QUASI-FREE ACTIONS OF FINITE GROUPS
 ON THE CUNTZ ALGEBRA \mathcal{O}_{∞}

Pavle Goldstein and Masaki Izumi

(Received November 18, 2010, revised May 20, 2011)

Abstract

We show that any faithful quasi-free actions of a finite group on the Cuntz algebra \mathcal{O}_{∞} are mutually conjugate, and that they are asymptotically representable.

1. Introduction. The Cuntz algebra $\mathcal{O}_{n}, n=2,3, \ldots, \infty$, is the universal C^{*}-algebra generated by isometries $\left\{s_{i}\right\}_{i=1}^{n}$ with mutually orthogonal ranges, satisfying $\sum_{i=1}^{n} s_{i} s_{i}^{*}=1$ if n is finite. It is well known that the two algebras \mathcal{O}_{2} and \mathcal{O}_{∞}, among the others, play special roles in the celebrated classification theory of Kirchberg algebras (see [15], [18]).

An action α of a group G on \mathcal{O}_{n} is said to be quasi-free if $\alpha_{g}\left(\mathcal{H}_{n}\right)=\mathcal{H}_{n}$ for all $g \in G$, where \mathcal{H}_{n} is the closed linear span of the generators $\left\{s_{i}\right\}_{i=1}^{n}$. We restrict our attention to finite G throughout this note. To develop a G-equivariant version of the classification theory, it is expected that G-actions on \mathcal{O}_{2} with the Rohlin property and the quasi-free G-actions on \mathcal{O}_{∞} would play similar roles as \mathcal{O}_{2} and \mathcal{O}_{∞} do in the case without group actions. Since we have already had a good understanding of the former thanks to [4], our task in this note is to investigate the latter, the quasi-free G-actions on \mathcal{O}_{∞}.

The space \mathcal{H}_{n} has a Hilbert space structure with inner product $t^{*} s=\langle s, t\rangle 1$, and a quasifree G-action α gives a unitary representation $\left(\pi_{\alpha}, \mathcal{H}_{\alpha}\right)$, where $\pi_{\alpha}(g)$ is the restriction of α_{g} to \mathcal{H}_{α}. It is known that the association $\alpha \mapsto \pi_{\alpha}$ gives a one-to-one correspondence between the quasi-free G-actions on \mathcal{O}_{n} and the unitary representations of G in \mathcal{H}_{n}. The conjugacy class of α depends on the unitary equivalence class of $\left(\pi_{\alpha}, \mathcal{H}_{n}\right)$, at least a priori. Indeed, it really does when n is finite, and this can be seen by computing the K-groups of the crossed product (see, for example, [2], [4], [5], [11]). However, when $n=\infty$, the pair ($\mathcal{O}_{\infty}, \alpha$) is $K K_{G}$-equivalent to the pair ($\boldsymbol{C}, \mathrm{id}$), and there is no way to differentiate the quasi-free actions as far as K-theory is concerned.

One of the purposes of this note is to show that any two faithful quasi-free G-actions on \mathcal{O}_{∞} are indeed mutually conjugate for every finite group G (Corollary 5.2). Our main technical result is Theorem 4.1, an equivariant version of Lin-Phillips's result [10, Theorem 3.3], and Corollary 5.2 follows from it via Theorem 5.1, an equivariant version of KirchbergPhillips's \mathcal{O}_{∞} theorem [7, Theorem 3.15].

[^0]Using Theorem 4.1, we also show that quasi-free actions are asymptotically representable for any finite group G, which is another purpose of this note. The notion of asymptotic representability for group actions was introduced by the second-named author, and it is found to be important in the recent development of the classification of group actions on C^{*}-algebras (see [6], [12]).

The reader is referred to [18] for the basic properties and classification results for Kirchberg algebras. We denote by \boldsymbol{K} the set of compact operators on a separable infinite dimensional Hilbert space. For a C^{*}-algebra A, we denote by \tilde{A} and $M(A)$ the unitization and the multiplier algebra of A respectively. When A is unital, we denote by $U(A)$ the unitary group of A. For a homomorphism $\rho: A \rightarrow B$ between C^{*}-algebras A, B, we denote by $K_{*}(\rho)$ the homomorphism from $K_{*}(A)$ to $K_{*}(B)$ induced by ρ. We denote by $A \otimes B$ the minimal tensor product of A and B.

This work originated from the first-named author's unpublished preprint [3], where the idea of developing an equivariant version of Lin-Phillips's argument was introduced. Some results in this note are also obtained by N. C. Phillips, and the authors would like to thank him for informing of it.
2. Preliminaries for $G-C^{*}$-algebras. We fix a finite group G. By a $G-C^{*}$-algebra (A, α), we mean a C^{*}-algebra A with a fixed G-action α. We denote by A^{G} the fixed point algebra

$$
\left\{a \in A ; \alpha_{g}(a)=a \text { for all } g \in G\right\}
$$

We denote by $\left\{\lambda_{g}^{\alpha}\right\}_{g \in G}$ the implementing unitary representation of G in the crossed product $A \rtimes_{\alpha} G$. For a finite dimensional (not necessarily irreducible) unitary representation $\left(\pi, H_{\pi}\right)$ of G, we introduce a homomorphism

$$
\hat{\alpha}_{\pi}: A \rtimes_{\alpha} G \rightarrow\left(A \rtimes_{\alpha} G\right) \otimes B\left(H_{\pi}\right),
$$

which is a part of the dual coaction of α, by $\hat{\alpha}_{\pi}(a)=a \otimes 1$ for $a \in A$, and $\hat{\alpha}_{\pi}\left(\lambda_{g}^{\alpha}\right)=\lambda_{g}^{\alpha} \otimes \pi(g)$ for $g \in G$. We denote by \hat{G} the unitary dual of G, and by $\boldsymbol{Z} \hat{G}$ the representation ring of G. Then identifying $K_{*}\left(A \rtimes_{\alpha} G\right)$ with $K_{*}\left(\left(A \rtimes_{\alpha} G\right) \otimes B\left(H_{\pi}\right)\right)$, we get a $\boldsymbol{Z} \hat{G}$-module structure of $K_{*}\left(A \rtimes_{\alpha} G\right)$ from $K_{*}\left(\hat{\alpha}_{\pi}\right)$.

Let

$$
e_{\alpha}=\frac{1}{\# G} \sum_{g \in G} \lambda_{g}^{\alpha}
$$

which is a projection in $\left(A \rtimes_{\alpha} G\right) \cap A^{G^{\prime}}$. We denote by j_{α} the homomorphism from A^{G} into $A \rtimes_{\alpha} G$ defined by $j_{\alpha}(x)=x e_{\alpha}$. If A is simple and α is outer, that is, α_{g} is outer for every $g \in G \backslash\{e\}$, then $K_{*}\left(j_{\alpha}\right)$ is an isomorphism from $K_{*}\left(A^{G}\right)$ onto $K_{*}\left(A \rtimes_{\alpha} G\right)$. If A is purely infinite and simple, and α is outer, then A^{G} and $A \rtimes_{\alpha} G$ are purely infinite and simple.

A G-homomorphism φ from a G - C^{*}-algebra (A, α) into another G - C^{*}-algebra (B, β) is a homomorphism from A into B intertwining the two G-actions α and β. Such φ gives rise to an element in the equivariant $K K$-group $K K_{G}(A, B)$, which is denoted by $K K_{G}(\varphi)$. We denote by $\operatorname{Hom}_{G}(A, B)$ the set of nonzero G-homomorphisms from (A, α) into (B, β). Two
actions α and β are said to be conjugate if there exists an invertible element in $\operatorname{Hom}_{G}(A, B)$. Two G-homomorphisms $\varphi, \psi \in \operatorname{Hom}_{G}(A, B)$ are said to be G-unitarily equivalent if there exists a unitary $u \in M(B)^{G}$ satisfying $\varphi(x)=u \psi(x) u^{*}$ for all $x \in A$. They are said to be G-asymptotically unitarily equivalent if there exists a norm continuous family of unitaries $\{u(t)\}_{t \geq 0}$ in $M(B)^{G}$ satisfying

$$
\lim _{t \rightarrow \infty}\|\varphi(x)-\operatorname{Ad} u(t) \circ \psi(x)\| \text { for all } x \in A
$$

If they satisfy the same condition with a sequence of unitaries $\left\{u_{n}\right\}_{n=1}^{\infty}$ in $M(B)^{G}$ instead of the continuous family, they are said to be G-approximately unitarily equivalent.

For a free ultrafilter $\omega \in \beta N \backslash N$ and a $G-C^{*}$-algebra (A, α), we use the following notation:

$$
\begin{gathered}
c_{\omega}(A)=\left\{\left(x_{n}\right) \in \ell^{\infty}(\boldsymbol{N}, A) ; \lim _{n \rightarrow \omega}\left\|x_{n}\right\|=0\right\}, \\
A^{\omega}=\ell^{\infty}(\boldsymbol{N}, A) / c_{\omega}(A) .
\end{gathered}
$$

As usual, we often omit the quotient map from $\ell^{\infty}(\boldsymbol{N}, A)$ onto A^{ω}. We regard A as a C^{*} subalgebra of A^{ω} consisting of the constant sequences, and we set $A_{\omega}=A^{\omega} \cap A^{\prime}$. We denote by α^{ω} and α_{ω} the G-actions on A^{ω} and A_{ω} induced by α respectively, and we regard ($A^{\omega}, \alpha^{\omega}$) and $\left(A_{\omega}, \alpha_{\omega}\right)$ as $G-C^{*}$-algebras.

Lemma 2.1. Let G be a finite group, and let (A, α) be a $G-C^{*}$-algebra. We assume that A is unital, purely infinite, and simple, and α is outer. Let $\omega \in \beta N \backslash N$.
(1) A^{ω} is purely infinite and simple, and α^{ω} is outer.
(2) If A is a Kirchberg algebra, A_{ω} is purely infinite and simple, and α_{ω} is outer.

Proof. (1) It is easy to show that A^{ω} is purely infinite and simple, and so it suffices to show that if $\theta \in \operatorname{Aut}(A)$ is outer, so is $\theta^{\omega} \in \operatorname{Aut}\left(A^{\omega}\right)$ induced by θ. Assume that θ is outer and θ^{ω} is inner. Then there exists $u=\left(u_{n}\right) \in U\left(A^{\omega}\right)$ satisfying $\operatorname{Ad} u=\theta^{\omega}$. We my assume that u_{n} is a unitary for all $n \in N$. Since A is purely infinite, there exist a sequence of nonzero projections $\left\{p_{n}\right\}_{n=1}^{\infty}$ in A and a sequence of complex numbers $\left\{c_{n}\right\}_{n=1}^{\infty}$ with $\left|c_{n}\right|=1$ such that $\left\{p_{n} u_{n} p_{n}-c_{n} p_{n}\right\}_{n=1}^{\infty}$ converges to 0 . By replacing u_{n} with $\overline{c_{n}} u_{n}$ if necessary. we may assume $c_{n}=1$. Since θ is outer, Kishimoto's result [8, Lemma 1.1] shows that there exists a sequence of positive elements $a_{n} \in p_{n} A p_{n}$ with $\left\|a_{n}\right\|=1$ such that $\left\{a_{n} \theta\left(a_{n}\right)\right\}_{n=1}^{\infty}$ converging to 0 . This is a contradiction. Indeed, let $a=\left(a_{n}\right) \in A^{\omega}, p=\left(p_{n}\right) \in A^{\omega}$. On one hand we have $a \theta^{\omega}(a)=0$, and on the other hand we have the following

$$
a \theta^{\omega}(a)=\text { auau }^{*}=\text { apupau }^{*}=\text { apau }^{*}=a^{2} u^{*} \neq 0
$$

This shows that θ^{ω} is outer.
(2) The statement follows from [7, Proposition 3.4] and [13, Lemma 2].

Now we state two results, which are equivariant versions of well-known results in the classification theory of nuclear C^{*}-algebras. We omit their proofs, which are verbatim modifications of the original ones. The first one is an equivariant version of [18, Corollary 2.3.4].

