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Abstract. A root system R of rank n defines an n-dimensional smooth projective toric
variety X(R) associated with its fan of Weyl chambers. We give a simple description of the
functor of X(R) in terms of the root system R and apply this result in the case of root systems
of type A to give a new proof of the fact that the toric variety X(An) is the fine moduli space
Ln+1 of stable (n + 1)-pointed chains of projective lines investigated by Losev and Manin.

Introduction. Let R ⊂ E be a root system of rank n in an n-dimensional Euclidean
space E and let M(R) ⊂ E be its root lattice. The toric variety X(R) corresponding to the
root system R is the smooth projective toric variety associated with the fan of Weyl chambers
Σ(R) in the dual space E∗ with respect to the lattice N(R) ⊂ E∗ dual to the root lattice
M(R). It was shown by Klyachko in [17] (see also [18]) that if G is a semisimple algebraic
group corresponding to R and B is a Borel subgroup in G then the toric variety X(R) can
be characterised as the closure of a general orbit of a maximal torus T ⊂ G acting on the
flag variety G/B. The natural representation of the Weyl group W(R) on the cohomology of
X(R) has been studied by Procesi [21], Dolgachev-Lunts [11], and Stembridge [23].

The present paper is inspired by a paper of Losev and Manin [20], in which fine moduli
spaces Ln of stable n-pointed chains of projective lines were constructed and it was observed
that the Losev-Manin moduli space Ln is the toric variety associated with the polytope called
the (n − 1)-dimensional permutohedron studied by Kapranov [16, (4.3)]. These toric vari-
eties form the An-family of the toric varieties associated with root systems: the Losev-Manin
moduli space Ln+1 coincides with the toric variety X(An). Moreover, in [20] it was shown
that the homology groups of Ln+1 (n ≥ 0) together with the natural action of the Weyl group
W(An) ∼= Sn+1 are closely related to the so called commutativity equations (see also the
recent paper of Shadrin and Zvonkine [22]). We remark that these varieties are special ex-
amples of toric varieties obtained as equivariant blowups of P n considered recently by Bloch
and Kreimer [5, §3].

The Losev-Manin moduli space Ln is an equivariant compactification of a maximal torus
T ∼= (C∗)n/C∗ ⊂ PGL(n,C), where the torus T can be identified as the moduli space of
n points in P 1 \ {0,∞} up to automorphisms of P 1 fixing 0 and ∞. The boundary com-
ponents of Ln parametrise certain types of n-pointed reducible rational curves. There are

2000 Mathematics Subject Classification. Primary 14M25; Secondary 14D22, 14H10.
Key words and phrases. Toric varieties, root systems, Losev-Manin moduli spaces.
∗The second author was supported by DFG-Schwerpunktprogramm 1388 Darstellungstheorie.



582 V. BATYREV AND M. BLUME

some similarities and relations between the Losev-Manin moduli spaces and the well-known
Grothendieck-Knudsen moduli spaces. The Losev-Manin moduli spaces Ln parametrise iso-
morphism classes of chains of projective lines with two poles and n marked points that may
coincide, whereas the Grothendieck-Knudsen moduli spaces M0,n+2 parametrise isomor-
phism classes of trees of projective lines with n + 2 marked points that may not coincide.
They are related by surjective birational morphisms M0,n+2 → Ln dependent on the choice
of two different elements i, j ∈ {1, . . . , n + 2}. Both form a particular case of moduli spaces
of weighted pointed stable curves as introduced by Hassett [15].

Our main objective was to generalise the result of Losev and Manin to other root systems
R. This problem was mentioned by Losev and Manin in the introduction of their paper [20].
In [4] we present results in this direction for R a classical root system.

To investigate interpretations of the toric varieties X(R) associated with root systems
as moduli spaces, it is natural first to investigate their functors of points. The functor of
toric varieties in general was described by Mumford in [1, Ch. I]; a different description was
proposed by Cox [8] for smooth toric varieties. In the present paper we propose another
description of the functor of the toric varieties X(R) for root systems R, which is based on
projection maps X(R) → P 1 and done with a view toward interpretations of these varieties
as moduli spaces of pointed trees of projective lines.

OUTLINE OF THE PAPER. In the first section of this paper, we derive some general
results about the toric varieties X(R) associated with arbitrary root systems R. Important are
functorial properties with respect to maps of root systems. For example, any pair of opposite
roots {±α} ⊂ R, i.e. a root subsystem of type A1, gives rise to a projection X(R) → X(A1) ∼=
P 1. Morphisms constructed this way appear in many variants in the following. As a main
result, we give a description of the functor of the toric varieties X(R) in terms of the root
system R. We use the property of the spaces X(R) that morphisms Y → X(R) are uniquely
determined by their compositions with all the projection maps X(R) → P 1 given by the root
subsystems {±α} ⊂ R of type A1. Further, the relations between these morphisms are given
by the root subsystems of type A2 in R.

For the rest of the present paper, we are concerned with the toric varieties X(An) as-
sociated with root systems of type A and their interpretation as Losev-Manin moduli spaces
Ln+1.

We consider the toric varieties X(An) in Section 2. We review some results concern-
ing the (co)homology of X(An), we give a basis for the homology and, in a simple way,
derive the relations between torus invariant cycles used in [20, Section 3]. Further, we com-
ment on primitive collections and relations of the toric variety X(An) and apply this to show
that the anticanonical class of X(An) is a semiample divisor. This implies that X(An) is
an almost Fano variety. The anticanonical divisor defines a birational toric morphism to
the Gorenstein toric Fano variety P ∆(An) corresponding to the reflexive polytope ∆(An) =
(convex hull of all roots of An).
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In Section 3, we give a new proof of the fact that the toric varieties X(An) are the fine
moduli spaces Ln+1 of (n + 1)-pointed chains of projective lines introduced by Losev and
Manin. We use the functorial properties of toric varieties associated with root systems devel-
oped in Subsection 1.2 to construct the universal curve X(An+1) → X(An) in Subsection
3.2. Our result about the functor of X(R) (Subsection 1.3) is used in the case of root systems
of type A in Subsection 3.3 to show that the functor of X(An) is isomorphic to the moduli
functor of (n + 1)-pointed chains of projective lines. This provides an alternative proof of
the fact that this moduli problem admits a fine moduli space Ln+1 and furthermore shows
that it coincides with the toric variety X(An). We will see that the data describing morphisms
Y → X(An) correspond in a natural way to parameters in equations describing stable (n+1)-
pointed chains of projective lines over Y embedded in (P 1

Y )n+1.

1. Toric varieties associated with root systems and their functor.

1.1. The toric variety X(R). Let R be a (reduced and crystallographic) root system
in a Euclidean space E. With R we associate a toric variety X(R) ([21], [11]).

Let M(R) be the root lattice of R, i.e. the lattice in E generated by the roots of R,
and let N(R) be the lattice dual to M(R). For any set of simple roots S, we have a cone
σS := S∨ = {v ∈ N(R)Q ; 〈u, v〉 ≥ 0 for all u ∈ S} in the vector space N(R)Q, the (closed)
Weyl chamber corresponding to S.

DEFINITION 1.1. We define Σ(R) to be the fan in the lattice N(R) that consists of
the Weyl chambers of the root system R and all their faces. Let X(R) be the toric variety
associated with the fan Σ(R).

For v ∈ N(R)Q let σv ∈ Σ(R) be the cone minimal in Σ(R) containing v. Equivalently,
σv is the cone dual to the roots in v∨ = {u ∈ M(R)Q ; 〈u, v〉 ≥ 0}, i.e. σv = (v∨ ∩ R)∨. In
particular, for a general choice of v this is the cone σS dual to the set of simple roots S ⊂ R of
the set of positive roots v∨ ∩R defined by v, i.e. the Weyl chamber for S. The Weyl chambers
cover N(R)Q, so the fan Σ(R) is complete. Note that each set of simple roots forms a basis of
the root lattice M(R) and σ∨

S ∩M(R) = 〈S〉 is the submonoid of M(R) generated by S. X(R)

is covered by the open subvarieties US := Spec Z[σ∨
S ∩ M(R)] = Spec Z[〈S〉] ∼= Adim M(R)

for all the different sets of simple roots S.
The toric variety X(R) is smooth and projective. It carries in a natural way the action

of the Weyl group W(R) of the root system R. The Weyl group permutes the sets of simple
roots and this way it acts simply transitive on the set of Weyl chambers. The corresponding
action on X(R) permutes the open sets US , it is a simply transitive action on the set of torus
fixed points of X(R).

The root lattice M(R) of R is the lattice of characters of the dense torus T (R) in X(R).
This way, any element u ∈ M(R) determines a character xu of T (R), i.e. a rational function
on X(R).

