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HOMOGENEOUS STAR PRODUCTS
AND CLOSED INTEGRAL FORMULAS

KHALED TOUNSI

(Received November 4, 2009, revised Aprile 30, 2010)

Abstract. We study homogeneous star products on cotangent bundles of Lie groups,
we prove that Kontsevich star products are homogeneous and we characterize them by closed
integral formulas.

1. Introduction. The notion of star products, i.e., of associative deformations of
point wise product of functions has been defined in [4] as a tool for the quantization of sym-
plectic or Poisson manifolds. The simplest example of a star product is the Moyal product for
the Poisson structure P on the vector space V = Rm with constant coefficients

(1.1) P =
∑
i,j

P ij ∂i ∧ ∂j , P ij = −Pji ∈ R ,

where ∂i = ∂/∂xi is the partial derivative in the direction of the coordinate xi, i = 1, . . . ,m.
The Moyal product is first a formal deformation defined by the formal series of differential
operators

(1.2) u �M v =
∞∑
n=0

(ih̄)n

2nn! C
n(u, v) ,

where C0(u, v) = uv,C1(u, v) = {u, v} = ∑
i,j P

ij ∂iu∂jv and

(1.3) Ck(u, v) =
∑

i1,...,ik,j1,...,jk

P i1j1 · · ·P ikjk ∂i1,...,ik u∂j1,...,jk v .

We shall illustrate here that, if m = 2d is even, we can replace the above formal series by
an integral formula well defined on functional spaces : Let S(R2d) be the Schwartz space
of rapidly decreasing smooth functions on R2d . If ξ = (ξ1, ξ2), η = (η1, η2) ∈ R2d , let
ω(ξ, η) = ξ1η2 − η1ξ2, the natural symplectic form on R2d . Then for u, v ∈ S(R2d), the
series defining the Moyal product is converging in the space S ′(R2d) to the function defining
by the following integral [1]:

(1.4) (u �M v)(x) = (πh̄)−2d
∫

R2d

∫
R2d

u(ξ)v(η)e(2i/h̄)(ω(x,η)+ω(η,ξ)+ω(ξ,x))dξdη .
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Let now M be a Poisson manifold and {u, v} the Poisson bracket of smooth functions on M .
A star product on M is a formal deformation of C∞(M):

(1.5) u � v = uv + h̄{u, v} +
∑
k≥2

h̄kCk(u, v) .

Such deformations exist on any Poisson manifold. The existence proof for symplectic man-
ifolds was given by De Wilde and Lecomte in [11] and by Omori, Maeda and Yoshioka in
[18]. There is another, very geometric proof, due to Fedosov, in [14]. Finally, M. Kontsevich,
thanks to the formality theorem, gave a general proof for any Poisson manifold and a totally
explicit description for a star product on the flat space (Rd, α), if α is a Poisson tensor [17].
Unfortunately, the proof of Kontsevich does not give any explicit expression for the general
case. As a consequence, it seems hoopless to get closed general formula like (1.4).

The symplectic manifolds which are mostly used by physicists are the cotangent bun-
dles M = T ∗Q of a smooth manifold Q, the configuration space. On these manifolds, there
is a global Liouville vector field ξ , and a notion of homogenous differential or bidifferen-
tial operators. Homogenous star products on M are star products � = ∑

r≥0 h̄
rCr such that

LξCr = −rCr . There is also a physical reason to restrict ourselves to the class of such
star products: taking Q = Rn, then the usual quantum mechanical schrödinger representa-
tion consists of “quantizing” nice classical observables, i.e., smooth functions G : R2n →
C; (q, p) �→ G(q, p), usually taken to be polynomial in the momenta p, by mapping them to
differential operators on functions on Rn according to the rule that a smooth complexe-valued
fonction f : q �→ f (q) is mapped to the multiplication with f and the coordinate pk is
mapped to h̄

i
∂
∂qk

and for a general function polynomial in the momenta a so called ordering
prescription is applied to extend the map to a bijection. An important example is the standard
ordering prescription where the standard representation �S(G) of a functionG of the form

(1.6) G : (q, p) �→ 1

k!
∑
i1,...,ik

pi1 · · ·pi1Gi1···ik (q)

is given by

(1.7) �S(G)(ψ) : q �→
(
h̄

i

)k 1

k!G
i1···ik ∂kψ

∂qi1 · · · ∂qik (q) .

It is easy to see that [H, �S(G)] = �S(HG), where H is the linear map defined on C∞(R2n)

[[h̄]] by H = h̄ ∂
∂h̄

+Lξ . Physically, this means that the operator corresponding to the momenta
pk has also the physical dimension of a momentum equal to the dimension of h̄ divided by
length (the dimension of qk) which is preserved by this prescription.

