NONORIENTABLE MAXIMAL SURFACES IN THE LORENTZ-MINKOWSKI 3-SPACE

Shoichi Fulimori* and Francisco J. López ${ }^{\dagger}$

(Received May 15, 2009, revised February 4, 2010)

Abstract

The geometry and topology of complete nonorientable maximal surfaces with lightlike singularities in the Lorentz-Minkowski 3-space are studied. Some topological congruence formulae for surfaces of this kind are obtained. As a consequence, some existence and uniqueness results for maximal Möbius strips and maximal Klein bottles with one end are proved.

Introduction. A maximal surface in the Lorentz-Minkowski 3-space \boldsymbol{L}^{3} is a spacelike surface with zero mean curvature. Besides their mathematical interest, these surfaces have a significant importance in classical Relativity, Dynamic of Fluids, Cosmology, and so on (more information can be found for instance in [MT, Ki1, Ki2]).

Maximal surfaces in \boldsymbol{L}^{3} share some properties with minimal surfaces in the Euclidean 3-space \boldsymbol{R}^{3}. Both families arise as solutions of variational problems: local maxima (minima) for the area functional in the Lorentzian (Euclidean) case. Like minimal surfaces in \boldsymbol{R}^{3}, maximal surfaces in \boldsymbol{L}^{3} also admit a Weierstrass representation in terms of meromorphic data [Ko1, Ko2, Mc].

Calabi [C] proved that a complete maximal surface in L^{3} is necessarily a spacelike plane. Therefore, it is meaningless to consider global problems on maximal and everywhere regular surfaces in \boldsymbol{L}^{3}. However, physical and geometrical experience suggests to extend the global analysis to the wider family of complete maximal immersions with singularities (see [Ki1, Ki2]). A point of a maximal surface is said to be singular if the induced metric $d s^{2}$ degenerates at p. Throughout this paper, it will be always assumed that the complement of the singular set is a dense subset of the surface. Roughly speaking, there are two kinds of singular points: classical branch points and lightlike singular points or points with lightlike tangent planes (see [UY] for a good setting). Complete maximal surfaces with lightlike singularities and no branch points have given rise to an interesting theory (see for instance [FL, FLS, UY]). Following Umehara and Yamada [UY], this kind of surfaces will be called (complete) maxfaces. Generic singularities of maxfaces are classified in [FSUY].

Although the family of complete maxfaces is very vast, all previously known examples are orientable. Among them, we emphasize the Lorentzian catenoid described by 0.

[^0]Kobaysshi [Ko2], the Riemann type maximal examples exhibited by F. J. López, R. López and R. Souam [LLS], the high genus maxfaces produced by Umehara and Yamada [UY], the universal cover of the entire maximal graphs with conical singularities described by Fernandez, Lopez and Souam [FL, FLS] and Kim-Yang maximal examples [KY].

The purpose of this paper is to study the geometry and topology of complete nonorientable maxfaces in \boldsymbol{L}^{3}. It is interesting to notice that spacelike surfaces in \boldsymbol{L}^{3} are orientable, and so the singular set of a nonorientable maxface is always non empty. We introduce the first basic examples of this kind of surfaces and obtain some natural characterization theorems. By definition, a nonorientable "Riemann surface" is a nonorientable surface endowed with an atlas whose transition maps are either holomorphic or antiholomorphic.

Like in the orientable case (see [UY]), a conformal complete nonorientable maxface X : $M \rightarrow \boldsymbol{L}^{3}$ is conformally equivalent to a compact nonorientable "Riemann surface" minus a finite set of points: $M=\bar{M}-\left\{p_{1}, \ldots, p_{n}\right\}$. Furthermore, $d X$ has a "meromorphic" extension to \bar{M} and the ends have finite total curvature. The "Gauss map" N of M is well-defined on the complement of the singular set S of M, and takes values on $\boldsymbol{H}^{2} /\langle I\rangle$, where \boldsymbol{H}^{2} is the Lorentzian sphere of radius -1 and $I: \boldsymbol{H}^{2} \rightarrow \boldsymbol{H}^{2}$ is the antipodal map $I(p)=-p$. Since N is conformal, the composition $\hat{N}=p_{s} \circ N: M-S \rightarrow \boldsymbol{D} \equiv(\overline{\boldsymbol{C}}-\{|z|=1\}) /\langle A\rangle$ is conformal as well, where A is the complex involution $A(z)=1 / \bar{z}$ and p_{s} is, up to passing to the quotients, the Lorentzian stereographic projection. Furthermore, \hat{N} extends meromorphically to \bar{M} and satisfies that $\left|\hat{N}\left(p_{i}\right)\right| \neq 1$ and $\hat{N}(S) \subset\{|z|=1\}$.

The immersion X behaves like a spacelike sublinear multigraph around each end p_{i} of M, and labeling $\mu_{i} \geq 1$ as the winding number of X at p_{i}, the following Jorge-Meeks type formula holds:

$$
\operatorname{deg}(\hat{N})=-\chi(\bar{M})+\sum_{i=1}^{n}\left(\mu_{i}+1\right)
$$

where $\operatorname{deg}(\hat{N})$ and $\chi(\bar{M})$ are the degree of \hat{N} and the Euler characteristic of \bar{M}, respectively (see [Me, FL, FLS]).

The first part of the paper is devoted to prove the following topological congruence formulae:

THEOREM A. If $X: M \rightarrow L^{3}$ is a conformal complete nonorientable maxface with Gauss map \hat{N}, then
(i) $\operatorname{deg} \hat{N}$ is even and greater than or equal to 4 .
(ii) If in addition X has embedded ends (that is to say, $\mu_{i}=1$ for all i), then $\chi(\bar{M})$ is even.

In the second part, we produce the first known examples of complete nonorientable maxfaces. To be more precise, we describe the moduli space of complete maxfaces with the topology of a Möbius strip and Gauss map of degree four, and construct two complete one-ended Klein bottles, named $K B_{1}$ and $K B_{2}$, with Gauss map of degree four as well. Both $K B_{1}$ and $K B_{2}$
contain the x_{1} - and x_{2}-axes, and therefore their symmetry group contains four elements. Finally, we prove the following characterization theorem:

THEOREM B. $K B_{1}$ and $K B_{2}$ are the unique complete maxfaces with the topology of a one-ended Klein bottle, Gauss map of degree four and have at least four symmetries.

The results in this work have been inspired by Meeks [Me], López [L1, L2] and LópezMartín papers [LM1, LM2] about complete nonorientable minimal surfaces in \boldsymbol{R}^{3}.

1. Preliminaries. Throughout this paper, we denote by $\overline{\boldsymbol{C}}$ the Riemann sphere.

Let \boldsymbol{L}^{3} be the three dimensional Lorentz-Minkowski space with the metric $\langle\rangle=,d x_{1}^{2}+$ $d x_{2}^{2}-d x_{3}^{2}$. Let M be a two dimensional manifold. An immersion $X: M \rightarrow \boldsymbol{L}^{3}$ is called spacelike if the induced metric on the immersed surface is positive definite. Using isothermal parameters, M can be naturally considered as a Riemann surface and X a conformal map. A conformal spacelike immersion $X: M \rightarrow \boldsymbol{L}^{3}$ is said to be maximal if X has vanishing mean curvature.

Let M be a Riemann surface, and let X_{1}, X_{2}, X_{3} be three harmonic functions on M satisfying that

$$
\begin{gathered}
d X_{1}^{2}+d X_{2}^{2}-d X_{3}^{2}=0 \\
\left|d X_{1}\right|^{2}+\left|d X_{2}\right|^{2}+\left|d X_{3}\right|^{2}>0
\end{gathered}
$$

Then the map $X:=\left(X_{1}, X_{2}, X_{3}\right): M \rightarrow \boldsymbol{L}^{3}$ gives a conformal maximal immersion with no branch points and eventually lightlike singularities (i.e., points where the tangent plane is lightlike). The singularities correspond to the null set of $\left|d X_{1}\right|^{2}+\left|d X_{2}\right|^{2}-\left|d X_{3}\right|^{2}$.

