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1. Introduction. In this note we set

SN(t) = Σ αm cos 2πnjt + am) and AN = (V 1 Σ ^ ,

where αm ^ 0 and {nm} is a sequence of positive integers satisfying the
gap condition

(1.1) nm+1/nm ^ 1 + cm~a , for some c > 0 and 0 ^ a <; 1/2 .

For a = 0, M. Weiss [5] proved that if

AN—> +oo and aN = o ( ^ ( l o g l o g ^ ) ~ 1 / 2 ) , as N-+ +oo ,

then for any sequence of {am}

ίmΓ {2A% log log A ^ - ^ ^ C O = 1 , a.e. .
N

For a > 0, we proved the following

THEOREM A [4]. If

AN-+ +00 cmd α^ = O(A^i\rα(log ^ ) " ( 1 + ε ) / 2 ) , as N-> +00 ,

where ε is a positive number, then we have

Πϊn (2A2

N log log AN)-^2SN(t) £ 1 , a.e. .
N

The purpose of the present note is to prove the

THEOREM B. Suppose

(1.2) AN-» +00 awd aN = 0{ANN-aω^) , as iSΓ—• +00 ,

where ωN — (log ΛΓ)'3 (log ^l^)4 + (log ANf and β > 1/2, then we have

Πm (2A% log log ^ - ^ ^ ( ί ) ^ 1 , a.e. .
N

If a < 1/2 and {αm} is non-increasing, then by Theorem A and B we
obtain
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ίίm (2A% log log AJ-wSnit) = 1 , a.e. .
N

In §§ 2-5 we prove Theorem B. The method of the proof is to ap-
proximate SN(t) by the sums of a "almost strongly multiplicative" system
and apply the method of P. Revesz [2].

2. Preliminaries. Let us put, for k = 0, 1, 2 ,

p(k) = max {m; nm ^ 2k} ,

Λ(*) = Spιk+1)(t) - SP{k)(t) and Bk =

If p(fc) + 1 < p(fc + 1), (1.1) implies that

p( + )

2 > nP{k+1)/nP{k)+1 > Π (1 +
m=p(Jfe) + l

1) - p(k)

and hence

- p(k) = O(p"(k))

(p(fc + l ) / p ( f c ) l as

Therefore, we have, by (1.2) and (2.1),

bk = max {| αm |, p{k) < m ^ p(k + 1)} = 0{Bkω~\k)p~a(k))
(2.2)

α . I ̂  δ4{?)(A; + 1) - p{k)} = 0(Bkω~lk)) , as k — +

LEMMA 1. For α^?/ ^rΐveπ Λ, i, g and h satisfying p(j) + 1 < h ^
i + 1) < p(&) + 1 < q ^ p(fc + 1), the number of solutions (nr, nt) of the

equations

nq — nr = nh ± nt*
]

where p(j) < i < h and p(k) < r < q, is at most C2j~kpa(k) where C is
a positive constant independent of k, j , q and h.

PROOF. If k < j + 3, the lemma is evident by (2.1). We assume
that k ^ j + 3. If we denote m the smallest number r of the solutions
(nr, nx), then the number of solutions is not greater than q — m. Since
(nh ± nt) ^ 2i+2, we have

nm ^ nq - 2j+2 > nq(l - 2j+2-k) ^ nq(l + 25'- fc.5)"1 .

Therefore, we have, by (1.1)

1 + 2'-*-5 > nq/nm > ff(l + cs~a) ̂  1 + c(g - m)p~a(k + 1) .

Clearly, nq + nr = nh± n\ has no solutions.
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Thus, by (2.1) we can prove the lemma.
In the same way we can prove the following

LEMMA 1'. For any given k, j , q and h such that j ^ k — 2, p(j + 1) <
h ^ p(j + 2) and p(k + 1) < q ^ p(k + 2), the number of solutions (nr, nt)
of the equations

nq — nr = nh ± nt

where p(j) < i ^ p(j + 1) and p(k) < r ^ p(k + 1), is at most C2j~kpa(k),
where C is a positive constant independent of k, j , q and h.

LEMMA 2. We have, for any M and N (M < N),

N II

M
 m II

*N2 Σ 4 . 4 . - 1 II = O((log BN)~8) ,*5 a s ΛΓ-^ + ex) .

( i )

h M

PROOF. ( i ) Let us put, for k = 1, 2

l « COS 47TWm(£ + a w ) .

Then we have, by (2.2),

l ί M

N k-1 f l

= 2£F4 Σ Σ Γ Uk(t)UAt)dt + O((logBN)-ίe) ,
k=M+l j=M JO

as N—* +00

Further, by Lemma 1 and (2.2), we have, for k > j

\ίu'u'Ujdt Σ \ah\b,

as N—+ +00

Since p(j + l)/p(i)-*l, as i~> +°o, we have, for every k,

Σ23'-kp~a(j) ^ C'p-a(k) , for some C > 0 .