THEOREM 2.2. Let G be a finite group, and let (A, α) and (B, β) be unital separable $G-C^{*}$-algebras. If there exist $\varphi \in \operatorname{Hom}_{G}(A, B)$ and $\psi \in \operatorname{Hom}_{G}(B, A)$ such that $\psi \circ \varphi$ is G-approximately unitarily equivalent to $\operatorname{id}_{(A, \alpha)}$ and $\varphi \circ \psi$ is G-approximately unitarily equivalent to $\operatorname{id}_{(B, \beta)}$, then the two actions α and β are conjugate.

The following result is an equivariant version of [7, Proposition 3.13] (see also [18, Theorem 7.2.2]).

Theorem 2.3. Let G be a finite group, and let $(A, \alpha),(B, \beta)$ be unital separable $G-C^{*}$ algebras. We regard the minimal tensor product $B \otimes B$ as a $G-C^{*}$-algebra with the diagonal action $\alpha \otimes \alpha$, and define $\rho_{l}, \rho_{r} \in \operatorname{Hom}_{G}(B, B \otimes B)$ by $\rho_{l}(x)=x \otimes 1$ and $\rho_{r}(x)=$ $1 \otimes x$ for $x \in B$. We assume that ρ_{l} and ρ_{r} are G-approximately unitarily equivalent. Then if there exists a unital homomorphism in $\operatorname{Hom}_{G}\left(B, A_{\omega}\right)$ with $\omega \in \beta \boldsymbol{N} \backslash \boldsymbol{N}$, the two G-actions α on A and $\alpha \otimes \beta$ on $A \otimes B$ are conjugate.
3. Equivariant Rørdam's theorem. The purpose of this section is to show the following theorem, which is an equivariant version of Rørdam's theorem [17, Theorem 3.6], [18, Theorem 5.1.2].

Theorem 3.1. Let G be a finite group, let α be a quasi-free action of G on \mathcal{O}_{n} with finite n, and let (B, β) be a $G-C^{*}$-algebra. We assume that B is unital, purely infinite, and simple, and β is outer. For two unital G-homomorphisms $\varphi, \psi \in \operatorname{Hom}_{G}\left(\mathcal{O}_{n}, B\right)$, we set

$$
u_{\psi, \varphi}=\sum_{i=1}^{n} \psi\left(s_{i}\right) \varphi\left(s_{i}\right)^{*} \in U\left(B^{G}\right) .
$$

We introduce an endomorphism $\Lambda_{\varphi} \in \operatorname{End}\left(B^{G}\right)$ by

$$
\Lambda_{\varphi}(x)=\sum_{i=1}^{n} \varphi\left(s_{i}\right) x \varphi\left(s_{i}^{*}\right), \quad x \in B^{G} .
$$

Then the following conditions are equivalent.
(1) The G-homomorphisms φ and ψ are G-approximately unitarily equivalent.
(2) The unitary $u_{\psi, \varphi}$ belongs to the closure of $\left\{v \Lambda_{\varphi}\left(v^{*}\right) \in U\left(B^{G}\right) ; v \in B^{G}\right\}$.
(3) The K_{1}-class $\left[u_{\psi, \varphi}\right] \in K_{1}\left(B^{G}\right)$ is in the image of $1-K_{1}\left(\Lambda_{\varphi}\right)$.
(4) The K_{1}-class $K_{1}\left(j_{\beta}\right)\left(\left[u_{\psi, \varphi}\right]\right) \in K_{1}\left(B \rtimes_{\beta} G\right)$ is in the image of $1-K_{1}\left(\hat{\beta}_{\pi_{\alpha}}\right)$.
(5) The equality $K K_{G}(\varphi)=K K_{G}(\psi)$ holds in $K K_{G}\left(\mathcal{O}_{n}, B\right)$.

Proof. The equivalence of (1) and (2) follows from $\psi\left(s_{i}\right)=u_{\psi, \varphi} \varphi\left(s_{i}\right)$ and $v \varphi\left(s_{i}\right) v^{*}=$ $v \Lambda_{\varphi}\left(v^{*}\right) \varphi\left(s_{i}\right)$.

The implication from (2) to (3) is trivial. In view of the proof of [17, Theorem 3.6], the implication from (3) to (2) is reduced to the Rohlin property of the shift automorphism of $\left(\otimes_{Z} M_{n}(\boldsymbol{C})\right)^{G}$, where the G-action of the UHF algebra $\otimes_{\boldsymbol{Z}} M_{n}(\boldsymbol{C})$ is the product action $\otimes_{Z} \operatorname{Ad} \pi_{\alpha}(g)$. This follows from Kishimoto's result [9, Theorem 2.1] (see [4, Lemma 5.5] for details).

The equivalence of (3) and (4) follows from Lemma 3.3 below.

We will show the equivalence of (4) and (5) in Appendix as it follows from a rather lengthy computation, and we do not really require it in the rest of this note.

To show the equivalence of (3) and (4), we first recall the following well-known fact.
LEMMA 3.2. Let A be a C^{*}-algebra, and let $\left\{t_{i}\right\}_{i=1}^{n} \subset M(A)$ be isometries with mutually orthogonal ranges. Let $\left\{e_{i j}\right\}_{i, j=1}^{n}$ be the system of matrix units of the matrix algebra $M_{n}(\boldsymbol{C})$. We define two homomorphisms $\rho_{1}: A \rightarrow A \otimes M_{n}(\boldsymbol{C})$ and $\rho_{2}: A \otimes M_{n}(\boldsymbol{C}) \rightarrow A$ by $\rho_{1}(a)=a \otimes e_{11}$, and $\rho_{2}\left(a \otimes e_{i j}\right)=t_{i} a t_{j}^{*}$. Then $K_{*}\left(\rho_{2}\right)$ is the inverse of $K_{*}\left(\rho_{1}\right)$.

Proof. Since $K_{*}\left(\rho_{1}\right)$ is an isomorphism, it suffices to show that the homomorphism $\rho_{2} \circ \rho_{1}(x)=t_{1} x t_{1}^{*}$ induces the identity on $K_{*}(A)$. This follows from a standard argument.

Recall that we regard $K_{*}\left(\hat{\beta}_{\pi_{\alpha}}\right)$ as an element of $\operatorname{End}\left(K_{*}\left(B \rtimes_{\beta} G\right)\right)$ by identifying $K_{*}\left(B \rtimes_{\beta} G\right)$ with $K_{*}\left(\left(B \rtimes_{\beta} G\right) \otimes B\left(\mathcal{H}_{n}\right)\right)$.

Lemma 3.3. With the above notation, we have the equality $K_{*}\left(j_{\beta}\right) \circ K_{*}\left(\Lambda_{\varphi}\right)=$ $K_{*}\left(\hat{\beta}_{\pi_{\alpha}}\right) \circ K_{*}\left(j_{\beta}\right)$.

Proof. Identifying $B\left(\mathcal{H}_{n}\right)$ with the linear span of $\left\{s_{i} s_{j}^{*}\right\}_{i, j=1}^{n}$ acting on \mathcal{H}_{n} by left multiplication, we have

$$
\pi_{\alpha}(g)=\sum_{i=1}^{n} \alpha_{g}\left(s_{i}\right) s_{i}^{*}
$$

We define a homomorphism $\rho:\left(B \rtimes_{\beta} G\right) \otimes B\left(\mathcal{H}_{n}\right) \rightarrow B \rtimes_{\beta} G$ by $\rho\left(x \otimes s_{i} s_{j}^{*}\right)=\varphi\left(s_{i}\right) x \varphi\left(s_{j}\right)^{*}$, which plays the role of ρ_{2} in Lemma 3.2 with $A=B \rtimes_{\beta} G$ and $t_{i}=\varphi\left(s_{i}\right)$. Then for $x \in B^{G}$, we have

$$
\begin{aligned}
\rho \circ \hat{\beta}_{\pi_{\alpha}} \circ j_{\beta}(x) & =\frac{1}{\# G} \sum_{g \in G} \rho \circ \hat{\beta}_{\pi_{\alpha}}\left(\lambda_{g}^{\beta} x\right)=\frac{1}{\# G} \sum_{g \in G} \rho\left(\lambda_{g}^{\beta} x \otimes \pi_{\alpha}(g)\right) \\
& =\frac{1}{\# G} \sum_{g \in G} \sum_{i=1}^{n} \rho\left(\lambda_{g}^{\beta} x \otimes \alpha_{g}\left(s_{i}\right) s_{i}^{*}\right)=\frac{1}{\# G} \sum_{g \in G} \sum_{i=1}^{n} \varphi\left(\alpha_{g}\left(s_{i}\right)\right) \lambda_{g}^{\beta} x \varphi\left(s_{i}\right)^{*} \\
& =\frac{1}{\# G} \sum_{g \in G} \sum_{i=1}^{n} \lambda_{g}^{\beta} \varphi\left(s_{i}\right) x \varphi\left(s_{i}\right)^{*}=j_{\beta} \circ \Lambda_{\varphi}(x),
\end{aligned}
$$

which proves the statement thanks to Lemma 3.2.
4. Equivariant Lin-Phillips's theorem. The purpose of this section is to show the following theorem, which is an equivariant version of Lin-Phillips's theorem [10, Theorem 3.3], [18, Proposition 7.2.5].

THEOREM 4.1. Let G be a finite group, let α be a quasi-free action of G on \mathcal{O}_{∞}, and let (B, β) be a unital G - C^{*}-algebra. We assume that B is purely infinite and simple, and β is outer. Then any two unital G-homomorphisms in $\operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}, B\right)$ are G-approximately unitarily equivalent.

Until the end of this section, we assume that $G,\left(\mathcal{O}_{\infty}, \alpha\right)$ and (B, β) are as in Theorem 4.1. To prove Theorem 4.1, we basically follow Lin-Phillips's strategy based on Theorem 3.1 in place of [17, Theorem 3.6], though we will take a short cut by using a ultraproduct technique.

Let n be a natural number larger than or equal to 2 , and let \mathcal{E}_{n} be the Cuntz-Toeplitz algebra, which is the universal C^{*}-algebra generated by isometries $\left\{t_{i}\right\}_{i=1}^{n}$ with mutually orthogonal ranges. Note that $p_{n}=1-\sum_{i=1}^{n} t_{i} t_{i}^{*}$ is a non-zero projection not as in the case of the Cuntz algebras. We denote by \mathcal{K}_{n} the linear span of $\left\{t_{i}\right\}_{i=1}^{n}$. Quasi-free actions on \mathcal{E}_{n} are defined as in the case of the Cuntz algebras. For a quasi-free action γ of G on \mathcal{E}_{n}, we denote by $\left(\pi_{\gamma}, \mathcal{K}_{n}\right)$ the corresponding unitary representation of G in \mathcal{K}_{n}.

Lemma 4.2. Let γ be a quasi-free action of G on \mathcal{E}_{n} with finite n, and let $\varphi, \psi \in$ $\operatorname{Hom}_{G}\left(\mathcal{E}_{n}, B\right)$ be injective G-homomorphisms, either both unital or both nonunital. If $[\varphi(1)]$ $=[\psi(1)]=0$ in $K_{0}\left(B^{G}\right)$, then φ and ψ are G-approximately unitarily equivalent.

Proof. In the same way as in the proof of Lemma 3.3, we can see

$$
K_{0}\left(j_{\beta}\right)\left(\sum_{i=1}^{n}\left[\varphi\left(t_{i} t_{i}^{*}\right)\right]\right)=K_{0}\left(\hat{\beta}_{\pi_{\alpha}}\right) \circ K_{0}\left(j_{\beta}\right)([\varphi(1)]),
$$

and so we have

$$
K_{0}\left(j_{\beta}\right)\left(\left[\varphi\left(p_{n}\right)\right]\right)=K_{0}\left(j_{\beta}\right)([\varphi(1)])-K_{0}\left(\hat{\beta}_{\pi_{\gamma}}\right) \circ K_{0}\left(j_{\beta}\right)([\varphi(1)])=0,
$$

in $K_{0}\left(B \rtimes_{\beta} G\right)$. This implies $\left[\varphi\left(p_{n}\right)\right]=0$ in $K_{0}\left(B^{G}\right)$, and for the same reason, $\left[\psi\left(p_{n}\right)\right]=0$ in $K_{0}\left(B^{G}\right)$. Thus the statement follows from essentially the same argument as in the proof of [10, Proposition 1.7] by using Theorem 3.1 in place of [17, Theorem 3.6].

