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Abstract. We show that, in the complex hyperquadric, the intersection of two real
forms, which are certain totally geodesic Lagrangian submanifolds, is an antipodal set whose
cardinality attains the smaller 2-number of the two real forms. As a corollary of the result, we
know that any real form in the complex hyperquadric is a globally tight Lagrangian submani-
fold.

1. Introduction. Let M̄ be a Hermitian symmetric space. A submanifold M is called
a real form of M̄ , if there exists an involutive anti-holomorphic isometry σ of M̄ satisfying

M = {x ∈ M̄ ; σ(x) = x} .

Any real form M is a totally geodesic Lagrangian submanifold of M̄ , which follows from
Leung [8] or Takeuchi [12, Lemma 1.1].

The complex hyperquadric Qn(C) is defined by

Qn(C) = {[z1, . . . , zn+2] ∈ CPn+1 ; z2
1 + · · · + z2

n+2 = 0} ,

and Qn(C) has the Kähler structure induced from the standard Kähler structure of the com-
plex projective space CPn+1. It is known that Qn(C) is holomorphically isometric to the
Hermitian symmetric space SO(n + 2)/SO(2) × SO(n), which is the Grassmann manifold
G̃2(R

n+2) consisting of all oriented linear subspaces of dimension 2 in Rn+2. We also regard
G̃2(R

n+2) as a submanifold in the exterior product
∧2

Rn+2 in a natural way, because it is
convenient to represent points of G̃2(R

n+2) by elements in
∧2

Rn+2. We take an orthonor-
mal basis u1, u2, e1, . . . , en of Rn+2. For 0 ≤ k ≤ n, we define a submanifold Sk,n−k of
G̃2(R

n+2) by

Sk,n−k = Sk(Ru1 + Re1 + · · · + Rek) ∧ Sn−k(Ru2 + Rek+1 + · · · + Ren) ,

where Sm(V ) is the unit hypersphere of dimension m in a real Euclidean space V of dimension
m + 1. This expression implies that Sk,n−k is isometric to (Sk × Sn−k)/Z2. Leung [8] and
Takeuchi [12] classified real forms of Hermitian symmetric spaces of compact type. We say
that two submanifolds in G̃2(R

n+2) are congruent, if one is transformed to the other by the
action of SO(n + 2). By the classification of Leung and Takeuchi, we can see that any real
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form in G̃2(R
n+2) is congruent to Sk,n−k for a k with 0 ≤ k ≤ [n/2]. This also follows

from the classification of totally geodesic submanifolds of G̃2(R
n+2) obtained by Chen and

Nagano [1].
A subset S in a Riemannian symmetric space M is called an antipodal set, if the geodesic

symmetry sx fixes every point of S for every point x of S. The 2-number #2M of M is the
supremum of the cardinalities of antipodal sets of M , which was introduced by Chen and
Nagano [2] and is known to be finite. We call an antipodal set in M great if its cardinality
attains #2M . Takeuchi [13] proved that if M is a symmetric R-space, then

(1) #2M = dim H∗(M,Z2) ,

where H∗(M,Z2) denotes the homology group of M with coefficient Z2. We note that any
real form of Hermitian symmetric spaces of compact type is a symmetric R-space, which is
shown in [12].

We explicitly describe the intersection of two real forms of the complex hyperquadric in
the following theorem.

THEOREM 1.1. Let k and l be integers satisfying 0 ≤ k ≤ l ≤ [n/2]. Let L1 be a real
form of G̃2(R

n+2) congruent to Sk,n−k and L2 a real form of G̃2(R
n+2) congruent to Sl,n−l .

If L1 and L2 intersect transversally, then L1 ∩ L2 is congruent to

{±u1 ∧ u2,±e1 ∧ e2, . . . ,±e2k−1 ∧ e2k} ,

which is an antipodal set of L1 and L2. In particular, L1 ∩ L2 is a great antipodal set of L1.
Moreover, if k = l = [n/2], L1 ∩ L2 is a great antipodal set of G̃2(R

n+2).