If the nonsingular set $W=\left\{p \in M ;\left(\left|d X_{1}\right|^{2}+\left|d X_{2}\right|^{2}-\left|d X_{3}\right|^{2}\right)(p)>0\right\}$ is dense in M, X is said to be a maxface [UY].

We label ϕ_{j} as the holomorphic 1-form $d X_{j}(j=1,2,3)$, and call g as the meromorphic function $i \phi_{3} /\left(\phi_{1}-i \phi_{2}\right)$. Up to a translation,

$$
\begin{equation*}
X=\operatorname{Re} \int\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{1}=\frac{i}{2}\left(\frac{1}{g}-g\right) \phi_{3}, \quad \phi_{2}=\frac{1}{2}\left(\frac{1}{g}+g\right) \phi_{3} . \tag{1.2}
\end{equation*}
$$

The induced metric $d s^{2}$ on M (which is positive definite on W) is given by

$$
\begin{equation*}
d s^{2}=\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}-\left|\phi_{3}\right|^{2}=\left(\frac{\left|\phi_{3}\right|}{2}\left(\frac{1}{|g|}-|g|\right)\right)^{2} \tag{1.3}
\end{equation*}
$$

The singular set can be rewritten as $\{p \in M ;|g(p)|=1\}$.
REMARK 1.1. Up to composing with the Lorentzian stereographic projection, g coincides with the Gauss map of X, and for this reason it will be called as the meromorphic Gauss map of X. For more details, see [Kol].

Conversely, let M, g, ϕ_{3} be a Riemann surface, a meromorphic function and a holomorphic 1 -form on M, respectively, satisfying that the 1 -forms ϕ_{1} and ϕ_{2} in equation (1.2) are holomorphic,

$$
\begin{gather*}
\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}>0, \quad \text { and } \tag{1.4}\\
\operatorname{Re} \int_{\gamma}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=(0,0,0) \quad \text { for all } \gamma \in H_{1}(M, \boldsymbol{Z}) . \tag{1.5}
\end{gather*}
$$

Then $X=\operatorname{Re} \int\left(\phi_{1}, \phi_{2}, \phi_{3}\right): M \longrightarrow L^{3}$ defines a maxface.
REMARK 1.2. (1) We call $\left(M, g, \phi_{3}\right)$ (or simply $\left.\left(g, \phi_{3}\right)\right)$ as the Weierstrass data of X.
(2) The condition (1.4) is equivalent to

$$
\begin{equation*}
\left(\frac{\left|\phi_{3}\right|}{2}\left(\frac{1}{|g|}+|g|\right)\right)^{2}>0 \tag{1.6}
\end{equation*}
$$

and simply means that X has no branch points.
(3) The condition (1.5) is the so called period condition, and guarantees that X is welldefined on M. This condition is equivalent to the following two equations:

$$
\begin{gather*}
\int_{\gamma} g \phi_{3}+\overline{\int_{\gamma} \frac{\phi_{3}}{g}}=0 \quad \text { for all } \gamma \in H_{1}(M, \boldsymbol{Z}), \tag{1.7}\\
\operatorname{Re} \int_{\gamma} \phi_{3}=0 \quad \text { for all } \gamma \in H_{1}(M, \boldsymbol{Z}) \tag{1.8}
\end{gather*}
$$

(4) Since the coordinate functions of X are harmonic, the maximum principle implies that there exist no compact maxfaces with empty boundary.

The following notions of completeness and finite type for maxfaces can be found in [UY].

Definition 1.3. A maxface $X: M \rightarrow \boldsymbol{L}^{3}$ is said to be complete (resp. of finite type) if there exist a compact set C and a symmetric (0,2)-tensor T on M such that T vanishes on $M-C$ and $d s^{2}+T$ is a complete (resp. finite total curvature) Riemannian metric.

Proposition 1.4 ([UY, Proposition 4.5]). Let $X: M \rightarrow \boldsymbol{L}^{3}$ be a complete maxface. Then there exist a compact Riemann surface \bar{M} and finite number of points $p_{1}, \ldots, p_{n} \in \bar{M}$ so that M is biholomorphic to $\bar{M}-\left\{p_{1}, \ldots, p_{n}\right\}$. Moreover, the Weierstrass data g and ϕ_{3} extend meromorphically to \bar{M} and the limit normal vector at the ends is timelike.

By definition, the genus of X is the genus of \bar{M}. The removed points $p_{1}, \ldots, p_{n} \in \bar{M}$ correspond to the ends of X (note that no end is accumulation point of the singular set).

THEOREM 1.5 ([UY, Theorem 4.6]). Complete maxfaces are of finite type.
It is not hard to see that any complete maxface $X: M \rightarrow \boldsymbol{L}^{3}$ is eventually a finite multigraph over any spacelike plane. Indeed, consider a spacelike plane $\Sigma \subset \boldsymbol{L}^{3}$ and let $p: \boldsymbol{L}^{3} \rightarrow \Sigma$ denote the Lorentzian orthogonal projection on Σ. Then take a solid circular
cylinder $C \subset L^{3}$ orthogonal to Σ and containing all of the singularities of $X(M)$. By basic topological arguments $X^{-1}(C)$ is compact, and it is not hard to check that the map $p \circ X$: $M-X^{-1}(C) \rightarrow \Sigma-C$ is a proper local diffeomorphism (and so a covering) with finitely many sheets, proving our assertion. The converse is also true (see [FLS, FL] for more details).

Let μ_{i} denote the winding number (or multiplicity) of the multigraph X around p_{i}. It is not hard to check that $\mu_{i}=\max \left\{\operatorname{Ord}_{p_{i}}\left(\phi_{j}\right), j=1,2,3\right\}-1$, where $\operatorname{Ord}_{p_{i}}\left(\phi_{j}\right)$ is the pole order of ϕ_{j} at p_{i} (see, for instance [FL]). The following Jorge-Meeks type formula and Osserman-type inequality will be useful:

THEOREM 1.6 ([FL, UY]). If $X: \bar{M}-\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow \boldsymbol{L}^{3}$ is a complete maxface with meromorphic Gauss map g, then

$$
2 \operatorname{deg} g=-\chi(\bar{M})+\sum_{i=1}^{n}\left(\mu_{i}+1\right)
$$

where $\chi(\bar{M})$ denotes the Euler characteristic of \bar{M}. In particular,

$$
\begin{equation*}
2 \operatorname{deg} g \geq-\chi(\bar{M})+2 n \tag{1.9}
\end{equation*}
$$

Moreover, the equality holds if and only if X is an embedding around any end of M.
2. Nonorientable maxfaces. Let M^{\prime} be a nonorientable Riemann surface, that is to say, a nonorientable surface endowed with an atlas whose transition maps are holomorphic or antiholomorphic. Let $\pi: M \rightarrow M^{\prime}$ denote the orientable conformal double cover of M^{\prime}.

Definition 2.1. A conformal map $X^{\prime}: M^{\prime} \rightarrow \boldsymbol{L}^{3}$ is said to be a nonorientable maxface if the composition

$$
X=X^{\prime} \circ \pi: M \rightarrow L^{3}
$$

is a maxface. In addition, X^{\prime} is said to be complete if X is complete.
REmARK 2.2. For any maxface $X: M \rightarrow \boldsymbol{L}^{3}$, regardless of whether M is orientable or nonorientable, there exists a real analytic normal vector field which is well-defined on M. See Section 5 of $[\mathrm{KU}]$ for more details.

Let $X^{\prime}: M^{\prime} \rightarrow L^{3}$ be a nonorientable maxface, and let $I: M \rightarrow M$ denote the antiholomorphic order two deck transformation associated to the orientable double cover π : $M \rightarrow M^{\prime}$. Since $X \circ I=X$, then $I^{*}\left(\phi_{j}\right)=\bar{\phi}_{j}(j=1,2,3)$, or equivalently,

$$
\begin{equation*}
g \circ I=\frac{1}{\bar{g}} \quad \text { and } \quad I^{*}\left(\phi_{3}\right)=\bar{\phi}_{3} . \tag{2.1}
\end{equation*}
$$

As a consequence, I leaves invariant the singular set $\{p \in M ;|g(p)|=1\}$.
Conversely, if $\left(g, \phi_{3}\right)$ is the Weierstrass data of an orientable maxface $X: M \rightarrow \boldsymbol{L}^{3}$ and I is an antiholomorphic involution without fixed points in M satisfying (2.1), then the unique $\operatorname{map} X^{\prime}: M^{\prime}=M /\langle I\rangle \rightarrow \boldsymbol{L}^{3}$ satisfying that $X=X^{\prime} \circ \pi$ is a nonorientable maxface. We call $\left(M, I, g, \phi_{3}\right)$ as the Weierstrass data of $X^{\prime}: M^{\prime} \rightarrow \boldsymbol{L}^{3}$.

