing (5.6.2) with s∗ gives

s∗ ◦ s∗ = s∗ ◦ C
( r∑
i=0

p∗(ci(N∨)) · ξr−i
)
◦ p∗ .

In view of (2.3.4), we have only to show s∗(ξ) = 0. This follows from OP (1)|V (N) = OP .
Now we show (5.6.4). It suffices to show the morphisms s∗ and p ◦ cr (F∨) are equal

after composing with ξ i ◦p∗ : h(S)((−i))→ h(P ), for i = 0, . . . , r . On the one hand, using
(2.3.4)

s∗ ◦ ξ i ◦ p∗ = C(s∗(ξ i)) ◦ s∗ ◦ p∗ = C(s∗ξ i) =
{

0 i > 0 ,

1 i = 0 .

On the other hand, by (2.3.2) and ξ · cr (F∨) = cr+1(p
∗(N∨)

⊕O) = 0,

p∗ ◦ cr(F∨) ◦ ξ i ◦ p∗ = C(p∗(cr (F∨) · ξ i)) =
{

0 i > 0 ,

1 i = 0 . �

For an alternative proof of the self-intersection formula (3.6.1) we need some preliminary
constructions. Let u : X→ Z = X × P 1 be the closed immersion t �→ (t, 0), and

i1 := u ◦ i : Y i−−−−→X
u−−−−→Z .
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Let N̂ = P (N∨
⊕OY ), and f1 : Z′ → Z be the blow-up along Y ; one has a Cartesian

diagram

N̂
j1−−−−→ Z′�g1

�f1

Y
i1−−−−→ Z .

One has an immersion α = i × id : W = Y × P 1 → X × P 1. Let W ′ be the strict transform
of W under f1; the map f1 restricts to an isomorphism f2 : W ′ → W , and the intersection
N̂ ∩ W ′ is isomorphic to Y . Let β : W ′ → Z′ be the immersion, γ : Y → Y × P 1 the
restriction of u, and δ : Y → W ′ the induced immersion.

Y
δ−−−−→ W ′ β−−−−→ Z′�id

�f2

�f1

Y
γ−−−−→ Y × P 1 α−−−−→ Z .

Let X′ be the strict transform of X, and f : X′ → X be the induced morphism. The intersec-
tion N̂ ∩X′ is Y ′ = P (N∨). One has a commutative diagram

Y ′ j−−−−→ X′ v−−−−→ Z′�g �f �f1

Y
i−−−−→ X

u−−−−→ Z .

Label the map as indicated; also let k : Y ′ → N̂ be the immersion. Let E be defined by the
exact sequence

0→ E→ g∗1 (N∨
⊕OY )→ O

N̂
(1)→ 0

and ξ̄ := c1(ON̂
(1)). The following is easy to verify (see [SGA, (9.3)]).

PROPOSITION 5.7. We have the following identities in Chow groups:
(5.7.1) j∗1 β∗(1) = cd(E∨) ,

(5.7.2) j∗1 v∗(1) = ξ̄ ,
and

(5.7.3) f ∗1 u∗(1) = j1∗(1)+ v∗(1) .
PROPOSITION 5.8. The composition

cd(E
∨) ◦ j∗1 ◦ j1∗ : h(N̂)→ h(N̂)((d + 1))

is zero.

PROOF. We show the composition of the map with the isomorphism
⊕d

i=0 h(Y )((−i))
→ h(N̂) is zero. Namely we are to show the compositions

h(Y )((−i)) ξ̄ i◦g∗1−−−−→h(N̂)
cd (E

∨)◦j∗1 ◦j1∗−−−−−−−−−→h(N̂)((d + 1))
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are zero. For i > 0, they are zero by the following calculation and ξ · cd(E∨) = 0.

j∗1 ◦ j1∗ ◦ ξ̄ i ◦ g∗1 = j∗1 ◦ j1∗ ◦ C((j∗1 v∗(1))i) ◦ g∗1 by ξ̄ = j∗1 v∗(1)
= j∗1 ◦ C(v∗(1)i) ◦ j1∗ ◦ g∗1 by (2.3.4)
= C(j∗1 (v∗(1)i)) ◦ j∗1 ◦ j1∗ ◦ g∗1 by (2.3.3)
= ξ̄ i ◦ j∗1 ◦ j1∗ ◦ g∗1 .

