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SYMMETRIC CANTOR MEASURE, COIN-TOSSING AND SUM SETS
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Abstract. Construct a probability measure µ on the circle by successive removal of
middle third intervals with redistributions of the existing mass at the nth stage being deter-
mined by probability pn applied uniformly across that level. Assume that the sequence {pn}
is bounded away from both 0 and 1. Then, for sufficiently large N , (estimates are given) the
Lebesgue measure of any algebraic sum of Borel sets E1, E2, . . . , EN exceeds the product of
the corresponding µ(Ei)

α , where α is determined by N and {pn}. It is possible to replace 3
by any integer M ≥ 2 and to work with distinct measures µ1, µ2, . . . , µN .

This substantially generalizes work of Williamson and the author (for powers of single-
coin coin-tossing measures in the case M = 2) and is motivated by the extension to M = 3.

We give also a simple proof of a result of Yin and the author for random variables whose
binary digits are determined by coin-tossing.

1. Introduction. When working with convolutions of probability measures we find
it natural to consider sum sets and related measure estimates. Curiously, perhaps, the latter
were slow to develop inasmuch as, in 1947, Marshall Hall Jr, [6] proved that under certain
conditions the sums of two Cantor type sets may contain an interval, but the first metrical
result involving measure estimates appears to have been given in 1983 by Moran and the
present author [2] (and independently in 1985 by Hajela and Seymour [5]). Further historical
comments are given in [1].

To be precise we define the sum set E1 + E2 + · · · + EN of subsets Ej , j = 1, . . . , N

of [0, 1) by

E1 + E2 + · · · + EN = {x1 + x2 + · · · + xN (mod 1) ; xj ∈ Ej } .

The early result, just mentioned, is that for Borel sets E and F ,

λ(E + F) ≥ µ(E)αµ(F)α ,

for α = log 3/ log 4, where λ is the Lebesgue measure on [0, 1) and µ is Lebesgue’s singular
measure on the Cantor middle third set. There is a good account in Yin’s thesis [7] of further
developments, which typically take summands non-null with respect to singular measures
uniformly distributed over sets of numbers missing certain digits in their base M expansion
(M being a positive integer, typically 3 or 4).

Williamson and the present author [3] considered different µ, viz. the distribution of
random variables whose binary digits are generated by infinitely many tosses of a single biased
coin, giving 0 with probability p and 1 with probability 1 − p. Their result is that

λ(E1 + E2 + · · · + EN) ≥ µ(E1)
αµ(E2)

α · · · µ(EN)α,
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for N ≥ log 2/ log a, α = N−1 log 2/ log a, where a−1 = max(p, 1 − p).
In this paper we combine coin-tossing and missing digits, but are still able to obtain

metrical results. Let δ(s) denote the discrete probability measure located at the point s. Let

* denote convolution, so that δ(s + t) = δ(s) * δ(t). The original motivation was to consider
measures of the type µ = *

∞
n=1(pnδ(0) + (1 − pn)δ(3−n)), but, in fact, we can replace 3

by any integer M ≥ 2. Moreover, in the case M = 3, the existence of the isomorphism
t → 2t of Z3 makes it clear that the proof applies equally well to measures of the type,
µ = *

∞
n=1(pnδ(0) + (1 − pn)δ(2 · 3−n)). This relates more precisely to the classical middle-

third construction. In fact, Lebesgue’s singular measure on the Cantor set may be constructed
by removing the middle third of [0, 1) and then redistributing mass one uniformly over the
remaining intervals; then at stage 2 removing the middle third of both remaining intervals and
again redistributing mass evenly. In out case the distribution of mass between the two new
intervals created by removing the middle third of an interval from stage n − 1 is governed by
a biased coin with probabilities pn, (1 − pn). This pn is uniform across stage n. The fact that
we obtain precise metrical estimates on the basis of such a weak condition seems interesting
from a fractal perspective.

We now state the main result.

THEOREM 1.1. Let M be an integer greater than one. Let 0 < pj,n < 1 for j =
1, 2, . . . , N, n = 1, 2, . . . . Suppose that 1 > a−1 = supn maxj (pj,n, (1 − pj,n)), let the
integer N be greater than 2M − 4 + (M − 1) log M/ log a and let α equal (N − 2M +
4)−1(log M/ log a). Then, for arbitrary Borel sets Ej ,

λ(E1 + E2 + · · · + EN) ≥ µ1(E1)
α · · ·µ(En)

α

where λ is the Lebesgue measure on [0, 1) and µj = *
∞
n=1(pj,nδ(0) + (1 − pj,n)δ(M

−n)).