EXAMPLE 1.2. The toric variety X(A1) is isomorphic to P 1.
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REMARK 1.3. For two root systems R1, R2 there is an isomorphism of fans Σ(R1 ×
R2) ∼= Σ(R1) × Σ(R2) and thus an isomorphism of toric varieties X(R1 × R2) ∼= X(R1) ×
X(R2).

1.2. Morphisms for maps of root systems and closures of torus orbits. First, we
show that maps between root systems coming from linear maps of the ambient vector spaces
induce toric morphisms of the associated toric varieties.

PROPOSITION 1.4. Let R,R′ be root systems in Euclidean spaces E,E′. Then a map
of vector spaces µ : E′ → E such that µ(R′) ⊂ {aα ; α ∈ R, a ∈ Z} induces a toric
morphism of the associated toric varieties X(µ) : X(R) → X(R′).

PROOF. The map of vector spaces µ : E′ → E induces a map of the root lattices
µ : M(R′) → M(R) because µ(R′) ⊂ {aα ; α ∈ R, a ∈ Z}. Let ν : N(R) → N(R′) be
the dual map of the dual lattices.

We have to show that each cone of Σ(R) is mapped by ν : N(R)Q → N(R′)Q into
a cone of Σ(R′). Let v ∈ N(R)Q, we show that ν(σv) ⊆ σν(v) (where as above σv =
(v∨ ∩ R)∨ is the cone minimal in Σ(R) containing v; in the same way the cone σν(v) of
Σ(R′) is defined). It suffices to show that µ(ν(v)∨ ∩ R′) ⊆ 〈v∨ ∩ R〉. This is true, since
µ(R′) ⊂ {aα ; α ∈ R, a ∈ Z} by assumption and µ(ν(v)∨) ⊆ v∨ because 〈u′, ν(v)〉 =
〈µ(u′), v〉 for any u′ ∈ M(R′)Q. �

We have two special cases:
(1) Root subsystems induce proper surjective morphisms. Let R ⊂ E be a root sys-

tem and R′ ⊂ E′ a root system in a subspace E′ ⊆ E such that R′ ⊆ R. Then µ : M(R′) →
M(R) is injective, its dual ν : N(R) → N(R′) is surjective and we have a proper surjec-
tive morphism X(R) → X(R′) which locally is given by inclusions of coordinate rings
Z[σ∨

ν(v) ∩ M(R′)] → Z[σ∨
v ∩ M(R)].

(2) Projections of root systems induce closed embeddings. Let R ⊂ E, R′ ⊂ E′ be
root systems and µ : E′ → E a homomorphism of vector spaces such that R ⊆ µ(R′) ⊂
{aα ; α ∈ R, a ∈ Z}. Then µ : M(R′) → M(R) is surjective and for v ∈ N(R)Q induces a
surjection 〈ν(v)∨∩R′〉 → 〈v∨∩R〉, the map ν : N(R) → N(R′) is injective and ν−1(σν(v)) =
σv for v ∈ N(R)Q. We have a closed embedding X(R) → X(R′) which locally is given by
surjective maps of coordinate rings Z[σ∨

ν(v)
∩ M(R′)] → Z[σ∨

v ∩ M(R)].
EXAMPLE 1.5. The first case in particular occurs if the root system R′ is of the form

R′ = R∩E′, i.e. cut out by a subspace E′ ⊆ E. Then the morphism X(R) → X(R′) is locally
given by inclusions of coordinate rings Z[σ∨∩M(R′)] → Z[σ∨∩M(R)] for σ ∈ Σ(R). For
example consider root subsystems {±α} ⊆ R consisting of two opposite roots, i.e. isomorphic
to A1. Each of these gives rise to a projection ϕ{±α} : X(R) → X(A1) ∼= P 1.
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EXAMPLE 1.6. For any root system R the projections X(R) → P 1 for all root sub-
systems A1 ∼= R′ = {±α} ⊆ R form a morphism X(R) → ∏

A1∼=R′⊆R P 1. This mor-
phism is an instance of the second case: it corresponds to the projection of root systems∏

A1∼=R′⊆R R′ → R. (A variant of this closed embedding has been considered in [7].)

In the second case we can describe the equations for X(R) in X(R′).

PROPOSITION 1.7. Let R ⊂ E, R′ ⊂ E′ be root systems and µ : E′ → E a homo-
morphism of vector spaces such that R ⊆ µ(R′) ⊂ {aα ; α ∈ R, a ∈ Z}. Then the image
of the closed embedding X(µ) : X(R) → X(R′) is determined by the equations xu′ = 1 for
u′ ∈ ker(µ) ∩ M(R′). Locally, the subvariety X(R) ∩ US ′ ⊆ US ′ for any set of simple roots
S′ of R′ is given by the equations

∏
i xαi = ∏

j xβj for collections of simple roots αi, βj ∈ S′
such that

∑
i αi − ∑

j βj ∈ ker(µ).

PROOF. Let v ∈ N(R)Q be an element in the interior of some Weyl chamber, let S

be the set of simple roots of R with respect to v and let S′ be the set of simple roots of R′
with respect to ν(v). Then X(µ)−1(US ′) = US and the inclusion US → US ′ corresponds to
the surjective map of coordinate rings Z[〈S′〉] → Z[〈S〉] given by the surjection 〈S′〉 → 〈S〉
determined by µ. We have 〈S〉 ∼= 〈S′〉/∼, where ∼ is the equivalence relation s1 ∼ s2 ⇔
s1 − s2 ∈ ker(µ). Thus Z[〈S〉] ∼= Z[〈S′〉]/I , where I is the ideal generated by xs1 − xs2 for
s1, s2 ∈ 〈S′〉 such that s1 − s2 ∈ ker(µ). We can write s1 (resp. s2) as sums s1 = ∑

i αi (resp.
s2 = ∑

j βj ) of simple roots αi, βj ∈ S′. �

EXAMPLE 1.8. In the case of the embedding X(R) → ∏
A1∼=R′⊆R P 1, the equations

come from the linear relations between the roots of the root system R. This will be discussed
in detail in Subsection 1.3.

Next, we consider closures of torus orbits in X(R). In general, such orbit closures are
again toric varieties and are in bijection with the cones of the fan (see e.g. [13, 3.1]). We
will see that in the case of toric varieties associated with root systems R the orbit closures are
again toric varieties associated with certain root subsystems of R.

PROPOSITION 1.9. The closure of the torus orbit Z ⊆ X(R) corresponding to a cone
τ ∈ Σ(R) is isomorphic to the toric variety X(R′) associated with the root subsystem R′ =
R∩E′ ⊂ E′ of R cut out by the subspace E′ = τ⊥ ⊆ E with root lattice M(R′) = M(R)∩E′.

Let S be a set of simple roots of R such that τ is contained in the Weyl chamber σS and
put S′ = S ∩ E′. Then S′ is a set of simple roots of the root system R′. The orbit closure
Z is covered by the open sets Z ∩ US for such sets of simple roots S, the closed subvariety
Z ∩ US ⊆ US is given by the equations xα = 0 for α ∈ S \ S′.

PROOF. Let S be a set of simple roots of R such that τ is a face of σS . Then E′ = τ⊥
cuts out a face of 〈S〉Q≥0 generated by S′ = S ∩ E′, the set S′ is a set of simple roots of the
root system R′ = R ∩ E′ and M(R′) = M(R) ∩ E′.

By the general theory of toric varieties (see e.g. [13, 3.1]) the orbit closure corresponding
to the cone τ is a toric variety covered by the affine charts Z ∩ Spec Z[σ∨

S ∩ M(R)] =
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Spec Z[σ∨
S ∩ M(R) ∩ τ⊥] for the maximal cones σS ∈ Σ(R) such that τ is a face of σS .

In the present case σ∨
S ∩ M(R) ∩ τ⊥ = 〈S〉 ∩ τ⊥ = 〈S′〉, and so Z is covered by the open

sets Z ∩ US = Spec Z[〈S′〉] and isomorphic to the toric variety X(R′) associated with the
root system R′. The inclusion Z ∩ US = Spec Z[〈S′〉] ⊆ Spec Z[〈S〉] = US is given by the
homomorphism Z[〈S〉] → Z[〈S′〉], xu �→ xu if u ∈ 〈S′〉 and xu �→ 0 otherwise. Thus the
closed subvariety Z ∩ US ⊆ US is determined by the equations xα = 0 for α ∈ S \ S′. �

Concerning the situation of the proposition we have two further remarks.

REMARK 1.10. The Dynkin diagram of R′ is the subdiagram of the Dynkin diagram
of R formed with respect to the set of simple roots S, that arises after leaving out the vertices
(and adjacent edges) corresponding to the roots α ∈ S \ S′. Usually, the root system R′ will
be reducible and decompose as R′ ∼= ∏

i Ri into a number of irreducible root systems Ri

corresponding to the connected components of the Dynkin diagram of R′.