For this class of manifolds (i.e., the cotangent bundles), the very first existence proof by
De Wilde and Lecomte ([10]) is in fact much easier than the general proof.

Suppose now Q = G is a Lie group. In this case, there are natural vector fields which
give in any point β of T ∗G a basis for the tangent space TβT ∗G. A formal star product �G
on T ∗G, using these vector fields, was defined by Gutt [15]. This product is a finite sum if
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the functions u and v are homogenous with respect to X. In this case, B. Cahen [6] gave an
integral formula u �→ Au defining an operator acting on C∞

c (G) such that Au�Gv = Au ◦ Av .
On the other hand, the restriction of the homogenous star products on T ∗G to the vertical

fiber g∗ appears as the star products on the linear poisson vector space g∗ given by the Fourier
transform of the Baker-Campbell-Hausdorff formula.

If V is a vector space, the Kontsevich methods to define star products can be used to get
many explicit formal star products for any linear Poisson bracket. These star products, called
“Kontsevich star products”, are homogenous, formally equivalent, moreover it is possible to
write closed integral formula for them generalizing (1.4)
(see [2]).

In [19] and [20], the author proved that each Kontsevich star product defined on g∗ can be
extended to a well defined formal star product on the manifold T ∗G (still called a Kontsevich
star product). Moreover, two such star products are equivalent and we gave an integral formula
for the equivalence operator.

This paper is a continuation of [19] and [20]. We consider here homogenous star products
on T ∗G, which define graded deformations on the functional space C∞(G)⊗ S(g). We first
prove that such homogeneous star products are completely determined by their restriction to
(C∞(G)⊗ S1(g))× S(g). We show that the extension of each Kontsevich star product on g∗
to T ∗G is a homogeneous star product. We give an explicit formula for the extension of the
particular star product on g∗ defined by Kontsevich in [17]. In this setting, it is possible to get
nonformal star products. More precisely, we prove the following closed integral formula for
Kontsevich star products on T ∗G.

Given a formal series on g

(1.8) F (X) = 1 +
∞∑
n=1

∑
|s|=n

as1,...,sk tr(iadX)s1 · · · tr(iadX)sk ,

we define, for any value of h̄, φ,ψ ∈ C∞(G) and P,Q ∈ S(g), the product of two homoge-
nous functions u = π∗ϕP and v = π∗ψQ as the value of the distribution with {0} support
on g × g

P̂ (X)Q̂(Y )
F (X)F(Y )

F (X ×h̄ Y )

on the C∞ function mapping (X, Y ) ∈ g × g to

ϕ

(
x exp

(
h̄

2
(X ×h̄ Y )

)
exp

(
− h̄

2
Y

))
ψ

(
x exp

(
h̄

2
(X ×h̄ Y )

)
exp(−h̄Y ) exp

(
− h̄

2
X

))
.

Here, for f ∈ S(g), f̂ stands for the Fourier transform of f defined by

(1.9) f̂ (X) =
∫

g∗
f (ξ)e−i〈ξ,X〉dξ

and ×h̄ denotes the Baker-Campbell-Hausdorff product in the Lie algebra g endowed with the
Lie bracket [ ]h̄ = h̄[ ].
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Finally, we pay attention that there are some works on the integral formulas for the star
product on symmetric spaces by Bieliavsky and others (see [7] and [8] for instance). We hope
to be able in the future to use, at least for some class of Lie groups, our relations as a tool for
the harmonic analysis of G.

2. Kontsevich star products.
2.1. Kontsevich star products on dual of Lie algebras. In [2], Arnal, Ben Amar and

Masmoudi proved that the star product built on Rd by Kontsevich with the help of bidif-
ferential operators associated to oriented graphs (see [17]) and, more generally, every such
“Kontsevich star product” in the sense of [2] are given on the space of linear Poisson struc-
tures α by universal formulae in the following way.

Introduce for u ∈ S(g) the Fourier transform û of u by

(2.1) û(X) =
∫

g∗
u(ξ)e−i〈ξ,X〉dξ ,

where û(X) is a distribution with {0} support, and this expression is well defined and gives a
new polynomial function. For X,Y ∈ g, the Baker-Campbell-Hausdorff formula X ×α Y in
X,Y is defined by

(2.2) exp(X ×α Y ) = expX. expY .

Then

(2.3) (u1 �α u2)(ξ) =
∫

g2
û1(X)û2(Y )

F (X)F(Y )

F (X ×α Y )
ei〈ξ,X×αY 〉dXdY ,

where u1, u2 are polynomial functions on g∗ (u1, u2 ∈ S(g)) and F is any formal power series
of the form

(2.4) F (X) = 1 +
∞∑
n=1

∑
|s|=n

as1,...,sk tr(iadX)s1 · · · tr(iadX)sk .

