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Abstract. We study entire solutions of a two-component competition system with
Lotka-Volterra type nonlinearity in a lattice. It is known that this system has traveling wave
front solutions and enjoys comparison principle. Based on these solutions, we construct some
new entire solutions which behave as two traveling wave fronts moving towards each other
from both sides of x-axis.

1. Introduction. We are concerned with the following Lotka-Volterra competition
system in a one-dimensional lattice:


duj

dt
= d1(uj+1 + uj−1 − 2uj )+ r1uj (1 − b1uj − a2vj ) ,

dvj

dt
= d2(vj+1 + vj−1 − 2vj )+ r2vj (1 − b2vj − a1uj ) ,

(1.1)

where uj = uj (t), vj = vj (t), t ∈ R, j ∈ Z, the parameters ai , bi , di and ri are all positive
numbers for i = 1, 2. This model is often used to describe the competing interaction of two
species living in a discrete habitat. Here uj (t) and vj (t) stand for the populations of two
species at time t and niches j , respectively. Thus we only consider that both uj (t) and vj (t)
are nonnegative. The parameter ai is the competition coefficient, 1/bi is the carrying capacity,
di is the diffusion coefficient and ri is the birth rate of species i, i = 1, 2.

By a suitable rescaling,

d1t → t , b1uj → uj , b2vj → vj ,

and by letting

a = r1/d1 , b = r2/d1 , d = d2/d1 , k = a2/b2 , h = a1/b1 ,

the system (1.1) becomes the following system:

duj

dt
= (uj+1 + uj−1 − 2uj )+ auj (1 − uj − kvj ) ,

dvj

dt
= d(vj+1 + vj−1 − 2vj )+ bvj (1 − vj − huj ) ,

(1.2)
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where t ∈ R, j ∈ Z and a, b, d, h, k > 0. Henceforth we shall consider the system (1.2)
throughout this paper.

For solutions (uj , vj ) ≡ (u, v) for all j ∈ Z of (1.2), the system (1.2) is reduced to

du

dt
= au(1 − u− kv) ,

dv

dt
= bv(1 − v − hu) .

Then by a phase plane analysis we have the following asymptotic behaviors as t → +∞:
(i) If 0 < k < 1 < h, then limt→+∞(u, v)(t) = (1, 0) (the species u wins).

(ii) If 0 < h < 1 < k, then limt→+∞(u, v)(t) = (0, 1) (the species v wins).
(iii) If h, k > 1, then limt→+∞(u, v)(t) = (0, 1) or (1, 0) (depending on the initial

data).
(iv) If 0 < h, k < 1, then limt→+∞(u, v)(t) = ((1 − k)/(1 − hk), (1 − h)/(1 − hk))

(two species coexist).
Note that the case (ii) can be reduced to the case (i) by exchanging the roles of u and v.

When 0 < k < 1 < h, the species u is stronger than v, hence the species u invades v
and eventually v will be extinct. It is interesting to know how the stronger species invades
the weaker one. To understand the invading phenomenon between two species, the study
of entire solutions is an important issue. Here an entire solution of (1.2) means a classical
solution defined for all (j, t) ∈ Z × R.

A solution {(uj , vj )} of (1.2) is called a traveling wave (front) solution of (1.2) connect-
ing (0, 1) and (1, 0) with speed c, if

(uj (t), vj (t)) = (U(ξ), V (ξ)) , ξ := j + ct

for some function (U, V ) satisfying


cU ′(ξ) = D2[U(ξ)] + aU(ξ)[1 − U(ξ)− kV (ξ)], ξ ∈ R ,

cV ′(ξ) = dD2[V (ξ)] + bV (ξ)[1 − V (ξ)− hU(ξ)], ξ ∈ R ,

(U, V )(−∞) = (0, 1), (U, V )(+∞) = (1, 0) ,

0 ≤ U,V ≤ 1 on R ,

(1.3)

where D2[w(ξ)] := w(ξ + 1) + w(ξ − 1) − 2w(ξ) for w = U,V . The existence and
uniqueness of traveling wave solution of (1.2) has been established in [6] for the case (i). Note
that traveling wave solutions connecting (0, 1) and (1, 0) are entire solutions which provide
the invading phenomenon. The purpose of this article is to establish the existence of two-front
entire solutions of (1.2) which behave as two traveling fronts moving towards each other from
both sides of space axis. This provides another invasion way of the stronger species to the
weaker one.