Hence, we have

*> 11/11 denotes ZΛnorm unless otherwise stated.
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Σ kί
k=M+l j =

Σ 2'-*IMy II2)1'2IMy II2)

( N \1/ 2 / ^ *-l

Σ IIΛII1) ( Σ Σ

1/2

as iV—> +00 .

Therefore, by the above relations we can prove (i).
(ii) Using Lemma 1' we can prove (ii) in the same way.

LEMMA 3. If M< N and XN = o((log ANγ~ιl2β)f as N-+ + 00, then

(exp \^L £ (Ji - 11 Δ

( i i ) (1

PROOF, ( i ) From (1.1), the frequencies of terms of Δ2

m— \\Am\\z

are in the interval [2mcp~a(m + 1), 2m + 2]. Since p(j + l)/p(j) —> 1, as
j —> + 00, we may assume that

(2.3) 2mcp-a(m + 1) ί + 00 , as m f + o o .

We set m(0) = M and if m(j) is defined, then we put

(2.4) m(j + 1) = min {m + m(j); c2m{j)+mp-«(m(j) + m + 1) > 2m{j)+2} .

By (2.1) we can define m(j) for every j and if m(i') ^ N < m{j' + 1),
then we put

Σ ML(ί) - IMJI2}, if 3 = ?.
m(i')

From (2.2) it is seen that
m(j + l)~ 1

N T II < 9τYlflY II /ί ||(2/}-l)/2j9 γ i II /f 11(2)3 + 1) '2β

II i i lloo ^ ^ m a x 11 z/m ||oo 2u II ̂ m I loo
(j)

Σ (log p(m + l))-'2"+1)/2 ,
m(j)

aS i\Γ—> + 0 0

If 1 ̂  m < m(j + 1) — m(i), we have, by (2.4)

pa(m(j) + m + 1) ̂  C"2m+1 , for some C > 0 .

Hence we have, for some constants A and A',
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m(i+D—1 oo

Σ (logp(m + l))-' 2^ 1" 2 ^AΣ m-(2"+1"2 = A',
m(j) 1

and we obtain

(2.5) ε* = max (|| T, |L; 0 £ j £ f) = O(B2

N(log BNy~^^) ,

as N—• +oo .

Therefore,
»(i+i)-i m(i+i)

Γ 2 < f I T I / c V f Λ 2 II /f | |2 >i _j_ 9 c V II Λ II2

i =^ εN\ *j I <-eiv 2-ι v^m "" II ̂ mll ) -r ^£iv Z J II Δm II
m(j) m(j)

Using the inequality ex ^ (1 + x)eχ2 for | x \ ̂  1/2, we have, by (2.5)

as
This shows that,

) l / 2
_|_ "'"N-LZj + l \J+ I Λ0(l)

as N—> +00 ,

where Πi (or Π2) denotes the product over all j satisfying 0 ̂  2j ^ j'
(or 0 ̂  2i + 1 ̂  i') From the definitions of {Tά} and (2.3), the frequencies
of T2j(t) are not less than c2m{2j)p-a(m(2j) + 1) and

(frequencies of terms of ff(l + ^LTtk)\ ^ 2m{2j~1)+2 ,
^ 0 \ BN J)

therefore we have, by (2.4)

Γ Πi ( l + - ^ TtJ)dt = 1 and [ Π 2 ( l + ̂ - T2j+1)dt = 1 .
Jθ \ JΰN J JO \ -OjV '

Hence, we have

ί1 exp \^-( 1 - ^ ^ ) Σ ΓiU< = 1 + ©(I) ,*} as iV— + 00 .
Jo ^Blr\ BN / 0 J

S I
exp {λ2

NBχ2Σo Tj}dt ^ 1.
0
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Since εNX2

NBά2 = o(l), as N—> +00, the above relation proves (i). Using
the same method and (i) we can prove (ii).

3. Almost Multiplicatively Orthogonal Summands. Putting φ(k) =
Σm=i (log log Bm + 1), we take a sequence {q(k)} of integers satisfying

g(0) = 0 and || Λ<*>-i || = min {|| Δm ||; φ(2k - 1 ) < m ^ φ{2k)} .

Set

then

(3.1)

and

(3.2)

ff()2

<?*(*) = Σ 4.(*) and

= o(DN) , ,_2 , as N-> + 00

ff(fc)2

Σ I
ff(Λ-l)

= 0(A(log Dk)~8 log log B2k)

= O(Dk(\og Dk)~8 log log Dk) , as k -+ + oo ,

since q(k) — 2 ;> 0(2& — 1) > 2k — 1 and BJBk+1 —• 1, as fc —* + oo.

LEMMA 4. If M < N, then

= O((log ZV)~7) , as iSΓ-> + co .