In other words (with the “deformation parameter” h̄) we can write

(2.5) (u1 �h̄ u2)(ξ) =
∫

g2
û1(X)û2(Y )

F (X)F(Y )

F (X ×h̄ Y )
ei〈ξ,X×h̄Y 〉dXdY ,

where ×h̄ denotes the Baker-Campbell-Hausdorff product in the Lie algebra g endowed with
the Lie bracket [ ]h̄ = h̄[ ], that is

(2.6) h̄−1(exp h̄X. exp h̄Y ) = exp(X ×h̄ Y ) .

These star products are all equivalent to the “standard” product [15, Proposition 4]

(2.7)
(
u1 �

S
h̄ u2

)
(ξ) =

∫
g2
û1(X)û2(Y )e

i〈ξ,X×h̄Y 〉dXdY

or the Kontsevich-Duflo star product (see [2] for more details)

(2.8)
(
u1 �

K
h̄ u2

)
(ξ) =

∫
g2
û1(X)û2(Y )

J (X)J (Y )

J (X ×h̄ Y )
ei〈ξ,X×h̄Y 〉dXdY ,
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where

(2.9) J (X) = det

(
sh(adX/2)

adX/2

)1/2

.

From now on, we shall denote �Fh̄ the Kontsevich star product (in the sense of [2]) on g∗
defined by the formula (2.5).

2.2. Kontsevich star products on T ∗G. Let now G be a connected Lie group of di-
mension n with Lie algebra g and π : T ∗G −→ G the cotangent bundle of G. Using the
notations of [15], let X1, . . . , Xn be a basis of the Lie algebra g of G, each Xj defines a left
invariant vector field X∗

j onG such that

(2.10) X∗
j ϕ(x) = d

dt
ϕ(exp(−tXj ).x)|t=0, ϕ ∈ C∞(G) .

Instead of using Darboux coordinates of T ∗G, it is convenient to use natural fibre-variables
pj (1 ≤ j ≤ n) given by

(2.11) pj (α) = α(X∗
j )π(α), α ∈ T ∗G .

If we identify canonically T ∗G with G × g∗, the pj ′s are the coordinates of α in the sec-
ond factor. Let θi be the left 1-forms on G such that θi(X∗

j ) = δi,j , then the 2n 1-forms
{dpi, π∗θi ; 1 ≤ i ≤ n} on T ∗G form at each point α in T ∗G a basis of 1-forms. The vector
fields {Zi, Yi ; 1 ≤ i ≤ n} such that

(2.12) dpi(Zj) = π∗θi(Yj ) = δi,j , dpi(Yj ) = π∗θi(Zj ) = 0

have the properties

(2.13) π∗Zi = 0, π∗Yi = X∗
i , [Zi,Zj ] = [Zi, Yj ] = 0, [Yi, Yj ] =

n∑
k=1

Ckij Yk ,

where the Ckij are the structure constants of g in the basis {Xi} given by

(2.14) [Xi,Xj ] =
n∑
k=1

CkijXk .

Finally, with these notations, the Poisson bracket of two functions u and v on T ∗G reads:

(2.15) {u, v} =
n∑
i=1

(ZiuYiv − YiuZiv)+
n∑

i,j,k=1

pkC
k
ijZiuZjv .

From now on, we will use these notations for any Lie groupG.
Let us now recall the construction of the family of Kontsevich star products on T ∗G (see

[19]). In this work, we proved that any Kontsevich star product �Fh̄ on g∗ can be extended to

a global star product ∗Fh̄ on T ∗G, still called a Kontsevich star product, by the following way.



564 K. TOUNSI

THEOREM 2.1 ([19]). There exists a unique star product ∗Fh̄ on T ∗G such that,
(i) for all ϕ in C∞(G) and for all f in C∞(T ∗G),

(2.16) (π∗ϕ) ∗Fh̄ f = (π∗ϕ)f +
∞∑
r=1

(−h̄)r
r!

∑
i1,...,ir

π∗(X∗
i1

· · ·X∗
ir
ϕ)(Zi1 · · ·Zir f ) ,

(ii) for all P , Q in S(g),

(2.17) P ∗Fh̄ Q = P �Fh̄ Q .

Moreover, we characterized ∗Fh̄ by the following theorem.

THEOREM 2.2 ([19]). For f in C∞(G) ⊗ S(g), we consider the operator Bf acting
on C∞

c (G) by
(2.18)

Bf (ϕ)(x) = h̄−n
∫

g×g∗
e−i/h̄〈ξ,X〉f

(
x. exp

(
− X

2

)
, ξ

)
ϕ(x exp(−X))F

(
X

h̄

)
dXdξ .

Then, the star product ∗Fh̄ is given by

(2.19) Bf ∗Fh̄ g = Bf ◦ Bg for all f, g in C∞(G)⊗ S(g) .

