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NON EXISTENCE OF HOMOGENEOUS CONTACT METRIC
MANIFOLDS OF NONPOSITIVE CURVATURE
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Abstract. We prove that there exist no simply connected homogeneous contact metric
manifolds having nonpositive sectional curvature.

1. Introduction. Let (M, η) be a contact manifold of dimension N = 2n+ 1, n ≥ 1.
We recall that η is a 1-form satisfying

η ∧ (dη)n �= 0

everywhere on M . It is well known that there exists a unique globally defined vector field ξ ,
called the Reeb vector field, which is transverse to the contact distribution Ker(η), such that
η(ξ) = 1 and

dη(X, ξ) = 0(1)

for every smooth vector field X on M . There is an extensive literature concerning the Rie-
mannian geometry of associated metrics on (M, η), starting from the investigations of Sasaki
[11], see [4] and the references therein. An associated metric g is a Riemannian metric for
which there exists a (1, 1) tensor field ϕ such that

ϕ2 = −Id + η ⊗ ξ , η(X) = g(X, ξ) , dη(X, Y ) = g(X, ϕY )

for every X,Y vector fields on M . The tensors (ϕ, ξ, η, g) make up a contact metric struc-
ture on M . By means of a polarization process, one can show that every contact form admits
associated metrics (cf. [4, Theorem 4.4]). This paper focuses on the curvature of associated
metrics. It was proved by Blair in [6] that no flat associated metric can exist on a contact man-
ifold of dimension N ≥ 5. On the contrary, three-dimensional flat contact metric manifolds
do exist (see [10]). More generally, if N ≥ 5 and one asks for constant sectional curvature c,
then c must be equal to 1, and the structure must be Sasakian (see [8]). It is also relevant that
a compact contact manifold cannot admit any associated metric of negative curvature; this is
settled by a result of Zeghib on geodesic plane fields [12], because for every associated metric
the integral curves of ξ are geodesics (cf. [10] or [4, Theorem 7.4]).

In the light of these facts, Blair conjectured the non existence of contact metric manifolds
having nonpositive curvature, with the exception of the flat 3-dimensional case (see [4] and
also [5]).
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In this direction, in the present note we deal with the homogeneous case. Namely, we
prove the following result.

THEOREM 1.1. Let (M, ϕ, ξ, η, g) be a homogeneous simply connected contact met-
ric manifold having nonpositive sectional curvature. Then M is 3-dimensional, flat, and it is
equivalent to the Lie group Ẽ(2), universal covering of the group of Euclidean motions of R2,
endowed with a left invariant contact metric structure.

Here a contact metric manifold is defined to be homogeneous if it admits a transitive Lie
group of diffeomorphisms preserving the structure tensor fields (ϕ, ξ, η, g).

We actually prove a more general result. Let (M, η) be a contact manifold. A Riemann-
ian metric g on M will be called admissible if the Reeb vector field ξ is orthogonal to the
contact distribution Ker(η) with respect to g . Of course, every associated metric is admissi-
ble. If (M, η) is homogeneous, by a homogeneous admissible metric we mean an admissible
metric such that Ig (M) ∩ Aut(M, η) is transitive on M , where Ig (M) denotes the isome-
try group of g , while Aut(M, η) is the group of diffeomorphisms f : M → M such that
f ∗η = η.

THEOREM 1.2. Let (M, η) be a homogeneous simply connected contact manifold of
dimension N ≥ 5. Then M does not admit any admissible homogeneous Riemannian metric
g having nonpositive curvature.

We remark that Theorem 1.2 implies Theorem 1.1; indeed, the 3-dimensional simply
connected homogeneous contact metric manifolds have been completely classified by Perrone
[9]. According to this classification, up to equivalence there is a unique such manifold having
nonpositive curvature, namely the group Ẽ(2) endowed with a standard left invariant contact
metric structure, which is flat.

2. Proof of Theorem 1.2. We argue by contradiction. Assume g is an admissible
homogeneous Riemannian metric of nonpositive curvature and let G = Ig (M) ∩ Aut(M, η).
Then according to [2, Corollary 2.6], G contains a solvable simply transitive Lie subgroup
S; we can therefore identify M with the group S, and transfer η and g to left invariant tensor
fields on S. We shall denote by 〈 , 〉 the scalar product induced canonically by g on the Lie
algebra s of S. Observe that the Reeb vector field ξ is invariant under the action of G, so it
also yields a left invariant vector field on S. We shall prove that (S, g) is flat, which gives the
desired contradiction, according to a result of Diatta which excludes the existence of flat left
invariant metrics on contact Lie groups of dimension at least five (cf. [7, Theorem 3]).

According to the structure theory of Azencott and Wilson [2, 3] (cf. also [1]), the metric
Lie algebra (s, 〈 , 〉) admits an orthogonal decomposition

s = a ⊕ n ,

where n = [s, s] is the derived ideal, and a is an abelian subalgebra. Moreover, let S ∼= So×S+
be the de Rham decomposition of the Riemannian manifold (S, g), where So is an Euclidean
space and S+ is a homogeneous Riemannian manifold of nonpositive curvature and having
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no Euclidean factor. Both So and S+ are isometric to two solvmanifolds, with correspondig
metric Lie algebras so and s+, which are Lie subalgebras of s, such that:

s = so ⊕ s+ .(2)

Moreover, we have orthogonal decompositions

so = ao ⊕ no , s+ = a+ ⊕ n+ ,(3)

where ao and no are subalgebras of a and n, while a+, n+ are the respective othogonal com-
plements in a and in n (see [3, Theorem 4.6]). We have the following characterization of ao

(cf. [3, 3.8]):

ao = {A ∈ a ; adA|n is skew symmetric} .

It is also known that no is central in n (cf. [3, 3.4]); moreover

adA|no
is skew symmetric for all A ∈ a(4)

(see [3, 3.8]). From these facts it follows that n+ is an ideal of s.
By definition of an admissible Riemannian metric and using (1), we see that

〈 [X, ξ ], ξ〉 = 0 for all X ∈ s.(5)

We decompose ξ = ξo + ξ+ = Ao + No + ξ+ according to (2) and (3). Then from (5),
for every A ∈ a+ we get

0 = 〈 [A, ξ ], ξ 〉
= 〈 [A, ξo], ξ 〉 + 〈 [A, ξ+], ξ+ 〉
= 〈 [A,No], ξ 〉 + 〈 [A, ξ+], ξ+ 〉
= 〈 [A,No], No 〉 + 〈 [A, ξ+], ξ+ 〉
= 〈 [A, ξ+], ξ+ 〉 ,

where we have used (4). Now, since S+ has no Euclidean factor, it is known that there exists
A ∈ a+ such that the symmetric part of adA : n+ → n+ is positive definite (cf. [13, Lemma
3.1]). From this and the computation above, it follows that ξ+ ∈ a+. Let X ∈ s and let
Y ∈ n+. Then we have [X,Y ] ∈ n+, so that:

〈 [X,Y ], ξ 〉 = 〈 [X,Y ], ξ+ 〉 = 0 .

This implies that dη(X, Y ) = 0 for every X ∈ s and Y ∈ n+. Accordingly, we must have
n+ ⊂ span(ξ), and thus actually n+ = {0} which in turn forces s+ = {0}, i.e., forces (S, g)

to be flat as claimed.
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