In fact, the study of two-front entire solutions of reaction-diffusion equations can be
traced back to the works of Hamel-Nadirashvili [7] and Yagisita [18] (also see [3], [5], [1],
[14]). Among other things, these works established the existence of entire solutions with
some combinations of two traveling wave solutions. Here, again, an entire solution means
a classical solution defined for all (x, t) ∈ R2. Recently, Morita-Tachibana [15] extend the
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results of scalar equations to a competition system. More precisely, under some conditions,
they prove that there are two-front entire solutions which behave as a traveling waves solution
(φ(x+c1t), ψ(x+c1t)) in the right x-axis and (φ(−x+c2t), ψ(−x+c2t)) in the left x-axis
when t → −∞ for the following competition system:{

ut = uxx + u(1 − u− kv), (x, t) ∈ R2 ,

vt = dvxx + bv(1 − v − hu), (x, t) ∈ R2
(1.4)

for the cases (i) through (iii). For the study of traveling wave solutions to (1.4), we refer the
reader to, e.g., [17, 4, 2, 16, 8, 9, 10, 11, 12, 13].

Motivated by the work of [15], it is very natural to expect that (1.2) also has two-front
entire solutions based on the existence of traveling wave solutions. Therefore, we are looking
for a solution {(uj (t), vj (t))} which is defined for all j ∈ Z and t ∈ R and is a combination of
two traveling wave front solutions of (1.2). For this, we embed the system (1.2) into a larger
one: {

ut (x, t) = D2[u(x, t)] + au(x, t)[1 − u(x, t)− kv(x, t)] ,
vt (x, t) = dD2[v(x, t)] + bv(x, t)[1 − v(x, t)− hu(x, t)] ,(1.5)

where (x, t) ∈ R2 and D2[w(x, t)] := w(x + 1, t) + w(x − 1, t) − 2w(x, t) for w = u, v.
Note that the traveling wave front solution of (1.2) and (1.5) are identical. In this paper, we
shall only focus on the case (i) and make the following assumption

(A1) 0 < k < 1 < h, a > 0, b > 0 and d > 0.
In [15], the following assumption is crucial in constructing two-front entire solutions,

namely, there is a positive number η0 such that

U(ξ)

1 − V (ξ)
≥ η0 for all ξ ≤ 0 .(1.6)

Also, they provide some conditions via the eigenvalues of the linearized system around equi-
libria (0, 1) and (1, 0) to assure (1.6) holds. Fortunately, the condition (1.6) also holds for our
lattice dynamical system (1.2). Indeed, it is proved in [6] that the limit

l := lim
ξ→−∞U(ξ)/[1 − V (ξ)]

exists and is equal to either 0 or a positive number. Moreover, under the extra condition
0 < d ≤ 1, we can be sure that l > 0 (see [6, Remark 3.1]). From now on, we shall only
consider the traveling wave solutions satisfying (1.6).

Since the comparison principle also holds for our competition system, we can apply the
same argument as in [15] to construct two-front entire solutions by the help of a pair of super-
and subsolution. We establish the following result.

THEOREM 1. Assume (A1). Let (ci, Ui, Vi) be a solution of (1.3) satisfying (1.6) and
let θi be a given constant, i = 1, 2. Then there exists an entire solution (u(x, t), v(x, t)) ∈



20 J.-S. GUO AND C.-H. WU

(0, 1)× (0, 1) of (1.5) such that

lim
t→−∞ sup

x≥(c2−c1)t/2
{|u(x, t)− U1(x + c1t + θ1)| + |v(x, t)− V1(x + c1t + θ1)|}

= 0 ,
(1.7)

lim
t→−∞ sup

x≤(c2−c1)t/2
{|u(x, t)− U2(−x + c2t + θ2)| + |v(x, t)− V2(−x + c2t + θ2)|}

= 0 ,
(1.8)

lim
t→+∞ sup

x∈R

{|1 − u(x, t)| + |v(x, t)|} = 0 .(1.9)

We organize this article as follows. In the next section, we recall some results from [6]
on the asymptotic behaviors of traveling waves. With these asymptotic behaviors, the main
theorem will be proven in Section 3.