3. Characterization of homogeneous star products on T ∗G. Let M = T ∗Q, i.e.,
the cotangent bundle of an arbitrary n-dimensional smooth manifoldQ. The symlectic struc-
ture ofM is given by exterior derivative of the Liouville 1-form θ onM . The Liouville vector
field ξ is the only vector field on M that satisfies the relation i(ξ)dθ = θ . An arbitrary tensor
field T on M is said to be “homogeneous” of degree k ∈ N if the Lie derivative of T with
respect to ξ equals kT . Then, a C∞-function F on M is homogeneous of degree k if and
only if it is a homogeneous polynomial in the “momenta” with degree k, that is in terms of
“Darboux” coordinates (x1, . . . , xn, p1, . . . , pn),

(3.1) F =
∑
i1,...,ik

Fi1,...,ik (x)pi1 · · ·pik .

We denote by Ck(M) the space of such functions.

DEFINITION 3.1 ([10]). A star product ∗h̄ = ∑
r≥0 h̄

rCr on M is said to be homoge-
neous if each Cr is homogeneous of degree −r .

In the case where M = T ∗G, the cotangent bundle of a Lie group G, with the nota-
tions of Section 2.2, one can observe that the vector fields Yi as well as the functions pi on
T ∗G give a faithful representation of g. Hence, a differential operator expressed as an iterate
Yi1 · · · Yik corresponds naturally to an element of the universal enveloping algebra U(g) of the
Lie algebra g. Similarly, a polynomial in pi ′s corresponds to an element of the symmetric
algebra S(g) of g. Then, we can easily see that Ck(T ∗G) is exactly the space C∞(G)⊗ Sk(g)

of functions f of the form:

(3.2) f =
∑
i1,...,ik

π∗(ϕi1,...,ik )pi1 · · ·pik , ϕi1,...,ik ∈ C∞(G) .
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Where Sk(g) stands for the subspace in S(g) of homogeneous polynomials of degree k and
π∗(ϕi1,...,ik ) is the pullback of ϕi1,...,ik to T ∗G. We have consequently the following corollary.

COROLLARY 3.2 (Homogeneous star product on T ∗G). A star product ∗h̄ = ∑
r≥0

h̄rCr on T ∗G is homogeneous if and only if

(3.3) Cr(C∞(G)⊗ Sk(g), C∞(G)⊗ Sk
′
(g)) ⊂ C∞(G)⊗ Sk+k′−r (g) for all r, k, k′ ∈ N .

In other words, if P and Q are homogeneous polynomials in pi of degree p and q , respec-
tively, and if f, g ∈ C∞(G) then

(3.4) (π∗f.P ) ∗h̄ (π∗g.Q) =
p+q∑
r=0

h̄r (π∗hr).Rr ,

where hr ∈ C∞(G) and Rr is a homogeneous polynomial in pi of degree p + q − r .

REMARK 3.3. Let ∗h̄ = ∑
r≥0 h̄

rCr be a homogeneous star product on T ∗G
(i) If we take p = q = 0 in formula (3.4), we have

(3.5) (π∗f ) ∗h̄ (π∗g) = (π∗f )(π∗g) = π∗(f g) for all f, g ∈ C∞(G)

(ii) The “vertical part” �h̄ of ∗h̄ (i.e., the restriction of ∗h̄ to polynomials in the variables
pj ) gives a homogeneous star product on the dual g∗ of g, i.e., satisfying the condition

(3.6) Cr(S
k(g), Sk

′
(g)) ⊂ Sk+k′−r (g) for all r, k, k′ ∈ N .

The following theorem plays an important role in the sequel.

THEOREM 3.4 (Characterization of homogeneous star products). Let ∗h̄ = ∑
r≥0 h̄

r

Cr be a homogeneous star product on T ∗G. Then ∗h̄ is completely determined by its restric-
tions to (C∞(G)⊗ S1(g))× Sk(g) for k ∈ N , i.e., through the mapping given by the rule

(3.7) (π∗f.pi, P ) �→ (π∗f.pi) ∗h̄ P , f ∈ C∞(G), P ∈ Sk(g) (i = 1, · · · , n and k ∈ N) .

PROOF. According to [5, Theorem 2.4] and by (ii) of the above remark, the rule 3.7
determine uniquely the product of polynomials in S(g). Now following the idea of [15] and by
a direct computation, we can step by step determine uniquely the product (π∗fP) � (π∗g.Q),
where f, g ∈ C∞(G) and P,Q are polynomial in pi .

Finally, as the cochains Cr are bidifferential operators on T ∗G, they are totally deter-
mined by their values on the space C∞(G)⊗ S(g). The theorem is thus proved. �

4. Extension of a homogeneous star product on g∗ to T ∗G. In this section, we shall
prove generally that any homogeneous star product on g∗ can be extended to a homogeneous
star product on T ∗G under a special hypothesis. Let us first recall some known facts about
the equivalence of star products.

