ON THE LAW OF THE ITERATED LOGARITHM FOR LACUNARY TRIGONOMETRIC SERIES II

Shigeru Takahashi

(Received June 24, 1974)

1. Introduction. In this note we set

$$
S_{N}(t)=\sum_{1}^{N} a_{m} \cos 2 \pi n_{m}\left(t+\alpha_{m}\right) \text { and } A_{N}=\left(2^{-1} \sum_{1}^{N} a_{m}^{2}\right)^{1 / 2},
$$

where $\alpha_{m} \geqq 0$ and $\left\{n_{m}\right\}$ is a sequence of positive integers satisfying the gap condition

$$
\begin{equation*}
n_{m+1} / n_{m} \geqq 1+c m^{-\alpha}, \text { for some } c>0 \text { and } 0 \leqq \alpha \leqq 1 / 2 \tag{1.1}
\end{equation*}
$$

For $\alpha=0, \mathrm{M}$. Weiss [5] proved that if

$$
A_{N} \rightarrow+\infty \text { and } a_{N}=o\left(A_{N}\left(\log \log A_{N}\right)^{-1 / 2}\right), \text { as } N \rightarrow+\infty,
$$

then for any sequence of $\left\{\alpha_{m}\right\}$

$$
\varlimsup_{N}\left(2 A_{N}^{2} \log \log A_{N}\right)^{-1 / 2} S_{N}(t)=1, \quad \text { a.e. . }
$$

For $\alpha>0$, we proved the following
Theorem A [4]. If

$$
A_{N} \rightarrow+\infty \text { and } a_{N}=O\left(A_{N} N^{-\alpha}\left(\log A_{N}\right)^{-(1+\varepsilon) / 2}\right) \text {, as } N \rightarrow+\infty
$$

where ε is a positive number, then we have

$$
\varlimsup_{N}\left(2 A_{N}^{2} \log \log A_{N}\right)^{-1 / 2} S_{N}(t) \leqq 1, \quad \text { a.e. }
$$

The purpose of the present note is to prove the
Theorem B. Suppose

$$
\begin{equation*}
A_{N} \rightarrow+\infty \text { and } a_{N}=O\left(A_{N} N^{-\alpha} \omega_{N}^{-1}\right) \text {, as } N \rightarrow+\infty, \tag{1.2}
\end{equation*}
$$

where $\omega_{N}=(\log N)^{\beta}\left(\log A_{N}\right)^{4}+\left(\log A_{N}\right)^{8}$ and $\beta>1 / 2$, then we have

$$
\varlimsup_{N}\left(2 A_{N}^{2} \log \log A_{N}\right)^{-1 / 2} S_{N}(t) \geqq 1, \quad \text { a.e. }
$$

If $\alpha<1 / 2$ and $\left\{a_{m}\right\}$ is non-increasing, then by Theorem A and B we obtain

$$
\varlimsup_{N}\left(2 A_{N}^{2} \log \log A_{N}\right)^{-1 / 2} S_{N}(t)=1, \quad \text { a.e. . }
$$

In $\S \S 2-5$ we prove Theorem B. The method of the proof is to approximate $S_{N}(t)$ by the sums of a "almost strongly multiplicative" system and apply the method of P. Révész [2].
2. Preliminaries. Let us put, for $k=0,1,2 \cdots$,

$$
\begin{gathered}
p(k)=\max \left\{m ; n_{m} \leqq 2^{k}\right\}, \\
A_{k}(t)=S_{p(k+1)}(t)-S_{p(k)}(t) \quad \text { and } \quad B_{k}=A_{p(k+1)} .
\end{gathered}
$$

If $p(k)+1<p(k+1)$, (1.1) implies that

$$
\begin{aligned}
2 & >n_{p(k+1)} / n_{p(k)+1}>\prod_{m=p(k)+1}^{p(k+1)-1}\left(1+c m^{-\alpha}\right) \\
& >1+c\{p(k+1)-p(k)-1\} p^{-\alpha}(k+1)
\end{aligned}
$$

and hence

$$
\left\{\begin{array}{l}
p(k+1)-p(k)=O\left(p^{\alpha}(k)\right), \tag{2.1}\\
p(k+1) / p(k) \rightarrow 1,
\end{array} \quad \text { as } k \rightarrow+\infty\right.
$$

Therefore, we have, by (1.2) and (2.1),

$$
\left\{\begin{array}{l}
b_{k}=\max \left\{\left|a_{m}\right|, p(k)<m \leqq p(k+1)\right\}=O\left(B_{k} \omega_{p(k)}^{-1} p^{-\alpha}(k)\right) \tag{2.2}\\
\sum_{p(k)+1} \sum_{m+1)}\left|a_{m}\right| \leqq b_{k}\{p(k+1)-p(k)\}=O\left(B_{k} \omega_{p(k)}^{-1}\right), \quad \text { as } k \rightarrow+\infty
\end{array}\right.
$$

Lemma 1. For any given k, j, q and h satisfying $p(j)+1<h \leqq$ $p(j+1)<p(k)+1<q \leqq p(k+1)$, the number of solutions $\left(n_{r}, n_{i}\right)$ of the equations

$$
n_{q}-n_{r}=n_{h} \pm n_{i}^{*)}
$$

where $p(j)<i<h$ and $p(k)<r<q$, is at most $C 2^{j-k} p^{\alpha}(k)$ where C is a positive constant independent of k, j, q and h.