Since every quasi-free G-action on \mathcal{O}_{∞} is the inductive limit of a system of quasi-free actions of the form $\left\{\left(\mathcal{E}_{n_{k}}, \gamma^{(k)}\right)\right\}_{k=1}^{\infty}$, we get the following corollary.

Corollary 4.3. Let $\varphi, \psi \in \operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}, B\right)$ be either both unital or both nonunital. If $[\varphi(1)]=[\psi(1)]=0$ in $K_{0}\left(B^{G}\right)$, then φ and ψ are G-approximately unitarily equivalent.

Let $\omega \in \beta \boldsymbol{N} \backslash \boldsymbol{N}$ be a free ultrafilter, and let $\iota_{\omega}: \mathcal{O}_{\infty} \rightarrow \mathcal{O}_{\infty}{ }^{\omega}$ be the inclusion map. For $\varphi \in \operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}, B\right)$, we denote by φ^{ω} the G-homomorphism in $\operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}{ }^{\omega}, B^{\omega}\right)$ induced by φ. Then it is easy to show the following three conditions for $\varphi, \psi \in \operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}, B\right)$ are equivalent:
(1) φ and ψ are G-approximately unitarily equivalent,
(2) $\varphi^{\omega} \circ \iota_{\omega}$ and $\psi^{\omega} \circ \iota_{\omega}$ are G-approximately unitarily equivalent,
(3) $\varphi^{\omega} \circ \iota_{\omega}$ and $\psi^{\omega} \circ \iota_{\omega}$ are G-unitarily equivalent.

Note that since G is a finite group, we have $\left(\mathcal{O}_{\infty \omega}\right)^{G}=\left(\mathcal{O}_{\infty}^{G}\right)^{\omega} \cap \mathcal{O}_{\infty}^{\prime}$ and $\left(B^{\omega}\right)^{G}=\left(B^{G}\right)^{\omega}$.
Proof of Theorem 4.1. Let $\varphi, \psi \in \operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}, B\right)$ be unital. Since \mathcal{O}_{∞} is a Kirchberg algebra, the ω-central sequence algebra $\mathcal{O}_{\infty \omega}$ is purely infinite and simple. Let H be the kernel of $\alpha: G \rightarrow \operatorname{Aut}\left(\mathcal{O}_{\infty}\right)$. Then we may regard α as a faithful quasi-free action of
G / H, which is outer. Therefore α_{ω} is outer as an action of G / H. This implies that $\left(\mathcal{O}_{\infty \omega}\right)^{G}$ is purely infinite and simple.

Choosing three nonzero projections $q_{1}, q_{2}, q_{3} \in\left(\mathcal{O}_{\infty \omega}\right)^{G}$ satisfying $q_{1}+q_{2}+q_{3}=1$ and [1] $=\left[q_{1}\right]=\left[q_{2}\right]=-\left[q_{3}\right]$ in $K_{0}\left(\left(\mathcal{O}_{\infty}\right)^{G}\right)$, we introduce $\varphi_{i}, \psi_{i} \in \operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}, B^{\omega}\right)$, $i=1,2,3$, by $\varphi_{i}(x)=\varphi^{\omega}\left(q_{i} x\right)$ and $\psi_{i}(x)=\psi^{\omega}\left(q_{i} x\right)$ for $x \in \mathcal{O}_{\infty}$. Then we have

$$
\begin{gathered}
\varphi(x)=\varphi_{1}(x)+\varphi_{2}(x)+\varphi_{3}(x), \quad x \in \mathcal{O}_{\infty}, \\
\psi(x)=\psi_{1}(x)+\psi_{2}(x)+\psi_{3}(x), \quad x \in \mathcal{O}_{\infty}, \\
{[1]=\left[\varphi_{1}(1)\right]=\left[\varphi_{2}(1)\right]=-\left[\varphi_{3}(1)\right]=\left[\psi_{1}(1)\right]=\left[\psi_{2}(1)\right]=-\left[\psi_{3}(1)\right] \in K_{0}\left(\left(B^{\omega}\right)^{G}\right) .}
\end{gathered}
$$

Since $\left[\left(\varphi_{2}+\varphi_{3}\right)(1)\right]=\left[\left(\psi_{2}+\psi_{3}\right)(1)\right]=0$ in $K_{0}\left(\left(B^{\omega}\right)^{G}\right)$, Corollary 4.3 implies that there exists a unitary $u \in U\left(\left(B^{\omega}\right)^{G}\right)$ satisfying $u\left(\varphi_{2}+\varphi_{3}\right)(x) u^{*}=\left(\psi_{2}+\psi_{3}\right)(x)$ for $x \in \mathcal{O}_{\infty}$. We set $\varphi_{1}^{u}(x)=u \varphi_{1}(x) u^{*}$. Then φ_{1}^{u} is in $\operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}, B^{\omega}\right)$ satisfying $\varphi_{1}^{u}(1)=\psi_{1}(1)$, and $\varphi^{\omega} \circ \iota_{\omega}$ and $\varphi_{1}^{u}+\psi_{2}+\psi_{3}$ are G-approximately unitarily equivalent. Since $\left(\varphi_{1}^{u}+\psi_{3}\right)(1)=$ $\left(\psi_{1}+\psi_{3}\right)(1)$ whose class in $K_{0}\left(\left(B^{\omega}\right)^{G}\right)$ is 0 , Corollary 4.3 again implies that there exists a unitary $v \in U\left(\left(B^{\omega}\right)^{G}\right)$ satisfying $v \psi_{2}(1) v^{*}=\psi_{2}(1)$ and $v\left(\varphi_{1}^{u}+\psi_{3}\right)(x) v^{*}=\left(\psi_{1}+\psi_{3}\right)(x)$ for $x \in \mathcal{O}_{\infty}$. This shows that $v u \varphi(x) u^{*} v^{*}=\psi(x)$ for $x \in \mathcal{O}_{\infty}$, and so φ and ψ are G approximately unitarily equivalent.
5. Splitting theorem and Uniqueness theorem. Thanks to Theorem 4.1, we can obtain a G-equivariant version of Kirchberg-Phillips's \mathcal{O}_{∞} theorem [7, Theorem 3.15], [18, Theorem 7.2.6].

THEOREM 5.1. Let G be a finite group, and let (A, α) be a G - C^{*}-algebra. We assume that A is a unital Kirchberg algebra and α is outer. Let $\left\{\gamma^{(i)}\right\}_{i=1}^{\infty}$ be any sequence of quasi-free actions of G on \mathcal{O}_{∞}. Then (A, α) is conjugate to

$$
\left(A \otimes \bigotimes_{i=1}^{\infty} \mathcal{O}_{\infty}, \quad \alpha \otimes \bigotimes_{i=1}^{\infty} \gamma^{(i)}\right)
$$

Proof. Let H_{i} be the kernel of the homomorphism $\gamma^{(i)}: G \rightarrow \operatorname{Aut}\left(\mathcal{O}_{\infty}\right)$. Since we may regard $\gamma^{(i)}$ and $\gamma^{(i)} \otimes \gamma^{(i)}$ as outer actions of G / H_{i}, Theorem 4.1 implies that there exist unitaries $\left\{u_{n}^{(i)}\right\}_{n=1}^{\infty}$ in $\left(\mathcal{O}_{\infty} \otimes \mathcal{O}_{\infty}\right)^{\gamma^{(i)} \otimes \gamma^{(i)}}$ satisfying

$$
\lim _{n \rightarrow \infty}\left\|u_{n}^{(i)}(x \otimes 1) u_{n}^{(i)^{*}}-1 \otimes x\right\|=0, \quad \text { for all } x \in \mathcal{O}_{\infty}
$$

Let

$$
(B, \beta)=\left(\bigotimes_{i=1}^{\infty} \mathcal{O}_{\infty}, \quad \bigotimes_{i=1}^{\infty} \gamma^{(i)}\right)
$$

and let $\rho_{l}, \rho_{r} \in \operatorname{Hom}_{G}(B, B \otimes B)$ be as in Theorem 2.3. Then ρ_{r} and ρ_{l} are G-approximately unitarily equivalent.

To prove the statement applying Theorem 2.3, it suffices to construct a unital embedding of (B, β) in $\left(A_{\omega}, \alpha_{\omega}\right)$. For this, it suffices to construct a unital embedding of $\left(\mathcal{O}_{\infty}, \gamma^{(i)}\right)$ into ($A_{\omega}, \alpha_{\omega}$) for each i because the usual trick of taking subsequences can make the embeddings
commute with each other. Let γ be the quasi-free action of G on \mathcal{O}_{∞} such that ($\pi_{\gamma}, \mathcal{H}_{\infty}$) is unitarily equivalent to the infinite direct sum of the regular representation. Since there is a unital embedding of $\left(\mathcal{O}_{\infty}, \gamma^{(i)}\right)$ into $\left(\mathcal{O}_{\infty}, \gamma\right)$, in order to prove the theorem, it only remains to construct a unital embedding of $\left(\mathcal{O}_{\infty}, \gamma\right)$ into $\left(A_{\omega}, \alpha_{\omega}\right)$.

Thanks to [13, Lemma 3], we can find a nonzero projection $e \in A_{\omega}$ satisfying $e \alpha_{\omega g}(e)=$ 0 for any $g \in G \backslash\{e\}$. We choose an isometry $v \in A_{\omega}$ satisfying $v v^{*} \leq e$, and set $s_{0, g}=$ $\alpha_{\omega g}(v)$. Then $\left\{s_{0, g}\right\}_{g \in G}$ are isometries in A_{ω} with mutually orthogonal ranges satisfying $\alpha_{\omega g}\left(s_{0, h}\right)=s_{0, g h}$. Let $p=\sum_{g \in G} s_{0, g} s_{0, g}^{*}$, which is a projection in $\left(A_{\omega}\right)^{G}$. Replacing v if necessary, we may assume that $p \neq 1$. Since $\left(A_{\omega}\right)^{G}$ is purely infinite and simple, we can find a sequence of partial isometries $\left\{w_{i}\right\}_{i=0}^{\infty}$ in $\left(A_{\omega}\right)^{G}$ with $w_{0}=p$ such that $w_{i}^{*} w_{i}=p$ for all i, and $\left\{w_{i} w_{i}^{*}\right\}_{i=0}^{\infty}$ are mutually orthogonal. Let $s_{i, g}=w_{i} s_{0, g}$. Then $\left\{s_{i, g}\right\}_{(i, g) \in N \times G}$ is a countable family of isometries in A_{ω} with mutually orthogonal ranges satisfying $\alpha_{\omega g}\left(s_{i, h}\right)=$ $s_{i, g h}$. Thus we get the desirable embedding of $\left(\mathcal{O}_{\infty}, \gamma\right)$ into $\left(A_{\omega}, \alpha_{\omega}\right)$.

Applying Theorem 5.1 to $A=\mathcal{O}_{\infty}$ with a faithful quasi-free action α, we obtain
Corollary 5.2. Any two faithful quasi-free actions of a finite group on \mathcal{O}_{∞} are mutually conjugate.

6. Asymptotic representability.

DEFINITION 6.1. An action α of a discrete group G on a unital C^{*}-algebra A is said to be asymptotically representable if there exists a continuous family of unitaries $\left\{u_{g}(t)\right\}_{t \geq 0}$ in $U(A)$ for each $g \in G$ satisfying

$$
\begin{aligned}
\lim _{t \rightarrow \infty}\left\|u_{g}(t) x u_{g}(t)^{*}-\alpha_{g}(x)\right\|=0, & \text { for all } x \in A, g \in G, \\
\lim _{t \rightarrow \infty}\left\|u_{g}(t) u_{h}(t)-u_{g h}(t)\right\|=0, & \text { for all } g, h \in G \\
\lim _{t \rightarrow \infty}\left\|\alpha_{g}\left(u_{h}(t)\right)-u_{g h g^{-1}}(t)\right\|=0, & \text { for all } g, h \in G
\end{aligned}
$$

An action α is said to approximately representable if α satisfies the above condition with a sequence $\left\{u_{g}(n)\right\}_{n \in N}$ in place of the continuous family $\left\{u_{g}(t)\right\}_{t \geq 0}$.