DEFINITION 4.1 ([11]). Two star products ∗h̄ and ∗′
h̄ on a Poisson manifold M are

said to be equivalent if there exists a map T = Id + ∑
r≥1 h̄

rTr : C∞(M) → C∞(M)[[h̄]]
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(where the Tr are linear C∞(M)-valued differential operators vanishing on the constants for
r ≥ 1) such that

(4.1) T (u ∗′
h̄ v) = T (u) ∗h̄ T (v) for all u, v ∈ C∞(M) .

REMARK 4.2. The equivalence between two star products ∗h̄ = ∑
r≥0 h̄

rCr and ∗′
h̄ =∑

r≥0 h̄
rC′

r reads

(4.2)
∑

p+q=n
TpC

′
q(u, v) =

∑
l+k+r=n

Cl(Tku, Trv) for all u, v ∈ C∞(M) and n ∈ N .

If we focus the attention on homogeneous star products we have the following definition.

DEFINITION 4.3 ([10]). Two homogeneous star products ∗h̄ and ∗′
h̄ on the cotangent

bundle M = T ∗Q are said to be equivalent if in addition each Tr in the equivalence operator
T = Id + ∑

r≥1 h̄
rTr is homogeneous of degree −r , that is if u is homogeneous, then Tr(u)

is homogeneous of degree deg(u)− r .

REMARK 4.4. We have the same definition in the case of the dual of a Lie algebra (see
[3] for instance).

In order to prove the existence of star product on the cotangent bundle of a smooth man-
ifold, DeWilde and Lecomte showed that the usual obstructions in the third de Rham coho-
mology which a priori occurs when constructing the star product by induction simply vanishes
due to the homogeneity requirement. They consequently prove the following theorem.

THEOREM 4.5 ([10]). Any two homogeneous star products on the cotangent T ∗M of
a smooth manifoldM are equivalent.

We also remark that this theorem holds in the case of the dual g∗ of a finite-dimensional
Lie algebra g∗ (see [5] for example), i.e., all the homogeneous star products on g∗ are equiv-
alent to the standard (or fundamental) star product �Sh̄ .

The main result in this section is the following

THEOREM 4.6 (Extension of homogeneous star products). Let �h̄ be a homogeneous
star product on g∗ equivalent to the standard product �Sh̄ by the intertwining operator T =
Id + ∑

r≥1 h̄
rTr such that each Tk is a differential operator with constant coefficients on

g∗ and homogeneous of degree −r (i.e., Tr(Sk(g)) ⊂ Sk−r (g)). Then, there exists an only
homogeneous star product ∗h̄ on T ∗G satisfying the following.

(i) For all ϕ in C∞(G) , for all f in C∞(T ∗G),

(4.3) (π∗ϕ) ∗h̄ f = (π∗ϕ)f +
∞∑
r=1

(−h̄)r
r!

∑
i1,...,ir

π∗(X∗
i1

· · ·X∗
ir
ϕ)(Zi1 · · ·Zir f ) .

(ii) For all P , Q in S(g),

(4.4) P ∗h̄ Q = P �h̄ Q .

The product ∗h̄ is then an extension of �h̄ to T ∗G.
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The proof of the following lemma is easy.

LEMMA 4.7. Let ∗1
h̄ and ∗2

h̄ be two equivalent star products on the cotangent bundle
M = T ∗Q of a smooth manifoldQ satisfying

(i) ∗1
h̄ is homogeneous,

(ii) The equivalence operator T = Id+∑
r≥1 h̄

rTr is such that each Tr is homogeneous
of degree −r .
Then, ∗2

h̄ is still homogeneous.

PROOF OF THEOREM 4.6. The existence of the star product ∗h̄ was proved in [19].
Moreover, in this proof, the associativity of ∗h̄ was obtained by showing that ∗h̄ is equivalent
to the global Gutt star product ∗Sh̄ on T ∗G (see [15]), and the global equivalence operator is
simply the G-invariant extension of T to C∞(T ∗G), which gives an operator satisfying the
second condition of the lemma. Finally the theorem follows by the above lemma using the
fact that the Gutt-star product ∗Sh̄ on T ∗G is homogeneous (see [9]). �

5. Explicit formulas for the star products ∗Fh̄ . The objective of this section is to
apply the results of previous sections to the large class of natural Kontsevich star products ∗Fh̄
on T ∗G and to establish closed integral formulas (without operators) to these star products
(see Section 2.2).

The following theorem is an immediate consequence of Theorems 2.1 and 4.6.

THEOREM 5.1. On T ∗G, The star products ∗Fh̄ are homogeneous.