PROOF. Let us put

(ί) , if q(k - 1) ^ m ^ g(fc) - 2 , fc = 1, 2,

0 , if otherwise ,

m—2

Σ 4 , if

(3.3) 4.(t) =

and

(3.4) r.(ί) =
0 , if otherwise .

Then we have

iV

M

By Lemma 2, it is sufficient to show that

q(N)— 2

= 2 Σ ^^ίU
ί(M-l)

q(N)~ 2

Σ 4.
g(if-l)

q(N)— 2

Σ (
( M l )

q(N)-2 | |

λv2 Σ ^ n = O((logDN)-7) , as
) II

+co .

ince Γ Δf

mTLΔf

nT
r

ndt = 0 if | m - w| ^ 2, we have, by (3.2)
Jo

Since
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\\q(N)-2 112 q(N)—2Γί

V A' T'W < 2 y I A T dt
| |g(jlί—1) II g(Jί—1) JO

= O(D*N(log Ό^log log DNfD%) = o(Z>Ulog ^ Γ 4 ) ) -

as N-* + oo .

LEMMA 5. // λ^ = o((log DNγ~{iββ)), as iV-*+oo, ί^ew we have

Γexp {£f Σ (Qi - II Q» H2)Uί = 1 + o(l), as iSΓ— + oo .
Jo ijDjJ ^ '

PROOF. We use the same notation as in the proof of Lemma 4.
Therefore, by Lemma 3 and Jenssen's inequality it is sufficient to show
that

(3.5) Γexp { - ^ Σ ^ Γ U = 1 + o(l) , as N^ +

By (3.2) and (3.4), we have

{Π (l + -^f Jί

as

Hence, for the proof of (3.5) it is enough to show that

(3.6)

Further, both of the sequences {A[mT2m} and {J2m+1T'2m+1} are multiplica-
tively orthogonal, we can prove (3.6).

We take a constant θ > 1 which will be determined more precisely
in § 5 and put

iSΓ(O) = 1 , N(k) - min {m; Dl > Θ*k) , Xk(t) = JZ+QJt) >

Vk = || Xk II and ηk — max (|| Qm lU Vkι, N(k) < m ^ N(k + 1)) .

Then by (3.1) and (3.2), we have

J^2 ^ β2k+2 β2k

r } as k —> + oo .

L E M M A 6. We have

N(k)

( i ) lim (2D*mk) log log Dmk)y
iβ Σ QΛt) S 1 , α.β. ,

jfc m = l
iV(fc)

(ii) lim (2D2

mk) log log DN{k))~112 Σ ^g(»)-i(*) = 0 , a.e. .
Jfc m = l
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PROOF. Cf. [4] p. 326 (i) and (ii).

Hence for the proof of our theorem it is sufficient to show that

(3.8) (202fc+2 log fc)"1'2 Σ XJt) ^ 1 , a.e. .
1

4. Characteristic Functions. In the following let fk,ι(u, v) denote
the characteristic function of the random vector (Xk Vk\ Xt Ff1), that
is,

fktl(u, v) =
o

LEMMA 7. Let ε be a positive number satisfying

(4.1) ε < 1/7 and 2ε + — < 1 .
2/3

Then for any (k, I) and (u, v) such that

(4.2) fc1/(1+e) ^ I ^ k and m a x (| u |, \v |) ^ k2 ,

if k > k0, then we have

\fk,ι(u,v) - exv{-(u2 + v2)/2}\

^ C(k~* I u | 3 log k + l~81 v |3 log k + k~7 \ u |2 + l~Ί \ v |2) ,

where C is a positive constant.

PROOF. We have

+ ψ ] - PΛu, tmv, t) exp ( - ^ - ^ (I

where Pk(u, t) = Π Γ i ^ ) + 1 {l + iuQm(t)/Vk} and P&t) - Fϊ» Σ^ϊffi O2.(*j.
Since (3.7) and (4.2) imply that ^ f c = o(l) and vηt = o(l), as k—> +oo,
we have, for & > fc0,

exp (iuXk Vϊ1) = Pk(u, t) exp {-u22~ιPk{t) + Λ4(w, ί)}

where

\Rk(u,t)\^\u\
N

By Lemma 4 and 5, we have
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[ I exp (iuXk Vΐ) - Pk(u, t) exp {-w^Ptfί)} \ dt
Jo

^ [ I exp {Rk(u, t)} - 11 dt :S Γ | Rk(u, t) | exp {| Rk(u, t) \}dt
Jo Jo

Pitt) exp {% I u I

< Crjk \u\3 , for some constant C > 0 ,

and the same inequality holds for I.
On the other hand since {Qm(t)} is multiplicatively orthogonal, it is

seen that

Pk(u, t)Pt(v, t)dt = 1 ,

and we have, by Lemma 4 and 5,

Pk(u, t)Pι(v, t)exp

= I \\Pk(u, t)PAv,

^ Γ 11 - exp {2-V(Pί - 1) + 2~ίv\P'ι - 1)} | dί
Jo

^ Γ I «2(P^ - 1) + v\P\ - 1) I
Jo

x [exp {2-1u\Pί - 1) + 2-V(P; - 1)} +

x {|| exp {2"V(Pί - 1) + 2"V(P/ - 1)} || + 1}

^ C(^2/b"7 + v2l~7)

x {|| exp (2-V(Pί - 1) | |41| exp (2"V(P; - 1) ||4 + 1}

^ C(u2k~7 + ^2i"7) , for some C> 0 .