REMARK 1.11. Since the fan Σ(R) is symmetric under reflection in the origin, also
−τ is a cone of Σ(R) and, apart from the inclusion i+ : X(R′) → X(R) of X(R′) as orbit
closure corresponding to τ , there is another inclusion i− : X(R′) → X(R) that embeds X(R′)
as orbit closure corresponding to −τ . Any such root subsystem R′ ⊂ R comes with a proper
surjective morphism X(R) → X(R′), the two inclusions then are sections with respect to this
morphism.

Consider the particular case of a one-dimensional cone τ = 〈v〉Q≥0: for τ,−τ we have
the two torus invariant divisors isomorphic to X(R′), R′ = R ∩ v⊥, given as the images
i±(X(R′)) ⊆ X(R) and defined by the equations xα = 0 for α ∈ R such that 〈α,±v〉 > 0.

1.3. The functor of X(R). We will give a description of the functor of the toric va-
riety X(R) in terms of the root system R. This is done via the proper surjective toric mor-
phisms X(R) → P 1 for root subsystems isomorphic to A1 forming the closed embedding
X(R) → ∏

A1∼=R′⊆R P 1 and by the use of the functor of P 1.

REMARK 1.12. We recall the well known description of the functor of P 1. For any
scheme Y a morphism Y → P 1 is uniquely determined (with respect to chosen coordinates
on P 1) by the data consisting of a line bundle L on Y together with two sections t−, t+ that
generate L up to isomorphisms of line bundles with two sections (or equivalently by a line
bundle L together with a surjective homomorphism O⊕2

Y → L up to isomorphism). The
functor that associates to a scheme Y such data and to a morphism Y ′ → Y the map given
by pull-back of line bundles and sections then is isomorphic to the functor Mor( · ,P 1). An
isomorphism is determined by the universal data consisting of the twisting sheaf together with
homogeneous coordinates (OP 1(1), x0, x1) on P 1 corresponding to idP 1 ∈ Mor(P 1,P 1).

Another equivalent formulation is as follows: take as data open sets U−, U+ ⊆ Y and
regular functions f− ∈ OY (U−), f+ ∈ OY (U+) such that Y = U− ∪U+, f−f+ = 1 on U− ∩
U+ and {f− �= 0} = U− ∩ U+ = {f+ �= 0}. Such data (U−, U+, f−, f+) corresponds to a
line bundle with two generating sections (L , t−, t+) uniquely determined up to isomorphism
by U− = {t+ �= 0}, U+ = {t− �= 0} and f− = t−/t+ on U−, f+ = t+/t− on U+.
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By Subsection 1.2, root subsystems of a root system R isomorphic to A1 define toric
morphisms X(R) → P 1. These morphisms can also be described in terms of the preceding
remark.

EXAMPLE 1.13. Any root subsystem of R isomorphic to A1, i.e. an unordered pair of
opposite roots {±α} in R, defines a morphism X(R) → P 1. The data {(Uα, fα), (U−α, f−α)}
are defined in terms of the rational functions xα, x−α associated with the roots α,−α: let Uα

be the open subset of X(R) where xα is regular, fα := xα|Uα and the same for −α. The
rational functions xα, x−α have no common zeros or poles because any half-space in M(R)

contains at least one of the roots α,−α.

We will denote these morphisms by

ϕ{±α} : X(R) → P 1{±α} .

We consider P 1{±α} as a copy of P 1 with chosen homogeneous coordinates zα, z−α . The toric
morphism ϕ{±α} corresponds to a map of lattices Zuα → M(R), uα �→ α and hence to a
homomorphism of algebras Z[y±

α ] → Z[M(R)], yα �→ xα, where yα = zα/z−α , i.e. the
pull-back of the rational function yα = zα/z−α on P 1 via ϕ{±α} is the rational function xα on
X(R).

Also by the preceding subsection, the collection of these morphisms defines a closed
embedding

ϕ : X(R) →
∏

A1∼=R′⊆R

P 1
R′ .

We choose a set of positive roots R+ of R. This toric morphism corresponds to a surjec-
tive map of lattices µ : ⊕

α∈R+ Zuα → M(R), uα �→ α or of algebras
⊗

α∈R+ Z[y±
α ] →

Z[M(R)], yα �→ xα . The equations describing X(R) in
∏

A1∼=R′⊆R P 1
R′ come from elements

in the kernel of µ, and such an element u = ∑
i liuαi ∈ ker(µ) corresponds to a linear relation∑

i liαi = 0 among the positive roots of the root system R. For any such element we have an

equation
∏

i y
li
αi

= 1 or equivalently a homogeneous equation
∏

i z
li
αi

= ∏
i z

li−αi
.

EXAMPLE 1.14. Consider the toric variety X(A2) associated with the root system
A2 = {±α,±β,±(γ = α + β)} and its embedding X(A2) → P 1{±α} × P 1{±β} × P 1{±γ }.
There is a one-dimensional space of linear relations generated by the relation α + β = γ , so
X(A2) ⊂ P 1{±α} × P 1{±β} × P 1{±γ } is determined by the homogeneous equation zαzβz−γ =
z−αz−βzγ .

In general, for any root subsystem in R isomorphic to A2, there is a linear relation of the
form α + β = γ . We show that these generate the space of all linear relations.

PROPOSITION 1.15. Let R be a root system. Then the space of linear relations be-
tween the positive roots of R is generated by the relations α + β = γ for root subsystems
{±α,±β,±(γ = α + β)} of R isomorphic to A2.
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PROOF. We show that the kernel of the map of lattices µ : ⊕
α∈R+ Zuα → M(R) is

generated by elements of the form uα + uβ − uγ .
Since the simple roots αi form a basis of the lattice M(R), the lattice ker(µ) is generated

by elements of the form uβ −∑
i liuαi , where β is a positive root and thus a linear combination

of simple roots β = ∑
i liαi with li ∈ Z≥0.

The statement now follows from the fact that starting with the set of simple roots S0 := S

one obtains all positive roots by successively adding roots that are sums of
two roots already obtained, i.e. Si+1 = Si ∪ {γ ∈ R ; γ = α + β for some α, β ∈ Si}
(see [6, Ch. 4, §1.6, Prop. 19] or [12, §21.3]). �

COROLLARY 1.16. The image of the closed embedding ϕ : X(R) → ∏
A1∼=R′⊆R P 1

R′
is determined by the homogeneous equations zαzβz−γ = z−αz−βzγ for root subsystems
{±α,±β,±(γ = α + β)} of R isomorphic to A2.

With a view to the closed embedding ϕ : X(R) → ∏
A1∼=R′⊆R P 1

R′ , we formulate a
description of the functor of X(R) by characterising a morphism Y → X(R) in terms of the
family of morphisms Y → P 1{±α} for all root subsystems of R isomorphic to A1 that satisfy
compatibility conditions coming from the root subsystems of R isomorphic to A2.

DEFINITION 1.17. Let R be a root system. We define a contravariant functor
FR : (schemes) → (sets) that associates to a scheme Y the following data, called R-data:
a family (Uα, fα)α∈R consisting of open sets Uα ⊆ Y and regular functions fα ∈ OY (Uα)

that satisfy the conditions,
(i) for all α ∈ R : Y = Uα ∪ U−α , {fα �= 0} = Uα ∩ U−α and fαf−α = 1 on Uα ∩ U−α ,
(ii) for all α, β, γ ∈ R : if γ = α + β, then Uα ∩ Uβ ⊆ Uγ and fαfβ = fγ on Uα ∩ Uβ ,
or, equivalently, a family (L{±α}, {tα, t−α}){±α}⊆R of line bundles with two generating sec-
tions that satisfy
(ii)′ for all α, β, γ ∈ R : if γ = α + β, then tαtβ t−γ = t−αt−βtγ ,
up to isomorphism of line bundles with a pair of sections. To a morphism h : Y ′ → Y we
associate the map FR(h) : FR(Y ) → FR(Y ′) given by pull-back of open sets and functions or
line bundles with sections.

EXAMPLE 1.18. R-data over a field K can be written as a collection ((tα : t−α)){±α}⊆R

of ratios of elements of K (such that for any α not both tα, t−α are zero) that satisfy the
equations tαtβ t−γ = t−αt−β tγ for γ = α + β.

REMARK 1.19. On X(R) we have the following R-data, called the universal R-data,
coming from the morphisms ϕ{±α} : X(R) → P 1{±α}, i.e. for α ∈ R consider the rational
function xα, define Uα as the open set where xα is regular and put fα := xα|Uα .

THEOREM 1.20. The toric variety X(R) associated with the root system R together
with the universal R-data represents the functor FR .
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PROOF. We show that there is an isomorphism of functors Mor( · ,X(R)) ∼= FR such
that the identity in Mor(X(R),X(R)) corresponds to the universal R-data on X(R) denoted
by D0 ∈ FR(X(R)).