Assume that $X^{\prime}: M^{\prime}=M /\langle I\rangle \rightarrow L^{3}$ is complete. Then I extends conformally to the compactification \bar{M} of M and

$$
M=\bar{M}-\left\{q_{1}, \ldots, q_{m}, I\left(q_{1}\right), \ldots, I\left(q_{m}\right)\right\}
$$

where $q_{1}, \ldots, q_{m} \in \bar{M}$. Consequently, $M^{\prime}=\bar{M}^{\prime}-\left\{\pi\left(q_{1}\right), \ldots, \pi\left(q_{m}\right)\right\}$, where $\bar{M}^{\prime}=\bar{M} /\langle I\rangle$ is a compact nonorientable conformal surface of genus $2-\chi\left(\bar{M}^{\prime}\right)=2-(1 / 2) \chi(\bar{M})$. By definition, the genus of X^{\prime} is the genus of M^{\prime}.
2.1. Topological congruence formulae for nonorientable maxfaces. Let $X^{\prime}: M^{\prime} \rightarrow$ L^{3} be a complete nonorientable maxface with Weierstrass data (M, I, g, ϕ_{3}), and label as $\pi: M \rightarrow M^{\prime}$ as the orientable double cover of M^{\prime}. Denote by $A: \overline{\boldsymbol{C}} \rightarrow \overline{\boldsymbol{C}}$ the complex conjugation $A(z)=1 / \bar{z}$, and consider the projection $p_{0}: \overline{\boldsymbol{C}} \rightarrow \overline{\boldsymbol{D}} \equiv \overline{\boldsymbol{C}} /\langle A\rangle$.

DEFINITION 2.3. The unique conformal map $\hat{g}: M^{\prime} \rightarrow \overline{\boldsymbol{C}} /\langle A\rangle$ satisfying that $\hat{g} \circ \pi=$ $p_{0} \circ g$ is said to be the Gauss map of X^{\prime}.

By Proposition 1.4, if X^{\prime} is complete then \hat{g} extends conformally to the compatification \bar{M}^{\prime} of M^{\prime}. Moreover, \hat{g} has the same degree as $g: \bar{M} \rightarrow \overline{\boldsymbol{C}}$. The Jorge-Meeks type formula in Theorem 1.6 gives

$$
\operatorname{deg} \hat{g}=-\chi\left(\bar{M}^{\prime}\right)+\sum_{i=1}^{m}\left(\mu_{i}+1\right),
$$

where μ_{i} is the multiplicity of X at q_{i}, hence the inequality (1.9) becomes:

$$
\begin{equation*}
\operatorname{deg} \hat{g} \geq-\chi\left(\bar{M}^{\prime}\right)+2 m \tag{2.2}
\end{equation*}
$$

where m is the number of ends of M^{\prime}.
THEOREM 2.4. If X^{\prime} is complete then the degree of \hat{g} is even.
Proof. Let $X^{\prime}: M^{\prime} \rightarrow \boldsymbol{L}^{3}$ be a complete nonorientable maxface with the Weierstrass data (M, I, g, ϕ_{3}). As in the previous section, let \bar{M} and \bar{M}^{\prime} be the compactifications of M and M^{\prime}, respectively.

Consider a meromorphic function h on \bar{M} such that $h \circ I=-1 / \bar{h}$ (the existence of this kind of functions is well known, see $[\mathrm{R}])$, and call $\hat{h}: \bar{M}^{\prime} \rightarrow \boldsymbol{R} \boldsymbol{P}^{2}$ as the unique conformal map making the following diagram commutative:

Here $\boldsymbol{R} \boldsymbol{P}^{2}=\overline{\boldsymbol{C}} / I_{0}$, where $I_{0}(z)=-1 / \bar{z}$ is the antipodal map, and $\pi_{0}: \overline{\boldsymbol{C}} \rightarrow \boldsymbol{R} \boldsymbol{P}^{2}=\overline{\boldsymbol{C}} / I_{0}$ is the natural projection. Since $\operatorname{deg} \pi=\operatorname{deg} \pi_{0}=2$, the degree of \hat{h} is well-defined, and as a matter of fact $\operatorname{deg} \hat{h}=\operatorname{deg} h$.

On the other hand, Meeks [Me, Theorem 1] proved the following fact:

FACT 2.5 ([Me, Theorem 1]). Let M_{1} and M_{2} be compact surfaces without boundary and let $f: M_{1} \rightarrow M_{2}$ be a branched cover of M_{2}. If $\chi\left(M_{2}\right)$ is odd, then $\chi\left(M_{1}\right)$ and $\operatorname{deg} f$ are either both even or both odd. If $\chi\left(M_{2}\right)$ is even, then $\chi\left(M_{1}\right)$ is even.

Therefore, we deduce that $\operatorname{deg} h=\operatorname{deg} \hat{h} \equiv \chi\left(\bar{M}^{\prime}\right)(\bmod 2)$.
Up to composing h with a suitable Möbius transformation of the form $L(z)=(z+$ $a) /(\bar{a} z-1)$, we can suppose that $h(p) \neq 0, \infty$ for all zero or pole p of g. Thus the meromorphic function $G: \bar{M} \rightarrow \overline{\boldsymbol{C}}$ defined by $G(z)=g(z) h(z)$ has

$$
\operatorname{deg} G=\operatorname{deg}(g h)=\operatorname{deg} g+\operatorname{deg} h .
$$

Since $G \circ I=(g \cdot h) \circ I=(g \circ I)(h \circ I)=(1 / \bar{g})(-1 / \bar{h})=-1 / \bar{G}$, Meeks result gives that $\operatorname{deg} G \equiv \chi\left(\bar{M}^{\prime}\right)(\bmod 2)$, and so $\operatorname{deg}(\hat{g})=\operatorname{deg} g \equiv 0(\bmod 2)$, proving the theorem.

Corollary 2.6. Let $X^{\prime}: M^{\prime} \rightarrow L^{3}$ be a complete nonorientable maxface with embedded ends. Then X^{\prime} has even genus.

Proof. Let $\left(M, I, g, \phi_{3}\right)$ be the Weierstrass data of $X^{\prime}: M^{\prime} \rightarrow L^{3}$, and write $M=$ $\bar{M}-\left\{q_{1}, \ldots, q_{m}, I\left(q_{1}\right), \ldots, I\left(q_{m}\right)\right\}$. Since the ends are embedded, Theorem 1.6 gives that $2 \operatorname{deg} g=-\chi(\bar{M})+2 \cdot(2 m)$, hence $\chi(\bar{M}) \equiv 0(\bmod 4)$ by Theorem 2.4, which completes the proof.

Corollary 2.7. Let $X^{\prime}: M^{\prime} \rightarrow L^{3}$ be a complete nonorientable maxface. Then the Gauss map of X^{\prime} has degree greater than or equal to 4 .

Proof. Label (M, I, g, ϕ_{3}) as the Weierstrass data of X^{\prime}.
If X^{\prime} has genus greater than two, the corollary follows straightforwardly from equation (2.2) and Theorem 2.4.

Assume that X^{\prime} has genus two, and reasoning by contradiction suppose that $\operatorname{deg}(\hat{g})=2$. By equation (2.2) and Theorem 2.4, X^{\prime} has an unique embedded end. Furthermore, up to Lorentzian isometries we may assume that X^{\prime} is asymptotic at infinity to either a horizontal plane or a horizontal upward half catenoid. In the first case, the third coordinate function of X^{\prime} is bounded, hence constant by the maximum principle (recall that the double cover M is parabolic), which is absurd. In the second case, the third coordinate function of X^{\prime} has an interior minimum, contradicting the maximum principle for harmonic functions as well.