REMARK 1.2. In the complex projective space CPn, any real form is congruent to
the real projective space RPn naturally embedded in CPn. Howard essentially showed the
following fact in [4, pp. 26–27]. If two real forms L1 and L2 of CPn intersect transversally,
then there exists a unitary basis u1, . . . , un+1 of Cn+1 satisfying

L1 ∩ L2 = {Cu1, . . . ,Cun+1} .

In particular L1 ∩ L2 is a great antipodal set of L1 and L2, because #2RPn = n + 1. Thus
Theorem 1.1 is a generalization of this fact. In this case, L1 ∩ L2 is also a great antipodal set
of CPn, because #2CPn = n + 1.

In the proof, Howard showed that the intersection of two real forms in CPn is not empty
by a result of Frankel [3] and the positivity of the sectional curvature of CPn. Although the
sectional curvature in our case is nonnegative, the argument of Frankel is still useful. See
Lemma 3.1.

Oh [9] introduced the notion of global tightness of Lagrangian submanifolds in a Hermit-
ian symmetric space. We call a Lagrangian submanifold L of a Hermitian symmetric space
M globally tight, if L satisfies

#(L ∩ g · L) = dim H∗(L,Z2)
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for any isometry g of M with property that L intersects g · L transversally. Considering the
case where k = l in Theorem 1.1, we obtain the following corollary from (1).

COROLLARY 1.3. Any real form of the complex hyperquadric is a globally tight La-
grangian submanifold.

REMARK 1.4. Q1(C) = CP 1 = S2 and its real form is the great circle, so its global
tightness is well known. Q2(C) = CP 1 × CP 1 = S2 × S2 and its real forms S0,2 and S1,1

are globally tight, which Iriyeh and Sakai [5] proved in a different way. Recently, they also
proved that S0,n and S1,n−1 are globally tight in Qn(C).

REMARK 1.5. Makiko Sumi Tanaka and the author recently generalized Theorem 1.1
and obtained the following results in [14]. Let M be a Hermitian symmetric space of compact
type. If two real forms L1 and L2 of M intersect transversally, then L1 ∩ L2 is an antipodal
set of L1 and L2. Moreover, if L1 and L2 are congruent, then L1 ∩ L2 is a great antipodal set
of L1 and L2. As a corollary of this result, we know that any real form in the Hermitian sym-
metric spaces of compact type is a globally tight Lagrangian submanifold. The cardinalities
#(L1 ∩ L2) of any two real forms L1 and L2 in the irreducible Hermitian symmetric spaces
of comapct type are determined.

The author would like to thank Professors Hiroshi Iriyeh and Takashi Sakai for useful
conversations. The author is also grateful to the referee, whose useful comments improved
the manuscript.

2. The cut locus and the fixed point set of the geodesic symmetry. In this section,
we review the results of Sakai [11] on the cut loci of compact symmetric spaces and of Chen
and Nagano [1] on the fixed point set of the geodesic symmetry of the complex hyperquadric.

For a compact Riemannian manifold X and a point p ∈ X, we denote by Cp(X) and
C̃p(X) the cut locus and the tangent cut locus of X with respect to p.

THEOREM 2.1 (Sakai [11]). Let M = G/K be a compact Riemannian symmetric
space with Riemannian symmetric pair (G,K). Let g = k + m be the canonical decom-
position of the Lie algebra g of G. We take a maximal abelian subspace a of m and denote by
A the maximal torus of M corresponding to a. The following equalities hold .

C̃o(A) = a ∩ C̃o(M) , C̃o(M) =
⋃
k∈K

Ad(k)C̃o(A) .

LEMMA 2.2. Let M1 = G1/K1, M2 = G2/K2 be compact Riemannian symmetric
spaces with symmetric pairs (G1,K1), (G2,K2). We assume that M1 is a totally geodesic
submanifold in M2 and that G1 ⊂ G2, K1 ⊂ K2. Let gi = ki + mi be the canonical
decompositions of the Lie algebras gi of Gi . We take maximal abelian subspaces ai of mi

satisfying a1 ⊂ a2 and denote by Ai the maximal torus of Mi corresponding to ai . If

(2) C̃o(A1) = a1 ∩ C̃o(A2)
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holds, then

(3) C̃o(M1) = m1 ∩ C̃o(M2)

holds and any shortest geodesic in M1 is also shortest in M2. In particular, if M1 and M2

have a same rank, then A1 = A2 and (2) hold, thus (3) holds.