2. Preliminaries. For convenience, we setw(x, t) := 1−v(x, t). Thus (1.5) becomes
the following (P):

ut = D2[u] + au[1 − u− k(1 −w)] ,
wt = dD2[w] + b(1 −w)(hu−w) .

Then, by setting W := 1 − V , (1.3) is equivalent to


cU ′ = D2[U ] + aU [1 − U − k(1 −W)] ,
cW ′ = dD2[W ] + b(1 −W)(hU −W) ,

(U,W)(−∞) = (0, 0) , (U,W)(+∞) = (1, 1) ,

0 ≤ U , W ≤ 1 .

(2.1)

In [6], we proved that there is a minimal speed cmin > 0 such that (2.1) admits a solution
(U,W) if and only if c ≥ cmin. Thus, both c1 and c2 in Theorem 1 are positive. Moreover,
any wave profile is strictly monotone. That is, U ′

i > 0 and W ′
i > 0 on R for i = 1, 2. On the

other hand, we also derive the asymptotic behavior of the traveling wave front of (2.1).
Define

Φ1(c, λ) := cλ− [(eλ + e−λ − 2)+ a(1 − k)] .(2.2)

It is easy to see that for each

c > c∗ := min
λ>0

{
eλ + e−λ − 2 + a(1 − k)

λ

}
> 0 ,

the equation Φ1(c, λ) = 0 has exactly two real roots λi(c), i = 1, 2, with 0 < λ1(c) < λ2(c);
for c = c∗, Φ1(c, λ) = 0 has a unique real root λ∗ > 0. Next, we also define

Ψ1(c, λ) := cλ− d(eλ + e−λ − 2)− b(1 − h) ,

Ψ2(c, λ) := cλ− (eλ + e−λ − 2)+ a .
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For any c > 0, Ψ1(c, λ) = 0 has only one negative root, denoted by ν1(c); Ψ2(c, λ) = 0 also
has only one negative root for any c > 0, denoted by ν2(c).

LEMMA 2.1. Assume (A1) and let (c, U,W) be a solution of (2.1) satisfying (1.6).
Then

lim
ξ→−∞

W ′(ξ)
W(ξ)

= Λ(c) = lim
ξ→−∞

U ′(ξ)
U(ξ)

,(2.3)

lim
ξ→+∞

W ′(ξ)
1 −W(ξ)

= −ν1(c) ,(2.4)

lim
ξ→+∞

U ′(ξ)
1 − U(ξ)

= −ν0(c) ,(2.5)

1 −W(ξ)

1 − U(ξ)
≤ K for all ξ ∈ R for some K > 0 ,(2.6)

where Λ(c) ∈ {λ1(c), λ2(c)} and ν0(c) ∈ {ν1(c), ν2(c)}.
The proof of Lemma 2.1 can be found in [6, Lemmas 3.2 and 3.4 through 3.7]. As a

consequence, we get the following estimates which we need in the proof of Theorem 1.

LEMMA 2.2. Assume (A1) and let (ci, Ui,Wi) be a solution of (2.1) satisfying (1.6),
i = 1, 2. Then there exist positive numbers µ1, m andM such that

0 < Ui(ξ) ≤ Meµ1ξ , for all ξ ≤ 1 ,(2.7)

0 < Wi(ξ) ≤ Meµ1ξ , for all ξ ≤ 1 ,(2.8)

m ≤ U ′
i (ξ)

Ui(ξ)
≤ M , for all ξ ≤ 1 ,(2.9)

m ≤ W ′
i (ξ)