Every asymptotically representable action is approximately representable, but the converse may not be true in general. When G is a finite abelian group, an action α is approximately representable if and only if its dual action has the Rohlin property. When G is a cyclic group of prime power order, approximately representable quasi-free actions on \mathcal{O}_{n} with finite n are completely characterized in [5], and there exist quasi-free actions that are not approximately representable.

The purpose of this section is to show the following theorem:
THEOREM 6.2. Every quasi-free action of a finite group G on \mathcal{O}_{∞} is asymptotically representable.

It is unlikely that one could show Theorem 6.2 directly from the definition of quasi-free actions. Our proof uses the intertwining argument, Theorem 2.2, between two model actions;
one is obviously quasi-free, and the other is an infinite tensor product action, that can be shown to be asymptotically representable.

We first introduce the notion of K-trivial embeddings of the group C^{*}-algebra. We denote by $\left\{\lambda_{g}\right\}_{g \in G}$ the left regular representation of a finite group G. The group C^{*}-algebra $C^{*}(G)$ is the linear span of $\left\{\lambda_{g}\right\}_{g \in G}$.

Definition 6.3. Let G be a finite group, and let A be a unital C^{*}-algebra. An unital injective homomorphism $\rho: C^{*}(G) \rightarrow A$ is said to be a K-trivial embedding if $K K(\rho)=$ $K K\left(C^{*}(G) \ni \lambda_{g} \mapsto 1 \in A\right)$.

For each irreducible representation $\left(\pi, H_{\pi}\right)$ of G, we choose an orthonormal basis $\{\xi$ $\left.(\pi)_{i}\right\}_{i=1}^{n_{\pi}}$ of H_{π}, where $n_{\pi}=\operatorname{dim} \pi$. We set $\pi(g)_{i j}=\left\langle\pi(g) \xi(\pi)_{j}, \xi(\pi)_{i}\right\rangle$, and

$$
e(\pi)_{i j}=\frac{n_{\pi}}{\# G} \sum_{g \in G} \overline{\pi(g)_{i j}} \lambda_{g}
$$

Then $\left\{e(\pi)_{i j}\right\}_{1 \leq i, j \leq n_{\pi}}$ is a system of matrix units, and we have

$$
\lambda_{g}=\sum_{\pi \in \hat{G}} \sum_{i, j=1}^{n_{\pi}} \pi(g)_{i j} e(\pi)_{i j}
$$

Let $C^{*}(G)_{\pi}$ be the linear span of $\left\{e(\pi)_{i j}\right\}_{i, j=1}^{n_{\pi}}$. Then $C^{*}(G)_{\pi}$ is isomorphic to the matrix algebra $M_{n_{\pi}}(\boldsymbol{C})$, and $C^{*}(G)$ has the direct sum decomposition

$$
C^{*}(G)=\bigoplus_{\pi \in \hat{G}} C^{*}(G)_{\pi}
$$

Let $\chi_{\pi}(g)=\operatorname{Tr}(\pi(g))$ be the character of π. Then

$$
z(\pi)=\frac{n_{\pi}}{\# G} \sum_{g \in G} \overline{\chi_{\pi}(g)} \lambda_{g}=\sum_{i=1}^{n_{\pi}} e(\pi)_{i i}
$$

is the unit of $C^{*}(G)_{\pi}$.
It is easy to show the following lemma.
Lemma 6.4. Let G be a finite group, and let A, B be unital simple purely infinite C^{*}-algebras.
(1) A unital injective homomorphism $\rho: C^{*}(G) \rightarrow A$ is a K-trivial embedding if and only if $\left[\rho\left(e(\pi)_{11}\right)\right]=0$ in $K_{0}(A)$ for any nontrivial irreducible representation π. When $K_{0}(A)$ is torsion free, it is further equivalent to the condition that $[\rho(z(\pi))]=0$ in $K_{0}(A)$ for any nontrivial irreducible representation π.
(2) Any two K-trivial unital embeddings of $C^{*}(G)$ into A are unitarily equivalent.
(3) If $\rho: C^{*}(G) \rightarrow A$ and $\sigma: C^{*}(G) \rightarrow B$ are K-trivial embeddings, so is the tensor product embedding $C^{*}(G) \ni \lambda_{g} \mapsto \rho\left(\lambda_{g}\right) \otimes \sigma\left(\lambda_{g}\right) \in A \otimes B$.

We now construct a K-trivial embedding of $C^{*}(G)$ into \mathcal{O}_{∞}. We fix a nonzero projection $p \in \mathcal{O}_{\infty}$ with $[p]=0$ in $K_{0}\left(\mathcal{O}_{\infty}\right)$, and fix unital embeddings

$$
B\left(\ell^{2}(G)\right) \subset \mathcal{O}_{2} \subset p \mathcal{O}_{\infty} p
$$

We denote by $\sigma_{0}: C^{*}(G) \rightarrow p \mathcal{O}_{\infty} p$ the resulting embedding, and set $u_{g}=\sigma_{0}\left(\lambda_{g}\right)+1-p$. Then $\sigma: C^{*}(G) \ni \lambda_{g} \mapsto u_{g} \in \mathcal{O}_{\infty}$ is a K-trivial embedding of $C^{*}(G)$ into \mathcal{O}_{∞}.

Using $\left\{u_{g}\right\}_{g \in G}$, we introduce a G - C^{*}-algebra (A, α) by

$$
\left(A, \alpha_{g}\right)=\bigotimes_{k=1}^{\infty}\left(\mathcal{O}_{\infty}, \operatorname{Ad} u_{g}\right)
$$

More precisely, we set

$$
A_{n}=\bigotimes_{k=1}^{n} \mathcal{O}_{\infty}, \quad u_{g}^{(n)}=\bigotimes_{k=1}^{n} u_{g}
$$

and $\alpha_{g}^{(n)}=\operatorname{Ad} u_{g}^{(n)}$. Then (A, α) is the inductive limit of the system $\left\{\left(A_{n}, \alpha^{(n)}\right)\right\}_{n=1}^{\infty}$ with the embedding $\iota_{n}: A_{n} \ni x \mapsto x \otimes 1 \in A_{n+1}$. The C^{*}-algebra A is isomorphic to \mathcal{O}_{∞}, and the action α is outer.

Lemma 6.5. Let the notation be as above.
(1) The action α is asymptotically representable.
(2) The embedding $\iota_{\alpha}: C^{*}(G) \ni \lambda_{g} \mapsto \lambda_{g}^{\alpha} \in A \rtimes_{\alpha} G$ gives $K K$-equivalence.

Proof. (1) It suffices to construct a homotopy $\left\{v_{g}(t)\right\}_{t \in[0,1]}$ of unitary representations of G in A_{3} satisfying $v_{g}(0)=u_{g} \otimes 1 \otimes 1, v_{g}(1)=u_{g}^{(2)} \otimes 1$, and $\alpha_{g}^{(3)}\left(v_{h}(t)\right)=v_{g h g^{-1}}(t)$. Since $\left\{u_{g} \otimes 1\right\}_{g \in G},\left\{u_{g}^{(2)}\right\}_{g \in G}$, and $\left\{1 \otimes u_{g}\right\}_{g \in G}$ give K-trivial embeddings of $C^{*}(G)$ into A_{2}, there exist unitaries $w_{1}, w_{2} \in U\left(A_{2}\right)$ satisfying $w_{1}\left(u_{g} \otimes 1\right) w_{1}^{*}=w_{2}\left(1 \otimes u_{g}\right) w_{2}^{*}=$ $u_{g}^{(2)}$. Let $w=\left(w_{1} \otimes 1\right)\left(1 \otimes w_{2}^{*}\right)$, which is a unitary in $A_{3}^{G}=A_{3} \cap\left\{u_{g}^{(3)}\right\}_{g \in G}^{\prime}$ satisfying $w\left(u_{g} \otimes 1 \otimes 1\right) w^{*}=u_{g}^{(2)} \otimes 1$. Since A_{3}^{G} is isomorphic to a finite direct sum of C^{*}-algebras Morita equivalent to \mathcal{O}_{∞}, there exists a homotopy $\{w(t)\}_{t \in[0,1]}$ in $U\left(A_{3}^{G}\right)$ with $w(0)=1$ and $w(1)=w$. Thus $v_{g}(t)=w(t)\left(u_{g} \otimes 1 \otimes 1\right) w(t)^{*}$ gives the desired homotopy.
(2) We identify $B_{n}=A_{n} \rtimes_{\alpha^{(n)}} G$ with the C^{*}-subalgebra of $A \rtimes_{\alpha} G$ generated by A_{n} and $\left\{\lambda_{g}^{\alpha}\right\}_{g \in G}$, and we denote by $\iota_{n}^{\prime}: B_{n} \rightarrow B_{n+1}$ the embedding map. Then $A \rtimes_{\alpha} G$ is the inductive limit of the system $\left\{B_{n}\right\}_{n=1}^{\infty}$. Let $\iota_{\alpha}^{(n)}: C^{*}(G) \ni \lambda_{g} \mapsto \lambda_{g}^{\alpha} \in B_{n}$. Since we have $\iota_{n}^{\prime} \circ \iota_{\alpha}^{(n)}=\iota_{\alpha}^{(n+1)}$, in order to prove the statement it suffices to show that $\iota_{\alpha}^{(n)}$ induces isomorphisms of the K-groups for every n.

Since $\alpha^{(n)}$ is inner, there exists an isomorphism $\theta_{n}: B_{n} \rightarrow A_{n} \otimes C^{*}(G)$ given by $\theta_{n}(a)=a \otimes 1$ for $a \in A_{n}$ and $\theta_{n}\left(\lambda_{g}^{\alpha}\right)=u_{g}^{(n)} \otimes \lambda_{g}$. Thus all we have to show is that the $\operatorname{map} \theta_{n} \circ \iota_{\alpha}^{(n)}: C^{*}(G) \ni \lambda_{g} \mapsto u_{g}^{(n)} \otimes \lambda_{g} \in A_{n} \otimes C^{*}(G)$ induces isomorphisms of the K-groups. This follows from the facts that A_{n} is isomorphic to \mathcal{O}_{∞} and $\left\{u_{g}^{(n)}\right\}_{g \in G}$ gives a K-trivial embedding of $C^{*}(G)$ into A_{n}.

Lemma 6.6. For the G - C^{*}-algebra (A, α) as constructed above, any unital $\varphi \in$ $\operatorname{Hom}_{G}(A, A)$ is G-asymptotically unitarily equivalent to id.

Proof. Let $B=A \rtimes_{\alpha} G$, and let $\hat{\alpha}: B \rightarrow B \otimes C^{*}(G)$ be the dual coaction of α. Then φ extends to a unital endomorphism $\tilde{\varphi}$ in $\operatorname{End}(B)$ with $\tilde{\varphi}\left(\lambda_{g}^{\alpha}\right)=\lambda_{g}^{\alpha}$, which satisfies $\hat{\alpha} \circ \tilde{\varphi}=\left(\tilde{\varphi} \otimes \mathrm{id}_{C^{*}(G)}\right) \circ \hat{\alpha}$. By Lemma 6.5,(2), we have $K K(\tilde{\varphi})=K K\left(\mathrm{id}_{B}\right)$. Thus Lemma $6.5,(1)$ and $[6$, Theorem 4.8$]$ imply that there exists a continuous family of unitaries $\{u(t)\}_{t \geq 0}$ in A satisfying

$$
\lim _{t \rightarrow \infty}\left\|u(t) x u(t)^{*}-\tilde{\varphi}(x)\right\|=0 \text { for all } x \in B
$$

Setting $x=\lambda_{g}^{\alpha}$, we know that $\left\{\alpha_{g}(u(t))-u(t)\right\}_{t \geq 0}$ converges to 0 . Since G is a finite group, there exists a conditional expectation from A onto A^{G}, and we can construct a continuous family of unitaries $\{\tilde{u}(t)\}_{t \geq 0}$ in A^{G} such that $\{u(t)-\tilde{u}(t)\}_{t \geq 0}$ converges to 0 by a standard perturbation argument. Therefore φ and id are G-asymptotically unitarily equivalent.