By Φ(Y ) : Mor(Y,X(R)) → FR(Y ), h �→ h∗(D0), we have defined a morphism of
functors Φ : Mor( · ,X(R)) → FR .

On the other hand, for R-data D on Y we have a morphism ϕD : Y → X(R) ⊆∏
{±α} P 1{±α}, where X(R) is considered as a closed subvariety of

∏
{±α} P 1{±α} via the

embedding ϕ : X(R) → ∏
{±α} P 1{±α}. In particular it is ϕD0 = idX(R). The maps

Ψ (Y ) : FR(Y ) → Mor(Y,X(R)), D �→ ϕD form a morphism of functors Ψ : FR → Mor( · ,
X(R)), because for any morphism of schemes h : Y ′ → Y it is ϕh∗(D) = ϕD ◦ h. This is
true since the maps ϕD,{±α} : Y → P 1{±α} associated with the part of R-data for pairs of roots
{±α} satisfy ϕh∗(D),{±α} = ϕD,{±α} ◦ h.

Thus, we have two morphisms of functors Φ and Ψ ; these are inverse to each other. �

REMARK 1.21. The universal R-data on X(R) gives rise to R-data ((tα : t−α)){±α}⊆R

over points of X(R) having the following properties:
• Over the affine chart US for a set of simple roots S of R, we have (tα : t−α) �= (1 : 0)

if α ∈ 〈S〉, and over the torus fixed point of US , we have (tα : t−α) = (0 : 1) for α ∈ 〈S〉.
• Over the torus invariant divisor corresponding to a one-dimensional cone generated by

v, we have (tα : t−α) = (0 : 1) if 〈α, v〉 > 0 (cf. Remark 1.11).

2. Toric varieties associated with root systems of type A.

2.1. Toric varieties X(An). Consider an (n+1)-dimensional Euclidean vector space
with basis u1, . . . , un+1. The root system An in the n-dimensional subspace E = {∑i aiui ;∑

i ai = 0} consists of the n(n + 1) roots

ui − uj for i, j ∈ {1, . . . , n + 1} , i �= j .

The lattice N(An) ∼= Zn dual to the root lattice M(An) ∼= Zn has a generating system
v1, . . . , vn+1 with one relation

∑
i vi = 0, it is a quotient of the lattice dual to

⊕n+1
i=1 Zui

with basis v1, . . . , vn+1 dual to u1, . . . , un+1.
The sets of simple roots of the root system An are of the form

S = {ui1 − ui2, ui2 − ui3, . . . , uin − uin+1}
for some ordering i1, . . . , in+1 of the set {1, . . . , n + 1}. The maximal cone σS = S∨ of
Σ(An), i.e. the Weyl chamber corresponding to S, consists of those elements

∑
i aivi ∈

N(An) that satisfy ai1 ≥ ai2, . . . , ain ≥ ain+1 or equivalently of non-negative linear combina-
tions of

vi1 , vi1 + vi2 , . . . , vi1 + · · · + vin .

So, the fan Σ(An) can be described as follows (and coincides with that of [20, (2.5),
(2.6)]): there are 2n+1 − 2 one-dimensional cones of the fan Σ(An), and these are generated
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FIGURE 1.

by the elements vA = ∑
i∈A vi ∈ N(An) for A ∈ A where

A = {A ; ∅ �= A � {1, . . . , n + 1}} .

A family (vA(i) )i=1,...,k corresponding to a collection of pairwise different sets A(1), . . . , A(k)

∈ A generates a k-dimensional cone of Σ(An) whenever these sets can be ordered such that
A(i1) ⊂ A(i2) ⊂ · · · ⊂ A(ik).

The fan Σ(An) defines an n-dimensional smooth projective toric variety X(An). It is
covered by the (n + 1)! open subvarieties US = Spec Z[σ∨

S ∩ M(An)] for the sets of simple
roots S corresponding to strict orderings of the set {1, . . . , n + 1}. If S = {ui1 − ui2 , ui2 −
ui3 , . . . , uin − uin+1}, then Z[σ∨

S ∩ M(An)] = Z[xi1/xi2, . . . , xin/xin+1]. The Weyl group of
the root system An is the symmetric group Sn+1; it acts on Σ(An) and on X(An) by permuting
the Weyl chambers and the open sets US .

By results of the last subsection (Proposition 1.9 and Remark 1.10), the closures of torus
orbits in X(An) are isomorphic to products

∏
i X(Ani ). In particular, the torus invariant divi-

sor corresponding to the cone generated by vi1 +· · ·+vik is of the form X(An−k)×X(Ak−1).

EXAMPLE 2.1. The fans Σ(A1) and Σ(A2) are as Figure 1.

There are other descriptions of the toric variety X(An):
X(An) as blow-up of P n. X(An) can be constructed by a sequence of toric blow-ups

starting with P n by first blowing up the n + 1 torus fixed points, then blowing up the strict
transform of the lines joining two of these points, then the strict transform of the planes
through any three of these points and so on (see [21, Ch. 3], [16, (4.3.13)], [11, (5.1)]).

X(An) as toric variety associated with the lattice polytope called permutohedron. The
n-dimensional permutohedron is defined as the convex hull in Qn+1 of the Sn+1-orbit of the
point (1, 2, . . . , n + 1) where the symmetric group Sn+1 acts by permuting coordinates. One
can show that the fan for this polytope is the fan Σ(An). The toric variety X(An) also appears
as “permutohedral space Πn ” in [16, (4.3.10) through (4.3.13)].

2.2. (Co)homology of X(An). We know that the integral cohomology is torsion-free
and confined to the even degrees. Standard methods from toric geometry (see e.g. [10, (10.8)])
furthermore imply the description of the cohomology ring of the toric variety X(An) over the
complex numbers (see also [20, (2.7)]) as

H ∗(X(An),Z) ∼= Z[ lA; A ∈ A ]/(R1 + R2) ,
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where R1 is the ideal generated by the elements ri,j = ∑
i∈A lA − ∑

j∈A lA for i, j ∈
{1, . . . , n+1}, i �= j , and R2 the ideal generated by the elements rA,A′ = lAlA′ for A,A′ ∈ A
such that A �⊆ A′, A′ �⊆ A (these correspond to the primitive collections of the fan Σ(An),
see next subsection).

The Betti numbers and Poincaré polynomials of the varieties X(An) over the complex
numbers are calculated in [20, (2.3)]; see also [23, Section 6], [11, Section 4] for a description
in terms of the Eulerian numbers and see [17], [18], [23] for the general case of toric varieties
associated with root systems. In particular, we know that the rank of H ∗(X(An),Z) is (n+1)!,
i.e. the number of maximal cones of Σ(An).

The Z-module Z[ lA : A ∈ A ]/(R1 + R2) is generated by the classes of square-free
monomials (see [10, (10.7.1)]). We can restrict to monomials each of which has only factors
corresponding to one-dimensional faces of one maximal cone. Such a monomial

∏m
i=1 lA(i)

corresponds to an m-dimensional face of the respective maximal cone and, on the other hand,
to a collection A(1) � · · · � A(m) of elements of A. We denote by G the Z-submodule of
Z[ lA; A ∈ A ] generated by these monomials (called “good monomials” in [20, (2.8)]). We
have the canonical isomorphism of Z-modules G/U ∼= Z[ lA; A ∈ A ]/(R1 +R2) where U =
(R1 +R2)∩G. The module G/U can be identified with the homology module H∗(X(An),Z)

(cf. [20, (2.9.2)]).
In [20, (2.8.2)] the following generators of the module of relations U are given. For a

collection A(1) � · · · � A(m) of elements of A and k ∈ {1, . . . ,m + 1}, i, j ∈ A(k) \ A(k−1)

(put A(0) = ∅, A(m+1) = {1, . . . , n + 1}), i �= j , let

ri,j ((A
(h))h, k) =

( ∑
i∈A
j �∈A

lA −
∑
j∈A
i �∈A

lA

) m∏
h=1

lA(h)

where the sums run over sets A ∈ A such that A(k−1) � A � A(k).
The maximal cones of the fan Σ(An) correspond to collections A(1) � · · · � A(n) of

elements of A and these correspond to permutations σ ∈ Sn+1 via {σ(1), . . . , σ (k)} = A(k)

for k = 1, . . . , n. The descent set of a permutation σ ∈ Sn+1 is the set

Desc(σ ) = {k ∈ {1, . . . , n}; σ(k) > σ(k + 1)} .

For any σ ∈ Sn+1 we define a monomial in G by

lσ =
∏

k �∈Desc(σ )

l{σ(1),...,σ (k)} .