Wi(ξ)
≤ M , for all ξ ≤ 1 ,(2.10)

m ≤ U ′
i (ξ)

1 − Ui(ξ)
≤ M , for all ξ ≥ −1 ,(2.11)

m ≤ W ′
i (ξ)

1 −Wi(ξ)
≤ M , for all ξ ≥ −1 .(2.12)

PROOF. (2.7) through (2.10) follow from (2.3). By (2.4) and (2.5), we obtain (2.11) and
(2.12). �

Note that (2.11) and (Ui, U ′
i )(−∞) = (0, 0) imply that there exists η > 0 such that

1 − Ui(ξ + s)

1 − Ui(ξ)
≤ η , i = 1, 2(2.13)
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for all ξ ∈ R and s ∈ [−1, 1], since we have

1 − U(ξ + s)

1 − U(ξ)
= exp

{
−

∫ ξ+s

ξ

U ′(x)
1 − U(x)

dx

}
, i = 1, 2 .

Similarly, there exists γ > 0 such that

Ui(ξ + s)

Ui(ξ)
≤ γ , i = 1, 2(2.14)

for all ξ ∈ R and s ∈ [−1, 1]. Note that, in (2.13) and (2.14), Ui can be replaced by Wi ,
i = 1, 2.

3. Proof of Theorem 1. The following three lemmas are key steps in the proof of
Theorem 1.

LEMMA 3.1. Let (ci , Ui,Wi) be a solution of (2.1) satisfying (1.6), i = 1, 2, and
define

A(y, p) := U1(y + p)W2(−y + p)[1 − U2(−y + p)][1 −W1(y + p)] ,
B(y, p) := U2(−y + p)W1(−y + p)[1 − U1(y + p)][1 −W2(−y + p)] ,
C(y, p) := U ′

1(y + p)[1 − U2(−y + p)] + U ′
2(−y + p)[1 − U1(y + p)] .

Then there exists N > 0 such that, for any given p < 0,

A(y, p) ≤ Neµ1pC(y, p) for every y ∈ R ,(3.1)

B(y, p) ≤ Neµ1pC(y, p) for every y ∈ R .(3.2)

PROOF. Since the proofs of (3.1) and (3.2) are similar, we only show (3.1). We divide
R into four intervals, (−∞, p], [p, 0], [0,−p] and [−p,+∞). For y ∈ (−∞, p], by using
(2.6), (2.11) and (2.7), we obtain

A(y, p)

C(y, p)
≤ A(y, p)

U ′
2(−y + p)[1 − U1(y + p)]

≤ 1 −W1(y + p)

1 − U1(y + p)

1 − U2(−y + p)

U ′
2(−y + p)

W2(−y + p)U1(y + p)

≤N1U1(y + p) ≤ N2e
µ1p

for some N1, N2 > 0.
For y ∈ [p, 0], by (2.6), (1.6), (2.9) and (2.7), we have

A(y, p)

C(y, p)
≤ A(y, p)

U ′
2(−y + p)[1 − U1(y + p)]

= 1 −W1(y + p)

1 − U1(y + p)

W2(−y + p)

U2(−y + p)

U2(−y + p)

U ′
2(−y + p)

[1 − U2(−y + p)]U1(y + p)

≤N3U1(y + p) ≤ N4e
µ1p

for some N3, N4 > 0.
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For y ∈ [0,−p], using (2.9) and (2.8), we obtain

A(y, p)

C(y, p)
≤ A(y, p)

U ′
1(y + p)[1 − U2(−y + p)] ≤ N5W2(−y + p) ≤ N6e

µ1p

for some N5, N6 > 0.
For y ∈ [−p,+∞), by (2.6), (2.11) and (2.8), we have

A(y, p)

C(y, p)
≤ A(y, p)

U ′
1(y + p)[1 − U2(−y + p)]

= 1 −W1(y + p)

1 − U1(y + p)

1 − U1(y + p)

U ′
1(y + p)

U1(y + p)W2(−y + p)