Proof of Theorem 6.2. Let γ be a faithful quasi-free G-action on \mathcal{O}_{∞}. Thanks to Corollary 5.2, we may assume that \mathcal{O}_{∞} has the canonical generators $\left\{s_{i}\right\}_{i \in J}$ with $G \subset J$ satisfying $\gamma_{g}\left(s_{h}\right)=s_{g h}$. Since α is asymptotically representable, it suffices to show that α and γ are conjugate. Thanks to Theorem 5.1, the action α is conjugate to $\alpha \otimes \gamma$, and so there exists a unital embedding of $\left(\mathcal{O}_{\infty}, \gamma\right)$ into (A, α). Thus if there exists a unital embedding of (A, α) into $\left(\mathcal{O}_{\infty}, \gamma\right)$, Theorem 2.2, Theorem 4.1, and Lemma 6.6 imply that α and γ are conjugate. Since γ is conjugate to the infinite tensor product of its copies thanks to Theorem 5.1 again, all we have to show is that there exists a unital embedding of $\left(\mathcal{O}_{\infty}, \operatorname{Ad} u\right.$. into ($\mathcal{O}_{\infty}, \gamma$).

We denote by $\mathcal{O}_{\infty}^{\gamma}$ the fixed point subalgebra of \mathcal{O}_{∞} under the G-action γ. Since $\mathcal{O}_{\infty}^{\gamma}$ is purely infinite and simple, we can choose a nonzero projection $q_{0} \in \mathcal{O}_{\infty}^{\gamma}$ with $\left[q_{0}\right]=0$ in $K_{0}\left(\mathcal{O}_{\infty}^{\gamma}\right)$. We set $q_{1}=\sum_{g \in G} s_{g} q_{0} s_{g}^{*}$. A similar argument as in the proof of Lemma 3.3 implies that $\left[q_{1}\right]=0$ in $K_{0}\left(\mathcal{O}_{\infty}^{\gamma}\right)$. We set

$$
v_{g}=\sum_{h \in G} s_{g h} q_{0} s_{h}^{*}+1-q_{1} .
$$

Then $\left\{v_{g}\right\}_{g \in G}$ is a unitary representation of G in \mathcal{O}_{∞} satisfying $\gamma_{g}\left(v_{h}\right)=v_{g h g^{-1}}$, and so $\left\{v_{g}^{*}\right\}_{g \in G}$ is a γ-cocycle. We show that this is a coboundary by using [4, Remark 2.6]. Indeed, we have

$$
\begin{align*}
& \frac{1}{\# G} \sum_{g \in G} v_{g}^{*} \lambda_{g}^{\gamma}=\left(1-q_{1}\right) e_{\gamma}+\frac{1}{\# G} \sum_{g \in G} \sum_{h \in G} s_{h} q_{0} s_{g h}^{*} \lambda_{g}^{\gamma} \tag{6.1}\\
& \quad=\left(1-q_{1}\right) e_{\gamma}+\frac{1}{\# G} \sum_{g \in G} \sum_{h \in G} s_{h} q_{0} \lambda_{g}^{\gamma} s_{h}^{*}=\left(1-q_{1}\right) e_{\gamma}+\sum_{h \in G} s_{h} q_{0} e_{\gamma} s_{h}^{*}
\end{align*}
$$

This means that the class of this projection in $K_{0}\left(\mathcal{O}_{\infty} \rtimes_{\gamma} G\right)$ is

$$
\left[\left(1-q_{1}\right) e_{\gamma}\right]+\# G\left[q_{0} e_{\gamma}\right]=\left[e_{\gamma}\right]
$$

which implies that $\left\{v_{g}^{*}\right\}_{g \in G}$ is a coboundary. Thus there exists a unitary $v \in \mathcal{O}_{\infty}$ satisfying $v_{g}^{*}=v \gamma_{g}\left(v^{*}\right)$.

We set $w_{g}=v^{*} v_{g} v$, and claim that $\left\{w_{g}\right\}_{g \in G}$ gives a K-trivial embedding of $C^{*}(G)$ into $\mathcal{O}_{\infty}^{\gamma}$. Indeed,

$$
\gamma_{g}\left(w_{h}\right)=\gamma_{g}\left(v^{*}\right) \gamma_{g}\left(v_{h}\right) \gamma_{g}(v)=v^{*} v_{g}^{*} v_{g h g^{-1}} v_{g} v=w_{h}
$$

which shows $w_{g} \in \mathcal{O}_{\infty}^{\gamma}$. Let $\rho: C^{*}(G) \ni \lambda_{g} \mapsto w_{g} \in \mathcal{O}_{\infty}^{\gamma}$. Thanks to Lemma 6.4,(1), in order to prove the claim it suffices to show that $\left[\rho\left(e(\pi)_{11}\right)\right]=0$ in $K_{0}\left(\mathcal{O}_{\infty}^{\gamma}\right)$ for any nontrivial irreducible representation $\left(\pi, H_{\pi}\right)$ of G. Indeed, we have

$$
\begin{aligned}
& K_{0}\left(j_{\gamma}\right)\left(\left[\rho\left(e(\pi)_{11}\right)\right]\right)=\left[\frac{n_{\pi}}{\# G^{2}} \sum_{g, h \in G} \overline{\pi(h)_{11}} \lambda_{g}^{\gamma} w_{h}\right]=\left[\frac{n_{\pi}}{\# G^{2}} \sum_{g, h \in G} \overline{\pi(h)_{11}} \lambda_{g}^{\gamma} v^{*} v_{h} v\right] \\
& \quad=\left[\frac{n_{\pi}}{\# G^{2}} \sum_{g, h \in G} \overline{\pi(h)_{11}} \gamma_{g}\left(v^{*}\right) v_{g h g^{-1}} \lambda_{g}^{\gamma} v\right]=\left[\frac{n_{\pi}}{\# G^{2}} \sum_{g, h \in G} \overline{\pi(h)_{11}} v^{*} v_{g}^{*} v_{g h g^{-1}} \lambda_{g}^{\gamma} v\right] \\
& \quad=\left[\frac{n_{\pi}}{\# G^{2}} \sum_{g, h \in G} \overline{\pi(h)_{11}} v_{h g^{-1}} \lambda_{g}^{\gamma}\right]=\left[\frac{n_{\pi}}{\# G^{2}} \sum_{g, h \in G} \overline{\pi(h)_{11}} v_{h} v_{g}^{*} \lambda_{g}^{\gamma}\right] .
\end{aligned}
$$

Equation (6.1) implies that this is equal to

$$
\left[\frac{n_{\pi}}{\# G} \sum_{h \in G} \overline{\pi(h)_{11}} v_{h}\left\{\left(1-q_{1}\right) e_{\gamma}+\sum_{k \in G} s_{k} q_{0} e_{\gamma} s_{k}^{*}\right\}\right] .
$$

Let $\rho_{0}: C^{*}(G) \ni \lambda_{g} \mapsto v_{g} \in \mathcal{O}_{\infty}$. Since $v_{h}\left(1-q_{1}\right)=1-q_{1}$ and π is nontrivial, we see that this is equal to

$$
\left[\rho_{0}\left(e(\pi)_{11}\right) \sum_{k \in G} s_{k} q_{0} e_{\gamma} s_{k}^{*}\right]=n_{\pi}\left[q_{0} e_{\gamma}\right]=0
$$

Thus the claim is shown.
We choose a unital embedding $\mu_{0}: \mathcal{O}_{\infty} \rightarrow \mathcal{O}_{\infty}^{\gamma}$. Since both $\left\{\mu_{0}\left(u_{g}\right)\right\}_{g \in G}$ and $\left\{w_{g}\right\}_{g \in G}$ give K-trivial embeddings of $C^{*}(G)$ into $\mathcal{O}_{\infty}^{\gamma}$, Lemma 6.4,(2) shows that we may assume $\mu_{0}\left(u_{g}\right)=w_{g}$ by replacing μ_{0} if necessary. Let $\mu(x)=v \mu_{0}(x) v^{*}$. Then

$$
\begin{aligned}
\gamma_{g} \circ \mu(x) & =\gamma_{g}(v) \mu_{0}(x) \gamma_{g}\left(v^{*}\right)=v_{g} v \mu_{0}(x) v^{*} v_{g}^{*}=v w_{g} \mu_{0}(x) w_{g}^{*} v^{*} \\
& =v \mu_{0}\left(u_{g} x u_{g}^{*}\right) v^{*}=\mu \circ \operatorname{Ad} u_{g}(x) .
\end{aligned}
$$

Thus μ is the desired embedding of $\left(\mathcal{O}_{\infty}, \operatorname{Ad} u\right.$. into $\left(\mathcal{O}_{\infty}, \gamma\right)$.
From Theorem 6.2 and Lemma 6.6, we get
Corollary 6.7. Let G be a finite group, and let γ be a quasi-free action of G on \mathcal{O}_{∞}. Then any unital $\varphi \in \operatorname{Hom}_{G}\left(\mathcal{O}_{\infty}, \mathcal{O}_{\infty}\right)$ is G-asymptotically unitarily equivalent to id.
7. Equivariant Rørdam group. Let A and B be simple C^{*}-algebras. For simplicity we assume that A and B are unital. Following Rørdam [18, p. 40], we denote by $H(A, B)$ the set of the approximately unitary equivalence classes of nonzero homomorphisms from A into $B \otimes \boldsymbol{K}$. Choosing two isometries s_{1} and s_{2} satisfying the \mathcal{O}_{2} relation in $M(B \otimes \boldsymbol{K})$, we can define the direct sum $[\varphi] \oplus[\psi]$ of two classes $[\varphi]$ and $[\psi]$ in $H(A, B)$ to be the class of the homomorphism

$$
A \ni x \mapsto s_{1} \varphi(x) s_{1}^{*}+s_{2} \psi(x) s_{2}^{*} \in B \otimes \boldsymbol{K}
$$

This makes $H(A, B)$ a semigroup. When A is a separable simple nuclear C^{*}-algebra and B is a Kirchberg algebra, the Rørdam semigroup $H(A, B)$ is in fact a group. Moreover, if A satisfies the universal coefficient theorem, it is isomorphic to $K L(A, B)$, a certain quotient of $K K(A, B)$.

Let G be a finite group, and let α and β be outer G-actions on A and B respectively. We equip $B \otimes \boldsymbol{K}$ with a $G-C^{*}$-algebra structure by the diagonal action $\beta_{g}^{s}=\beta_{g} \otimes \operatorname{Ad} u_{g}$, where $\left\{u_{g}\right\}$ is a countable infinite direct sum of the regular representation of G. Then we can introduce an equivariant version $H_{G}(A, B)$ as the set of the G-approximately equivalence classes of nonzero G-homomorphisms in $\operatorname{Hom}_{G}(A, B \otimes \boldsymbol{K})$.

THEOREM 7.1. Let (A, α) and (B, β) be unital $G-C^{*}$-algebras with outer actions α and β. We assume that A is separable, simple, and nuclear, and B is a Kirchberg algebra. Then $H_{G}(A, B)$ is a group.

Let (A, α) and (B, β) be as above. We say that $\varphi \in \operatorname{Hom}_{G}(A, B)$ is \mathcal{O}_{2}-absorbing if there exists $\varphi^{\prime} \in \operatorname{Hom}_{G}\left(A \otimes \mathcal{O}_{2}, B\right)$ with $\varphi=\varphi^{\prime} \circ \iota_{A}$, where $A \otimes \mathcal{O}_{2}$ is equipped with the G-action $\alpha \otimes \operatorname{id}_{\mathcal{O}_{2}}$, and $\iota_{A}: A \ni x \mapsto x \otimes 1 \in A \otimes \mathcal{O}_{2}$ is the inclusion map. We say that $\varphi \in \operatorname{Hom}_{G}(A, B)$ is \mathcal{O}_{∞}-absorbing if there exists a unital embedding of \mathcal{O}_{∞} in $\left(\varphi(1) B^{G} \varphi(1)\right) \cap \varphi(A)^{\prime}$.

The proof of Theorem 7.1 follows from essentially the same argument as in [18, Lemma 8.2.5] with the following lemma.

LEMMA 7.2. Let the notation be as above.
(1) Let $\varphi, \psi \in \operatorname{Hom}_{G}(A, B)$ be \mathcal{O}_{2}-absorbing G-homomorphisms, either both unital or both nonunital. Then φ and ψ are G-approximately unitarily equivalent.
(2) Any element in $\operatorname{Hom}_{G}(A, B)$ is G-asymptotically unitarily equivalent to an \mathcal{O}_{∞} absorbing one in $\operatorname{Hom}_{G}(A, B)$.