Proof. If $k<j+3$, the lemma is evident by (2.1). We assume that $k \geqq j+3$. If we denote m the smallest number r of the solutions $\left(n_{r}, n_{i}\right)$, then the number of solutions is not greater than $q-m$. Since $\left(n_{h} \pm n_{i}\right) \leqq 2^{j+2}$, we have

$$
n_{m} \geqq n_{q}-2^{j+2}>n_{q}\left(1-2^{j+2-k}\right) \geqq n_{q}\left(1+2^{j-k} \cdot 5\right)^{-1}
$$

Therefore, we have, by (1.1)

$$
1+2^{j-k} \cdot 5>n_{q} / n_{m}>\prod_{\varepsilon=m}^{q-1}\left(1+c s^{-\alpha}\right) \geqq 1+c(q-m) p^{-\alpha}(k+1)
$$

[^0]Thus, by (2.1) we can prove the lemma.
In the same way we can prove the following
Lemma 1'. For any given k, j, q and h such that $j \leqq k-2, p(j+1)<$ $h \leqq p(j+2)$ and $p(k+1)<q \leqq p(k+2)$, the number of solutions $\left(n_{r}, n_{i}\right)$ of the equations

$$
n_{q}-n_{r}=n_{h} \pm n_{i}
$$

where $p(j)<i \leqq p(j+1)$ and $p(k)<r \leqq p(k+1)$, is at most $C 2^{j-k} p^{\alpha}(k)$, where C is a positive constant independent of k, j, q and h.

Lemma 2. We have, for any M and $N(M<N)$,

$$
\begin{equation*}
\left\|B_{N}^{-2} \sum_{M}^{N}\left(U_{m}^{2}-\left\|\Delta_{m}\right\|^{2}\right)\right\|=O\left(\left(\log B_{N}\right)^{-8}\right) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\|B_{N}^{-2} \sum_{M}^{N} \Delta_{m} \Delta_{m-1}\right\|=O\left(\left(\log B_{N}\right)^{-8}\right), \quad \text {, } \quad \text { as } \quad N \rightarrow+\infty . \tag{ii}
\end{equation*}
$$

Proof. (i) Let us put, for $k=1,2 \ldots$

$$
U_{k}(t)=\Delta_{k}^{2}(t)-\left\|\Delta_{k}\right\|^{2}-2^{-1} \sum_{p(k)+1}^{p(k+1)} a_{m}^{2} \cos 4 \pi n_{m}\left(t+\alpha_{m}\right) .
$$

Then we have, by (2.2),

$$
\begin{aligned}
& \left\|U_{k}\right\|_{\infty}=O\left(B_{N}^{2}\left(\log B_{N}\right)^{-16}\right), \\
& \left\|B_{N}^{-^{2}} \sum_{M}^{N}\left(\Delta_{m}^{2}-\left\|\Delta_{m}\right\|^{2}\right)\right\|^{2} \\
& \quad=2 B_{N}^{-4} \sum_{k=M+1}^{N} \sum_{j=M}^{k-1} \int_{0}^{1} U_{k}(t) U_{j}(t) d t+O\left(\left(\log B_{N}\right)^{-16}\right),
\end{aligned}
$$

$$
\text { as } \quad N \rightarrow+\infty .
$$

Further, by Lemma 1 and (2.2), we have, for $k>j$

$$
\begin{aligned}
\left|\int_{0}^{1} U_{k} U_{j} d t\right| & \leqq C 2^{j-k} p^{\alpha}(k) \sum_{q=p(k)+1}^{p(k+1)}\left|a_{q}\right| b_{k} \sum_{h=p(j)+1}^{p(j+1)}\left|a_{h}\right| b_{j} \\
& =O\left(2^{j-k}\left\|\Delta_{k}\right\|\left\|\Delta_{j}\right\| p^{\alpha / 2}(k) p^{-\alpha / 2}(j) B_{N}^{2}\left(\log B_{N}\right)^{-16}\right), \\
& \text { as } N \rightarrow+\infty .
\end{aligned}
$$

Since $p(j+1) / p(j) \rightarrow 1$, as $j \rightarrow+\infty$, we have, for every k,

$$
\sum_{j=1}^{k-1} 2^{j-k} p^{-\alpha}(j) \leqq C^{\prime} p^{-\alpha}(k), \quad \text { for some } C^{\prime}>0
$$