PROOF. Theorem 2.1 and the assumption (2) imply

C̃o(M1) =
⋃

k∈K1

Ad(k)C̃o(A1) =
⋃

k∈K1

Ad(k)(a1 ∩ C̃o(A2))

⊂ m1 ∩
⋃

k∈K1

Ad(k)C̃o(A2) ⊂ m1 ∩ C̃o(M2) .

In order to prove the other inclusion, we take X ∈ m1 ∩ C̃o(M2). There exists k ∈ K1

satisfying Ad(k)X ∈ a1. Hence we have Ad(k)X ∈ a1 ∩ Ad(k)C̃o(M2) and

a1 ∩ Ad(k)C̃o(M2) = a1 ∩ C̃o(M2) = C̃o(A1)

by Theorem 2.1 and the assumption (2). Thus we obtain X ∈ Ad(k)−1C̃o(A1) and

m1 ∩ C̃o(M2) ⊂
⋃

k∈K1

Ad(k)C̃o(A1) = C̃o(M1) .

Therefore (3) holds. (3) implies that any shortest geodesic in M1 is also shortest in M2.
If M1 and M2 have a same rank, then dim A1 = dim A2 and A1 ⊂ A2. Thus A1 = A2,

which implies (2). �

Using the results mentioned above, we can express the cut locus of G̃2(R
n+2). In this

case we regard u1 ∧ u2 as the origin o of G̃2(R
n+2). Let

S1,1 = S1(Ru1 + Re1) ∧ S1(Ru2 + Re2)

= {(cos θ1u1 + sin θ1e1) ∧ (cos θ2u2 + sin θ2e2); θ1, θ2 ∈ R} .

This is a maximal torus of G̃2(R
n+2). We can see

{(θ1, θ2) ∈ R2; (cos θ1u1 + sin θ1e1) ∧ (cos θ2u2 + sin θ2e2) = u1 ∧ u2}
= {(θ1, θ2) ∈ (πZ)2; θ1 + θ2 ∈ 2πZ} = Z(π, π) + Z(π,−π) .

We identify the tangent space of S1,1 at the origin with the coordinate plane consisting of
(θ1, θ2). The tangent cut locus C̃o(S

1,1) is the square of apexes (π, 0), (0, π), (−π, 0) and
(0,−π). The region defined by 0 < θ2 < θ1 is a Weyl chamber in the case where n ≥ 3,
while the region defined by 0 < θ1 and −θ1 < θ2 < θ1 is a Weyl chamber in the case where
n = 2. We set P1 = (π, 0), P2 = (π/2, π/2) and P3 = (π/2,−π/2). We denote by XY the
segment joining X and Y . Considering the action of the Weyl group, we have

C̃o(G̃2(R
n+2)) =

⋃
k∈SO(2)×SO(n)

Ad(k)(P1P2) (n ≥ 3) ,

C̃o(G̃2(R
4)) =

⋃
k∈SO(2)×SO(2)

Ad(k)(P1P2 ∪ P1P3) .



THE INTERSECTION OF TWO REAL FORMS 379

Next we express the fixed point set F(G̃2(R
n+2), so) of the geodesic symmetry so. The

reflection 1Ru1+Ru2 − 1Re1+···+Ren with respect to Ru1 + Ru2 induces so. We can get

F(S1,1, so) = {±u1 ∧ u2,±e1 ∧ e2} .

For z = x1 ∧ x2 ∈ G̃2(R
n+2), we denote z̄ = −x1 ∧ x2. We set pi = Expo(Pi). The above

fixed point set is expressed as follows:

F(S1,1, so) = {o, ō, p2, p̄2}
and ō = p1, p̄2 = p3 hold. We obtain

F(G̃2(R
n+2), so) =

⋃
k∈SO(2)×SO(n)

kF (S1,1, so)

= {±u1 ∧ u2} ∪ G̃2(Re1 + · · · + Ren)

= {o, ō} ∪ G̃2(R
n) .