PROOF. (1) When φ and ψ are nonunital, the two projections $\varphi(1)$ and $\psi(1)$ are equivalent in B^{G}, and we may assume $\varphi(1)=\psi(1)$. Replacing B with $\varphi(1) B \varphi(1)$, we may assume that φ and ψ are unital.

Let γ be a faithful quasi-free action of G on \mathcal{O}_{∞}. Since $\left(A \otimes \mathcal{O}_{2}, \alpha \otimes \mathrm{id}_{\mathcal{O}_{2}}\right)$ is conjugate to $\left(\mathcal{O}_{\infty} \otimes \mathcal{O}_{2}, \gamma \otimes \operatorname{id}_{\mathcal{O}_{2}}\right)$ thanks to [4, Corollary 4.3], it suffices to show that any unital $\varphi, \psi \in \operatorname{Hom}_{G}\left(\mathcal{O}_{\infty} \otimes \mathcal{O}_{2}, B\right)$ are G-approximately unitarily equivalent. Theorem 4.1 implies that there exists $u \in U\left(\left(B^{\omega}\right)^{G}\right)$ satisfying $u \varphi(x \otimes 1) u^{*}=\psi(x \otimes 1)$ for any $x \in \mathcal{O}_{\infty}$, where $\omega \in \beta \boldsymbol{N} \backslash \boldsymbol{N}$ is a free ultrafilter. Let $D=\left(B^{\omega}\right)^{G} \cap \psi\left(\mathcal{O}_{\infty} \otimes 1\right)^{\prime}$. Then it suffices to show
that the two unital homomorphisms $\rho, \sigma \in \operatorname{Hom}\left(\mathcal{O}_{2}, D\right)$ defined by $\rho(y)=u \varphi(1 \otimes y) u^{*}$, $\sigma(y)=\psi(1 \otimes y)$ for $y \in \mathcal{O}_{2}$, are approximately unitarily equivalent. Indeed, since $\left(B^{\omega}\right)^{G} \cap$ $B^{\prime}=\left(B_{\omega}\right)^{G}$ is purely infinite and simple, for any separable C^{*}-subalgebra C of D there exists a unital embedding of \mathcal{O}_{∞} in $D \cap C^{\prime}$. Thus essentially the same proof of [15, Lemma 2.1.7] shows that $\operatorname{cel}(D)$ is finite (see [15, Lemma 2.1.1] for the definition). Therefore ρ and σ are approximately unitarily equivalent thanks to [17, Theorem 3.6].
(2) Since (B, β) is conjugate to ($B \otimes \mathcal{O}_{\infty}, \beta \otimes \mathrm{id}_{\mathcal{O}_{\infty}}$) thanks to [4, Corollary 2.10], the statement follows from the same argument as in the proof of [18, Lemma 8.2.5,(i)].

REmARK 7.3. There are two natural homomorphisms

$$
\begin{gathered}
\mu: H_{G}(A, B) \rightarrow H(A, B), \\
v: H_{G}(A, B) \rightarrow H\left(A \rtimes_{\alpha} G, B \rtimes_{\beta} G\right) .
\end{gathered}
$$

The first one is the forgetful functor. Every $\varphi \in \operatorname{Hom}_{G}(A, B)$ extends to $\tilde{\varphi} \in \operatorname{Hom}\left(A \rtimes_{\alpha}\right.$ $\left.G, B \rtimes_{\beta} G\right)$ by $\tilde{\varphi}\left(\lambda_{g}^{\alpha}\right)=\lambda_{g}^{\beta}$, and the second one is given by associating $[\tilde{\varphi}] \in H\left(A \rtimes_{\alpha}, G\right.$, $\left.B \rtimes_{\beta} G\right)$ with $[\varphi] \in H_{G}(A, B)$. The following hold for the two maps (see [6, Section 4] for more general treatment):
(1) If β has the Rohlin property, then μ is injective, and the image of μ is

$$
\left\{[\rho] \in H(A, B) ;\left[\beta_{g}^{s} \circ \rho\right]=\left[\rho \circ \alpha_{g}\right], \quad \text { for all } g \in G\right\}
$$

(2) If β is approximately representable, then v is injective, and the image of v is

$$
\left\{[\rho] \in H\left(A \rtimes_{\alpha} G, B \rtimes_{\beta} G\right) ;\left[\hat{\beta}^{s} \circ \rho\right]=\left[\left(\rho \otimes \operatorname{id}_{C^{*}(G)}\right) \circ \hat{\alpha}\right]\right\} .
$$

REMARK 7.4. Let $\hat{H}_{G}(A, B)$ be the set of the G-asymptotically equivalence classes of nonzero G-homomorphisms in $\operatorname{Hom}_{G}(A, B \otimes \boldsymbol{K})$. It is tempting to conjecture that the natural map from $\hat{H}_{G}(A, B)$ to the equivariant $K K$-group $K K_{G}(A, B)$ is an isomorphism, as it is the case for trivial G (see [15]).
8. Appendix. In this appendix, we show the equivalence of (4) and (5) in Theorem 3.1. Since our argument works for a compact group G, we assume that G is compact in what follows. Our proof is new even for trivial G. Let α be a quasi-free action of G on \mathcal{O}_{n} with finite n, and let (B, β) be a unital $G-C^{*}$-algebra. Now the definition of the projection $e_{\beta} \in B \rtimes_{\beta} G$ should be modified to $e_{\beta}=\int_{G} \lambda_{g}^{\beta} d g$, where $d g$ is the normalized Haar measure of G. For two unital $\varphi, \psi \in \operatorname{Hom}_{G}\left(\mathcal{O}_{n}, B\right)$, we define $u_{\psi, \varphi} \in U\left(B^{G}\right)$ as in Theorem 3.1.

Let \mathcal{E}_{n} be the Cuntz-Toeplitz algebra with the canonical generators $\left\{t_{i}\right\}_{i=1}^{n}$. We denote by q_{n} the surjection $q_{n}: \mathcal{E}_{n} \rightarrow \mathcal{O}_{n}$ sending t_{i} to s_{i} for $i=1,2, \ldots, n$. Then the kernel J_{n} of q_{n} is the ideal generated by $p_{n}=1-\sum_{i=1}^{n} t_{i} t_{i}^{*}$, and is isomorphic to the compact operators \boldsymbol{K}. We denote by $i_{n}: J_{n} \rightarrow \mathcal{E}_{n}$ the inclusion map. Since \mathcal{O}_{n} is nuclear, the exact sequence

$$
\begin{equation*}
0 \longrightarrow J_{n} \xrightarrow{i_{n}} \mathcal{E}_{n} \xrightarrow{q_{n}} \mathcal{O}_{n} \longrightarrow 0 \tag{8.1}
\end{equation*}
$$

is semisplit, that is, there exists a unital completely positive lifting $l_{n}: \mathcal{O}_{n} \rightarrow \mathcal{E}_{n}$ of q_{n}. We denote by $\tilde{\alpha}$ the quasi-free action of G on \mathcal{E}_{n} that is a lift of α. By replacing l_{n} with l_{n}^{G} given
by

$$
l_{n}^{G}(x)=\int_{G} \tilde{\alpha}_{g} \circ l_{n} \circ \alpha_{g^{-1}}(x) d g, \quad x \in \mathcal{O}_{n},
$$

we see that (8.1) is a semisplit exact sequence of $G-C^{*}$-algebras. Thus it induces the following 6-term exact sequence of $K K_{G}$-groups (see [1, p. 208]):

Let H_{n} be the n-dimensional Hilbert space \boldsymbol{C}^{n} with the canonical orthonormal basis $\left\{e_{i}\right\}_{i=1}^{n}$. We regard H_{n} as a \boldsymbol{C} - \boldsymbol{C} bimodule with a G-action given by π_{α}. We denote by \mathcal{F}_{n} the full Fock space

$$
\mathcal{F}_{n}=\bigoplus_{m=0}^{\infty} H_{n}^{\otimes m}
$$

with a unitary representation $\pi_{\mathcal{F}_{n}}$ of G coming from π_{α}. Identifying t_{i} with the creation operator of e_{i} acting on \mathcal{F}_{n}, we regard \mathcal{E}_{n} as a C^{*}-subalgebra of $\boldsymbol{B}\left(\mathcal{F}_{n}\right)$. With this identification, we have $J_{n}=\boldsymbol{K}\left(\mathcal{F}_{n}\right)$, and p_{n} is the projection onto $H_{n}^{\otimes 0}$. We regard \mathcal{F}_{n} as $J_{n}-\boldsymbol{C}$ bimodule, which gives the $K K_{G}$-equivalence of J_{n} and \boldsymbol{C}. Pimsner's arguments [16, Theorem 4.4, Theorem 4.9] yield the following 6 -term exact sequence:

where $\left[H_{n}\right] \hat{\otimes}$ denotes the left multiplication of the class $\left[H_{n}\right] \in K K_{G}(\boldsymbol{C}, \boldsymbol{C})$. Note that the identification of $K K_{G}^{*}\left(J_{n}, B\right)$ and $K K_{G}^{*}(\boldsymbol{C}, B)$ is given by $\left[\mathcal{F}_{n}\right] \in K K_{G}\left(J_{n}, \boldsymbol{C}\right)$, and so $\delta^{\prime}=\delta \circ\left(\mathcal{F}_{n} \hat{\otimes}\right)$.

With the Green-Julg isomorphism $h_{*}: K K_{G}^{*}(\boldsymbol{C}, B) \rightarrow K_{*}\left(B \rtimes_{\beta} G\right)$ ([1, Theorem 11.7.1]), we have the commutative diagram

and so we get the following 6-term exact sequence

with $\delta^{\prime \prime}=\delta \circ\left(\left[\mathcal{F}_{n}\right] \hat{\otimes}\right) \circ h_{*}^{-1}$. Now the proof of the equivalence of (4) and (5) in Theorem 3.1 follows from the next theorem.

THEOREM 8.1. With the above notation, we have

$$
\delta^{\prime \prime}\left(K_{1}\left(j_{\beta}\right)\left(\left[u_{\psi, \varphi}\right]\right)\right)=K K_{G}(\psi)-K K_{G}(\varphi)
$$

The proof of Theorem 8.1 follows from a standard and rather tedious computation below. In what follows, we freely use the notation in Blackadar's book [1] for $K K$-theory. We regard $\boldsymbol{C}_{1}, C=C_{0}[0,1)$, and $S=C_{0}(0,1)$ as $G-C^{*}$-algebras with trivial G-actions.
[1, Theorem 19.5.7] shows that δ^{\prime} is given by the left multiplication of the class $\delta_{q_{n}}$ of the extension (8.1) in $K K_{G}^{1}\left(\mathcal{O}_{n}, \boldsymbol{C}\right)=K K_{G}\left(\mathcal{O}_{n}, \boldsymbol{C}_{1}\right)$, whose $\operatorname{Kasparov}$ module $\left(E_{1}, \phi_{1}, F_{1}\right) \in$ $\boldsymbol{E}_{G}\left(\mathcal{O}_{n}, \boldsymbol{C}_{1}\right)$ is given as follows. By the Stinespring dilation of the G-equivariant lifting l_{n}^{G} : $\mathcal{O}_{n} \rightarrow \mathcal{E}_{n} \subset \boldsymbol{B}\left(\mathcal{F}_{n}\right)$, we get a Hilbert space H including \mathcal{F}_{n}, with a unitary representation π_{H} of G extending $\pi_{\mathcal{F}_{n}}$, satisfying the following condition: there is a unital G-homomorphism $\Phi: \mathcal{O}_{n} \rightarrow \boldsymbol{B}(H)$ such that if P is the projection from H onto \mathcal{F}_{n}, then $l_{n}^{G}(x)=P \Phi(x) P$ for any $x \in \mathcal{O}_{n}$. Now we have

$$
\left(E_{1}, \phi_{1}, F_{1}\right)=\left(H \hat{\otimes} C_{1}, \Phi \hat{\otimes} 1,(2 P-1) \hat{\otimes} \varepsilon\right)
$$

where $\varepsilon=1 \oplus-1$ is the generator of $\boldsymbol{C}_{1} \cong C^{*}\left(\boldsymbol{Z}_{2}\right)$.
Let $z(t)=e^{2 \pi i t}$, and let θ be the element in $\operatorname{Hom}_{G}(S, B)$ determined by $\theta(z-1)=$ $u_{\psi, \varphi}-1$. Then $h_{1}^{-1} \circ K_{1}\left(j_{\beta}\right)\left(\left[u_{\psi, \varphi}\right]\right)$ is given by

$$
K K_{G}(\theta) \in K K_{G}(S, B) \cong K K_{G}\left(\boldsymbol{C}_{1}, B\right)
$$