In the next section this will be reduced first to a discrete problem, then to a combinatorial
inequality. In Section 3 the combinatorial theorem will be established and, in Section 4, we
will give a very simple proof of a basic coin-tossing result of Yin and the author which is not
captured by Theorem 1.

These matters were researched while the author held a University Professorship at To-
hoku University and he is deeply grateful for an atmosphere of encouragement and generous
hospitality.

2. Reduction process. We adopt the definitions of Theorem 1 and show how to re-
duce the problem, first to a purely discrete one, then to a combinatorial one. The first step is
by now relatively standard so we’ll not labour the proof but we do require some notation.

Let

Sn =
{ n∑

k=1

εkM
−k; εk ∈ {0, 1, . . . ,M − 1}

}
,

µ
(n)
j =

n

*
k=1

(pj,nδ(0) + (1 − pj,n)δ(M
−k)) ,
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and let λ(n) be the measure which assigns mass M−n to each point of Sn.
Our aim is to show that, if

λ(k)(A1 + A2 + · · · + AN) ≥ µ
(k)
1 (A1)

αµ
(k)
2 (A2)

α · · · µ(k)
N (AN)α ,(1)

for all subsets A1, A2, . . . , AN of Sk and k = 1, 2, . . . , then we obtain

λ(E1 + E2 + · · · + EN) ≥ µ1(E1)
αµ2(E2)

α · · · µN(EN)α ,(2)

for all Borel subsets E1, E2, . . . EN of [0, 1).
By regularity of λ,µj we may assume all Ej are closed. Let us write Ek,j = Ak,j +

[0,M−k], where Ak,j is the subset of Sk which corresponds to the first k terms of the base M

expansion of each number in Ej .
We note that

Ej =
∞⋂

k=1

Ek,j , E1 + E2 + · · · + EN =
∞⋂

k=1

(Ek,1 + Ek,2 + · · · + Ek,N)

and that

µj(Ej ) = lim
k→∞ µj(Ek,j ) = lim

k→∞ µ
(k)
j (Ak,j )(3)

and

λ(E1 + E2 + · · · + EN) = lim
k→∞ λ(Ek,1 + Ek,2 + · · · + Ek,N)

≥ lim
k→∞ λ(Ak,1 + Ak,2 + · · · + Ak,N + [0,M−k])

≥ lim
k→∞ λ(k)(Ak,1 + Ak,2 + · · · + Ak,N)

≥ lim
k→∞ µ

(k)
1 (Ak, 1)αµ

(k)
2 (Ak, 2)α · · ·µ(k)

N (Ak,N)α ,

provided that (1) holds. Applying (3) we find that (1) does indeed imply (2).
Now we will set about proving (1) by induction. This has similarities with the proof in

[3] with the added complication of missing digits.
We must check (1) for k = 1. Let Aj be non-empty subsets of S1 and write A =

A1 + A2 + · · · + AN . As µ
(n)
j (M−1) = 0 for 2 ≤ i ≤ M − 1 (the case does not arise when

M = 2), we may assume that no Aj contains any iM−1 for 2 ≤ i ≤ M − 1. Now suppose
that at least M − 1 Aj ’s have cardinality two. A must then contain {0, 1, . . . ,M − 1} + t ,
for some t , so λ(A) = 1 and (1) certainly holds. In the remaining case there are at least
N − M + 2 singletons amongst the Aj . Each of these contributes a factor not greater than
max(pj,1, (1 − pj,1))

α to the right hand side of (1). From the definition of a, it will suffice to
prove that

λ(A) ≥ a−(N−M+2)α .(4)

Certainly λ(A) is not less than M−1, so (4) is true provided

(N − M + 2)α log a ≥ log M ,
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in other words

N − M + 2 ≥ N − 2M + 4 ,

which follows because M ≥ 2.
Now let us suppose that (1) holds for some k. Consider subsets Aj , j = 1, . . . , N of

Sk+1, and let A = A1 + · · · + AN . We seek to prove

λ(k+1)(A) ≥ µ
(k+1)
1 (A1)

αµ
(k+1)
2 (A2)

α · · · µ(k+1)
N (AN)α .(5)

For any subset B of Sk+1 and i = 0, 1, . . . ,M − 1, let

Bi =
{ k∑

j=1

εjM
−j ;

k+1∑
j=1

εjM
−j ∈ B, εk+1 = i

}
.