PROPOSITION 2.2. The classes of the monomials lσ for σ ∈ Sn+1 form a basis of
the homology module G/U = H∗(X(An),Z). The module of relations U is generated by
the elements ri,j ((A(h))h, k) for collections A(1) � . . . � A(m) of elements of A and k ∈
{1, . . . ,m + 1}, i, j ∈ A(k) \ A(k−1) (put A(0) = ∅, A(m+1) = {1, . . . , n + 1}), i �= j .
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PROOF. We have (n + 1)! distinct monomials lσ , and this number coincides with
the rank of G/U . Thus it remains to show that every monomial in G via the relations
ri,j ((A(h))h, k) is equivalent to a linear combination of the monomials lσ .

For a monomial
∏m

k=1 lA(k) corresponding to a collection A(1) � · · · � A(m) we define
the number d(

∏m
k=1 lA(k) ) := |{k ∈ {1, . . . ,m} ; min Pk > max Pk+1}| ∈ Z≥0 in terms of

the associated partition P1 = A(1), P2 = A(2) \ A(1), . . . , Pm = A(m) \ A(m−1), Pm+1 =
{1, . . . , n + 1} \ A(m) of the set {1, . . . , n + 1}. The monomials y ∈ G satisfying d(y) = 0
are exactly the monomials of the form lσ . On the other hand we have an ordering ≺ of the
monomials of G: take the partition (Pi)i=1,...,m+1 associated with a monomial and consider
the sequence (corresponding to a permutation of the set {1, . . . , n + 1}) that arises by taking
first the elements of Pm+1 then those of Pm and so on and by ordering the elements of each
Pi according to their size, and on these sequences we take the lexicographic order.

We show that every monomial in G modulo U is equivalent to a linear combination of
the monomials lσ , σ ∈ Sn+1, by showing that every monomial y ∈ G with d(y) > 0 modulo a
relation is equivalent to a linear combination of monomials y ′ with y ≺ y ′. In fact, let A(1) �

· · · � A(m) be a collection of elements of A with associated partition (Pk)k=1,...,m+1 such that
the corresponding monomial y = ∏m

k=1 lA(k) satisfies d(y) > 0. Take k ∈ {1, . . . ,m} such
that i := min Pk > max Pk+1 =: j , then

ri,j ((A
(h))h�=k, k) =

( ∑
i∈A
j �∈A

lA −
∑
j∈A
i �∈A

lA

) ∏
h�=k

lA(h) ,

where the sums run over sets A ∈ A such that A(k−1) � A � A(k+1), is a relation that
contains y as the monomial minimal with respect to ≺. �

REMARK 2.3. The above set of generators for the module of relations is used in [20,
Section 3] in the context of solutions to the commutativity equations; the respective statement
[20, (2.9)] is proven in a different way in that paper. Our statement involves a basis of homol-
ogy which, in the general case of toric varieties associated with root systems, is given in [17],
[18] (see [4, Rem. 5.4] for more explanations).

2.3. Primitive collections and the morphism X(An) → P ∆(An). It was observed
in [2] that any n-dimensional smooth projective toric variety X corresponding to a fan Σ can
be described by the set of primitive collections among the generators of the one-dimensional
cones of Σ together with the corresponding primitive relations. A primitive collection of the
fan Σ is a set of generators of one-dimensional cones that does not generate a cone of Σ , but
all of its proper subsets generate a cone of Σ .

THEOREM 2.4. ([2, Thm. 2.15], see also [9, Thm. 1.4, Prop. 1.10]). The Mori cone
NE(X) ⊂ A1(X) ⊗Z R of effective 1-cycles is generated by the primitive relations. Equiv-
alently, the nef-cone Nef(X) ⊂ Pic(X) ⊗Z R (which coincides with the closure of the am-
ple cone) is given by line bundles corresponding to piecewise linear functions ϕ satisfying
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ϕ(w1) + · · · + ϕ(wk) ≥ ϕ(w1 + · · · + wk) for all primitive collections {w1, . . . , wk} of the
fan Σ .

In the case Σ = Σ(An), the primitive collections consist of two elements vA, vA′ (again
put vA = ∑

i∈A vi ) corresponding to non comparable elements of A, i.e. elements A,A′ ∈ A
such that A �⊆ A′, A′ �⊆ A. The corresponding primitive relation has one of the following
four forms (put I = {1, . . . , n + 1}):

(1) vA + vA′ = 0, if A ∪ A′ = I and A ∩ A′ = ∅;
(2) vA + vA′ = vA∪A′ , if A ∪ A′ �= I and A ∩ A′ = ∅;
(3) vA + vA′ = vA∩A′ , if A ∪ A′ = I and A ∩ A′ �= ∅;
(4) vA + vA′ = vA∩A′ + vA∪A′ , if A ∪ A′ �= I and A ∩ A′ �= ∅.

COROLLARY 2.5. Let D = ∑
A∈A aADA be a torus-invariant divisor in X(An),

where DA is the torus-invariant prime divisor corresponding to vA. We put aI = a∅ = 0.
Then D is ample (resp. semiample, or equivalently nef) if and only if

aA + aA′ > aA∩A′ + aA∪A′

(resp. ≥) for all primitive collections {vA, vA′ }.
COROLLARY 2.6. The anticanonical class of X(An) is semiample, or equivalently

nef; X(An) is an almost Fano variety.

PROOF. By corollary 2.5 −KX(An) is semiample (and ample if there is no primitive
relation of type (4), i.e. if n ≤ 2). That X(An) is an almost Fano variety means that −KX(An)

is semiample and big, where the second property follows from the fact that the corresponding
polytope is full-dimensional. �

Being semiample and big, the anticanonical class defines a toric morphism X(An) →
P (H 0(OX(An)(−KX(An)))), which is birational onto its image, but not necessarily an embed-
ding.

PROPOSITION 2.7. The anticanonical class defines a birational toric morphism
X(An) → P ∆(An), where P∆(An) is the Gorenstein toric Fano variety associated with the
reflexive polytope

∆(An) = {m ∈ MQ ; 〈m, vA〉 ≥ −1 for A ∈ A} = conv{αij ; i, j ∈ I, i �= j }
and αij = ui − uj are the roots of the root system An.

PROOF. In general, the image of the morphism given by a semiample divisor
∑

i aiDi

(sum over the torus invariant prime divisors Di) is the polarised toric variety corresponding
to the polytope {m ∈ MQ ; 〈m, vi〉 ≥ −ai for all i} (vi ∈ N being the lattice generators of
the one dimensional cones corresponding to Di ). In the present case, we have the anticanon-
ical divisor −KX(An) = ∑

A∈A DA on X(An) giving rise to the polytope ∆(An) = {m ∈
MQ ; 〈m, vA〉 ≥ −1 for A ∈ A}. This polytope ∆(An) coincides with the convex hull of the
roots of An. Clearly, every root αij satisfies 〈m, vA〉 ≥ −1 for all A ∈ A. On the other hand,
a given element m = (m1, . . . ,mn+1) ∈ ∆(An) we can write as m = ∑

i∈B,j∈C aijαij with
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aij ≥ 0 and B = {i ; mi > 0}, C = {i ; mi < 0}, and the condition 〈m, vC〉 ≥ −1 gives∑
aij ≤ 1, so m ∈ conv{αij ; i �= j }. The polytope ∆(An) is reflexive (0 being its only

inner lattice point, the other lattice points in ∆(An) are the roots), equivalently P ∆(An) is a
Gorenstein toric Fano variety. �

REMARK 2.8. The fan Σ∆(An) determined by ∆(An) consists of the cones

σB1,B2 = 〈vA ; B1 ⊆ A ⊆ B2〉
for B1, B2 ∈ A, B1 ⊆ B2. The cone σB1,B2 has dimension |B2 \ B1| + 1 and is gener-
ated by 2|B2\B1| elements vA. We see that P ∆(An) is singular for n ≥ 3, the singular locus
consisting of the torus orbits of codimension at least 3. The morphism X(An) → P∆(An)

is a crepant resolution (an MPCP-desingularisation in the sense of [3]). It is given by sub-
dividing each d-dimensional cone σB1,B2 into (d − 1)! d-dimensional cones generated by
vB1 , vB1∪{a1}, . . . , vB1∪{a1,...,ad−1} = vB2 corresponding to permutations of the set B2 \ B1. A
set {vA(1) , . . . , vA(k)} is contained in a single cone of Σ∆(An), if

⋂
i A(i) �= ∅ and

⋃
i A(i) �= I .

In particular, the primitive collections of types (1), (2) and (3) survive.

3. Losev-manin moduli spaces.

3.1. The moduli functor of An-curves. We begin with a presentation of the Losev-
Manin moduli spaces Ln introduced in [20] and the corresponding moduli functor of stable
n-pointed chains of projective lines (here called An−1-curves).

Consider a complex projective line P 1
C with two distinct closed points s−, s+ ∈ P 1

C

called poles. The moduli space of n distinguishable points in P 1
C \ {s−, s+} is a torus

(C∗)n/C∗ ∼= (C∗)n−1, here we divide out the automorphism group C∗ of the projective
line with two poles (P 1

C, s−, s+). This space has a natural compactification Ln such that its
boundary parametrises isomorphism classes of certain types of reducible n-pointed curves.

