NON EXISTENCE OF HOMOGENEOUS CONTACT METRIC MANIFOLDS OF NONPOSITIVE CURVATURE

ANTONIO LOTTA

(Received April 2, 2010)

Abstract. We prove that there exist no simply connected homogeneous contact metric manifolds having nonpositive sectional curvature.

1. Introduction. Let (M, η) be a contact manifold of dimension $N = 2n + 1, n \ge 1$. We recall that η is a 1-form satisfying

$$\eta \wedge (d\eta)^n \neq 0$$

everywhere on *M*. It is well known that there exists a unique globally defined vector field ξ , called the Reeb vector field, which is transverse to the contact distribution Ker(η), such that $\eta(\xi) = 1$ and

(1) $d\eta(X,\xi) = 0$

for every smooth vector field X on M. There is an extensive literature concerning the Riemannian geometry of *associated metrics* on (M, η) , starting from the investigations of Sasaki [11], see [4] and the references therein. An associated metric g is a Riemannian metric for which there exists a (1, 1) tensor field φ such that

$$\varphi^2 = -\mathrm{Id} + \eta \otimes \xi$$
, $\eta(X) = g(X, \xi)$, $d\eta(X, Y) = g(X, \varphi Y)$

for every X, Y vector fields on M. The tensors (φ, ξ, η, g) make up a *contact metric struc*ture on M. By means of a polarization process, one can show that every contact form admits associated metrics (cf. [4, Theorem 4.4]). This paper focuses on the curvature of associated metrics. It was proved by Blair in [6] that no flat associated metric can exist on a contact manifold of dimension $N \ge 5$. On the contrary, three-dimensional flat contact metric manifolds do exist (see [10]). More generally, if $N \ge 5$ and one asks for constant sectional curvature c, then c must be equal to 1, and the structure must be Sasakian (see [8]). It is also relevant that a *compact* contact manifold cannot admit any associated metric of *negative* curvature; this is settled by a result of Zeghib on geodesic plane fields [12], because for every associated metric the integral curves of ξ are geodesics (cf. [10] or [4, Theorem 7.4]).

In the light of these facts, Blair conjectured the non existence of contact metric manifolds having nonpositive curvature, with the exception of the flat 3-dimensional case (see [4] and also [5]).

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C25; Secondary 53D10, 53C30.

Key words and phrases. Contact metric manifold, homogeneous Riemannian space of nonpositive curvature.

A. LOTTA

In this direction, in the present note we deal with the homogeneous case. Namely, we prove the following result.

THEOREM 1.1. Let $(M, \varphi, \xi, \eta, g)$ be a homogeneous simply connected contact metric manifold having nonpositive sectional curvature. Then M is 3-dimensional, flat, and it is equivalent to the Lie group $\tilde{E}(2)$, universal covering of the group of Euclidean motions of \mathbb{R}^2 , endowed with a left invariant contact metric structure.

Here a contact metric manifold is defined to be *homogeneous* if it admits a transitive Lie group of diffeomorphisms preserving the structure tensor fields (φ, ξ, η, g) .

We actually prove a more general result. Let (M, η) be a contact manifold. A Riemannian metric g on M will be called *admissible* if the Reeb vector field ξ is orthogonal to the contact distribution Ker (η) with respect to g. Of course, every associated metric is admissible. If (M, η) is homogeneous, by a homogeneous admissible metric we mean an admissible metric such that $I_g(M) \cap \operatorname{Aut}(M, \eta)$ is transitive on M, where $I_g(M)$ denotes the isometry group of g, while Aut (M, η) is the group of diffeomorphisms $f : M \to M$ such that $f^*\eta = \eta$.

THEOREM 1.2. Let (M, η) be a homogeneous simply connected contact manifold of dimension $N \ge 5$. Then M does not admit any admissible homogeneous Riemannian metric g having nonpositive curvature.

We remark that Theorem 1.2 implies Theorem 1.1; indeed, the 3-dimensional simply connected homogeneous contact metric manifolds have been completely classified by Perrone [9]. According to this classification, up to equivalence there is a unique such manifold having nonpositive curvature, namely the group $\tilde{E}(2)$ endowed with a standard left invariant contact metric structure, which is flat.

2. Proof of Theorem 1.2. We argue by contradiction. Assume g is an admissible homogeneous Riemannian metric of nonpositive curvature and let $G = I_g(M) \cap \operatorname{Aut}(M, \eta)$. Then according to [2, Corollary 2.6], G contains a solvable simply transitive Lie subgroup S; we can therefore identify M with the group S, and transfer η and g to left invariant tensor fields on S. We shall denote by \langle , \rangle the scalar product induced canonically by g on the Lie algebra \mathfrak{s} of S. Observe that the Reeb vector field ξ is invariant under the action of G, so it also yields a left invariant vector field on S. We shall prove that (S, g) is flat, which gives the desired contradiction, according to a result of Diatta which excludes the existence of flat left invariant metrics on contact Lie groups of dimension at least five (cf. [7, Theorem 3]).