Then

B = B0 ∪ (B1 + M−k−1) ∪ · · · ∪ (BM−1 + (M − 1)M−k−1) ,(6)

where the union is disjoint. Taking B = A, we find

λ(k+1)(A) = M−1(λ(k)(A0) + λ(k)(A1) + · · · + λ(k)(AN)) .(7)

Note next that µ(k+1)
j (Bi+iM−k−1) equals zero for i ≥ 2 for each subset B of Sk+1. Applying

this to each Aj and noting the form of (5) and (6) we may assume that Ai
j = (Aj )

i is empty

for each i ≥ 2. Thus for s = 0, 1, . . . ,M − 1, we see that the set As + sM−k−1 is the union
of all these sets of the form

(A
i1
1 + i1M

−k−1) + (A
i2
2 + i2M

−k−1) + · · · + (A
iN
N + iNM−k−1) ,

where
∑N

j=1 ij ≡ s (mod M) and ij ∈ {0, 1}.
It follows that, for s = 0, 1, . . . ,M − 1, As is a union of translates (by members of Sk)

of sets of the form

A
i1
1 + A

i2
2 + · · · + A

iN
N ,

N∑
j=1

ij ≡ s (mod M) , ij ∈ {0, 1} .

Therefore, from (7), we find

λ(k+1)(A) ≥ M−1
M−1∑
s=0

max

{
λ(k)(A

i1
1 + A

i2
2 + · · · + A

iN
N )

;
N∑

j=1

ij ≡ s (mod M), ij ∈ {0, 1}
}(8)
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Applying the inductive hypothesis we obtain

λ(k+1) ≥ M−1
M−1∑
s=0

max

{
µ

(k)
1 (A

i1
1 )αµ

(k)
2 (A

i2
2 )α · · · µ(k)

N (A
iN
N )α

;
N∑

j=1

ij ≡ s (mod M), ij ∈ {0, 1}
}

.

(9)

Now recall that Aj = A0
j ∪ (A1

j + M−k−1) for each j , where the union is disjoint.
Therefore

µ
(k+1)
j (A0

j ) = xjµ
(k+1)
j (Aj ) , µ

(k+1)
j (A1

j + M−k−1) = (1 − xj )µ
(k+1)
j (Aj ) ,

for some 0 ≤ xj ≤ 1. Also, writing pj = pj,k+1, we have

µ
(k+1)
j (A0

j ) = pjµ
(k)
j (A0

j ) , µ
(k+1)
j (A1

j + M−k−1) = (1 − pj )µ
(k)
j (A1

j ) .

Thus

µ
(k)
j (A0

j ) = (xj/pj )µ
(k+1)
j (Aj ) , µ

(k)
j (A1

j ) = ((1 − xj )/(1 − pj ))µ
(k+1)
j (Aj ) .

Combining this with (9) we obtain

λk+1(A) ≥ Cµ
(k+1)
1 (A1)

αµ
(k+1)
2 (A2)

α · · · µ(k+1)
N (AN)α,

where

C = M−1
M−1∑
s=0

max

{ N∏
j=1

(xj /pj )
(1−ij )α((1 − xj )/(1 − pj ))

ij α

;
N∑

j=1

ij ≡ s (mod M), ij ∈ {0, 1}
}

and 0 ≤ xj ≤ 1, j = 1, . . . , N .
It will therefore suffice to prove that C ≥ 1, and this is what we have formulated as Theorem
2 (where we exchanged ij and 1 − ij for minor convenience).