DEFINITION 3.1. A chain of projective lines of length m over an algebraically closed
field K is a projective curve C = C1 ∪ · · · ∪Cm over K such that each irreducible component
Cj of C is a projective line with poles p−

j , p+
j and these components intersect as follows:

different components Ci and Cj intersect only if |i − j | = 1 and in this case Cj ,Cj+1

intersect transversally at the single point p+
j = p−

j+1. For p−
1 ∈ C1 (resp. p+

m ∈ Cm) we
write s− (resp. s+). Two chains of projective lines (C, s−, s+) and (C′, s′−, s′+) are called
isomorphic if there is an isomorphism ϕ : C → C′ such that ϕ(s−) = s′− and ϕ(s+) = s′+.

FIGURE 2.
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DEFINITION 3.2. An n-pointed chain of projective lines (C, s−, s+, s1, . . . , sn) is a
chain of projective lines together with closed points si ∈ C different from s−, s+ and the
intersection points of components (see Figure 2). Two n-pointed chains of projective lines
(C, s−, s+, s1, . . . , sn) and (C′, s′−, s′+, s′

1, . . . , s
′
n) are called isomorphic if there is an

isomorphism ϕ : (C, s−, s+) → (C′, s′−, s′+) of the underlying chains of projective lines
such that ϕ(sj ) = s′

j for all j ∈ {1, . . . , n}. An n-pointed chain of projective lines
(C, s−, s+, s1, . . . , sn) is called stable if each component of C contains at least one of the
points sj . An An-curve over an algebraically closed field K is a stable (n + 1)-pointed chain
of projective lines over K .

DEFINITION 3.3. An An-curve of length m decomposes into irreducible components
C = C1 ∪ · · · ∪ Cm with s− ∈ C1, s+ ∈ Cm. We will call the resulting decomposition

{1, . . . , n + 1} = P1 � · · · � Pm

such that i ∈ Pk if and only if si ∈ Ck the combinatorial type of the An-curve C. We will
also write this in the form si1 . . . sil |sil+1 . . . | . . . with the sections for the different sets Pk

separated by the symbol “ | ” starting on the left with P1.

DEFINITION 3.4. Let Y be a scheme. An An-curve over Y is a collection (π : C →
Y, s−, s+, s1, . . . , sn+1), where C is a scheme, π is a proper flat morphism of schemes and
s−, s+, s1, . . . , sn+1 : Y → C are sections such that for any geometric point y of Y the
collection (Cy, (s−)y, (s+)y, (s1)y, . . . , (sn+1)y) is an An-curve over y. An isomorphism of
An-curves over Y is an isomorphism of Y -schemes that is compatible with the sections. We
define the moduli functor of An-curves as the contravariant functor

Ln+1 : (schemes) → (sets)
Y �→ {An-curves over Y } / ∼

that associates to a scheme Y the set of isomorphism classes of An-curves over Y and to a
morphism of schemes the map obtained by pulling back An-curves.

It is shown in [20, (2.2)] that the functor Ln+1 is represented by a smooth projective
variety, denoted by the same symbol Ln+1, that is, we have a fine moduli space of An-curves.
Further it is argued in [20, (2.6.3)] that Ln+1 is isomorphic to the toric variety X(An) associ-
ated with the root system An.

In [20, (2.1)] an inductive construction of Ln+1 together with the universal curve Cn+1 →
Ln+1 is given using arguments of [19]. As in the case of the similar moduli spaces M0,n, the
universal curve Cn+1 over Ln+1 is isomorphic to the next moduli space Ln+2.

EXAMPLE 3.5. (1) C1 → L1 is isomorphic to P 1 → pt with 0,∞ and 1-section.
This reflects the fact that any A0-curve over a scheme Y is isomorphic to the trivial projective
bundle P 1

Y with 0,∞ and 1-section.
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(2) L2 is isomorphic to P 1. The fibres of the universal curve C2 over P 1 \ {(0 : 1),

(1 : 0)} are pointed (P 1, s−, s+), and over (0 : 1) and (1 : 0) the fibres are pointed chains
consisting of two components (see Figure 3).

FIGURE 3.

3.2. The universal curve. We construct the universal An-curve X(An+1) → X(An)

with its sections, which later will be seen to coincide with the universal curve over the Losev-
Manin moduli space Ln+1, in terms of the functorial properties of toric varieties associated
with root systems developed in Subsection 1.2.

CONSTRUCTION 3.6 (The universal An-curve). Consider the root subsystem An ⊂
An+1 consisting of the roots βij = ui − uj for i, j ∈ {1, . . . , n + 1}. The inclusion of
root systems An ⊂ An+1 determines a proper surjective morphism X(An+1) → X(An).

There are the n + 1 additional pairs of opposite roots ±αi , αi = ui − un+2 for i ∈
{1, . . . , n + 1}. For each of the root subsystems {±αi} ∼= A1 in An+1 not contained in An

we have a section si : X(An) → X(An+1) corresponding to the projection of the root system
An+1 onto the root subsystem An with kernel generated by αi . The image of si can be de-
scribed by the equation xαi = 1. On the other hand, the inclusion {±αi} ⊂ An+1 defines a
projection X(An+1) → X(A1) ∼= P 1{±αi }. If we choose coordinates of P 1{±αi } as in Subsec-

tion 1.3, then the image of the section si is given by the preimage of the point (1 : 1) ∈ P 1{±αi }.
Further, we have two sections s± : X(An) → X(An+1) which are inclusions of X(An)

into X(An+1) as torus invariant divisors (cf. Remark 1.11). The image of s− (resp. s+) cor-
responds to the ray of the fan Σ(An+1) generated by −vn+2 (resp. vn+2) and is given by the
equations xαi = 0 (resp. x−αi = 0).

PROPOSITION 3.7. The collection (X(An+1) → X(An), s−, s+, s1, . . . , sn+1) is an
An-curve over X(An).

PROOF. The morphism X(An+1) → X(An) is proper. To show flatness, consider the
covering by affine toric charts: for any set of simple roots S of the root system An there
are n + 2 affine spaces USj

∼= An+1 lying over US
∼= An corresponding to n + 2 sets of

simple roots Sj of the root system An+1 such that the submonoid 〈Sj 〉 of the root lattice
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FIGURE 4.

M(An+1) generated by Sj contains S. For example, if S = {u1 −u2, . . . , un −un+1} we have
Sj = {. . . , uj−1 − uj , uj − un+2, un+2 − uj+1, uj+1 − uj+2, . . . } for j = 0, . . . , n + 1 (in
particular S0 = {un+2 − u1, u1 − u2, . . . } and Sn+1 = {. . . , un − un+1, un+1 − un+2}). The
maps USj → US are flat morphisms An+1 → An. Indeed, they are given by the identity on a
polynomial ring in n − 1 variables tensored with a map of the form Z[z] → Z[x, y], z �→ xy

or z �→ y.
By what is shown below, the fibres are An-curves: Remark 3.10 describes the universal

An-curve in terms of equations given by An-data, and Proposition 3.12 shows that such equa-
tions define an An-curve once it is known that any An-data over a field arises as in Proposition
3.12 from an An-curve. This is shown in Lemma 3.13. �

DEFINITION 3.8. We call the object (X(An+1) → X(An), s−, s+, s1, . . . , sn+1) of
Construction 3.6 the universal An-curve over X(An).

EXAMPLE 3.9. The universal curve C2 over L2 is pictured as Figure 3 and later seen
to coincide with X(A2) over X(A1). Here, in Figure 4, we draw the corresponding inclusion
of root systems (left) and the map of fans Σ(A2) → Σ(A1) (right).

We apply the embedding into a product of projective lines

X(R) →
∏

A1∼=R′⊆R

P 1
R′ =: P(R)

considered in Subsections 1.2 and 1.3 to the situation of Construction 3.6.

REMARK 3.10. Consider X(An+1) (resp. X(An)) as embedded into the product of
projective lines P(An+1) (resp. P(An)). Then the morphism X(An+1) → X(An) is induced
by the projection onto the subproduct P(An+1) → P(An). The subvarieties X(An+1) ⊆
P(An+1) (resp. X(An) ⊆ P(An)) are determined by the homogeneous equations zαzβz−γ =
z−αz−βzγ for roots α, β, γ such that α+β = γ , i.e. root subsystems of type A2 in An+1 (resp.
An). If we first consider the product P(An+1) and the equations coming from root subsystems
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FIGURE 5.

of type A2 in An, this gives

P(An+1/An)X(An) =
( ∏

A1∼=R⊆An+1\An

P 1
R

)
X(An)

=
( n+1∏

i=1

P 1{±αi }
)

X(An)

.