In [5], Ben Amar and Chabouni, especially for the original Kontsevich star product �Kh̄
on g∗ (see Section 2.1), gave an explicit formula. This formula reads

pi �
K
h̄ Q =

∞∑
r=0

(2h̄)r
Br

r!

×
∑

j1,...,jr ,m1,...,mr

(
(C

m1
j1i
C
m2
j2m1

· · ·Cmrjrmr−1
pmr (Zj1 · · ·ZjrQ)−

[r/2]∑
l=1

Br−2l

2(r − 2l)!

× B2l

(2l)!C
m2l
mrm1

C
m1
j2m2

· · ·Cm2l−1
j2lm2l

C
m2l+1
j2l+1mi

C
m2l+2
j2l+2m2l+1

· · ·Cmrjrmr−1
(Zj2 · · ·ZjrQ)

)
,

(5.1)

where Br is the r th Bernouilli number.

COROLLARY 5.2 (Characterization of ∗Kh̄ ). The Kontsevich star product ∗Kh̄ (which is

the extension of �Kh̄ to T ∗G) is the only homogeneous star product on T ∗G determined by the
rule

(π∗f.pi) ∗Kh̄ Q =
∞∑
k=0

k∑
r=0

(−1)k−r
(2h̄)r

r!(k − r)!Br
∑

j1,...,jr ,m1,...,mr
i1,...,il−r
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C
m1
j1i
C
m2
j2m1

· · ·Cmrjrmr−1
π∗(X∗

i1
· · ·X∗

ik−r f )(Zi1 · · ·Zik−r pmr (Zj1 · · ·ZjrQ))

−
[r/2]∑
l=1

Br−2l

2(r − 2l)!
B2l

(2l)!C
m2l
mrm1

C
m1
j2m2

· · ·Cm2l−1
j2lm2l

C
m2l+1
j2l+1mi

C
m2l+2
j2l+2m2l+1

· · ·Cmrjrmr−1
(5.2)

×(Zi1 · · ·Zik−r Zj2 · · ·ZjrQ)
]

+
∞∑
s=0

(−h̄)s+1

s!
∑
t1,...,ts

π∗(X∗
t1

· · ·X∗
ts
X∗
i f )(Zt1 · · ·ZtsQ) .

PROOF. we can write (using the associativity of ∗Kh̄ )

(π∗f.pi) ∗Kh̄ Q = ((π∗f ) ∗Kh̄ pi + h̄π∗(X∗
i f )) ∗Kh̄ Q

= (π∗f ) ∗Kh̄ (pi ∗Kh̄ Q)+ h̄π∗(X∗
i f ) ∗Kh̄ Q ,

and the result follows from Theorem 3.4 and formulas (2.16) and (5.1). �

Now, in the sequel, we shall characterize Kontsevich star products on T ∗G by closed
(without operator) integral formulas similar to 1.4 and 2.5. The upshot is the following.

THEOREM 5.3 (Closed integral formula for ∗Fh̄ ). The Kontsevich star product ∗Fh̄
have the integral formula: For all f1 = π∗ϕ1.P1, f2 = π∗ϕ2.P2 ∈ C∞(G)⊗ S(g),

(f1 ∗Fh̄ f2)(x, ξ)

= h̄−2n
∫

g2
ϕ1

(
x exp

(
− X × Y

2

)
exp

(
X

2

))

× ϕ2

(
x exp

(
− X × Y

2

)
exp(X) exp

(
Y

2

))

× P̂1(−X/h̄)P̂2(−Y/h̄)F (−X/h̄)F (−Y/h̄)
F (−(X × Y )/h̄)

e−i/h̄〈ξ,X×Y 〉dXdY .

(5.3)

For the proof of the theorem, we first prove the following lemma.

LEMMA 5.4. Let f = π∗ϕ.P ∈ C∞(G)⊗ Sk(g). Then the operator Bf (see 2.18) is
given by:

(5.4) Bf (ψ)(x) = (−h̄)−n
∫

g
ϕ

(
x. exp

(
X

2

))
ψ(x. expX)P̂

(
− X

h̄

)
F

(
− X

h̄

)
dX

for ψ in C∞
c (G).
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PROOF. We have

Bf (ψ)(x)

= h̄−n
∫

g×g∗
e−(i/h̄)〈ξ,X〉f

(
x. exp

(
− X

2

)
, ξ

)
ψ(x. exp(−X))F

(
X

h̄

)
dXdξ

= h̄−n
∫

g×g∗
e−(i/h̄)〈ξ,X〉ϕ

(
x. exp

(
− X

2

))
P(ξ)F

(
X

h̄

)
ψ(x. exp(−X)) dXdξ

= h̄−n
∫

g

[∫
g∗
e−i〈ξ,X/h̄〉P(ξ)dξ

]
ϕ

(
x. exp

(
− X

2

))
F

(
X

h̄

)
ψ(x. exp(−X))dX

= h̄−n
∫

g
ϕ

(
x. exp

(
− X

2

))
ψ(x. exp(−X))P̂

(
X

h̄

)
F

(
X

h̄

)
dX

= (−h̄)−n
∫

g
ϕ

(
x. exp

(
X

2

))
ψ(x. expX)P̂

(
− X

h̄

)
F

(
− X

h̄

)
dX .