Hence, we have

[^1]\[

$$
\begin{aligned}
& \sum_{k=M+1}^{N} \quad \sum_{j=M}^{k-1} 2^{j-k}\left\|\Delta_{k}\right\|\left\|\Delta_{j}\right\| p^{\alpha / 2}(k) p^{-\alpha / 2}(j) \\
& \quad \leqq C_{k=M+1}^{\prime} \sum_{k}^{N}\left\|\Delta_{k}\right\|\left(\sum_{j=1}^{k-1} 2^{j-k}\left\|\Delta_{j}\right\|^{2}\right)^{1 / 2} \\
& \quad \leqq C^{\prime}\left(\sum_{k=M+1}^{N}\left\|\Delta_{k}\right\|^{2}\right)^{1 / 2}\left(\sum_{k=M+1}^{N} \sum_{j=1}^{k-1} 2^{j-k}\left\|\Delta_{j}\right\|^{2}\right)^{1 / 2}=O\left(B_{N}^{2}\right),
\end{aligned}
$$
\]

$$
\text { as } \quad N \rightarrow+\infty
$$

Therefore, by the above relations we can prove (i).
(ii) Using Lemma 1^{\prime} we can prove (ii) in the same way.

Lemma 3. If $M<N$ and $\lambda_{N}=o\left(\left(\log A_{N}\right)^{3-1 / 2 \beta}\right)$, as $N \rightarrow+\infty$, then

$$
\begin{gather*}
\int_{0}^{1} \exp \left\{\frac{\lambda_{N}^{2}}{B_{N}^{2}} \sum_{M}^{N}\left(\Delta_{m}^{2}-\left\|\Delta_{m}\right\|^{2}\right)\right\} d t=1+o(1), \tag{i}\\
\int_{0}^{1} \exp \left\{\frac{\lambda_{N}^{2}}{B_{N}^{2}} \sum_{M}^{N} \Delta_{m} \Delta_{m+1}\right\} d t=1+o(1), \text { as } \quad N \rightarrow+\infty \tag{ii}
\end{gather*}
$$

Proof. (i) From (1.1), the frequencies of terms of $\Delta_{m}^{2}-\left\|\Delta_{m}\right\|^{2}$ are in the interval $\left[2^{m} c p^{-\alpha}(m+1), 2^{m+2}\right]$. Since $p(j+1) / p(j) \rightarrow 1$, as $j \rightarrow+\infty$, we may assume that

$$
\begin{equation*}
2^{m} c p^{-\alpha}(m+1) \uparrow+\infty, \quad \text { as } \quad m \uparrow+\infty \tag{2.3}
\end{equation*}
$$

We set $m(0)=M$ and if $m(j)$ is defined, then we put
(2.4) $m(j+1)=\min \left\{m+m(j) ; c 2^{m(j)+m} p^{-\alpha}(m(j)+m+1)>2^{m(j)+2}\right\}$.

By (2.1) we can define $m(j)$ for every j and if $m\left(j^{\prime}\right) \leqq N<m\left(j^{\prime}+1\right)$, then we put

$$
T_{j}(t)= \begin{cases}\sum_{m(j)}^{m(j+1)-1}\left\{\Delta_{m}^{2}(t)-\left\|\Delta_{m}\right\|^{2}\right\}, & \text { if } 0 \leqq j<j^{\prime} \\ \sum_{m\left(j^{\prime}\right)}^{N}\left\{\Delta_{m}^{2}(t)-\left\|\Delta_{m}\right\|^{2}\right\}, & \text { if } j=j^{\prime}\end{cases}
$$

From (2.2) it is seen that

$$
\begin{aligned}
\left\|T_{j}\right\|_{\infty} & \leqq 2 \max _{m}\left\|\Delta_{m}\right\|_{\infty}^{(2 \beta-1) / 2 \beta} \sum_{m(j)}^{m(j+1)-1}\left\|\Delta_{m}\right\|_{\infty}^{(2 \beta+1)^{\prime} 2 \beta} \\
& =O\left(B_{N}^{2}\left(\log B_{N}\right)^{(4-24 \beta) / 2 \beta} \sum_{m(j)}^{m(j+1)-1}\right. \\
& (\log p(m+1))^{-(2 \beta+1) / 2}, \\
& \text { as } N \rightarrow+\infty .
\end{aligned}
$$

If $1 \leqq m<m(j+1)-m(j)$, we have, by (2.4)

$$
p^{\alpha}(m(j)+m+1) \geqq C^{\prime} 2^{m+1}, \quad \text { for some } \quad C^{\prime}>0
$$

Hence we have, for some constants A and A^{\prime},

$$
\sum_{m(j)}^{m(j+1)-1}(\log p(m+1))^{-(2 \beta+1) / 2} \leqq A \sum_{1}^{\infty} m^{-(2 \beta+1) / 2}=A^{\prime},
$$

and we obtain

$$
\begin{array}{r}
\varepsilon_{N}=\max \left(\left\|T_{j}\right\|_{\infty} ; 0 \leqq j \leqq j^{\prime}\right)=O\left(B_{N}^{2}\left(\log B_{N}\right)^{(4-24 \beta) / 2 \beta}\right) \tag{2.5}\\
\text { as } N \rightarrow+\infty
\end{array}
$$