In order to compute the Kasparov product of $\delta_{q_{n}} \in K K_{G}\left(\mathcal{O}_{n}, \boldsymbol{C}_{1}\right)$ and $K K_{G}(\theta) \in$ $K K_{G}(S, B)$, we need to identify $K K_{G}(S, B)$ with $K K_{G}\left(\boldsymbol{C}_{1}, B\right)$ explicitly, and we need the invertible element $\boldsymbol{x} \in K K_{G}\left(\boldsymbol{C}_{1}, S\right)$ defined in [1, Section 19.2]. By the extension

$$
0 \longrightarrow C \longrightarrow C \longrightarrow 0
$$

we get an invertible element in $K K_{G}\left(\boldsymbol{C}, S \hat{\otimes} \boldsymbol{C}_{1}\right)$. Then \boldsymbol{x} is the image of this element by the isomorphism

$$
\begin{aligned}
& { }^{\tau} \boldsymbol{C}_{1}: K K_{G}\left(\boldsymbol{C}, S \hat{\otimes} \boldsymbol{C}_{1}\right) \rightarrow K K_{G}\left(\boldsymbol{C} \hat{\otimes} \boldsymbol{C}_{1}, S \hat{\otimes} \boldsymbol{C}_{1} \hat{\otimes} \boldsymbol{C}_{1}\right) \\
& =K K_{G}\left(\boldsymbol{C}_{1}, S \hat{\otimes} M_{2}(\boldsymbol{C})\right)=K K_{G}\left(\boldsymbol{C}_{1}, S\right)
\end{aligned}
$$

For the identification of $\boldsymbol{C}_{1} \hat{\otimes} \boldsymbol{C}_{1}$ and $M_{2}(\boldsymbol{C})$ with standard even grading, we follow the convention in the proof of [1, Theorem 18.10.12] (our computation really depends on it). A
direct computation shows that \boldsymbol{x} is given by the Kasparov module $\left(E_{2}, \phi_{2}, F_{2}\right) \in \boldsymbol{E}_{G}\left(\boldsymbol{C}_{1}, S\right)$ with $E_{2}=\boldsymbol{C}^{2} \hat{\otimes}(S \oplus S)$,

$$
\begin{gathered}
F_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
\phi_{2}(1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes Q, \quad \phi_{2}(\varepsilon)=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \otimes Q,
\end{gathered}
$$

where the projection $Q \in M_{2}(M(S))$ is given by

$$
Q(t)=\left(\begin{array}{cc}
1-t & \sqrt{t(1-t)} \\
\sqrt{t(1-t)} & t
\end{array}\right)
$$

and the grading of E_{2} is given by

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

With this \boldsymbol{x}, we have

$$
\delta^{\prime \prime}\left(K_{1}\left(j_{\beta}\right)\left(\left[u_{\psi, \varphi}\right]\right)\right)=\delta_{q_{n}} \hat{\otimes}_{\boldsymbol{C}_{1}} \boldsymbol{x} \hat{\otimes}_{S} K K_{G}(\theta)=\theta_{*}\left(\delta_{q_{n}} \hat{\otimes}_{\boldsymbol{C}_{1}} \boldsymbol{x}\right),
$$

and so our task now is to compute $\delta_{q_{n}} \hat{\otimes}_{C_{1}} \boldsymbol{x}$ explicitly.
Lemma 8.2. The class $\delta_{q_{n}} \hat{\otimes}_{C_{1}} \boldsymbol{x} \in K K_{G}\left(\mathcal{O}_{n}, S\right)$ is given by the quasi-homomorphism $\rho=\left(\rho^{(0)}, \rho^{(1)}\right)$ from \mathcal{O}_{n} to S such that $\rho^{(0)}$ and $\rho^{(1)}$ are unital homomorphisms from \mathcal{O}_{n} to $\boldsymbol{B}(H \hat{\otimes} S)$ with $\rho^{(0)}(x)=\Phi(x) \hat{\otimes} 1$ and

$$
\rho^{(1)}(x)=(P \hat{\otimes} 1+(1-P) \hat{\otimes} z)(\Phi(x) \hat{\otimes} 1)(P \hat{\otimes} 1+(1-P) \hat{\otimes} z)^{*} .
$$

Proof. We regard $H \hat{\otimes} S$ as an $\mathcal{O}_{n}-S$ bimodule with trivial grading, and we set $E=$ $(H \hat{\otimes} S) \oplus(H \hat{\otimes} S)^{\text {op }}$. We denote by $\Psi: S \rightarrow Q(S \oplus S)$ a Hilbert S-module isomorphism given by

$$
\Psi(f)(t)=(\sqrt{1-t} f(t), \sqrt{t} f(t)) .
$$

Then $E_{1} \hat{\otimes}_{C_{1}} E_{2}$ is identified with E via the identification of $\left(\xi_{1} \hat{\otimes} f_{1}, \xi_{2} \hat{\otimes} f_{2}\right) \in E$ and

$$
\xi_{1} \hat{\otimes} 1 \hat{\otimes}_{\boldsymbol{C}_{1}}(1,0) \hat{\otimes} \Psi\left(f_{1}\right)+\xi_{2} \hat{\otimes} 1 \hat{\otimes}_{\boldsymbol{C}_{1}}(0,1) \hat{\otimes} \Psi\left(f_{2}\right) \in H \hat{\otimes} \boldsymbol{C}_{1} \hat{\otimes}_{\boldsymbol{C}_{1}} \boldsymbol{C}^{2} \hat{\otimes}(S \oplus S)
$$

We claim that $\delta_{q_{n}} \hat{\otimes}_{\boldsymbol{C}_{1}} \boldsymbol{x}$ is given by the Kasparov module $(E, \phi, F) \in \boldsymbol{E}_{G}\left(\mathcal{O}_{n}, S\right)$ with

$$
\begin{gathered}
\phi(x)=\operatorname{diag}(\Phi(x) \otimes 1, \Phi(x) \otimes 1), \\
F=\left(\begin{array}{cc}
0 & 1 \hat{\otimes} c \\
1 \hat{\otimes} c & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -i(2 P-1) \hat{\otimes} s \\
i(2 P-1) \hat{\otimes} s & 0
\end{array}\right),
\end{gathered}
$$

where $c(t)=\cos (\pi t), s(t)=\sin (\pi t)$. Indeed, it is easy to show that (E, ϕ, F) is a Kasparov module, and the graded commutator $\left[F_{1} \hat{\otimes} 1_{E_{2}}, F\right]$ is positive. We show that F is a F_{2}-connection (see [1, Definition 18.3.1] for the definition). Let $\xi \in H, x=\left(x_{1}, x_{2}\right) \in \boldsymbol{C}^{2}$, and $f=\left(f_{1}, f_{2}\right) \in S \oplus S$. Then we have

$$
\begin{gathered}
T_{\xi \hat{\otimes} 1}(x \hat{\otimes} f)=\left(x_{1} \xi \hat{\otimes}\left(\sqrt{1-t} f_{1}+\sqrt{t} f_{2}\right), x_{2} \xi \hat{\otimes}\left(\sqrt{1-t} f_{1}+\sqrt{t} f_{2}\right)\right) \in E, \\
T_{\xi \hat{\otimes} \varepsilon}(x \hat{\otimes} f)=\left(-i x_{2} \xi \hat{\otimes}\left(\sqrt{1-t} f_{1}+\sqrt{t} f_{2}\right), i x_{1} \xi \hat{\otimes}\left(\sqrt{1-t} f_{1}+\sqrt{t} f_{2}\right)\right) \in E .
\end{gathered}
$$

A direct computation shows that $T_{\xi \hat{\otimes} 1} \circ F_{2}-F \circ T_{\xi \hat{\otimes} 1}$ and $T_{\xi \hat{\otimes} \varepsilon} \circ F_{2}+F \circ T_{\xi \hat{\otimes} \varepsilon}$ are in $\boldsymbol{K}\left(E_{2}, E\right)$. Since F_{2} and F are self-adjoint, we see that F is an F_{2}-connection. Therefore (E, ϕ, F) gives the Kasparov product $\delta_{q_{n}} \hat{\otimes}_{\boldsymbol{C}_{1}} \boldsymbol{x}$.

Note that F satisfies $F=F^{*}, F^{2}=1$. Let

$$
U=\left(\begin{array}{cc}
1 \otimes 1 & 0 \\
0 & 1 \hat{\otimes} c+i(2 P-1) \hat{\otimes} s
\end{array}\right)
$$

which is a unitary in $\boldsymbol{B}(E)$. Then we have

$$
\begin{aligned}
U^{*} F U & =\left(\begin{array}{cc}
0 & 1 \otimes 1 \\
1 \otimes 1 & 0
\end{array}\right), \\
U^{*} \phi(x) U & =\left(\begin{array}{cc}
\rho^{(0)}(x) & 0 \\
0 & \rho^{(1)}(x)
\end{array}\right),
\end{aligned}
$$

which finish the proof.
To continue the proof, we need more detailed information on the homomorphism Φ.
Lemma 8.3. Let the notation be as above.
(1) We can choose Φ so that it has the following form with respect to the orthogonal decomposition $H=\mathcal{F}_{n} \oplus \mathcal{F}_{n}^{\perp}$:

$$
\Phi\left(s_{i}\right)=\left(\begin{array}{cc}
t_{i} & r_{i} \\
0 & v_{i}
\end{array}\right)
$$

(2) For Φ as in (1), the quasi-homomorphism $\rho=\left(\rho^{(0)}, \rho^{(1)}\right)$ in Lemma 8.2 is expressed as

$$
\rho^{(0)}\left(s_{i}\right)=\left(\begin{array}{cc}
t_{i} \hat{\otimes} 1 & r_{i} \hat{\otimes} 1 \\
0 & v_{i} \hat{\otimes} 1
\end{array}\right), \quad \rho^{(1)}\left(s_{i}\right)=\left(\begin{array}{cc}
t_{i} \hat{\otimes} 1 & r_{i} \hat{\otimes} z^{*} \\
0 & v_{i} \hat{\otimes} 1
\end{array}\right) .
$$

In particular, we have

$$
\sum_{i=1}^{n} \rho^{(1)}\left(s_{i}\right) \rho^{(0)}\left(s_{i}\right)^{*}=\left(1_{H}-p_{n}\right) \hat{\otimes} 1+p_{n} \hat{\otimes} z^{*}
$$

Proof. (1) We first construct $l_{n}^{G}: \mathcal{O}_{n} \rightarrow \mathcal{E}_{n}$ explicitly. Ignoring the G-actions, we can find a representation Φ^{\prime} of \mathcal{O}_{n} on $\mathcal{F}_{n} \oplus \mathcal{F}_{n}$ of the form

$$
\begin{gathered}
\Phi^{\prime}\left(s_{1}\right)=\left(\begin{array}{cc}
t_{1} & p_{n} \\
0 & w_{1}
\end{array}\right), \\
\Phi^{\prime}\left(s_{i}\right)=\left(\begin{array}{cc}
t_{i} & 0 \\
0 & w_{i}
\end{array}\right), \quad 2 \leq i \leq n .
\end{gathered}
$$

Using Φ^{\prime}, we define l_{n} by

$$
\left(\begin{array}{cc}
l_{n}(x) & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \Phi^{\prime}(x)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and l_{n}^{G} by $l_{n}^{G}(x)=\int_{G} \tilde{\alpha}_{g^{-1}} \circ l_{n} \circ \alpha_{g}(x) d g$. We have $l_{n}^{G}\left(s_{i}\right)=t_{i}$ for all $1 \leq i \leq n$ by construction.