Finally, suppose that X^{\prime} has genus one, and as above suppose $\operatorname{deg}(\hat{g})=2$. Up to a conformal transformation, we may assume that $M=C-\{0\}$ and $I(z)=-1 / \bar{z}$. Up to a suitable Lorentzian rotation, we will also assume $g(0)=0$ and $g(\infty)=\infty$. Moreover, recall that g and ϕ_{3} satisfy (2.1) and (1.6) on M. Since $g \circ I=1 / \bar{g}$, up to a suitable conformal transformation and rotation around the x_{3}-axis, we have that $g=z(z-r) /(r z+1), r \in \boldsymbol{R}$. By equation (1.6) and the condition $I^{*} \phi_{3}=\bar{\phi}_{3}$, we get that $\phi_{3}=i s(r z+1)(z-r) z^{-2} d z$, $s \in \boldsymbol{R}-\{0\}$. A direct computation shows that (1.7) does not hold for a loop around $z=0$, completing the proof.

REMARK 2.8. A similar result does not hold in the orientable case. The Lorentzian catenoid is a complete maxface of genus zero and has degree one Gauss map. Moreover,
there exist complete orientable one-ended genus one maxface with degree two Gauss map (see [UY]), and complete orientable two-ended genus one maxface with degree two Gauss map (see [KY]).

Theorem A in the introduction follows from Theorem 2.4 and Corollaries 2.6 and 2.7.
3. Maximal Möbius strips with low degree Gauss map. This section is devoted to describe the family of one-ended genus one nonorientable complete maxfaces with degree four Gauss map.

Let $X^{\prime}: M^{\prime} \rightarrow \boldsymbol{L}^{3}$ be a complete maxface with the topological type of a Möbius strip. Without loss of generality we can write $M^{\prime}=\boldsymbol{R} \boldsymbol{P}^{2}-\left\{\pi_{0}(0)\right\}$, where $\pi_{0}: \overline{\boldsymbol{C}} \rightarrow \boldsymbol{R} \boldsymbol{P}^{2}=$ $\overline{\boldsymbol{C}} /\left\langle I_{0}\right\rangle$ is the conformal universal cover and $I_{0}(z)=-1 / \bar{z}$. Call $\left(M=\boldsymbol{C}-\{0\}, I_{0}, g, \phi_{3}\right)$ as the Weierstrass data of X^{\prime}, where g is a meromorphic function of even degree (see Theorem 2.4). We are going to deal only with the simplest case $\operatorname{deg} g=4$. Up to a suitable Lorentzian rotation, we will assume that $g(0)=0$ and $g(\infty)=\infty$.

Lemma 3.1. In the above setting, the branching number of g at 0 and ∞ is even.
Proof. Suppose that g has a branch point of order three at $z=0$. After a rotation around the x_{3}-axis, we have that $g=z^{4}$ (recall that $g \circ I=1 / \bar{g}$). Since g has neither zeros nor poles on M, the same holds for ϕ_{3} by (1.6). Taking into account that $I^{*} \phi_{3}=\bar{\phi}_{3}$, we infer that $\phi_{3}=i d z / z$, contradicting that ϕ_{3} has no real periods on $\boldsymbol{C}-\{0\}$.

Assume now that g has a branch point of order one at $z=0$. In this case and after a rotation around the x_{3}-axis, we can put

$$
g=z^{2} \frac{(r z-1)(s z-1)}{(z+\bar{r})(z+\bar{s})}
$$

for some constants $r, s \in \boldsymbol{C}-\{0\}$, and so by (2.1) and (1.6)

$$
\phi_{3}=i \frac{(r z-1)(z+\bar{r})(s z-1)(z+\bar{s})}{z^{3}} d z .
$$

A direct computation shows that (1.7) does not hold for a loop around $z=0$, proving the Lemma.

Suppose now that g has a branch point of order two at $z=0$. Up to conformal transformations in $\boldsymbol{C}-\{0\}$ and rotations around the x_{3}-axis, we may set $g=z^{3}(r z-1) /(z+r)$ for some real positive constant r. Reasoning as in the proof of Corollary 2.7, we get $\phi_{3}=$ $i(r z-1)(z+r) z^{-2} d z$. Obviously $g \phi_{3}$ and ϕ_{3} / g have no residues at the ends, hence ϕ_{1} and ϕ_{2} have no real periods on $\boldsymbol{C}-\{0\}$. Moreover, ϕ_{3} has no real periods if and only if $\int_{\gamma} \phi_{3}=-2 \pi\left(r^{2}-1\right)=0$ for any loop γ winding once around $z=0$, and so $r=1$.

Clearly X is complete and its singular set is compact. Therefore, it induces a complete nonorientable maxface $X^{\prime}: \boldsymbol{R} \boldsymbol{P}^{2}-\{\pi(0)\} \rightarrow \boldsymbol{L}^{3}$. See the left-hand side of Figure 3.2.

REMARK 3.2. For each $k \in \boldsymbol{N}$, the data $g=z^{2 k+1}(z+1) /(z-1), \phi_{3}=i\left(z^{2}-1\right) z^{-2} d z$ on $\boldsymbol{C}-\{0\}$ determine a complete nonorientable maxface $X^{\prime}: \boldsymbol{R} \boldsymbol{P}^{2}-\left\{\pi_{0}(0)\right\} \rightarrow \boldsymbol{L}^{3}$ with $\operatorname{deg} g=2 k+2$.

Figure 3.1. Henneberg-type maximal surface.

Figure 3.2. Maximal Möbius strips. Left: g has a branch point of order two at $z=0$. Right: g has no branch points at the ends.

REMARK 3.3. If we set $g=z^{2}$ and $\phi_{3}=i\left(z^{2}-1\right) z^{-2} d z$ on $\boldsymbol{C}-\{0\}$, we obtain a Henneberg-type maximal immersion $X^{\prime}: \boldsymbol{R} \boldsymbol{P}^{2}-\left\{\pi_{0}(0)\right\} \rightarrow \boldsymbol{L}^{3}$ with singularities (see $[\mathrm{ACM}])$. This X^{\prime} is complete and has branch points at $z= \pm 1$, so it is not a maxface. See Figure 3.1.

Assume now that g has no branch points at the ends. As before, up to changes of coordinates and rotations around the x_{3}-axis, we may set

$$
g=z \frac{(r z-1)(s z-1)(t z-1)}{(z+r)(z+\bar{s})(z+\bar{t})}
$$

and

$$
\phi_{3}=i \frac{(r z-1)(z+r)(s z-1)(z+\bar{s})(t z-1)(z+\bar{t})}{z^{4}} d z
$$

for some positive real constant r and constants $s, t \in \boldsymbol{C}-\{0\}$. Take a loop γ around $z=0$. Then direct calculation gives that

$$
\int_{\gamma} g \phi_{3}+\overline{\int_{\gamma} \frac{\phi_{3}}{g}}=-4 \pi\left(r^{2}+s^{2}+t^{2}+4 r s+4 s t+4 t r\right)
$$

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{\gamma} \phi_{3}= & \left(r^{2}-1\right)\left\{\left(|s|^{2}-1\right)\left(|t|^{2}-1\right)-s \bar{t}-\bar{s} t\right\} \\
& -r\left\{\left(|s|^{2}-1\right)(t+\bar{t})+\left(|t|^{2}-1\right)(s+\bar{s})\right\}
\end{aligned}
$$

The arising moduli space of maxfaces is parameterized by the real analytic set of solutions of this system. For instance, the choice $r=1, s=e^{2 \pi i / 3}$ and $t=e^{-2 \pi i / 3}$ provides a surface in this family with high symmetry. See the right-hand side of Figure 3.2.
4. Maximal Klein bottles with one end. In this section we construct complete maxfaces with the topology of a Klein bottle minus one point and the lowest Gauss map degree. Consider the genus one algebraic curve

$$
\bar{M}_{r}=\left\{\left(z, w_{r}\right) \in \overline{\boldsymbol{C}}^{2} ; w_{r}^{2}=z \frac{r z-1}{z+r}\right\}, \quad r \in \boldsymbol{R}-\{0\},
$$

and set $M_{r}=\bar{M}_{r}-\{(0,0),(\infty, \infty)\}$. Define

$$
\begin{gathered}
I_{r}: \bar{M}_{r} \longrightarrow \bar{M}_{r}, \quad I_{r}\left(z, w_{r}\right)=\left(-\frac{1}{\bar{z}},-\frac{1}{\bar{w}_{r}}\right), \\
g_{r}=w_{r} \frac{z+1}{z-1}, \quad \phi_{3}=i \frac{z^{2}-1}{z^{2}} d z
\end{gathered}
$$

and note that I_{r} has no fixed points, and g_{r} and ϕ_{3} satisfy (1.6) and (2.1). See Table 4.1.