Therein, X(An+1) is the closed subscheme given by the homogeneous equations

tβij zαj z−αi = t−βij z−αj zαi , i, j ∈ {1, . . . , n + 1} , i �= j , βij = αi − αj(1)

where t±βij are the homogeneous coordinates of P 1{±βij } (consider X(An) as embedded into∏
R P 1

R) or equivalently the two generating sections of the line bundle L{±βij } being part of
the universal An-data on X(An). The sections si : X(An) → X(An+1) for i ∈ {1, . . . , n + 1}
are given by the additional equations zαi = z−αi . The sections s− (resp. s+) are given by
zα1 = · · · = zαn+1 = 0 (resp. z−α1 = · · · = z−αn+1 = 0).

EXAMPLE 3.11. The universal A1-curve X(A2) ⊂ (P 1{±α1} × P 1{±α2})X(A1) over
X(A1) is given by the homogeneous equation

tβ12zα2z−α1 = t−β12z−α2zα1

where β12 = u1 − u2 and (L{±β12}, {tβ12, t−β12}) is the universal A1-data on X(A1) ∼= P 1.
We picture in Figure 5 the A1-curves in P 1 × P 1 defined by this equation over the points
given by (tβ12 : t−β12) = (0 : 1), (a : b), (1 : 0). In the second case, we write the marked
points in terms of the homogeneous coordinates (z−α2 : zα2).

By Remark 3.10 the universal An-curve over X(An) can be embedded into a product
P(An+1/An)X(An)

∼= (P 1)n+1
X(An) and the embedded curve is given by equations (1) deter-

mined by the universal An-data. We show that any An-curve C over a field can be embedded
into a product (P 1)n+1 and extract An-data such that C is described by the same equations as
the universal curve.

PROPOSITION 3.12. Let (C, s−, s+, s1, . . . , sn+1) be an An-curve over a field. For i ∈
{1, . . . , n+1} let zαi , z−αi be a basis of H 0(C,OC(si)) such that zαi (s−) = 0, z−αi (s+) = 0,
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zαi (si ) = z−αi (si) �= 0. We will write P {±αi } for P (H 0(C,OC(si))). Then by

(tβij : t−βij ) = (z−αj (si) : zαj (si))

for βij = αi − αj , i �= j , we can define An-data (tβij : t−βij ){±βij }⊆An , and the morphism

C →
n+1∏
i=1

P 1{±αi } = P(An+1/An)

is an isomorphism onto the closed subvariety C′ ⊆ P(An+1/An) determined by the homoge-
neous equations

tβij zαj z−αi = t−βij z−αj zαi , i, j ∈ {1, . . . , n + 1}, i �= j , βij = αi − αj .(2)

Furthermore, C′ together with the marked points s′
i defined by the additional equations zαi =

z−αi and s′− (resp. s′+) defined by zαi = 0 for i = 1, . . . , n + 1 (resp. z−αi = 0 for i =
1, . . . , n + 1) is an An-curve and we have an isomorphism of An-curves (C, s−, s+, s1, . . . ,

sn+1) → (C′, s′−, s′+, s′
1, . . . , s

′
n+1).

PROOF. The data (tβij : t−βij ) is defined as the position of a marked point si relative to
another marked point sj of C. Note that the two ways to define (tβij : t−βij ) are equivalent
because (zαi (sj ) : z−αi (sj )) = (z−αj (si ) : zαj (si)).

The data (tβij : t−βij ) relates the bases zαi , z−αi and zαj , z−αj via the equation tβij zαj z−αi

= t−βij z−αj zαi . If the corresponding marked points are not contained in the same component
of C, both sides of the equation are zero. Otherwise, both are homogeneous coordinates of
the same component of C and we have the formula (tβij z−αi : t−βij zαi ) = (z−αj : zαj )

which can be checked at the two poles and the marked point si . It follows that the morphism
C → P (An+1/An) maps C to the subscheme C′ defined by the equations in (2).

The collection (tβij : t−βij ){±βij }⊆An is An-data: we have to show that the equations
tβij tβjk t−βik = t−βij t−βjk tβik are satisfied. If si, sj , sk are not contained in the same compo-
nent, then both sides are zero. If si , sj , sk are in the same component, then (tβik : t−βik ) =
(z−αk (si ) : zαk (si)) = (tβjk z−αj (si ) : t−βjk zαj (si)) = (tβjk tβij : t−βjk t−βij ) making use of
(z−αk : zαk ) = (tβjk z−αj : t−βjk zαj ).

We show that C → C′ ⊆ P(An+1/An) is an isomorphism. The curve C decomposes
into irreducible components C = C1 ∪ · · · ∪ Cm. Let {1, . . . , n + 1} = P1 � · · · � Pm be
the combinatorial type of C (see Definition 3.3). For k ∈ {1, . . . ,m} the morphism Ck →∏

i∈Pk
P 1{±αi } =: P(Pk) is an isomorphism onto C′′

k ⊆ P(Pk) given by the equations in
(2) involving only coordinates z±αi for i ∈ Pk . The equations in (2) involving coordinates
for roots αi, αj for i ∈ Pk , j ∈ Pk′ , k �= k′, are of the form zαj z−αi = 0 if k < k′ and
z−αj zαi = 0 if k′ < k. So, the equations in (2) containing coordinates for some i ∈ Pk define
a subvariety of P(An+1/An) = ∏

i∈Pj ,j<k P 1{±αi } × P(Pk) × ∏
i∈Pj ,k<j P 1{±αi } consisting

of the irreducible components C′
k = ∏

i∈Pk′ ,k′<k{z−αi = 0} × C′′
k × ∏

i∈Pk′ ,k<k′ {zαi = 0},∏
i∈Pj ,j<k P 1{±αs } × ∏

i∈Pj ,k≤j {zαi = 0}, ∏
i∈Pj ,j≤k{z−αi = 0} × ∏

i∈Pj ,k<j P 1{±αs }. For

each k we have an isomorphism Ck → C′
k , and these form the isomorphism C → C′.
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The sections of C′ were defined such that the isomorphism C → C′ is an isomorphism
of An-curves. �

LEMMA 3.13. Any An-data over a field arises as An-data extracted from an An-curve
by the method of Proposition 3.12.

PROOF. Let (tβij : t−βij ){±βij }⊆An be An-data over a field.
We define an ordering ≺ on the set {1, . . . , n + 1}. For i �= j define i ≺ j (resp. i � j )

if (tβij : t−βij ) = (1 : 0) (resp. (tβij : t−βij ) �= (0 : 1)) where βij = αi − αj . This ordering
defines a decomposition {1, . . . , n + 1} = P1 � · · · � Pm into nonempty equivalence classes
such that i ≺ j if and only if i ∈ Pk, j ∈ Pk′ for k < k′.

We construct an An-curve such that the An-data extracted from it by the method of
Proposition 3.12 is the given An-data. Take a chain of projective lines (C, s−, s+) of length m.
For each component Ck we can choose for each i ∈ Pk a point si ∈ Ck different from the poles
p±

k , such that their relative positions are given by the data (tβij : t−βij ), i.e. si = (tβij : t−βij )

with respect to coordinates of Ck such that p−
k = (1 : 0), p+

k = (0 : 1), sj = (1 : 1). This is
possible, the compatibility is assured by the conditions of An-data. �

Considering the universal An-curve, the combinatorial types of the geometric fibres de-
termine a stratification of X(An) which coincides with the stratification of this toric variety
into torus orbits.

PROPOSITION 3.14. Over the torus orbit in X(An) corresponding to the one-dimen-
sional cone generated by vi1 + · · · + vik we have the combinatorial type

sin+1 · · · sik+1 |sik · · · si1 .

PROOF. The universal An-data over each point of the closure of the orbit corresponding
to a generator of a one-dimensional cone generated by v has the property (tβ : t−β) = (0 : 1)

if 〈β, v〉 > 0 (see Remark 1.21). For v = vi1 + · · · + vik this in particular implies (tβij :
t−βij ) = (0 : 1) if i ∈ {i1, . . . , ik} and j ∈ {ik+1, . . . , in+1}. We obtain for points in this torus
orbit the above combinatorial type. �

The proposition describes the combinatorial types over the torus orbits in X(An) of codi-
mension one. The combinatorial type over a lower-dimensional torus orbit is given by the par-
tition that arises as common refinement of the partitions for the torus orbits of codimension
one that contain the respective orbit in their closure.

3.3. Isomorphism between the functor of X(An) and the moduli functor. We
show that the moduli functor of An-curves is isomorphic to the functor of X(An) of Sub-
section 1.3. This implies that the toric variety X(An) is a fine moduli space of An-curves and
hence coincides with the Losev-Manin moduli space Ln+1.

To relate An-curves to An-data, we consider an embedding of arbitrary An-curves over
a scheme Y into a product (P 1)n+1

Y that generalises the embedding in Proposition 3.12 to
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the relative situation. The main tools are the following contraction morphisms. The technical
details are standard, compare to similar constructions in [19], [14].