Therefore,

$$
T_{j}^{2} \leqq \varepsilon_{N}\left|T_{j}\right|<\varepsilon_{N} \sum_{m(j)}^{m(j+1)-1}\left(\Delta_{m}^{2}-\left\|\Delta_{m}\right\|^{2}\right)+2 \varepsilon_{N} \sum_{m(j)}^{m(j+1)}\left\|\Delta_{m}\right\|^{2} .
$$

Using the inequality $e^{x} \leqq(1+x) e^{x^{2}}$ for $|x| \leqq 1 / 2$, we have, by (2.5)

$$
\begin{aligned}
\exp \left\{\frac{\lambda_{N}^{2}}{B_{N}^{2}} \sum_{0}^{j^{\prime}} T_{j}\right\} & \leqq\left\{\prod_{0}^{j^{\prime}}\left(1+\frac{2 \lambda_{N}^{2}}{B_{N}^{2}} T_{j}\right)\right\}^{1 / 2} \exp \left\{\frac{2 \lambda_{N}^{4}}{B_{N}^{4}} \sum_{0}^{j^{\prime}} T_{j}^{2}\right\} \\
& =\left\{\prod_{0}^{j^{\prime}}\left(1+\frac{2 \lambda_{N}^{2}}{B_{N}^{2}} T_{j}\right)\right\}^{1 / 2} \exp \left\{\frac{2 \varepsilon_{N} \lambda_{N}^{4}}{B_{N}^{4}} \sum_{0}^{j^{\prime}} T_{j}+o(1)\right\}, \\
& \text { as } N \rightarrow+\infty .
\end{aligned}
$$

This shows that,

$$
\begin{aligned}
& \int_{0}^{1} \exp \left\{\frac{\lambda_{N}^{2}}{B_{N}^{2}}\left(1-\frac{2 \varepsilon_{N} \lambda_{N}^{2}}{B_{N}^{2}}\right) \sum_{0}^{j^{\prime}} T_{j}\right\} d t \\
& \quad=\left\{\int_{0}^{1} \prod_{0}^{j^{\prime}}\left(1+\frac{2 \lambda_{N}^{2}}{B_{N}^{2}} T_{j}\right)^{1 / 2} d t\right\} e^{o(1)} \\
& \quad \leqq\left\{\int_{0}^{1} \Pi_{1}\left(1+\frac{2 \lambda_{N}^{2} T_{2 j}}{B_{N}^{2}}\right) d t \int_{0}^{1} \Pi_{2}\left(1+\frac{2 \lambda_{N}^{2} T_{2 j+1}}{B_{N}^{2}}\right) d t\right\}^{1 / 2} e^{o(1)},
\end{aligned}
$$

as $\quad N \rightarrow+\infty$,
where Π_{1} (or Π_{2}) denotes the product over all j satisfying $0 \leqq 2 j \leqq j^{\prime}$ (or $0 \leqq 2 j+1 \leqq j^{\prime}$). From the definitions of $\left\{T_{j}\right\}$ and (2.3), the frequencies of $T_{2 j}(t)$ are not less than $c 2^{m(2 j)} p^{-\alpha}(m(2 j)+1)$ and

$$
\left\{\text { frequencies of terms of } \prod_{0}^{j-1}\left(1+\frac{2 \lambda_{N}^{2}}{B_{N}^{2}} T_{2 k}\right)\right\} \leqq 2^{m(2 j-1)+2},
$$

therefore we have, by (2.4)

$$
\int_{0}^{1} \Pi_{1}\left(1+\frac{2 \lambda_{N}^{2}}{B_{N}^{2}} T_{2 j}\right) d t=1 \text { and } \int_{0}^{1} \Pi_{2}\left(1+\frac{2 \lambda_{N}^{2}}{B_{N}^{2}} T_{2 j+1}\right) d t=1 .
$$

Hence, we have

$$
\int_{0}^{1} \exp \left\{\frac{\lambda_{N}^{2}}{B_{N}^{2}}\left(1-\frac{2 \varepsilon_{N} \lambda_{N}^{2}}{B_{N}^{2}}\right) \sum_{0}^{j^{\prime}} T_{j}\right\} d t=1+o(1),^{*)} \quad \text { as } \quad N \rightarrow+\infty .
$$

*) By Jenssen's inequality we have $\int_{0}^{1} \exp \left\{\lambda_{N}^{2} B_{N}^{-2} \sum_{0}^{j^{\prime}} T_{j}\right\} d t \geqq 1$.