≤N7W2(−y + p) ≤ N8e
µ1p

for someN7,N8 > 0. Then (3.1) follows by takingN = max{N2, N4, N6, N8} and the lemma
follows. �

LEMMA 3.2. Let (ci , Ui,Wi) be a solution of (2.1) satisfying (1.6), i = 1, 2. We
define

D(y, p) := [U1(y + 1 + p)− U1(y + p)][U2(−y + p)− U2(−y − 1 + p)] ,
E(y, p) := [U1(y + p)− U1(y − 1 + p)][U2(−y + 1 + p)− U2(−y + p)]

while we define C(y, p) as in Lemma 3.1. Then there exists N0 > 0 such that, for any given
p < 0, we have

D(y, p) ≤ N0e
µ1pC(y, p) for every y ∈ R ,(3.3)

E(y, p) ≤ N0e
µ1pC(y, p) for every y ∈ R .(3.4)

PROOF. Since the proofs (3.3) and (3.4) are similar, we only prove (3.3). For y ≥ −p,
there are η1(y), η2(y) ∈ (0, 1) and L1 > 0 such that

D(y, p)

C(y, p)
= U ′

1(y + η1 + p)U ′
2(−y − η2 + p)

C(y, p)
≤ U ′

1(y + η1 + p)

U ′
1(y + p)

U ′
2(−y − η2 + p)

1 − U2(−y + p)

≤
{

U ′
1(y + η1 + p)

1 − U1(y + η1 + p)

1 − U1(y + η1 + p)

1 − U1(y + p)

1 − U1(y + p)

U ′
1(y + p)

}
U ′

2(−y − η2 + p)

1 − U2(0)

≤L1U
′
2(−y − η2 + p) ,

where the last inequality follows from (2.11) and (2.13). It then follows from (2.7) and (2.9)
that

D(y, p)

C(y, p)
≤ L1U

′
2(−y − η2 + p) ≤ L1L2Me

µ1p .

For y ∈ [0,−p], there exists L3 > 0 such that

D(y, p)

C(y, p)
= U ′

1(y + η1 + p)U ′
2(−y − η2 + p)

C(y, p)

≤
{
U ′

1(y + η1 + p)

U1(y + η1 + p)

U1(y + η1 + p)

U1(y + p)

U1(y + p)

U ′
1(y + p)

}
U ′

2(−y − η2 + p)

1 − U2(0)
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≤L3U
′
2(−y − η2 + p) ,

where the last inequality follows from (2.9) and (2.14). Again, by (2.7) and (2.9), we obtain
D(y, p)/C(y, p) ≤ L4Me

µp for some L4 > 0. Thus, (3.3) holds for all y ≥ 0.
For y ≤ 0, we divide it to the cases y ∈ [p, 0] and y ∈ (−∞, p]. By using the same

argument, (3.3) also holds for all y ≤ 0. Thus, we complete the proof of this lemma. �

LEMMA 3.3. Let (ci, Ui,Wi) be a solution of (2.1) satisfying (1.6), i = 1, 2. Then
there exists N1 > 0 such that, for any given p < 0, we have

F(y, p) , G(y, p) , H(y, p) ≤ N1e
µ1pI (y, p) for every y ∈ R ,

where

F(y, p) := [W1(y + 1 + p)−W1(y + p)][W2(−y + p)−W2(−y − 1 + p)] ,
G(y, p) := [W1(y + p)−W1(y − 1 + p)][W2(−y + 1 + p)−W2(−y + p)] ,
H(y, p) := W1(y + p)W2(−y + p)[1 −W1(y + p)][1 −W2(−y + p)] ,
I (y, p) := W ′

1(y + p)[1 −W2(−y + p)] +W ′
2(−y + p)[1 −W1(y + p)] .