TABLE 4.1. The Divisors of the Weierstrass data.

$\left(z, w_{r}\right)$	$(-r, \infty)$	$(0,0)$	$\left(r^{-1}, 0\right)$	(∞, ∞)	$(1, *)$	$(-1, *)$
g_{r}	∞^{1}	0^{1}	0^{1}	∞^{1}	∞^{1}	0^{1}
$g_{r} \phi_{3}$	-	∞^{2}	0^{2}	∞^{4}	-	0^{2}
ϕ_{3}	0^{1}	∞^{3}	0^{1}	∞^{3}	0^{1}	0^{1}
ϕ_{3} / g_{r}	0^{2}	∞^{4}	-	∞^{2}	0^{2}	-

Theorem 4.1 (Existence). There are exactly two real values $r_{1}, r_{2} \in \boldsymbol{R}-\{0\}$ for which the maxface

$$
X_{r}: M_{r} \ni p \mapsto \operatorname{Re} \int^{p}\left(\frac{i}{2}\left(\frac{1}{g_{r}}-g_{r}\right), \frac{1}{2}\left(\frac{1}{g_{r}}+g_{r}\right), 1\right) \phi_{3} \in \boldsymbol{L}^{3}
$$

is well-defined and induces a one-ended maximal Klein bottle $X_{r}^{\prime}: M_{r} /\left\langle I_{r}\right\rangle \rightarrow \boldsymbol{L}^{3}$.
Furthermore, the maxfaces $X_{r_{1}}^{\prime}$ and $X_{r_{2}}^{\prime}$ have Gauss map of degree four and four symmetries.

Proof. In order to solve the arising period problem, we first observe that $\phi_{3}=d\left(i\left(z^{2}+\right.\right.$ $1) / z)$ is exact and (1.8) is satisfied. Moreover, $\phi_{1, r}=(i / 2)\left(1 / g_{r}-g_{r}\right) \phi_{3}$ and $\phi_{2, r}=$ $(1 / 2)\left(1 / g_{r}+g_{r}\right) \phi_{3}$ have no residues at the ends, hence it remains to check (1.7) for $\gamma \in$ $H_{1}\left(\bar{M}_{r}, \boldsymbol{Z}\right)$. Let c_{1} and c_{2} be two loops in $\boldsymbol{C}-\{0,-r, 1 / r\}$ winding once around $[-r, 0]$

Figure 4.1. Projection to the z-plane of the loops γ_{1} and γ_{2}.
and $\left[0, r^{-1}\right]$, respectively, and call γ_{1} and γ_{2} as their corresponding liftings via z to \bar{M}_{r} (see Figure 4.1).

Let $\left(I_{r}\right)_{*}: H_{1}\left(\bar{M}_{r}, \boldsymbol{Z}\right) \rightarrow H_{1}\left(\bar{M}_{r}, \boldsymbol{Z}\right)$ denote the group isomorphism induced by I_{r}. A straightforward computation gives that

$$
\begin{equation*}
\left(I_{r}\right)_{*}\left(\gamma_{1}\right)=-\gamma_{1} \quad \text { and } \quad\left(I_{r}\right)_{*}\left(\gamma_{2}\right)=\gamma_{2} . \tag{4.1}
\end{equation*}
$$

For any $j, k \in\{1,2\}$, we have

$$
\int_{\gamma_{j}} \phi_{k, r}=\int_{\left(I_{r}\right)_{*}\left(\gamma_{j}\right)} I_{r}^{*}\left(\phi_{k, r}\right)=\int_{\left(I_{r}\right)_{*}\left(\gamma_{j}\right)} \overline{\phi_{k, r}}
$$

and so

$$
\int_{\gamma_{j}} \phi_{k, r}+\int_{\gamma_{j}} \overline{\phi_{k, r}}=\int_{\left(I_{r}\right) *\left(\gamma_{j}\right)} \overline{\phi_{k, r}}+\int_{\gamma_{j}} \overline{\phi_{k, r}} .
$$

Thus

$$
2 \operatorname{Re} \int_{\gamma_{j}} \phi_{k, r}=\int_{\gamma_{j}+\left(I_{r}\right)_{*}\left(\gamma_{j}\right)} \overline{\phi_{k, r}}=\int_{\gamma_{j}+\left(I_{r}\right)_{*}\left(\gamma_{j}\right)} \phi_{k, r},
$$

and $X_{r}=\operatorname{Re} \int\left(\phi_{1, r}, \phi_{2, r}, \phi_{3}\right): M_{r} \rightarrow L^{3}$ is well-defined on M_{r} if and only if

$$
\begin{equation*}
\int_{\gamma_{j}+\left(I_{r}\right) *\left(\gamma_{j}\right)} \phi_{k, r}=0 \tag{4.2}
\end{equation*}
$$

for all $j, k \in\{1,2\}$.
Lemma 4.2. $\quad X_{r}: M_{r} \rightarrow \boldsymbol{L}^{3}$ is well-defined on M_{r} if and only if

$$
\begin{equation*}
\int_{\gamma_{2}} \frac{w_{r}(z+1)^{2}}{z^{2}} d z=0 \tag{4.3}
\end{equation*}
$$

Proof. By (4.1) and (4.2), X_{r} is well-defined if and only if

$$
\int_{\gamma_{2}+\left(I_{r}\right) *\left(\gamma_{2}\right)} \phi_{k, r}=0
$$

holds for $k=1,2$. In other words, X_{r} is well-defined if and only if

$$
\int_{\gamma_{2}}\left(\frac{1}{g_{r}}+g_{r}\right) \phi_{3}=\int_{\gamma_{2}}\left(\frac{1}{g_{r}}-g_{r}\right) \phi_{3}=0
$$

holds, that is to say,

$$
\int_{\gamma_{2}} \frac{\phi_{3}}{g_{r}}=\int_{\gamma_{2}} g_{r} \phi_{3}=0
$$

holds. However,

$$
\int_{\gamma_{2}} \frac{\phi_{3}}{g_{r}}=\int_{\left(I_{r}\right) *\left(\gamma_{2}\right)} I_{r}^{*}\left(\frac{\phi_{3}}{g_{r}}\right)=\int_{\gamma_{2}} \overline{g_{r} \phi_{3}}
$$

hence X_{r} is well-defined on M_{r} if and only if

$$
\int_{\gamma_{2}} g_{r} \phi_{3}=\int_{\gamma_{2}} \frac{w_{r}(z+1)^{2}}{z^{2}} d z=0 .
$$

The period problem is equivalent to solve (4.3). To avoid divergent integrals we add the exact one-form $d F$, where

$$
F=\frac{2 w_{r}\left(z-2 r^{3} z^{2}+r^{2} z(1+2 z)-r\left(-1+2 z+z^{2}\right)\right)}{r z}
$$

getting

$$
\frac{w_{r}(z+1)^{2}}{z^{2}} d z+d F=-\frac{2 w_{r}(-1+z+r(2-3 z+r(-4+4 r+3 z)))}{r+z} d z
$$

Since the right-hand side is a holomorphic differential on $M_{r}-\{(-r, \infty)\}$, the loop γ_{2} can be collapsed over the interval $\left[0, r^{-1}\right]$ by Stokes theorem and X_{r} is well-defined if and only if

$$
h(r):=\int_{0}^{r^{-1}}-\frac{2\left|w_{r}(z)\right|(-1+z+r(2-3 z+r(-4+4 r+3 z)))}{r+z} d z=0
$$

A straightforward computation gives that

$$
\begin{aligned}
& h_{+}(0):=\lim _{r \rightarrow 0, r>0} h(r)=-\infty, h(+\infty):=\lim _{r \rightarrow+\infty} h(r)=-\pi, \\
& h_{-}(0):=\lim _{r \rightarrow 0, r<0} h(r)=+\infty, h(-\infty):=\lim _{r \rightarrow-\infty} h(r)=+\pi .
\end{aligned}
$$

Moreover,
$h(1 / 2)=\int_{0}^{2} \frac{2\left|w_{1 / 2}(z)\right|(2-z)}{1+2 z} d z>0 \quad$ and $\quad h(1)=-\frac{4 \Gamma(3 / 4)^{2}+\Gamma(-3 / 4) \Gamma(5 / 4)}{\sqrt{2 \pi}}<0$,
where Γ is the classical Gamma function. As a consequence, h has at least two roots in $(0,1)$ (and X_{r} is well-defined at least for these two real values).