Since $\varepsilon_{N} \lambda_{N}^{2} B_{N}^{-2}=o(1)$, as $N \rightarrow+\infty$, the above relation proves (i). Using the same method and (i) we can prove (ii).
3. Almost Multiplicatively Orthogonal Summands. Putting $\phi(k)=$ $\sum_{m=1}^{k}\left(\log \log B_{m}+1\right)$, we take a sequence $\{q(k)\}$ of integers satisfying

$$
q(0)=0 \text { and }\left\|\Delta_{q(k)-1}\right\|=\min \left\{\left\|\Delta_{m}\right\| ; \phi(2 k-1)<m \leqq \phi(2 k)\right\}
$$

Set

$$
Q_{k}(t)=\sum_{q(k-1)}^{q(k)-2} \Delta_{m}(t) \quad \text { and } \quad D_{k}=\left\|\sum_{1}^{k} Q_{m}\right\|
$$

then

$$
\begin{equation*}
\left\|\sum_{1}^{N} \Delta_{q(k)-1}\right\|=o\left(D_{N}\right), \quad D_{N} \sim B_{q(N)-2}, \quad \text { as } N \rightarrow+\infty \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{q(k-1)}^{q(k)-2}\left\|\Delta_{m}\right\|_{\infty} & =O\left(D_{k}\left(\log D_{k}\right)^{-8} \log \log B_{2 k}\right) \tag{3.2}\\
& =O\left(D_{k}\left(\log D_{k}\right)^{-8} \log \log D_{k}\right), \quad \text { as } \quad k \rightarrow+\infty,
\end{align*}
$$

since $q(k)-2 \geqq \phi(2 k-1)>2 k-1$ and $B_{k} / B_{k+1} \rightarrow 1$, as $k \rightarrow+\infty$.
Lemma 4. If $M<N$, then

$$
\left\|D_{\bar{N}}^{-2} \sum_{M}^{N}\left(Q_{k}^{2}-\left\|Q_{k}\right\|^{2}\right)\right\|=O\left(\left(\log D_{N}\right)^{-7}\right), \quad \text { as } \quad N \rightarrow+\infty
$$

Proof. Let us put

$$
\Delta_{m}^{\prime}(t)=\left\{\begin{array}{cl}
\Delta_{m}(t), & \text { if } q(k-1) \leqq m \leqq q(k)-2, \quad k=1,2, \cdots \tag{3.3}\\
0, & \text { if otherwise }
\end{array}\right.
$$

and

$$
T_{m}^{\prime}(t)= \begin{cases}\sum_{j=q(k-1)}^{m-2} \Delta_{j}^{\prime}, & \text { if } q(k-1)+2 \leqq m<q(k)-2, \quad k=1,2, \cdots, \tag{3.4}\\ 0, & \text { if otherwise }\end{cases}
$$

Then we have

$$
\sum_{M}^{N}\left(Q_{k}^{2}-\left\|Q_{k}\right\|^{2}\right)=2{ }_{q(M-1)}^{q(N)-2} \Delta_{m}^{\prime} \Delta_{m-1}^{\prime}+2 \sum_{q(M-1)}^{q(N)-2} \Delta_{m}^{\prime} T_{m}^{\prime}+{ }_{q(M-1)}^{q(N)-2}\left(\Delta_{m}^{\prime 2}-\left\|\Delta_{m}^{\prime}\right\|^{2}\right)
$$

By Lemma 2, it is sufficient to show that

$$
\left\|D_{N}^{-2}{ }_{q(M-1)}^{q(N)-2} \nu_{m}^{\prime} T_{m}^{\prime}\right\|=O\left(\left(\log D_{N}\right)^{-7}\right), \quad \text { as } \quad N \rightarrow+\infty
$$

Since $\int_{0}^{1} \Delta_{m}^{\prime} T_{m}^{\prime} \Delta_{n}^{\prime} T_{n}^{\prime} d t=0$ if $|m-n| \geqq 2$, we have, by (3.2)

$$
\begin{aligned}
& \left\|\sum_{q(M-1)}^{q(N)-2} D_{m}^{\prime} T_{m}^{\prime}\right\|^{2} \leqq 2{ }_{q(M(M-1)}^{q(N)-2} \int_{0}^{1} d_{m}^{\prime 2} T_{m}^{\prime 2} d t \\
& \left.\quad=O\left(D_{N}^{2}\left(\log D_{N}\right)^{-16}\left(\log \log D_{N}\right)^{2} D_{N}^{2}\right)=o\left(D_{N}^{4}\left(\log D_{N}\right)^{-14}\right)\right),
\end{aligned}
$$

$$
\text { as } \quad N \rightarrow+\infty
$$

Lemma 5. If $\lambda_{N}=o\left(\left(\log D_{N}\right)^{3-(1 / 2 \beta)}\right)$, as $N \rightarrow+\infty$, then we have

$$
\int_{0}^{1} \exp \left\{\frac{\lambda_{N}^{2}}{D_{N}^{2}} \sum_{M}^{N}\left(Q_{m}^{2}-\left\|Q_{m}\right\|^{2}\right)\right\} d t=1+o(1), \quad \text { as } \quad N \rightarrow+\infty
$$