PROOF. This lemma is proved by using Lemma 2.2. Since the proof is similar to those
of Lemmas 3.1 and 3.2, we omit the details. �

By the transformation y = x + (c1 − c2)t/2, we define (u(y, t), w(y, t)) := (u(x, t),

w(x, t)). Then (P) becomes (Q):

ut +
(
c1 − c2

2

)
uy = D2[u] + f (u,w) , (y, t) ∈ R2 ,

wt +
(
c1 − c2

2

)
wy = dD2[w] + g(u,w) , (y, t) ∈ R2 ,

where f (u,w) := au[1 − u− k(1 −w)] and g(u,w) := b(1 −w)(hu−w).
We call (u−, w−) a subsolution of (Q) for (y, t) ∈ R × [T1, T2] if F1(u

−, w−) ≤ 0 and
F2(u

−, w−) ≤ 0 for all (y, t) ∈ R × [T1, T2], where

F1(u,w) := ut +
(
c1 − c2

2

)
uy −D2[u] − f (u,w) ,

F2(u,w) := wt +
(
c1 − c2

2

)
wy − dD2[w] − g(u,w) .

Similarly, a supersolution (u+, w+) is defined by reversing the above inequalities.
Next, we introduce the following initial value problem:

p′(t) =
(
c1 + c2

2

)
+ Leµ1p(t) , t ≤ 0 ,

p(0) = p0 < 0 ,



ENTIRE SOLUTIONS FOR A TWO-COMPONENT COMPETITION SYSTEM 25

where µ1 > 0 is defined in Lemma 2.2 and L > 0 is to be determined. Then the solution can
be easily obtained as

p(t) = p0 +
(
c1 + c2

2

)
t − 1

µ1
ln

{
1 + 2L

(c1 + c2)
eµ1p0(1 − e(c1+c2)µ1t/2)

}
< 0 , t ≤ 0 .

Note that

lim
t→−∞

{
p(t) −

(
c1 + c2

2

)
t

}
= − 1

µ1
ln

{
e−µ1p0 + 2L

c1 + c2

}
< 0 .

The following equalities are useful in the subsequent estimates:


f (u1 + u2 − u1u2, w1 +w2 −w1w2)− (1 − u2)f (u1, w1)

− (1 − u1)f (u2, w2)

= a(u1 + u2 − u1u2)[(1 − u1)(1 − u2)− k(1 −w1)(1 −w2)]
− au1(1 − u2)[1 − u1 − k(1 −w1)]
− au2(1 − u1)[1 − u2 − k(1 −w2)]

= a{−u1u2(1 − u2)(1 − u2)− k(u1 + u2 − u1u2)(1 −w1)(1 −w2)

+ku1(1 − u2)(1 −w1)+ ku2(1 − u1)(1 − w2)} ,

(3.5)

g(u1 + u2 − u1u2, w1 +w2 −w1w2)− (1 − w2)g(u1, w1)− (1 −w1)g(u2, w2)(3.6)

= bw1w2(1 −w1)(1 −w2)− bhu1u2(1 −w1)(1 −w2) .

PROOF OF THEOREM 1. Without loss of generality, it suffices to consider the case
when θ1 = θ2 = δ, where

δ := − 1

µ1
ln

{
e−µ1p0 + 2L

c1 + c2

}
< 0 ,(3.7)

µ1 > 0 is defined in Lemma 2.2 and L > 0 is to be determined. Indeed, the case for general
θ1 and θ2 can be reduced by a suitable space and time shift to the case θ1 = θ2 = δ. The detail
can be seen in [5].

We now claim that (u+, w+) defined by

u+(y, t) := U1(y + p(t))+ U2(−y + p(t))− U1(y + p(t))U2(−y + p(t)) ,

w+(y, t) := W1(y + p(t))+W2(−y + p(t))−W1(y + p(t))W2(−y + p(t))

is a supersolution of (Q) for y ∈ R and t ≤ 0, where (Ui,Wi) solves (2.1), i = 1, 2.
Note that

F1(u
+, w+)

= p′(t)[(1 − U2)U
′
1 + (1 − U1)U

′
2] +

(
c1 − c2

2

)
[(1 − U2)U

′
1 − (1 − U1)U

′
2]

−D2[U1] −D2[U2] +D2[U1U2] − f (U1 + U2 − U1U2,W1 +W2 −W1W2)

=
{
p′(t)−

(
c1 + c2

2

)}
[(1 − U2)U

′
1 + (1 − U1)U

′
2]
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+[U1(y + 1 + p(t)) − U1(y + p(t))][U2(−y − 1 + p(t))− U2(−y + p(t))]
+[U1(y + p(t))− U1(y − 1 + p(t))][U2(−y + p(t)) − U2(−y + 1 + p(t))]
−f (U1 + U2 − U1U2,W1 +W2 −W1W2)

+(1 − U2)f (U1,W1)+ (1 − U1)f (U2,W2) .