Let us show that h has exactly two real roots on $\boldsymbol{R}-\{0,1\}$ (recall that $h(1)<0$).

It is clear that

$$
h^{\prime}(r)=\frac{1}{2} \int_{\gamma_{2}} \frac{\partial}{\partial r}\left(\frac{w_{r}(z+1)^{2}}{z^{2}}\right) d z
$$

hence a direct computation gives that

$$
\begin{equation*}
h^{\prime}(r)=\int_{0}^{r^{-1}} \frac{\left|w_{r}(z)\right|(1+z)^{2}\left(1+z^{2}\right)}{2 z^{2}(r+z)(-1+r z)} d z \tag{4.4}
\end{equation*}
$$

Moreover,

$$
\frac{w_{r}(1+z)^{2}\left(1+z^{2}\right)}{2 z^{2}(r+z)(-1+r z)} d z+d H=-\frac{2 w_{r}\left(-r+4 r^{2}-z+3 r z\right)}{r(r+z)} d z
$$

where

$$
H=-\frac{w_{r}\left(r+2 z-2 r z-r z^{2}+4 r^{2} z^{2}\right)}{r^{2} z}
$$

Integrating by parts, we deduce that

$$
h^{\prime}(r)=\int_{0}^{r^{-1}}-\frac{2\left|w_{r}(z)\right|\left(-r+4 r^{2}-z+3 r z\right)}{r(r+z)} d z
$$

Now we rewrite $h(r)$ and $h^{\prime}(r)$ as follows:

$$
\begin{aligned}
h(r) & =-2\left(\left(3 r^{2}-3 r+1\right) A_{1}(r)+(r-1)\left(r^{2}+1\right) A_{2}(r)\right), \\
h^{\prime}(r) & =-2\left(\frac{3 r-1}{r} A_{1}(r)+r A_{2}(r)\right),
\end{aligned}
$$

where $A_{i}: \boldsymbol{R}-\{0\} \rightarrow \boldsymbol{R}_{+}(i=1,2)$ are the positive functions given by

$$
A_{1}(r)=\int_{0}^{r^{-1}}\left|w_{r}(z)\right| d z \quad \text { and } \quad A_{2}(r)=\int_{0}^{r^{-1}} \frac{\left|w_{r}(z)\right|}{z+r} d z
$$

If $h\left(r_{0}\right)=0$, then

$$
A_{2}\left(r_{0}\right)=-\frac{3 r_{0}^{2}-3 r_{0}+1}{\left(r_{0}-1\right)\left(r_{0}^{2}+1\right)} A_{1}\left(r_{0}\right)
$$

hence necessarily $r_{0}<1$. Therefore $h\left(r_{0}\right)=0$ implies that

$$
h^{\prime}\left(r_{0}\right)=-2\left(\frac{3 r_{0}-1}{r_{0}}-\frac{r\left(3 r_{0}^{2}-3 r_{0}+1\right)}{\left(r_{0}-1\right)\left(r_{0}^{2}+1\right)}\right) A_{1}\left(r_{0}\right)=q\left(r_{0}\right) \int_{0}^{r_{0}^{-1}}\left|w_{r_{0}}(z)\right| d z
$$

where $q: \boldsymbol{R}-\{0,1\} \rightarrow \boldsymbol{R}$ is the rational function

$$
q(r)=\frac{2\left(r^{3}-3 r^{2}+4 r-1\right)}{r(r-1)\left(r^{2}+1\right)}
$$

Basic algebra says that

$$
s=1-\left(\frac{2}{3(-9+\sqrt{93})}\right)^{1 / 3}+\left(\frac{-9+\sqrt{93}}{18}\right)^{1 / 3} \approx 0.317672
$$

Figure 4.2. Left: The period function $h(r) . h(r)=0$ when $r \approx 0.17137$ and $r \approx 0.691724$. Right: The derivative $h^{\prime}(r)$ of $h(r)$.
is the unique real root of q in $\boldsymbol{R}-\{0,1\}$, and an elementary analysis says that $\left.q\right|_{(-\infty, 0)}<0$, $\left.q\right|_{(0, s)}>0$ and $\left.q\right|_{(s, 1)}<0$.

Assume for a moment that h has a root in $(-\infty, 0)$. Since $h_{-}(0)=+\infty$ and $h(-\infty)>$ 0 , we can find $s_{0} \in(-\infty, 0)$ such that $h\left(s_{0}\right)=0$ and $h^{\prime}\left(s_{0}\right) \geq 0$, contradicting that $q\left(s_{0}\right)<0$. Therefore, the roots of h (at least two) lie in $A=(0,1)$. Suppose that h has three real roots on A, and label $r_{1}<r_{2}<r_{3}$ as the three smallest real roots of h in A.

Since $h_{+}(0)=-\infty, h$ must be increasing on $\left(r_{1}-\varepsilon, r_{1}\right)$ for small ε and $h^{\prime}\left(r_{1}\right) \geq 0$. This implies that $r_{1} \leq s$.

Let us show that $r_{2} \geq s$. If $r_{1}=s$ then $r_{2}>s$ and we are done. Suppose $r_{1}<s$. In this case $h^{\prime}\left(r_{1}\right)>0$ and h must be positive in (r_{1}, r_{2}), hence h must be decreasing on ($r_{2}-\varepsilon, r_{2}$) for small ε and $h^{\prime}\left(r_{2}\right) \leq 0$. This clearly implies that $r_{2} \geq s$.

As a consequence, $r_{3}>s$ and $h^{\prime}\left(r_{3}\right)<0$, which obviously contradicts that h increasing on ($r_{3}-\varepsilon, r_{3}$) for small ε and proves our assertion.

This proves that h has exactly two real roots r_{1} and r_{2} lying in $(0,1)$.
Finally, observe that the transformations $T_{0}\left(z, w_{r}\right)=\left(z,-w_{r}\right), T_{1}\left(z, w_{r}\right)=\left(\bar{z}, \overline{w_{r}}\right)$ and $T_{2}=T_{1} \circ T_{0}$ on \bar{M}_{r} induce the 180°-rotations about the x_{3}, x_{1} and x_{2} axes, respectively. This implies that the maxface X_{r} has four symmetries.

The values r_{1} and r_{2} can be estimated using the Mathematica software, obtaining that $r_{1} \approx 0.17137$ and $r_{2} \approx 0.691724$. See Figure 4.2.

REMARK 4.3. The above argument is based on the construction of the López' minimal Klein bottle [L1]. The most significant difference is that in the Riemannian case the period problem has a unique solution.

The maximal Klein bottles exhibited in Theorem 4.1 can be characterized in terms of their symmetry:

THEOREM 4.4 (Uniqueness). Let $X^{\prime}: M^{\prime} \rightarrow L^{3}$ be a complete nonorientable maxface with genus two, one end and Gauss map of degree four. Assume that X^{\prime} has at least four symmetries. Then X^{\prime} is one of the examples constructed in Theorem 4.1.

Figure 4.3. Maximal Klein Bottles with one end. $r \approx 0.17137$ in the left, and $r \approx$ 0.691724 in the right.