Here SO(2) × SO(n) is also the isotropy subgroup at ō. From this we can see that

Cō(G̃2(R
n+2)) =

⋃
k∈SO(2)×SO(n)

kExpo(0P2) (n ≥ 3) ,

Cō(G̃2(R
4)) =

⋃
k∈SO(2)×SO(2)

kExpo(0P2 ∪ 0P3) .

Since so = sō, we have F(G̃2(R
n+2), sō) = F(G̃2(R

n+2), so).

3. Proof of the main theorem. First we prove the existence of the intersection of two
Lagrangian submanifolds under a condition weaker than that of Theorem 1.1.

LEMMA 3.1. Let M be a compact Kähler manifold with positive holomorphic sec-
tional curvature. If L1 and L2 are totally geodesic compact Lagrangian submanifolds in M ,
then L1 ∩ L2 	= ∅.

PROOF. We suppose L1 ∩ L2 = ∅. We join L1 and L2 by a shortest geodesic c(s) (0 ≤
s ≤ d(L1, L2)). Since M is Kähler, the complex structure J of M is parallel. The velocity
c′(s) is parallel along c(s), so J c′(s) is a parallel normal vector field along c(s). The shortest
property of c(s) implies that J c′(s) are tangent to L1 and L2 at the end points, because L1

and L2 are Lagrangian. The parallel normal vector field J c′(s) generates a variation ct (s) =
Expc(s)(tJ c′(s)) of c(s), each curve ct of which joins L1 and L2, because L1 and L2 are
totally geodesic. Its first variation of the length functional L vanishes, and by the second
variation formula we have

d2L(ct )

dt2

∣∣∣∣
t=0

=
∫ d(L1,L2)

0
{〈∇∂/∂sJ c′(s),∇∂/∂sJ c′(s)〉 − 〈R(Jc′(s), c′(s))c′(s), J c′(s)〉}ds
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= −
∫ d(L1,L2)

0
〈R(Jc′(s), c′(s))c′(s), J c′(s)〉ds

< 0 ,

since ∇∂/∂sJ c′(s) ≡ 0 and 〈R(Jc′(s), c′(s))c′(s), J c′(s)〉 is the holomorphic sectional cur-
vature of c′(s), which is positive by the assumption. This contradicts the shortest property of
c(s). Therefore L1 ∩ L2 	= ∅. �

REMARK 3.2. The method used in the above proof is due to Frankel [3]. Sakai [10]
and Itoh [6] used this method to prove the existence of the fixed point of a certain transfor-
mation of Kähler manifolds with positive holomorphic sectionanl curvature. Kenmotsu and
Xia [7] also used it to prove the existence of the intersection of two submanifolds in certain
situations different from ours.

We prepare the following lemmas in order to prove Theorem 1.1.

LEMMA 3.3. Let L be a real form through o in G̃2(R
n+2). If L is congruent to S0,n,

then

L ∩ F(G̃2(R
n+2), so) = {o, ō} .

If L is congruent to Sk,n−k (1 ≤ k ≤ [n/2]), then

L ∩ F(G̃2(R
n+2), so) = {o, ō} ∪ L′ ,

where L′ is a real form congruent to Sk−1,n−k−1 in G̃2(R
n).

PROOF. Even if the isotropy subgroup at o acts on L, the conclusions of the lemma do
not change. So we can suppose that L = Sk,n−k .

According to the description of F(G̃2(R
n+2), so) obtained in the previous section, we

can get

S0,n ∩ F(G̃2(R
n+2), so) = {o, ō} ,

Sk,n−k ∩ F(G̃2(R
n+2), so)

= {o, ō} ∪ Sk−1(Re1 + · · · + Rek) ∧ Sn−k−1(Rek+1 + · · · + Ren)

= {o, ō} ∪ Sk−1,n−k−1 ,

which complete the proof of the lemma. �

LEMMA 3.4. If L is a real form through o in G̃2(R
n+2), then we have

C̃o(L) = ToL ∩ C̃o(G̃2(R
n+2)) .

In particular, any shortest geodesic in L is also a shortest geodesic in G̃2(R
n+2).