Proof. We use the same notation as in the proof of Lemma 4. Therefore, by Lemma 3 and Jenssen's inequality it is sufficient to show that

$$
\begin{equation*}
\int_{0}^{1} \exp \left\{\frac{\lambda_{N}^{2}}{D_{N}^{2} q(N(M)-1)} \sum_{m}^{2} \Delta_{m}^{\prime} T_{m}^{\prime}\right\} d t=1+o(1), \quad \text { as } \quad N \rightarrow+\infty \tag{3.5}
\end{equation*}
$$

By (3.2) and (3.4), we have

$$
\begin{aligned}
& \exp \left\{\frac{\lambda_{N}^{2}}{D_{N}^{2}} \sum \Delta_{m}^{\prime} T_{m}^{\prime}\right\} \leqq\left\{\Pi\left(1+\frac{2 \lambda_{N}^{2}}{D_{N}^{2}} \Delta_{m}^{\prime} T_{m}^{\prime}\right)\right\}^{1 / 2} \exp \left\{\frac{2 \lambda_{N}^{4}}{D_{N}^{4}} \sum \Delta_{m}^{\prime 2} T_{m}^{\prime 2}\right\} \\
& =\left\{\Pi\left(1+\frac{2 \lambda_{N}^{2} \Delta_{m}^{\prime} T_{m}^{\prime}}{D_{N}^{2}}\right)\right\}^{1 / 2} \exp \left\{o\left(D_{N}^{-2} \sum \Delta_{m}^{\prime 2}\right)\right\}, \quad \text { as } \quad N \rightarrow+\infty
\end{aligned}
$$

Hence, for the proof of (3.5) it is enough to show that

$$
\begin{equation*}
\int_{0}^{1} \Pi_{1}\left(1+\frac{2 \lambda_{N}^{2} \Delta_{2 m}^{\prime} T_{2 m}^{\prime}}{D_{N}^{2}}\right) d t \int_{0}^{1} \Pi_{2}\left(1+\frac{2 \lambda_{N}^{2} \Delta_{2 m+1}^{\prime} T_{2 m+1}^{\prime}}{D_{N}^{2}}\right) d t=1 \tag{3.6}
\end{equation*}
$$

Further, both of the sequences $\left\{\Delta_{2 m}^{\prime} T_{2 m}^{\prime}\right\}$ and $\left\{\Delta_{2 m+1}^{\prime} T_{2 m+1}^{\prime}\right\}$ are multiplicatively orthogonal, we can prove (3.6).

We take a constant $\theta>1$ which will be determined more precisely in $\S 5$ and put

$$
\begin{aligned}
& N(0)=1, \quad N(k)=\min \left\{m ; D_{m}^{2}>\theta^{2 k}\right\}, \quad X_{k}(t)=\sum_{N(k)+1}^{N(k+1)} Q_{m}(t), \\
& V_{k}=\left\|X_{k}\right\| \text { and } \eta_{k}=\max \left(\left\|Q_{m}\right\|_{\infty} V_{k}^{-1}, N(k)<m \leqq N(k+1)\right) .
\end{aligned}
$$

Then by (3.1) and (3.2), we have

$$
\left\{\begin{array}{l}
D_{N(k)}^{2} \sim \theta^{2 k}, \quad V_{k}^{2} \sim \theta^{2 k+2}-\theta^{2 k} \tag{3.7}\\
\eta_{k}=O\left(k^{-8} \log k\right), \quad \text { as } \quad k \rightarrow+\infty
\end{array}\right.
$$

Lemma 6. We have
(i) $\varlimsup_{k}\left(2 D_{N(k)}^{2} \log \log D_{N(k)}\right)^{-1 / 2} \sum_{m=1}^{N(k)} Q_{m}(t) \leqq 1$, a.e.,
(ii) $\varlimsup_{k}\left(2 D_{N(k)}^{2} \log \log D_{N(k)}\right)^{-1 / 2} \sum_{m=1}^{N(k)} \Delta_{q(m)-1}(t)=0$, a.e. .

Proof. Cf. [4] p. 326 (i) and (ii).
Hence for the proof of our theorem it is sufficient to show that

$$
\begin{equation*}
\left(2 \theta^{2 k+2} \log k\right)^{-1 / 2} \sum_{1}^{k} X_{m}(t) \geqq 1, \quad \text { a.e. . } \tag{3.8}
\end{equation*}
$$

4. Characteristic Functions. In the following let $f_{k, l}(u, v)$ denote the characteristic function of the random vector $\left(X_{k} V_{k}^{-1}, X_{l} V_{l}^{-1}\right)$, that is,

$$
f_{k, l}(u, v)=\int_{0}^{1} \exp \left\{i u X_{k}(t) V_{k}^{-1}+i v X_{l}(t) V_{l}^{-1}\right\} d t
$$

Lemma 7. Let ε be a positive number satisfying

$$
\begin{equation*}
\varepsilon<1 / 7 \quad \text { and } \quad 2 \varepsilon+\frac{1}{2 \beta}<1 \tag{4.1}
\end{equation*}
$$