Proof. By definition, an intrinsic isometry $S: M^{\prime} \rightarrow M^{\prime}$ is said to be a symmetry of X^{\prime} if there exists a Lorentzian isometry $\widetilde{S}: \boldsymbol{L}^{3} \rightarrow L^{3}$ such that $X \circ S=\widetilde{S} \circ X$. Symmetries of X^{\prime} are conformal transformations and extend conformally to the compactification \bar{M}^{\prime} of M^{\prime}. We call $\operatorname{Sym}\left(X^{\prime}\right)$ as the symmetry group of X^{\prime}.

Let $\left(M, I, g, \phi_{3}\right)$ denote the Weierstrass data of $X^{\prime}: M^{\prime} \rightarrow L^{3}$, and up to a Lorentzian isometry, suppose that $g(P)=1 / g(I(P))=0$. We know that $M=\bar{M}-\{P, I(P)\}$, where \bar{M} is a conformal torus and $P \in \bar{M}$. As usual, label $\pi: \bar{M} \rightarrow \bar{M}^{\prime}$ as the two sheeted orientable double cover of \bar{M}^{\prime} and $X=X^{\prime} \circ \pi: M \rightarrow L^{3}$ as the associated orientable maxface. For each $S \in \operatorname{Sym}\left(X^{\prime}\right)$, let $\hat{S}: \bar{M} \rightarrow \bar{M}$ denote the unique holomorphic lifting of S, that is to say, the unique orientation preserving transformation in \bar{M} satisfying that $\pi \circ \hat{S}=S \circ \pi$. Obviously $\hat{S} \circ I=I \circ \hat{S}$. Write $\operatorname{Sym}_{+}(X)=\left\{\hat{S} ; S \in \operatorname{Sym}\left(X^{\prime}\right)\right\}$ and observe that $\operatorname{Sym}_{+}(X)$ is a group isomorphic to $\operatorname{Sym}\left(X^{\prime}\right)$. Note that $\hat{S} \in \operatorname{Sym}_{+}(X)$ satisfies $\hat{S}(P)=P$ or $\hat{S}(P)=I(P)$.

Take an arbitrary $S \in \operatorname{Sym}\left(X^{\prime}\right)$, and let us show that $S^{2}=\mathrm{Id}$.
Indeed, since $\left\{S^{m} ; m \in Z\right\}$ is a discrete group, there is $n \in N$ such that $S^{n}=\mathrm{Id}$ and $S^{j} \neq \mathrm{Id}, j=1, \ldots, n-1$. Consider the orbit space $\bar{M}^{\prime} /\langle S\rangle$ and the projection σ : $\bar{M}^{\prime} \rightarrow \bar{M}^{\prime} /\langle S\rangle$. By Riemann-Hurwitz formula, $0=\chi\left(\bar{M}^{\prime}\right)=n \chi\left(\bar{M}^{\prime} /\langle S\rangle\right)-V_{S}$, where V_{S} is the total branching number of σ. Since $S(\pi(P))=\pi(P)$, we get $V_{S} \geq n-1$ and $0 \leq n \chi\left(\overline{M^{\prime}} /\langle S\rangle\right)-n+1$. This implies that $\chi\left(\overline{M^{\prime}} /\langle S\rangle\right)=1$ and $V_{S}=n$. Therefore, there exists $Q \in \overline{M^{\prime}}$ and a divisor k of n such that $n-k=1$. This is only possible when $n=k+1=2$, proving our assertion.

As a consequence, $T^{2}=\mathrm{Id}$ for all $T \in \operatorname{Sym}_{+}(X)$. Moreover, up to a rotation about the x_{3}-axis, $g \circ T \in\{ \pm g, 1 / g\}$ and $T^{*}\left(\phi_{3}\right)= \pm \phi_{3}$ for any $T \in \operatorname{Sym}_{+}(X)$. To check this, just take into account that $g \circ T=L \circ g$, where L is the Möbius transformation induced by the linear part of T (here we are identifying $\overline{\boldsymbol{C}}-\{|z|=1\}$ with the Lorentzian sphere of radius -1 via the Lorentzian stereographic projection). The normalization $g(P)=1 / g(I(P))=0$ and the fact $T^{2}=\mathrm{Id}$ show that $g \circ T \in\{ \pm g, \theta / g\},|\theta|=1$, and so the desired statement.

Let us show that there exists $T_{0} \in \operatorname{Sym}_{+}(X), T_{0} \neq \mathrm{Id}$, satisfying that $T_{0}(P)=P$. Indeed, since $\# \operatorname{Sym}_{+}(X) \geq 4$, we can find $T_{1}, T_{2} \in \operatorname{Sym}_{+}(X)-\{\operatorname{Id}\}$ with $T_{1} \neq T_{2}$. If $T_{1}(P)=T_{2}(P)=I(P)$ (otherwise we are done), it suffices to take $T_{0}=T_{1} \circ T_{2}$.

Consider a such T_{0}, and note that $T_{0}(I(P))=I(P)$ as well, that is to say, T_{0} has at least two fixed points. By the Riemann-Hurwitz formula

$$
0=\chi(\bar{M})=2 \chi\left(\bar{M} /\left\langle T_{0}\right\rangle\right)-V \geq 2\left(\chi\left(\bar{M} /\left\langle T_{0}\right\rangle\right)-1\right),
$$

where V is the number of fixed points of T_{0}. This clearly implies that $\chi\left(\bar{M} /\left\langle T_{0}\right\rangle\right)=2$ and $V=4$. In other words, $\chi\left(\bar{M} /\left\langle T_{0}\right\rangle\right)=\overline{\boldsymbol{C}}$ and T_{0} has in fact four fixed points, namely $\{P, I(P), Q, I(Q)\}$.

Let $z: \bar{M} \rightarrow \overline{\boldsymbol{C}} \equiv \bar{M} /\left\langle T_{0}\right\rangle$ denote the natural two sheeted branched covering. Up to a conformal transformation, we will suppose that $z(P)=1 / z(I(P))=0$ and $r=z(Q) \in$ $\boldsymbol{R}-\{0\}$. We infer that $z \circ I=\mu / \bar{z}$, and since I is an involution, then $\mu \in \boldsymbol{R}-\{0\}$. Up to the change $z \rightarrow \sqrt{|\mu|} z$, we can put $\mu^{2}=1$. We distinguish two cases: $z \circ I=1 / \bar{z}$ and $z \circ I=-1 / \bar{z}$.

Case 1. $z \circ I=1 / \bar{z}$. Up to biholomorphisms, $\bar{M}=\left\{(z, v) \in \overline{\boldsymbol{C}}^{2} ; v^{2}=z(z-\right.$ $r)(r z-1)\}$ and $T_{0}(z, v)=(z,-v)$. As $T_{0} \circ I=I \circ T_{0}$ and I has no fixed points, we get $I(z, v)=\left(1 / \bar{z}, \bar{v} / \bar{z}^{2}\right)$. Consider $T_{1} \in \operatorname{Sym}_{+}(X)-\left\{\mathrm{Id}, T_{0}\right\}$ and note that $T_{1}(P)=I(P)$ (otherwise T_{1} would be an holomorphic involution fixing P and $I(P)$, hence $T_{1}=T_{0}$ which is absurd). Thus we get that $z \circ T_{1}=\lambda / z$, and since T_{1} leaves invariant the branch point set of $z, \lambda=1$.

Let us determine g. Basic Algebraic Geometry says that g is a rational function of z and v. Moreover, we know that $g \circ I=1 / \bar{g}$ and $g \circ T_{0}= \pm g$ (recall that $T_{0}(P)=P$ and so $\left.\left(g \circ T_{0}\right)(P)=0\right)$.