According to the structure theory of Azencott and Wilson [2, 3] (cf. also [1]), the metric Lie algebra $(\mathfrak{s}, \langle, \rangle)$ admits an orthogonal decomposition

$$\mathfrak{s} = \mathfrak{a} \oplus \mathfrak{n}$$
,

where $n = [\mathfrak{s}, \mathfrak{s}]$ is the derived ideal, and \mathfrak{a} is an abelian subalgebra. Moreover, let $S \cong S_o \times S_+$ be the de Rham decomposition of the Riemannian manifold (S, g), where S_o is an Euclidean space and S_+ is a homogeneous Riemannian manifold of nonpositive curvature and having

576

no Euclidean factor. Both S_o and S_+ are isometric to two solvmanifolds, with correspondig metric Lie algebras \mathfrak{s}_o and \mathfrak{s}_+ , which are Lie subalgebras of \mathfrak{s} , such that:

$$\mathfrak{s} = \mathfrak{s}_o \oplus \mathfrak{s}_+$$

Moreover, we have orthogonal decompositions

(3)
$$\mathfrak{s}_o = \mathfrak{a}_o \oplus \mathfrak{n}_o, \quad \mathfrak{s}_+ = \mathfrak{a}_+ \oplus \mathfrak{n}_+,$$

where a_o and n_o are subalgebras of a and n, while a_+ , n_+ are the respective othogonal complements in a and in n (see [3, Theorem 4.6]). We have the following characterization of a_o (cf. [3, 3.8]):

 $\mathfrak{a}_o = \{A \in \mathfrak{a}; ad_{A|\mathfrak{n}} \text{ is skew symmetric} \}.$

It is also known that n_o is central in n (cf. [3, 3.4]); moreover

(4)
$$\operatorname{ad}_{A|\mathfrak{n}_{\alpha}}$$
 is skew symmetric for all $A \in \mathfrak{a}$

(see [3, 3.8]). From these facts it follows that n_+ is an ideal of \mathfrak{s} .

By definition of an admissible Riemannian metric and using (1), we see that

(5)
$$\langle [X,\xi],\xi\rangle = 0$$
 for all $X \in \mathfrak{s}$.

We decompose $\xi = \xi_o + \xi_+ = A_o + N_o + \xi_+$ according to (2) and (3). Then from (5), for every $A \in \mathfrak{a}_+$ we get

$$0 = \langle [A, \xi], \xi \rangle$$

= $\langle [A, \xi_o], \xi \rangle + \langle [A, \xi_+], \xi_+ \rangle$
= $\langle [A, N_o], \xi \rangle + \langle [A, \xi_+], \xi_+ \rangle$
= $\langle [A, N_o], N_o \rangle + \langle [A, \xi_+], \xi_+ \rangle$
= $\langle [A, \xi_+], \xi_+ \rangle$,

where we have used (4). Now, since S_+ has no Euclidean factor, it is known that there exists $A \in \mathfrak{a}_+$ such that the symmetric part of $\mathrm{ad}_A : \mathfrak{n}_+ \to \mathfrak{n}_+$ is positive definite (cf. [13, Lemma 3.1]). From this and the computation above, it follows that $\xi_+ \in \mathfrak{a}_+$. Let $X \in \mathfrak{s}$ and let $Y \in \mathfrak{n}_+$. Then we have $[X, Y] \in \mathfrak{n}_+$, so that:

$$\langle [X, Y], \xi \rangle = \langle [X, Y], \xi_+ \rangle = 0.$$

This implies that $d\eta(X, Y) = 0$ for every $X \in \mathfrak{s}$ and $Y \in \mathfrak{n}_+$. Accordingly, we must have $\mathfrak{n}_+ \subset \operatorname{span}(\xi)$, and thus actually $\mathfrak{n}_+ = \{0\}$ which in turn forces $\mathfrak{s}_+ = \{0\}$, i.e., forces (S, g) to be flat as claimed.

REFERENCES

- D. V. ALEKSEEVSKII, Homogeneous Riemannian spaces of negative curvature, Mat. Sb. 25 (1975), 87–109; English translation, Math. USSR-Sb. 96 (1975), 93–117.
- [2] R. AZENCOTT AND E. N. WILSON, Homogeneous manifolds with negative curvature. I, Trans. Amer. Math. Soc. 215 (1976), 323–362.

A. LOTTA

- [3] R. AZENCOTT AND E. N. WILSON, Homogeneous manifolds with negative curvature. II, Mem. Amer. Math. Soc. 8 (1976), iii+102pp.
- [4] D. E. BLAIR, Riemannian geometry of contact and symplectic manifolds, Progr. Math. 203, Birkhäuser, Boston, 2002.
- [5] D. E. BLAIR, Curvature of contact metric manifolds. Complex, contact and symmetric manifolds, 1–13, Progr. Math. 234, Birkhäuser, Boston, 2005.
- [6] D. E. BLAIR, On the non-existence of flat contact metric structures, Tohoku Math. J. (2) 28 (1976), 373-379.
- [7] A. DIATTA, Riemannian geometry on contact Lie groups, Geom. Dedicata 133 (2008), 83–94.
- [8] Z. OLSZAK, On contact metric manifolds, Tohoku Math. J. (2) 31 (1979), 247–253.
- [9] D. PERRONE, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42 (1998), 243–256.
- [10] P. RUKIMBIRA, A characterization of flat contact metric geometry, Houston J. Math. 24 (1998), 409-414.
- [11] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tohoku Math. J. (2) 12 (1960), 459–476.
- [12] A. ZEGHIB, Subsystems of Anosov systems, Amer. J. Math. 117 (1995), 1431–1448.
- [13] T. H. WOLTER, Homogeneous manifolds with nonpositive curvature operator, Geom. Dedicata 37 (1991), 361–370.

DIPARTIMENTO DI MATEMATICA Università di Bari "Aldo Moro" Via E. Orabona 4, 70125 Bari Italy

E-mail address: lotta@dm.uniba.it