LEMMA 8. [3] Lei .P(^, T/) and G(x, y) be two dimensional distri-
bution functions. Denote the corresponding characteristic functions by
f(u, v) and g(u, v). Suppose that G(x, y) has a bounded density function.
Further set

f(u, v) = f(u, v) - f(u, 0)/(0, v)

and

g(u, v) = g(u, v) - g(u, 0)g(0, v) .

Then
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sup I F{x, y) - G(x, y) \

' 1
-T .

T

-T

l-r
/(

f(u,

M)

v) - g(u,
uv

- 9(0, v)
V

V) dudv +

1 M1
 T)

I f(u, o ) -
u

9(u, 0) du

for any T > 0, where C is a positive constant.

Making use of Lemmas 7 and 8 we can prove the

LEMMA 9. Let Fkil(x, y) denote the distribution function of the
vector (Xk(t)Vk\ X^Vγ1). Then we have

sup
χ,y

F(x, y) - (2τr)-1Γ Γ exp {-(z2 + z")/2}dzdz'
J —oo J —oo

^ c(iog kγm-*

for kll(1+c) ^ I ^ k, where s satisfies (4.1) and C is a constant.

PROOF. Set f(u, v) = fkΛ{u, v) and g(u, v) = e-
iu2+vhlK Then g(u, v) = 0

and by Lemma 4,

f(u, v) = [[exp } - f(u, 0)Jexp { i ^ } - /(0, t;)]eit

xι(t') \ dt

^ A\uv\.

In Lemma 8 we put T= k2. Then we have

S T CT

-ΓJ-2

f{u, v) - g{u, v)

uv
dudv

- S L uv
dudv +

J jB(k)

, v)

uv
dudv ,

where A(k) = {(u, v); k~4 < \ u \ ̂  fc2, k~* < \ v | ^ &2} and
Λ2, I v I ^ Λ2} — A(fc). By Lemma 7, we have

SL
SL

uv

f(u, v)

dudv ^ Ck\log k)2l~8 ,

uv
dudv ^ 8&~2 .

In the same way we can obtain
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Γ
J-i

f(u, 0) - g(u, 0) du ^ Ck 2 log A:
u

and

Γ \f(Q,v)-g(o,v)

Thus, we can complete the proof.

5. Proof of (3.8). The following lemma is an extension of the Borel-
Cantelli lemma.

LEMMA 10. [1] // {Ek} is a sequence of arbitrary events, fulfilling
the conditions

Σ P(Ek) — + oo and lim J
n k=l1=1

then we have P{Ek ί.o.} = 1.

LEMMA 11. Let ε be a positive number satisfying the condition (4.1).
Then we have

I {ί; Xk(t) ^ {(2 - ε) log ky»Vk i.o.) | = 1 .

PROOF. Let us put Cr = [t; Xr(t) ^ {(2 - ε) log rγl2Vr] and

(5.1) 7 = e/7 , ίt r = l/(2 - e') log r , y r = wr/2 ,

where ε' is a positive number satisfying

(5.2) ε < e' < 2ε{l + (1 + 7)-1}"1 .

Further, let Σi> Σ s a Q d Σ3 denote the summation over the {k, ϊ)-sets
{1 ^ k ̂  Λ, A;1"1*'"' ^ Z < &}, {l^k^n, 1^1 ^neli} and {»s/4 ^k^n,
n"* < I < k1/{1+r)} respectively. On the other hand by Lemma 9, we have

(5.3) P(Ck) = (2τr)-1/2[ e'^dz + O(λr2(log k)>)
J V(2—ε)log&

~ (2π)-1/2k-1+cn((2 - ε) log A;)-"2 ,*' as k -» + 00 .

Therefore, we have

(5.4) Σ 2 P(C4C,) ^ %£/4 Σ P(C») = 0 ) ( Σ P(C,))2} , as n - + 00 .

By Lemma 9 we have, for &1/(1+£) < k1>ίl+r) £l<k,

I PiCQ) - P{Ct)P(Cι) I = o(P(Ck)P(Ct)), as k - +

and by (5.3), it is seen that

P denotes the Lebesgue measure on [0, 1].