Then for any (k, l) and (u, v) such that

$$
\begin{equation*}
k^{1 /(1+\varepsilon)} \leqq l \leqq k \quad \text { and } \quad \max (|u|,|v|) \leqq k^{2}, \tag{4.2}
\end{equation*}
$$

if $k>k_{0}$, then we have

$$
\begin{aligned}
& \left|f_{k, l}(u, v)-\exp \left\{-\left(u^{2}+v^{2}\right) / 2\right\}\right| \\
& \quad \leqq C\left(k^{-8}|u|^{3} \log k+l^{-8}|v|^{3} \log k+k^{-7}|u|^{2}+l^{-7}|v|^{2}\right)
\end{aligned}
$$

where C is a positive constant.
Proof. We have

$$
\begin{aligned}
& \left|\exp \left\{\frac{i u X_{k}}{V_{k}}+\frac{i v X_{l}}{V_{l}}\right\}-P_{k}(u, t) P_{l}(v, t) \exp \left\{\frac{-u^{2} P_{k}^{\prime}(t)-v^{2} P_{l}^{\prime}(t)}{2}\right\}\right| \\
& \quad \leqq\left|\exp \left(\frac{i u X_{k}}{V_{k}}\right)-P_{k} \exp \left(\frac{-u^{2} P_{k}^{\prime}}{2}\right)\right| \\
& \left.\quad+\left\lvert\, \exp \frac{i v X_{l}}{V_{l}}\right.\right) \left.-P_{l} \exp \left(-\frac{v^{2} P_{l}^{\prime}}{2}\right) \right\rvert\,
\end{aligned}
$$

where $\quad P_{k}(u, t)=\prod_{m=N(k)+1}^{N(k+1)}\left\{1+i u Q_{m}(t) / V_{k}\right\} \quad$ and $\quad P_{k}^{\prime}(t)=V_{k}^{-2} \sum_{N(k)+1}^{N(k+1)} Q_{m}^{2}(t)$. Since (3.7) and (4.2) imply that $u \eta_{k}=o(1)$ and $v \eta_{l}=o(1)$, as $k \rightarrow+\infty$, we have, for $k>k_{0}$,

$$
\exp \left(i u X_{k} V_{k}^{-1}\right)=P_{k}(u, t) \exp \left\{-u^{2} 2^{-1} P_{k}^{\prime}(t)+R_{k}(u, t)\right\}
$$

where

$$
\left|R_{k}(u, t)\right| \leqq|u|^{3} \sum_{N(k)+1}^{N(k+1)}\left|Q_{m} V_{k}^{-1}\right|^{3} \leqq \eta_{k}|u|^{3} P_{k}^{\prime}(t)
$$

By Lemma 4 and 5, we have

$$
\begin{aligned}
& \int_{0}^{1}\left|\exp \left(i u X_{k} V_{k}^{-1}\right)-P_{k}(u, t) \exp \left\{-u^{2} 2^{-1} P_{k}^{\prime}(t)\right\}\right| d t \\
& \quad \leqq \int_{0}^{1}\left|\exp \left\{R_{k}(u, t)\right\}-1\right| d t \leqq \int_{0}^{1}\left|R_{k}(u, t)\right| \exp \left\{\left|R_{k}(u, t)\right|\right\} d t \\
& \quad \leqq \eta_{k}|u|^{3} \int_{0}^{1} P_{k}^{\prime}(t) \exp \left\{\eta_{k}|u|^{3} P_{k}^{\prime}(t)\right\} d t \\
& \quad<\eta_{k}|u|^{3}\left\|P_{k}^{\prime}\right\| \exp \left\{\eta_{k}|u|^{3}\right\}(1+o(1)) \\
& \quad<C \eta_{k}|u|^{3}, \quad \text { for some constant } C>0,
\end{aligned}
$$

and the same inequality holds for l.
On the other hand since $\left\{Q_{m}(t)\right\}$ is multiplicatively orthogonal, it is seen that