CONSTRUCTION 3.15. Let (π : C → Y, s−, s+, s1, . . . , sn+1) be an An-curve over
Y . Each subset of sections {si1 , . . . , sik } ⊆ {s1, . . . , sn} defines a line bundle OC(si1 + · · · +
sik ) on C and a locally free sheaf π∗OC(si1 + · · · + sik ) of rank k + 1 on Y . The natural
surjective homomorphism π∗π∗OC(si1 +· · ·+sik ) → OC(si1 +· · ·+sik ) induces a morphism
p{i1,...,ik} : C → C{i1,...,ik} ⊆ P Y (π∗OC(si1 + · · · + sik )).

This construction commutes with base change. In particular, for each fibre Cy , y ∈ Y ,
the morphism (p{i1,...,ik})y : Cy → P Y (π∗OC(si1 + · · · + sik ))y arises by applying the above
construction to the line bundle OCy (si1(y) + · · · + sik (y)) on Cy ; it is an isomorphism on
the components containing at least one of the marked points sij (y) and contracts all other
components. The image of p{i1,...,ik} with the sections p{i1,...,ik} ◦ s±, p{i1,...,ik} ◦ sij is an
Ak−1-curve.

These morphisms are functorial with respect to multiple inclusions of sets of sections.

We will make use of the following particular cases:
(1) Contraction with respect to one section onto a P 1-bundle. For each section si of

C there is a contraction morphism pi : C → Ci = P Y (π∗OC(si)). Since the P 1-bundle
P Y (π∗OC(si)) has three disjoint sections pi ◦ s−, pi ◦ s+, pi ◦ si : Y → P Y (π∗OC(si)),
there is an isomorphism P Y (π∗OC(si)) ∼= P 1

Y that identifies pi ◦ s−, pi ◦ s+, pi ◦ si with the
(1 : 0), (0 : 1), (1 : 1)-section of P 1

Y (see Figure 6).

FIGURE 6.

(2) Contraction with respect to two sections onto an A1-curve. Let si1 , si2 be two of
the sections of C. Then there is a contraction morphism p{i1,i2} : C → C{i1,i2} and C{i1,i2} is
an A1-curve over Y . The curve C{i1,i2} contains the information about the relative positions of
the sections si1 , si2 in C. This data relates the two contraction morphisms with respect to the
sections si1 and si2 .

CONSTRUCTION 3.16. Let (C → Y, s−, s+, s1, s2) be an A1-curve. Then we have the
morphism p2 : C → P 1

Y for the section s2 such that, with respect to homogeneous coordinates

z
(2)
0 , z

(2)
1 , the sections s−, s+, s2 become the (1 : 0), (0 : 1), (1 : 1)-section of P 1

Y . The section
s1 determines (t1,2 : t2,1) := p2◦s1. This can be rewritten as a line bundle with two generating
sections (L{1,2}, {t1,2, t2,1}) up to isomorphism.
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Equivalently, we can consider the morphism p1 : C → P 1
Y for the section s1. Then

s−, s+, s1 become the (1 : 0), (0 : 1), (1 : 1)-section with respect to homogeneous coordinates
z
(1)
0 , z

(1)
1 and p1 ◦ s2 = (t2,1 : t1,2).

LEMMA 3.17. The morphism p1 × p2 : C → P 1
Y × P 1

Y maps C to the closed subva-
riety given by the homogeneous equation

t1,2z
(2)
1 z

(1)
0 = t2,1z

(2)
0 z

(1)
1 .

PROOF. It suffices to show the lemma for the strata of Y corresponding to the three
possible combinatorial types of A1-curves. On the strata corresponding to reducible curves the
above equation becomes z

(2)
1 z

(1)
0 = 0 (resp. z

(2)
0 z

(1)
1 = 0). These equations are satisfied, e.g.

in the first case z
(2)
1 = 0 on the component containing s−, s1 and z

(1)
0 = 0 on the component

containing s+, s2. On the remaining stratum Y ′ ⊆ Y both (z
(1)
1 : z

(1)
0 ) and (z

(1)
1 : z

(1)
0 ) are

homogeneous coordinates of P 1
Y ′ and related by (t1,2z

(2)
1 : t2,1z

(2)
0 ) = (z

(1)
1 : z

(1)
0 ). �

(3) Contraction with respect to three sections onto an A2-curve. Let si1 , si2 , si3 be
three of the sections of C. Then there is a contraction morphism p{i1,i2,i3} : C → C{i1,i2,i3}
and C{i1,i2,i3} is an A2-curve over Y . This curve contains the information about the relative
positions of the pairs of two sections in a set of three sections si1 , si2 , si3 of C. These data are
related by one equation:

LEMMA 3.18. Let (C, s−, s+, s1, s2, s3) be an A2-curve over Y . Then the collection of
A1-data {(L{1,2}, {t1,2, t2,1}), (L{2,3}, {t2,3, t3,2}), (L{3,1}, {t3,1, t1,3})} extracted by the
method of Construction 3.16 from the A1-curves C{i1,i2}, C{i2,i3}, C{i3,i1} is A2-data, i.e. the
sections satisfy the equation

t1,2t2,3t3,1 = t2,1t3,2t1,3

in L{1,2} ⊗ L{2,3} ⊗ L{3,1}.

PROOF. Again, this equation is satisfied on a closed subset and it suffices to consider
the situation for the strata corresponding to the different combinatorial types. If the sections
are not contained in the same component, then both sides vanish. Over the remaining stratum
Y ′ ⊆ Y we have a bundle P 1

Y ′ . Using the formula (ti,j z
(j)

1 : tj,iz
(j)

0 ) = (z
(i)
1 : z

(i)
0 ) for

the homogeneous coordinates we obtain (z
(1)
1 : z

(1)
0 ) = (t1,2z

(2)
1 : t2,1z

(2)
0 ) = (t1,2t2,3z

(3)
1 :

t2,1t3,2z
(3)
0 ) = (t1,2t2,3t3,1z

(1)
1 : t2,1t3,2t1,3z

(1)
0 ), so (t1,2t2,3t3,1 : t2,1t3,2t1,3) = (1 : 1). �

For an An-curve (C → Y, s−, s+, s1, . . . , sn) we have the contraction morphisms
pi : C → P Y (π∗OC(si)) ∼= (P 1{±αi })Y where on (P 1{±αi })Y we have homogeneous coor-
dinates z−αi , zαi such that, in these coordinates, s−, s+, si become the (1 : 0), (0 : 1), (1 : 1)-
section of P 1

Y . We have the roots αi = ui − un+2 and βij = αi − αj = ui − uj .

THEOREM 3.19. There is an isomorphism between the functor FAn and the moduli
functor of An-curves Ln+1 such that the universal An-data on X(An) is mapped to the uni-
versal An-curve over X(An).
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PROOF. Let Y be a scheme. For An-data on Y we construct an An-curve C over Y via
equations in P(An+1/An)Y = ∏n+1

i=1 (P 1{±αi })Y as in Remark 3.10 with the given An-data
on Y replacing the universal An-data on X(An). This is an An-curve since all An-data are
pull-back of the universal An-data on X(An) and so the constructed curve is a pull-back of
the universal An-curve over X(An).

In the other direction, given an An-curve on Y we extract An-data. For each pair of
distinct sections si , sj we have a contraction morphism C → C{i,j} onto an A1-curve over
Y . From (C{i,j}, si , sj ) we extract A1-data (L{±βij }, tβij , t−βij ) := (L{i,j}, ti,j , tj,i ) as in
Construction 3.16. That the collection of all these data forms An-data follows from Lemma
3.18.

Both constructions commute with base-change and thus define morphisms of functors
FAn → Ln+1 and Ln+1 → FAn . We show that they are inverse to each other.

Starting with an An-curve C over Y , we extract data (L{±βij }, {t−βij , tβij }){±βij }⊆An and
from these An-data we construct an An-curve C′ ⊆ P(An+1/An)Y as in Remark 3.10. We
show that the product of the contraction morphisms pi defines an isomorphism of An-curves
C → C′ ⊆ P(An+1/An)Y . The morphism

∏
i pi : C → P(An+1/An)Y factors through the

inclusion C′ ⊆ P(An+1/An)Y by Lemma 3.17. The morphism C → C′ is an isomorphism,
because it is an isomorphism on the fibres by Proposition 3.12 and the curves are flat over Y .
The sections and the involution of C′ were defined such that C → C′ is an isomorphism of
An-curves.

Starting with An-data we construct an An-curve and extract An-data from it. It is easily
verified that this An-data coincides with the original An-data, since the contraction morphism
with respect to a section of an embedded An-curve C′ ⊆ P(An+1/An)Y is induced by pro-
jection onto the corresponding factor. �
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