�

PROOF OF THEOREM 5.3. Let denote by

g(x, ξ)

= h̄−2n
∫

g2
ϕ1

(
x exp

(
− X × Y

2

)
exp

(
X

2

))

×ϕ2

(
x exp

(
− X × Y

2

)
exp(X) exp

(
Y

2

))

×P̂1(−X/h̄)P̂2(−Y/h̄)F (−X/h̄)F (−Y/h̄)
F (−(X × Y )/h̄)

e(−i/h̄)〈ξ,X×Y 〉dXdY .

Then

Bg (ψ)(x)

= h̄−n
∫

g×g∗
g
(
x exp

(
− X

2

)
, ξ

)
ψ(x exp(−X))F

(
X

h̄

)
e(−i/h̄)〈ξ,X〉 dXdξ

= h̄−3n
∫

g3×g∗
ϕ1

(
x exp

(
− X

2

)
exp

(
− Y × T

2

)
exp

(
Y

2

))

×ϕ2

(
x exp

(
− X

2

)
exp

(
− Y × T

2

)
exp(Y ) exp

(
T

2

))
ψ(x exp(−X))F

(
X

h̄

)

×P̂1

(
− Y

h̄

)
P̂2

(
− T

h̄

)
F(−Y/h̄)F (−T/h̄)
F (−(Y × T )/h̄)

e(−i/h̄)〈ξ,Y×T 〉e(−i/h̄)〈ξ,X〉dXdYdT dξ

= h̄−3n
∫

g3×g∗
R(X, Y, T )P̂1

(
− Y

h̄

)
P̂2

(
− T

h̄

)
F(−Y/h̄)F (−T/h̄)
F (−(Y × T )/h̄)

×e(−i/h̄)〈ξ,Y×T 〉e(−i/h̄)〈ξ,X〉dXdYdT dξ ,
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where R is the function given by the product

R(X, Y, T ) = ϕ1

(
x exp

(
− X

2

)
exp

(
− Y × T

2

)
exp

(
Y

2

))

×ϕ2

(
x exp

(
− X

2

)
exp

(
− Y × T

2

)
exp(Y ) exp

(
T

2

))
ψ(x exp(−X))F

(
X

h̄

)
.

But, if Ř1 stands for the partial inverse Fourier transform ofR with respect to the first variable,
then ∫

g
R(X, Y, T )e(−i/h̄)〈ξ,X〉dX = Ř1

(
ξ

h̄
, Y, T

)
.

Therefore,

Bg (ψ)(x)= h̄−3n
∫

g2×g∗
Ř1

(
− ξ

h̄
, Y, T

)
P̂1

(
− Y

h̄

)
P̂2

(
− T

h̄

)
F(−Y/h̄)F (−T/h̄)
F (−(Y × T )/h̄)

×e(−i/h̄)〈ξ,Y×T 〉dYdT dξ .

Moreover, ∫
g∗
Ř1

(
ξ

h̄
, Y, T

)
e(−i/h̄)〈ξ,Y×T 〉dξ =

∫
g∗
Ř1(η, Y, T )e

i〈η,Y×T 〉dη

= h̄n
̂̌
R1(−Y × T , Y, T )

= h̄nR(−Y × T , Y, T ) .

Thus we obtain

Bg (ψ)(x) = h̄−2n
∫

g2
G(−Y × T , Y, T )P̂1

(
− Y

h̄

)
P̂2

(
− T

h̄

)
F(−Y/h̄)F (−T/h̄)
F (−(Y × T )/h̄)

dYdT .

Now an easy calculation shows that

G(−Y × T , Y, T )

= ϕ1

(
x exp

(
Y

2

))
ϕ2

(
x exp(Y ) exp

(
T

2

))
ψ

(
x exp(Y × T )

)
F

(
− Y × T

h̄

)

= ϕ1

(
x exp

(
Y

2

))
ϕ2

(
x exp(Y ) exp

(
T

2

))
ψ

(
x exp(Y ) exp(T )

)
F

(
− Y × T

h̄

)
.