We show that the Stinespring dilation (Φ, H) of this l_{n}^{G} has the desired property. Recall that H is the closure of the algebraic tensor product $\mathcal{O}_{n} \odot \mathcal{F}_{n}$ with respect to the inner product

$$
\langle x \odot \xi, y \odot \eta\rangle=\left\langle l_{n}^{G}\left(y^{*} x\right) \xi, \eta\right\rangle,
$$

and Φ is given by the left multiplication of \mathcal{O}_{n}. The space \mathcal{F}_{n} is identified with $1 \odot \mathcal{F}_{n}$, and the unitary representation π_{H} is given by $\pi_{H}(g)(x \odot \xi)=\alpha_{g}(x) \odot \pi_{\mathcal{F}_{n}}(g) \xi$. To show that Φ has the desired property, it suffices to show $\left\|s_{i} \odot \xi-1 \odot t_{i} \xi\right\|=0$ for all $\xi \in \mathcal{F}_{n}$. Indeed,

$$
\begin{aligned}
& \left\|s_{i} \odot \xi-1 \odot t_{i} \xi\right\|^{2} \\
& \quad=\left\langle l_{n}^{G}\left(s_{i}^{*} s_{i}\right) \xi, \xi\right\rangle-\left\langle l_{n}^{G}\left(s_{i}\right) \xi, t_{i} \xi\right\rangle-\left\langle l_{n}^{G}\left(s_{i}^{*}\right) t_{i} \xi, \xi\right\rangle+\left\langle t_{i} \xi, t_{i} \xi\right\rangle=0,
\end{aligned}
$$

and we get the statement.
(2) The first statement follows from (1) and Lemma 8.2. The Cuntz algebra relation implies

$$
\begin{aligned}
& p_{n} r_{i}=r_{i}, \quad r_{j}^{*} r_{i}+v_{j}^{*} v_{i}=\delta_{i, j}, \\
& \sum_{i=1}^{n} r_{i} r_{i}^{*}=p_{n}, \quad \sum_{i=1}^{n} r_{i} v_{i}^{*}=0, \quad \sum_{i=1}^{n} v_{i} v_{i}^{*}=1 .
\end{aligned}
$$

These relations and the first statement imply the second statement.
Proof of Theorem 8.1. Thanks to the previous lemma, we may assume that the class $\theta_{*}\left(\delta_{q_{n}} \hat{\otimes}_{\boldsymbol{C}_{1}} \boldsymbol{x}\right) \in K K_{G}\left(\mathcal{O}_{n}, B\right)$ is given by a quasi-homomorphism $\sigma=\left(\sigma^{(0)}, \sigma^{(1)}\right)$ from \mathcal{O}_{n} to B of the form

$$
\sigma^{(0)}\left(s_{i}\right)=\left(\begin{array}{cc}
t_{i} \hat{\otimes} 1 & r_{i} \hat{\otimes} 1 \\
0 & v_{i} \hat{\otimes} 1
\end{array}\right), \quad \sigma^{(1)}\left(s_{i}\right)=\left(\begin{array}{cc}
t_{i} \hat{\otimes} 1 & r_{i} \hat{\otimes} u_{\psi, \varphi}^{*} \\
0 & v_{i} \hat{\otimes} 1
\end{array}\right),
$$

and they satisfy

$$
\sum_{i=1}^{n} \sigma^{(1)}\left(s_{i}\right) \sigma^{(0)}\left(s_{i}\right)^{*}=\left(1_{H}-p_{n}\right) \hat{\otimes} 1+p_{n} \hat{\otimes} u_{\psi, \varphi}^{*}
$$

We set $\tilde{\sigma}^{(0)}=\sigma^{(0)} \oplus \varphi, \tilde{\sigma}^{(1)}=\sigma^{(1)} \oplus \psi$, which are unital homomorphisms from \mathcal{O}_{n} to $\boldsymbol{B}((H \oplus \boldsymbol{C}) \hat{\otimes} B)$. Then $\tilde{\sigma}=\left(\tilde{\sigma}^{(0)}, \tilde{\sigma}^{(1)}\right)$ is a quasi-homomorphism with

$$
\sum_{i=1}^{n} \tilde{\sigma}^{(1)}\left(s_{i}\right) \tilde{\sigma}^{(0)}\left(s_{i}\right)^{*}=\left(\left(1_{H}-p_{n}\right) \hat{\otimes} 1+p_{n} \hat{\otimes} u_{\psi, \varphi}^{*}\right) \oplus\left(1_{C} \hat{\otimes} u_{\psi, \varphi}\right),
$$

which is denoted by u. Then we can construct a norm continuous path $\left\{u_{t}\right\}_{t \in[0,1]}$ of unitaries in $\boldsymbol{C} 1+\boldsymbol{K}(H \oplus \boldsymbol{C})^{G} \otimes B^{G}$ satisfying $u(0)=u$ and $u(1)=1$. Let $\tilde{\sigma}_{t}^{(0)}=\tilde{\sigma}^{(0)}$, and let $\tilde{\sigma}_{t}^{(1)}$ be the homomorphism from \mathcal{O}_{n} to $\boldsymbol{B}((H \oplus \boldsymbol{C}) \hat{\otimes} B)$ determined by $\tilde{\sigma}_{t}^{(1)}\left(s_{i}\right)=u(t) \tilde{\sigma}_{t}^{(0)}\left(s_{i}\right)$. Then $\tilde{\sigma}_{t}=\left(\tilde{\sigma}_{t}^{(0)}, \tilde{\sigma}_{t}^{(1)}\right)$ gives a homotopy of quasi-homomorphisms connecting $\tilde{\sigma}$ and $\tilde{\sigma}_{1}=$ $\left(\tilde{\sigma}^{(0)}, \tilde{\sigma}^{(0)}\right)$. This shows $[\tilde{\sigma}]=0$ in $K K_{G}\left(\mathcal{O}_{n}, B\right)$, and so $\theta_{*}\left(\delta_{q_{n}} \hat{\otimes}_{\boldsymbol{C}_{1}} \boldsymbol{x}\right)=K K_{G}(\psi)-$ $K K_{G}(\varphi)$.

REMARK 8.4. The above argument shows that there exists a short exact sequence

$$
0 \rightarrow \operatorname{Coker}\left(1-K_{1-*}\left(\hat{\beta}_{\pi_{\alpha}}\right)\right) \rightarrow K K_{G}^{*}\left(\mathcal{O}_{n}, B\right) \rightarrow \operatorname{Ker}\left(1-K_{*}\left(\hat{\beta}_{\pi_{\alpha}}\right)\right) \rightarrow 0 .
$$

Remark 8.5. From (8.1), we obtain the 6 -term exact sequence (see [16, Theorem 4.9]),

In particular, we have the following exact sequence by setting $B=C$:

$$
\begin{array}{ccc}
0 & K_{1}\left(\mathcal{O}_{n} \rtimes_{\alpha} G\right) \longrightarrow \\
K_{0}^{G}(\boldsymbol{C}) \xrightarrow{1-\hat{\otimes}\left[H_{n}\right]} & K_{0}^{G}(\boldsymbol{C}) \longrightarrow K_{0}\left(\mathcal{O}_{n} \rtimes_{\alpha} G\right) \longrightarrow 0
\end{array}
$$

Let $\iota_{\alpha}: C^{*}(G) \rightarrow \mathcal{O}_{n} \rtimes_{\alpha} G$ be the embedding map, let $\left(\pi, H_{\pi}\right)$ be an irreducible representation of G, and let

$$
e(\pi)_{i j}=\operatorname{dim} \pi \int_{G} \overline{\pi(g)_{i j}} \lambda_{g} d g \in C^{*}(G)
$$

Then the canonical isomorphism from $K_{0}^{G}(\boldsymbol{C})$ onto $K_{0}\left(C^{*}(G)\right)$ sends the class of $\left(\pi, H_{\pi}\right)$ in $K_{0}^{G}(\boldsymbol{C})$ to $\left[e(\bar{\pi})_{11}\right] \in K_{0}\left(C^{*}(G)\right)$. Thus we have the exact sequence

$$
0 \longrightarrow K_{1}\left(\mathcal{O}_{n} \rtimes_{\alpha} G\right) \longrightarrow \boldsymbol{Z} \hat{G} \xrightarrow{1-\left[\bar{\pi}_{\alpha}\right]} \boldsymbol{Z} \hat{G} \longrightarrow K_{0}\left(\mathcal{O}_{n} \rtimes_{\alpha} G\right) \longrightarrow 0
$$

where $[\pi] \in Z \hat{G}$ is sent to $K_{0}\left(\iota_{\alpha}\right)\left(\left[e(\pi)_{11}\right]\right) \in K_{0}\left(\mathcal{O}_{n} \rtimes G\right)$. With the identification of $K_{*}\left(\mathcal{O}_{n} \rtimes_{\alpha} G\right)$ and $K_{*}\left(\mathcal{O}_{n}^{G}\right)$, this recovers the formula of $K_{*}\left(\mathcal{O}_{n}^{G}\right)$ obtained in [11], [14].

References

[1] B. Blackadar, K-theory for operator algebras, Second edition, Mathematical Sciences Research Institute Publications, 5. Cambridge University Press, Cambridge, 1998.
[2] J. Cuntz and D. E. Evans, Some remarks on the C^{*}-algebras associated with certain topological Markov chains, Math. Scand. 48 (1981), 235-240.
[3] P. Goldstein, Classification of canonical \boldsymbol{Z}_{2}-actions on \mathcal{O}_{∞}, preprint, 1997.
[4] M. IzUMI, Finite group actions on C^{*}-algebras with the Rohlin property. I, Duke Math. J. 122 (2004), 233280.
[5] M. IzUMI, Finite group actions on C^{*}-algebras with the Rohlin property. II, Adv. Math. 184 (2004), 119-160.
[6] M. Izumi and H. Matui, \boldsymbol{Z}^{2}-actions on Kirchberg algebras, Adv. Math. 224 (2010), 355-400.
[7] E. Kirchberg and N. C. Phillips, Embedding of exact C^{*}-algebras in the Cuntz algebra \mathcal{O}_{2}, J. Reine Angew. Math. 525 (2000), 17-53.
[8] A. Kishimoto, Outer automorphisms and reduced crossed products of simple C^{*}-algebras, Comm. Math. Phys. 81 (1981), 429-435.
[9] A. Kishimoto, Automorphisms of AT algebras with the Rohlin property, J. Operator Theory 40 (1998), 277-294.
[10] HUA Xin Lin and N. C. Phillips, Approximate unitary equivalence of homomorphisms from \mathcal{O}_{∞}, J. Reine Angew. Math. 464 (1995), 173-186.
[11] M. H. Mann, I. Raeburn and C. E. Sutherland, Representations of finite groups and Cuntz-Krieger algebras, Bull. Austral. Math. Soc. 46 (1992), 225-243.
[12] H. Matui, \boldsymbol{Z}^{N}-actions on UHF algebras of infinite type, J. Reine Angew. Math. 657 (2011), 225-244.
[13] H. NAKAMURA, Aperiodic automorphisms of nuclear purely infinite simple C^{*}-algebras, Ergodic Theory Dynam. Systems 20 (2000), 1749-1765.
[14] D. Pask and I. Raeburn, On the $K K$-theory of Cuntz-Krieger algebras, Publ. Res. Inst. Math. Sci. 32 (1996), 415-443.
[15] N. C. PhilLips, A classification theorem for nuclear purely infinite simple C^{*}-algebras, Doc. Math. 5 (2000), 49-114.
[16] M. V. PIMSNER, A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, Free probability theory (Waterloo, ON, 1995), 189-212, Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997.
[17] M. RøRDAM, Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math. 440 (1993), 175200.
[18] M. RøRDAM, Classification of Nuclear C^{*}-algebras, Entropy in Operator Algebras, Operator Algebras and Non-commutative Geometry VII, Encyclopedia of Mathematical Sciences, Springer, 2001.

Department of Mathematics
University of Zagreb
41000 Zagreb
Croatia
E-mail address: payo@math.hr

Department of Mathematics
Graduate School of Science Kyoto University
SAKYO-KU, KYOTO 606-8502
Japan

E-mail address: izumi@math.kyoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 46L55; Secondary 46L35, 46L80.
 Key words and phrases. Cuntz algebras, Kirchberg algebras, finite group actions, quasi-free actions.
 Supported in part by the Grant-in-Aid for Scientific Research (B) 22340032, JSPS.