PROOF. Similarly to the proof of Lemma 3.3, we can suppose that L = Sk,n−k . In the
case where L = S0,n, the closed geodesic u1 ∧S1(Ru2 +Re2) is a maximal torus of S0,n and
its tangent space {(0, θ2); θ2 ∈ R} satisfies the condition (2) of Lemma 2.2 by the description
of C̃o(S

1,1) obtained in the previous section. Hence the assertions of Lemma 3.4 hold in this
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case. In the case where L = Sk,n−k (1 ≤ k ≤ [n/2]), the ranks of Sk,n−k and G̃2(R
n+2) are

equal to two, hence the assertions hold by Lemma 2.2. �

LEMMA 3.5. If two real forms L1 and L2 through o in G̃2(R
n+2) intersect transver-

sally, then

L1 ∩ L2 ⊂ F(G̃2(R
n+2), so) .

PROOF. We first prove

(4) L1 ∩ L2 − {o} ⊂ Co(G̃2(R
n+2)) .

We suppose there exists x ∈ L1 ∩L2 −{o} satisfying x /∈ Co(G̃2(R
n+2)). Lemma 3.4 implies

x /∈ Co(Li), so there exists a unique shortest geodesic ci joining o and x in each Li . These
c1 and c2 are also the shortest geodesics in G̃2(R

n+2) because of Lemma 3.4. Therefore, we
have c1 = c2, which contradicts the assumption that L1 and L2 intersect transversally. Hence
we have proved (4).

Lemma 3.3 implies {o, ō} ⊂ L1 ∩ L2. We can apply (4) to ō and obtain

L1 ∩ L2 − {ō} ⊂ Cō(G̃2(R
n+2)) .

In the case where n ≥ 3, the inside of C̃o(S
1,1) includes 0P2 − {P2}. Hence the orbit of

0P2 − {P2} under the action of SO(2) × SO(n) does not intersect C̃o(G̃2(R
n+2)) and

L1 ∩ L2 − {o, ō} ⊂ Co(G̃2(R
n+2)) ∩ Cō(G̃2(R

n+2))

=
⋃

k∈SO(2)×SO(n)

kExpo(P2) = G̃2(R
n) .

In the case where n = 2, similarly

L1 ∩ L2 − {o, ō} ⊂ Co(G̃2(R
4)) ∩ Cō(G̃2(R

4))

=
⋃

k∈SO(2)×SO(2)

kExpo({P2, P3}) = {p2, p̄2}

= G̃2(R
n) .

Therefore L1 ∩ L2 ⊂ F(G̃2(R
n+2), so). �

PROOF OF THEOREM 1.1. Since the holomorphic sectional curvatures of G̃2(R) are
positive, L1 ∩ L2 	= ∅ by Lemma 3.1. Moreover, we can suppose that o ∈ L1 ∩L2. We prove
the first assertion of the theorem by induction on k. If L1 is congruent to S0,n, Lemmas 3.3
and 3.5 imply L1 ∩ L2 = {o, ō}, which is an antipodal set in L1 and L2. This equality holds
even if n = 1. Thus we have the first assertion of the theorem in the case where k = 0. If L1

is congruent to Sk,n−k (1 ≤ k ≤ [n/2]), Lemma 3.3 implies

L1 ∩ F(G̃2(R
n+2), so) = {o, ō} ∪ L′

1 ,

where L′
1 is a real form congruent to Sk−1,n−k−1 in G̃2(R

n) and

L2 ∩ F(G̃2(R
n+2), so) = {o, ō} ∪ L′

2 ,
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where L′
2 is a real form congruent to Sl−1,n−l−1 in G̃2(R

n). By the assumption of the induc-
tion, L′

1 ∩ L′
2 is congruent to

{±e1 ∧ e2, . . . ,±e2k−1 ∧ e2k} ,

which is an antipodal set in L′
1 and L′

2. Since L1 ∩ L2 ⊂ F(G̃2(R
n+2), so) by Lemma 3.5,

L1 ∩ L2 is congruent to

{±u1 ∧ u2,±e1 ∧ e2, . . . ,±e2k−1 ∧ e2k} ,

which is an antipodal set in L1 and L2. [2, Proposition 3.12] and [2, Theorem 4.3] im-
ply #2S

k,n−k = 2k + 2 and #2G̃2(R
n+2) = 2[n/2] + 2, which complete the proof of the

theorem. �
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