It follows that

Bg (ψ)(x)

= h̄−2n
∫

g2
ϕ1

(
x exp

(
Y

2

))
ϕ2

(
x exp(Y ) exp

(
T

2

))
ψ(x exp(Y ) exp(T ))

×P̂1

(
− Y

h̄

)
P̂2

(
− T

h̄

)
F

(
− Y

h̄

)
F

(
− T

h̄

)
dYdT

= (−h̄)−n
∫

g

[
(−h̄)−n

∫
g
ϕ2

(
x exp(Y ) exp

(
T

2

))
ψ(x exp(Y ) exp(T ))
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×P̂2

(
− T

h̄

)
F

(
− T

h̄

)
dT

]
ϕ1

(
x exp

(
Y

2

))
P̂1

(
− Y

h̄

)
F

(
− Y

h̄

)
dY .

Finally, by the above lemma, we can readily see that

Bg (ψ)(x) = Bf1(Bf2(ψ))(x) = Bf1 ◦ Bf2(ψ)(x).

Thus, Theorem 2.2 concludes our proof. �

REMARK 5.5. With change of variables in 5.3, we get a formula similar to 2.5:

(f1 ∗Fh̄ f2)(x, ξ) =
∫

g2
ϕ1

(
x exp

(
h̄

2
(X ×h̄ Y )

)
exp

(
− h̄

2
Y

))

×ϕ2

(
x exp

(
h̄

2
(X ×h̄ Y )

)
exp(−h̄Y ) exp

(
− h̄

2
X

))

×P̂1(X)P̂2(Y )
F (X)F(Y )

F (X ×h̄ Y )
ei〈ξ,X×h̄Y 〉dXdY .

COROLLARY 5.6 (Closed integral formula for ∗Kh̄ ). The Kontsevich star product ∗Kh̄
has the formula: For all f1 = π∗ϕ1.P1, f2 = π∗ϕ2.P2 ∈ C∞(G)⊗ S(g),

(f1 ∗Kh̄ f2)(x, ξ) =
∫

g2
ϕ1

(
x exp

(
h̄

2
(X ×h̄ Y )

)
exp

(
− h̄

2
X

))

×ϕ2

(
x exp

(
h̄

2
(X ×h̄ Y )

)
exp(−h̄Y ) exp

(
− h̄

2
X

))

×P̂1(X)P̂2(Y )
J (X)J (Y )

J (X ×h̄ Y )
ei〈ξ,X×h̄Y 〉dXdY ,

where J (X) = det

(
sh(adX/2)

adX/2

)1/2

.

6. Example. The very first example of star products is the one given by Gutt in [15].
This star product (∗Sh̄) is the Kontsevich star product on T ∗G for which the vertical part is the

standard product �Sh̄ on g∗ defined by the rule

(6.1) P �Sh̄ Q =
k+k′−1∑
r=0

(2h̄)rΦ−1[(Φ(P ) ·Φ(Q))k+k′−r ] .

It is well known that �Sh̄ is a homogeneous star product [9]. Moreover, it is totally deter-
mined by the formula [13]

(6.2) pi �
S
h̄ Q =

∞∑
r=0

(2h̄)r

r! Br
∑

j1,...,jr ,m1,...,mr

pmrC
m1
j1i

· · ·Cmrjrmr−1
(Zj1 · · ·ZjrQ) ,

where Br is the r th Bernouilli number.
As a consequence of Theorem 5.1, we can easily prove (as in Corollary 5.2) that the Gutt

star product on T ∗G can be explicitly given by the following proposition.
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PROPOSITION 6.1 (Characterization of the Gutt-star product). The Gutt-star product
∗Sh̄ is the only homogeneous star product on T ∗G determined by the formula

(π∗f.pi) ∗Sh̄ Q

=
∞∑
l=0

l∑
r=0

(−1)l−r
(2h̄)r

r!(l − r)!Br
∑

j1,...,jr ,m1,...,mr
i1,...,il−r

C
m1
j1i

· · ·Cmrjrmr−1
π∗(X∗

i1
· · ·X∗

il−r f )

×Zi1 · · ·Zil−r
(
pmr (Zj1 · · ·ZjrQ)

) +
∞∑
s=0

(−h̄)s
s!

∑
t1,...,ts

π∗(X∗
t1

· · ·X∗
ts
X∗
i f )(Zt1 · · ·ZtsQ)) .

Finally, in Theorem 5.3, if we put F = 1 (see Section 2.1) we get an explicit closed
integral formula (without operator) for the Gutt star product.

COROLLARY 6.2 (Closed integral formula for the Gutt star product). The Gutt star
product ∗Sh̄ has the integral formula:

(f1 ∗Sh̄ f2)(x, ξ) =
∫

g2
ϕ1

(
x exp

(
h̄

2
(X ×h̄ Y )

)
exp

(
− h̄

2
Y

))

×ϕ2

(
x exp

(
h̄

2
(X ×h̄ Y )

)
exp(−h̄Y ) exp

(
− h̄

2
X

))

×P̂1(X)P̂2(Y )e
i〈ξ,X×h̄Y 〉dXdY .

(6.4)
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