Suppose for a moment that $g \circ T_{0}=g$. In this case, $g=R(z)$ where $R(z)$ is a rational function of z. Up to rotations about the x_{3}-axis, it is easy to get $g=z(z-a) /(\bar{a} z-1)$, $a \in \boldsymbol{C}$. Here we have taken into account that g has degree four, $g(0)=0$ and $g \circ I=1 / \bar{g}$. Then the conditions (1.4) and $I^{*}\left(\phi_{3}\right)=\bar{\phi}_{3}$ imply that $\phi_{3}=i A(z-a)(\bar{a} z-1)(z v)^{-1} d z$, $A \in \boldsymbol{R}-\{0\}$ (up to scaling in \boldsymbol{L}^{3}, we may assume $A \in\{ \pm 1\}$). Furthermore, $g \circ T_{1}= \pm 1 / g$ forces $a \in \boldsymbol{R}$. Let $\gamma \in H_{1}(\bar{M}, \boldsymbol{Z})$ denote the loop $z^{-1}([r, 1 / r])$ and observe that $I_{*}(\gamma)=\gamma$, where $I_{*}: H_{1}(\bar{M}, \boldsymbol{Z}) \rightarrow H_{1}(\bar{M}, \boldsymbol{Z})$ is the isomorphism induced by I. By the same argument as in Lemma 4.2, X^{\prime} is well defined if and only if

$$
\int_{\gamma} \phi_{3} g=0 .
$$

However, $\phi_{3} g=i A(z-a)^{2} v^{-1} d z$ has non zero integral along $[r, 1 / r]$, getting a contradiction.
Assume now that $g \circ T_{0}=-g$. Then $g=R(z) v$, where $R(z)$ is a rational function of z. By reasoning as above, we get either

$$
g=\frac{v(z-a)}{(z-r)(a z-1)} \quad \text { or } \quad g=\frac{v(z-a)}{(r z+1)(a z-1)},
$$

and in any case $\phi_{3}=i(z-a)(a z-1) z^{-2} d z$, where $a \in \boldsymbol{R}-\{0,1 / r\}$. Since ϕ_{3} has no real periods, its residue at $z=0$ must be real, that is to say, $1+a^{2}=0$, a contradiction.

Therefore, this case is impossible.
Case 2. $\quad z \circ I=-1 / \bar{z}$. By reasoning as above, we get $\bar{M}=\left\{(z, v) \in \overline{\boldsymbol{C}}^{2} ; v^{2}=\right.$ $z(z+r)(r z-1)\}, r \in \boldsymbol{R}-\{0\}, I(z, v)=\left(-1 / \bar{z}, \pm \bar{v} / \bar{z}^{2}\right), T_{0}(z, v)=(z,-v)$ and $T_{1}(z, v)=$ $\left(-1 / z, \pm v / z^{2}\right)$.

Suppose that $g \circ T_{0}=g$ and $g=R(z)$, where $R(z)$ is a rational function of z. Up to a rotation about the x_{3}-axis, we get $g=z(z-a) /(a z+1), \phi_{3}=A(z-a)(a z+1)(z v)^{-1} d z$, $a \in \boldsymbol{R}, A \in\{ \pm 1, \pm i\}$. Consider the interval $J \subset \boldsymbol{R}$ with endpoints in $\{0,-r, 1 / r\}$ and such that $I_{*}(\gamma)=\gamma$, where $\gamma=z^{-1}(J)$. By reasoning as above, we get

$$
\int_{\gamma} \phi_{3} g \neq 0
$$

contradicting the period condition.
Assume now that $g \circ T_{0}=-g$. As above, either

$$
g=\frac{v(z+a)}{(z+r)(a z-1)} \quad \text { or } \quad g=\frac{v(z+a)}{(r z-1)(a z-1)} .
$$

Up to relabeling $r=z(I(Q))$, we can deal only with the first case

$$
g=\frac{v(z+a)}{(z+r)(a z-1)} .
$$

Then $\phi_{3}=i(z-a)(a z+1) z^{-2} d z$, where $a \in \boldsymbol{R}-\{r\}$. Moreover, the condition $g \circ I=1 / \bar{g}$ forces that $I(z, v)=\left(-1 / \bar{z},-\bar{v} / \bar{z}^{2}\right)$. Since ϕ_{3} has no real periods, its residue at $z=0$ vanishes and $a^{2}=1$ (up to the changes $z \rightarrow-z$ and $r \rightarrow-r$, we can put $a=1$). These Weierstrass data correspond to the examples in Theorem 4.1, concluding the proof.

Theorem B in the introduction follows from Theorems 4.1 and 4.4.

References

[ACM] L. J. Alías, R. M. B. Chaves and P. Mira, Björling problem for maximal surfaces in LorentzMinkowski space, Math. Proc. Cambridge Philos. Soc. 134 (2003), 289-316.
[C] E. Calabi, Examples of the Bernstein problem for some nonlinear equations, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), pp. 223-230, Amer. Math. Soc., Providence, R.I., 1970.
[FL] I. Fernández and F. J. López, Periodic maximal surfaces in the Lorentz-Minkowski space L^{3}, Math. Z. 256 (2007), 573-601.
[FLS] I. Fernández, F. J. López and R. Souam, The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space, Math. Ann. 332 (2005), 605-643.
[FSUY] S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of maximal surfaces, Math. Z. 259 (2008), 827-848.
[Ki1] R. KIEHN, Falaco solitons, Cosmic strings in a swimming pool, http://arxiv.org/ftp/gr-qc/papers/0101/ 0101098.pdf.
[Ki2] R. Kiehn, Falaco solitons, cosmology and the arrow of time... Vol2. Non-equilibrium Systems And Irreversible Processes. Publisher: Lulu Press, ISBN: 184728194X.
[KY] Y. W. Kim and S.-D. Yang, A family of maximal surfaces in Lorentz-Minkowski three-space, Proc. Amer. Math. Soc. 134 (2006), 3379-3390.
[Ko1] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L^{3}, Tokyo J. Math. 6 (1983), 297-309.
[Ko2] O. Kobayashi, Maximal surfaces with conelike singularities, J. Math. Soc. Japan 36 (1984), 609-617.
[KU] M. Kokubu and M. Umehara, Orientability of linear Weingarten surfaces, spacelike CMC-1 surfaces and maximal surfaces, preprint, arXiv:0907.2284.
[L1] F. J. López, A complete minimal Klein bottle in \boldsymbol{R}^{3}, Duke Math. J. 71 (1993), 23-30.
[L2] F. J. López, On complete nonorientable minimal surfaces with low total curvature, Trans. Amer. Math. Soc. 348 (1996), 2737-2758.
[LLS] F. J. LÓPEZ, R. LÓpez and R. Souam, Maximal surfaces of Riemann type in Lorentz-Minkowski space L^{3}, Michigan Math. J. 47 (2000), 469-497.
[LM1] F. J. López and F. Martín, Complete nonorientable minimal surfaces and symmetries, Duke Math. J. 79 (1995), 667-686.
[LM2] F. J. LÓPEZ AND F. MARTÍn, Complete nonorientable minimal surfaces with the highest symmetry group, Amer. J. Math. 119 (1997), 55-81.
[MT] J. E. MARSDEN AND F. J. TiPLER, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep. 66 (1980), 109-139.
[Mc] L. McNertney, One-parameter families of surfaces with constant curvature in Lorentz 3-space, Ph. D. Thesis, Brown Univ., 1980.
[Me] W. H. Meeks III, The classification of complete minimal surfaces in \boldsymbol{R}^{3} with total curvature greater than -8π, Duke Math. J. 48 (1981), 523-535.
[R] M. Ross, Complete nonorientable minimal surfaces in \boldsymbol{R}^{3}, Comment. Math. Helv. 67 (1992), 64-76.
[UY] M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J. 35 (2006), 13-40.

Department of Mathematics
Fukuoka University of Education
Munakata, Fukuoka 811-4192
Japan
E-mail address: fujimori @fukuoka-edu.ac.jp

Departamento de Geometría y Topología
Facultad de Ciencias
Universidad de Granada
18071 GRANADA
Spain
E-mail address: fjlopez@ugr.es

[^0]: 2000 Mathematics Subject Classification. Primary 53A10; Secondary 53C42, 53C50.
 Key words and phrases. Maximal surface, nonorientable surface.
 *Partially supported by JSPS Grant-in-Aid for Young Scientists (Start-up) 19840035.
 ${ }^{\dagger}$ Partially supported by MCYT-FEDER research project MTM2007-61775 and Junta de Andalucia Grant P06-FQM-01642.