We now estimate the last three terms of the above equality. From (3.5),

f (U1 + U2 − U1U2,W1 +W2 −W1W2)− (1 − U2)f (U1,W1)

− (1 − U1)f (U2,W2)

≤ ak[U1(1 − U2)(1 −W1)+ U2(1 − U1)(1 −W2)

− (U1 + U2 − U1U2)(1 −W1)(1 −W2)]
= ak[U1W2(1 −W1)(1 − U2)+ U2W1(1 − U1)(1 −W2)

− U1U2(1 −W1)(1 −W2)]
≤ ak[U1W2(1 −W1)(1 − U2)+ U2W1(1 − U1)(1 −W2)] .

It follows that

F1(u
+, w+)

≥ Leµ1p(t)[(1 − U2)U
′
1 + (1 − U1)U

′
2] −D(y, p(t)) − E(y, p(t))

−ak[U1W2(1 −W1)(1 − U2)+ U2W1(1 − U1)(1 −W2)]
=C(y, p(t))

{
Leµ1p(t) − D(y, p(t)) + E(y, p(t))

C(y, p(t))
− ak

A(y, p(t))+ B(y, p(t))

C(y, p(t))

}
,

where A, B, C, D and E are defined as in Lemmas 3.1 and 3.2. Therefore, by Lemmas 3.1
and 3.2, there exist N > 0 such that

F1(u
+, w+) ≥ C(y, p(t)){Leµ1p(t) − 2Neµ1p(t) − 2akNeµ1p(t)}

for all y ∈ R and t ≤ 0. Therefore, by choosing L ≥ 2N+2akN , we obtain F1(u
+, w+) ≥ 0

for all y ∈ R and t ≤ 0. Next, by Lemma 3.3, (3.6) and by choosing L 	 1, we can derive
that F2(u

+, w+) ≥ 0 for y ∈ R and t ≤ 0 by the same argument as above. Hence (u+, w+)
is a supersolution of (Q) for a fixed large L > 0.

Similarly, the pair (u−, w−) defined by

u−(y, t) := max

{
U1

(
y + c1 + c2

2
t + δ

)
, U2(−y + c1 + c2

2
t + δ)

}
,

w−(y, t) := max

{
W1

(
y + c1 + c2

2
t + δ

)
,W2

(
− y + c1 + c2

2
t + δ

)}
is a subsolution of (Q), where δ is defined in (3.7) and L is fixed as in the supersolution. Note
that u−(y, t) ≤ u+(y, t) and w−(y, t) ≤ w+(y, t) for all y ∈ R and t ≤ 0. Moreover, we
have

lim
t→−∞ sup

y∈R

[u+(y, t)− u−(y, t)] = 0 = lim
t→−∞ sup

y∈R

[w+(y, t)−w−(y, t)] .
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Since our system enjoys the comparison principle, we can apply the method in [15] to find a
solution (u(y, t), w(y, t)) such that u− ≤ u ≤ u+ and w− ≤ w ≤ w+ for all y ∈ R and
t ≤ 0. Then the asymptotic behaviors (1.7) and (1.8) hold, since (u(y, t), w(y, t)) is still a
solution after time shift. Finally, note that the subsolution (u−, w−) is defined for all t ∈ R

and

lim
t→+∞ sup

y∈R

[1 − u−(y, t)] = 0 = lim
t→+∞ sup

y∈R

[1 −w−(y, t)] .

Therefore, since (u,w) can be extended to all t > 0, we can derive (1.9) and the proof of
Theorem 1 is completed. �
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