3. Basic combinatorial result.

THEOREM 3.1. Let 0 < pj < 1, j = 1, . . . , N , and 1 > a−1 = max(pj , (1 − pj )).
Suppose that N ≥ 2M − 4 + (M − 1)(log M/ log a), for an integer M ≥ 2. Let α =
(N − 2M + 4)−1(log M/ log a). Then, for arbitrary 0 ≤ xj ≤ 1, j = 1, . . . , N ,

M−1∑
s=0

max

{ N∏
j=1

(xj/pj )
αij ((1 − xj )/(1 − pj ))

α(1−ij )

;
N∑

j=1

ij ≡ s (mod M), ij ∈ {0, 1}
}

≥ M .
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PROOF. First we clear away a very special case viz. M = 2, N = 1. This forces a = 2
and hence all pj = 1/2 and α = 1. The statement of the theorem becomes

2x + 2(1 − x) ≥ 2 for all 0 ≤ x ≤ 1 ,

which is obviously true. Thus we may assume henceforth that N ≥ 2.
By rearrangement of labels we may assume, for the moment, that (xj /pj ) is non-increas-

ing. Let us defer consideration of the case where p1 > x1. This allows us to choose k to be
the largest index j such that xj ≥ pj . Note that 1 − xj > 1 − pj , for j > k. (Of course it is
possible that k = N .)

Now let us write

yj = 1 − xN−j+1 , qj = 1 − pN−j+1 , j = 1, . . . , N .(10)

Set l = N−k and, for l ≥ 1, rearrange the set {yj/qj ; j = 1, . . . , l} so that yj/qj is non-
increasing in this range. (This may disrupt the order of growth of xj/pj for j = k+1, . . . , N .)

Let us now return to the deferred case, p1 > x1, and write l = N , rearranging all the
yj/qj to be non-inceasing. To retain formal symmetry, let us write k = 0 when l = N , and
recall that we already set l = 0 when k = N .

We now have
k + l = N ; x1/p1 ≥ · · · ≥ xk/pk ≥ 1 for k ≥ 1 ;

y1/q1 ≥ · · · ≥ yl/ql ≥ 1 , l ≥ 1 .
(11)

The first step is to deal with the case where l ≤ M − 2. Note at the outset that, when
M = 2, this gives k = N ≥ 2 and , when M ≥ 3, this gives k ≥ N − M + 2 ≥ M + 1.

We choose M products of the type

N∏
j=1

(xj /pj )
αij ((1 − xj )/(1 − pj ))

α(1−ij ) .(12)

In fact we choose the first product so that, in (12), ij = 1 for j = 1, . . . , k, and ij = 0
for j > k. We choose the next product so that ij = 1 for j = 1, . . . , k − 1, and ij = 0
for j > k − 1; and so on until we reach the Mth product when we choose ij = 1 for
j = 1, . . . , k − (M − 1), and ij = 0 for j > k − M + 1.

For the successive products
∑N

j=1 ij takes values k, k − 1, . . . , k − M + 1, giving a se-
quence of M distinct residues modulo M . To verify the theorem in the case under discussion,
it will suffice to show that the sum of the M products in not less than M .

Let us choose r so that (1−xj )/(1−pj ) attains its minimum for j = k−(M −2), . . . , k

when j = r . Write u = xr/pr .
In each of the chosen products, consider those factors of the form ((1 − xj )/(1 − pj ))

α

where k − M + 2 ≤ j ≤ k. The first product we chose has no such term, the next has one
factor of this type that is not less than ((1 − pru)/(1 − pr))

α and so on until the Mth product
consists solely of factors of this type for the range k − M + 2 ≤ j ≤ k and the sub-product of
these is not less than ((1 − pru)/(1 − pr))

(M−1)α. Factors of the form (xj/pj )
α in the same

range k − M + 2 ≤ j ≤ k are not less than one, but the first chosen product certainly has uα
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as a factor and we elect to retain that. All the terms (xj /pj )
α for 1 ≤ j ≤ k − M + 1 are not

less than uα and all the terms of the form ((1 − xj )/(1 − pj ))
α for j > k are not less than

one.
This implies that a lower bound for the sum of the chosen products is

u(k−M+1)α

(
uα +

M−1∑
t=1

((1 − pru)/(1 − pr))
tα

)
.(13)

Recall that k ≥ N − M + 2, so out task is reduced to proving that

uα +
M−1∑
t=1

((1 − pru)/(1 − pr))
tα − Mu−(N−2M+3)α ≥ 0 .(14)

Because α ≤ (M − 1)−1, the left side of (14) is a concave function of u, and so we need
only check the inequality at the end-points u = 1, u = p−1

r . At u = 1, we have equality and,

at u = p−1
r , we must check that p

−(N−2M+4)α
r ≥ M . Because a ≤ p−1

r , it suffices to check
that

a(N−2M+4)α ≥ M .(15)