Consider now the case i = 0. Let bi : h(Y )→ h(Y )((−i + 1)) be morphisms such that the
following square commutes:

h(Y )
j∗1 ◦j1∗◦g∗1−−−−−→ h(N̂)((1))�id

�∼=
h(Y )

(b0,...,bd)−−−−→ ⊕d
i=0 h(Y )((−i + 1)) .

One must show b0 : h(Y )→ h(Y )((1)) is zero. Write

j∗1 ◦ j1∗ ◦ g∗1 = g∗1 ◦ b0 + C(ξ̄ ) ◦ z
with a morphism z : h(Y )→ h(N̂). Applying j1∗◦ to both sides yields

C(j1∗(1)) ◦ j1∗ ◦ g∗1 = j1∗ ◦ g∗1 ◦ b0 + C(v∗(1)) ◦ j1∗ ◦ z .
Substituting f ∗1 u∗(1) = j1∗(1)+ v∗(1) one has

j1∗ ◦ g∗1 ◦ b0 = C(f ∗1 u∗(1)) ◦ j1∗ ◦ g∗1 − C(v∗(1)) ◦ [j1∗ ◦ g∗1 + j1∗ ◦ z] .
We have C(f ∗1 u∗(1) ) ◦ j1∗ = j1∗ ◦ C(j∗1 f ∗1 u∗(1) ) by (2.3.3), and j∗1 f ∗1 u∗(1) = 0, as

can be seen by “moving” a cycle from X × {0} to X × {1}. Thus

j1∗ ◦ g∗1 ◦ b0 = −C(v∗(1) ) ◦ [j1∗ ◦ g∗1 + j1∗ ◦ z] .
By β∗v∗(1) = 0, one has β∗ ◦ C(v∗(1)) = 0, so β∗ ◦ j1∗ ◦ g∗1 ◦ b0 = 0. By (2.3.5),
β∗ ◦ j1∗ = δ∗ ◦ s∗ = 0, hence

δ∗ ◦ s∗ ◦ g∗1 ◦ b0 = δ∗ ◦ b0 = 0

thus γ∗ ◦ b0 = 0. Since γ∗ : h(Y )→ h(Y × P 1)((1)) is a split monomorphism, b0 = 0. �

5.9. We now show the self-intersection formula. Let p : X×P 1 → X and p′ : W ′ →
Y be the projections. We claim there is a morphism w : h(Y )→ h(N̂)((d − 1)) such that

f ∗1 ◦ p∗ ◦ i∗ = β∗ ◦ p′∗ + j1∗ ◦ w : h(Y )→ h(Z′)((d)) .
Indeed if m : Z′ − N̄ → Z′ is the open immersion, one hasm∗ ◦ (f ∗1 ◦p∗ ◦ i∗−β∗ ◦p′∗) = 0,
so the claim follows from the localization sequence. We show i∗ ◦ i∗ = s∗ ◦ s∗ : h(Y ) →
h(Y )((d)). Indeed

i∗ ◦ i∗ = g1∗ ◦ cd(E∨) ◦ g∗1 ◦ i∗ ◦ i∗ by (5.6.1)
= g1∗ ◦ cd(E∨) ◦ j∗1 ◦ f ∗1 ◦ p∗ ◦ i∗
= g1∗ ◦ cd(E∨) ◦ j∗1 ◦ (β∗ ◦ p′∗ + j1∗ ◦ g∗1 )
= g1∗ ◦ cd(E∨) ◦ j∗1 ◦ β∗ ◦ p′∗ by Proposition 5.8
= s∗ ◦ j∗1 ◦ β∗ ◦ p′∗ by (5.6.4)
= s∗ ◦ s∗ .
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The last equality follows from j∗1 ◦ β∗ ◦ p′∗ = s∗ ◦ δ∗ ◦ p′∗ = s∗ (note j∗1 ◦ β∗ = s∗ ◦ δ∗ by
(2.3.5)). We conclude by (5.6.3).
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