(15) follows immediately from the choice of α, so that this part of the proof is complete.
We are now able to assume that l > M − 2 and, by symmetry, that k > M − 2. By a further
appeal to symmetry we may assume

xk−M+2/pk−M+2 ≤ yl−M+2/ql−M+2(16)

We will choose the same products as before and define r, u in the same way. The change
arises in the estimation of the terms ((1 − xj )/(1 − pj ))

α for j ≥ k + M − 1. These are of
the form (yj /qj )

α for j ≤ l − M + 2. (Recall (10).) By assumption (16) none of these is less
than uα , and so we have an additional factor of u(l−M+2)α compared with (13). Because

k − M + 1 + l − M + 2 = N − 2M + 3 ,

the lower bound is

u(N−2M+3)α

(
uα +

M−1∑
t=1

((1 − pru)/(1 − pr))
tα

)
,

and our task is identical to (14). This completes the proof of the theorem. �

The proof of Theorem 1 is now also complete. That theorem extends all the results of
[3] but does not capture the main result of [4]. We will give a simple proof of the latter in the
next section.

4. Binary coin-tossing. The next theorem is a mild extension of the main result of
[4] but the proof is much simpler than before. Once more we take 0 < pj,n < 1, j = 1, 2,
and

µ1 =
∞
*

n=1
(p1,nδ(0) + (1 − p1,n)δ(2−n)) , µ2 =

∞
*

n=1
(p2,nδ(0) + (1 − p2,n)δ(2−n)) .
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THEOREM 4.1. Suppose that

1 > a−1 ≥ sup
n

max(p1,n(1 − p1,n)) , 1 > b−1 ≥ sup
n

max(p2,n, (1 − p2,n)) .

Then for any Borel sets E1, E2, of [0, 1) we have

λ(E1 + E2) ≥ µ1(E1)
αµ2(E2)

β

provided α log a + β log b ≥ 1, where 0 < α, β ≤ 1.

Either by simple modification of the arguments in Section 2 of this paper or those of [4,
Section 3] we can reduce the task of proving Theorem 3 to that of establishing the following
combinatorial result.

THEOREM 4.2. Let a−1 = max(p, (1 − p)), b−1 = max(q, (1 − q)), where 0 <

p, q < 1, let 0 ≤ x, y,≤ 1 and let 0 < α, β ≤ 1 with α log a + β log b ≥ log 2. Then

max{(x/p)α(y/q)β, ((1 − x)/(1 − p))α((1 − y)/(1 − q))β}
+ max{(x/p)α((1 − y)/(1 − q))β, ((1 − x)/(1 − p))α(y/q)β} ≥ 2 .

PROOF. By interchanging x, (1 − x); p, (1 − p) and/or y, (1 − y); q, (1 − q) we can
and do assume that x < p, y < q . Now we can divide both sides of the required inequality
by ((1 − x)α/(1 − p)α)((1 − y)β/(1 − q)β) and observe that it suffices to prove

1 + max{(x/p)α/((1 − x)/(1 − p))α, (y/q)β/((1 − y)/(1 − q))β}
≥ 2((1 − x)/(1 − p))−α((1 − y)/(1 − q))−β .

(17)

Write u = (x/p)α((1 − x)/(1 − p))−α, v = (y/q)β((1 − y)/(1 − q))−β and note that (17)
transforms to

1 + max(u, v) ≥ 2(1 − p + pu1/α)α(1 − q + qv1/β)β ,

where 0 ≤ u, v ≤ 1.
We may take u ≥ v and note that it will suffice to prove

1 + u − 2(1 − p + pu1/α)α(1 − q + qu1/β)β ≥ 0 .(18)

Now for positive A,B and 0 < α ≤ 1, the function (A + Bu1/α)α is convex non-decreasing
and non-negative, as is the product of two such functions. Accordingly, the left side of (18) is
a concave function of u and we need to check only the end points, u = 0, 1. At 1, 2 − 2 ≥ 0
and at 0 we need to check that

1 ≥ 2(1 − p)α(1 − q)β .(19)

The logarithmic condition in the hypothesis gives 1 ≥ 2a−αb−β , and, by definition, a−1 ≥
(1 − p), b−1 ≥ (1 − q). This shows that (19) holds and completes the proof �
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