$$
\int_{0}^{1} P_{k}(u, t) P_{l}(v, t) d t=1
$$

and we have, by Lemma 4 and 5 ,

$$
\begin{aligned}
\mid \int_{0}^{1} & \left.P_{k}(u, t) P_{l}(v, t) \exp \left\{\frac{-u^{2} P_{k}^{\prime}(t)-v^{2} P_{l}^{\prime}(t)}{2}\right\} d t-e^{-\left(u^{2}+v^{2}\right) / 2} \right\rvert\, \\
= & \left|\int_{0}^{1} P_{k}(u, t) P_{l}(v, t)\left[\exp \left\{\frac{-u^{2} P_{k}^{\prime}(t)-v^{2} P_{l}^{\prime}(t)}{2}\right\}-e^{-\left(u^{2}+v^{2}\right) / 2}\right] d t\right| \\
\leqq & \int_{0}^{1}\left|1-\exp \left\{2^{-1} u^{2}\left(P_{k}^{\prime}-1\right)+2^{-1} v^{2}\left(P_{l}^{\prime}-1\right)\right\}\right| d t \\
\leqq & \int_{0}^{1}\left|u^{2}\left(P_{k}^{\prime}-1\right)+v^{2}\left(P_{l}^{\prime}-1\right)\right| \\
& \times\left[\exp \left\{2^{-1} u^{2}\left(P_{k}^{\prime}-1\right)+2^{-1} v^{2}\left(P_{l}^{\prime}-1\right)\right\}+1\right] d t \\
\leqq & \left\{u^{2}\left\|P_{k}^{\prime}-1\right\|+v^{2}\left\|P_{l}^{\prime}-1\right\|\right\} \\
& \times\left\{\left\|\exp \left\{2^{-1} u^{2}\left(P_{k}^{\prime}-1\right)+2^{-1} v^{2}\left(P_{l}^{\prime}-1\right)\right\}\right\|+1\right\} \\
\leqq & C\left(u^{2} k^{-7}+v^{2} l^{-7}\right) \\
& \times\left\{\| \exp \left(2^{-1} u^{2}\left(P_{k}^{\prime}-1\right)\left\|_{4}\right\| \exp \left(2^{-1} v^{2}\left(P_{l}^{\prime}-1\right) \|_{4}+1\right\}\right.\right. \\
\leqq & C\left(u^{2} k^{-7}+v^{2} l^{-7}\right), \quad \text { for some } C>0
\end{aligned}
$$

Lemma 8. [3] Let $F(x, y)$ and $G(x, y)$ be two dimensional distribution functions. Denote the corresponding characteristic functions by $f(u, v)$ and $g(u, v)$. Suppose that $G(x, y)$ has a bounded density function. Further set

$$
\hat{f}(u, v)=f(u, v)-f(u, 0) f(0, v)
$$

and

$$
\hat{g}(u, v)=g(u, v)-g(u, 0) g(0, v)
$$

Then

$$
\begin{aligned}
\sup _{x, y} & |F(x, y)-G(x, y)| \\
\leqq & C\left(\int_{-T}^{T} \int_{-T}^{T}\left|\frac{\hat{f}(u, v)-\hat{g}(u, v)}{u v}\right| d u d v+\int_{-T}^{T}\left|\frac{f(u, 0)-g(u, 0)}{u}\right| d u\right. \\
& \left.+\int_{-T}^{T}\left|\frac{f(0, v)-g(0, v)}{v}\right| d v+\frac{1}{T}\right)
\end{aligned}
$$

for any $T>0$, where C is a positive constant.
Making use of Lemmas 7 and 8 we can prove the
Lemma 9. Let $F_{k, l}(x, y)$ denote the distribution function of the vector $\left(X_{k}(t) V_{k}^{-1}, X_{l}(t) V_{l}^{-1}\right)$. Then we have

$$
\begin{aligned}
& \sup _{x, y}\left|F(x, y)-(2 \pi)^{-1} \int_{-\infty}^{x} \int_{-\infty}^{y} \exp \left\{-\left(z^{2}+{z^{\prime}}^{2}\right) / 2\right\} d z d z^{\prime}\right| \\
& \quad \leqq C(\log k)^{2} k^{6} l^{-8}
\end{aligned}
$$

for $k^{1 /(1+\varepsilon)} \leqq l \leqq k$, where ε satisfies (4.1) and C is a constant.
Proof. Set $f(u, v)=f_{k, l}(u, v)$ and $g(u, v)=e^{-\left(u^{2}+v^{2}\right) / 2}$. Then $\hat{g}(u, v)=0$ and by Lemma 4,

$$
\begin{aligned}
& \widehat{f}(u, v)=\int_{0}^{1}\left[\exp \left\{\frac{i u X_{k}(t)}{V_{k}}\right\}-f(u, 0)\right]\left[\exp \left\{\frac{i v X_{l}(t)}{V_{l}}\right\}-f(0, v)\right] d t \\
& \quad \leqq|u v| V_{k}^{-1} V_{l}^{-1} \int_{0}^{1}\left[\int_{0}^{1}\left|X_{k}(t)-X_{k}\left(t^{\prime}\right)\right| d t^{\prime}\right]\left[\int_{0}^{1}\left|X_{l}(t)-X_{l}\left(t^{\prime}\right)\right| d t^{\prime}\right] d t \\
& \quad \leqq 4|u v|
\end{aligned}
$$

In Lemma 8 we put $T=k^{2}$. Then we have

$$
\begin{aligned}
& \int_{-T}^{T} \int_{-T}^{T}\left|\frac{\hat{f}(u, v)-\hat{g}(u, v)}{u v}\right| d u d v \\
& \quad=\iint_{A(k)}\left|\frac{\hat{f}(u, v)}{u v}\right| d u d v+\iint_{B(k)}\left|\frac{\hat{f}(u, v)}{u v}\right| d u d v,
\end{aligned}
$$

where $A(k)=\left\{(u, v) ; k^{-4}<|u| \leqq k^{2}, k^{-4}<|v| \leqq k^{2}\right\}$ and $B(k)=\{(u, v) ;|u| \leqq$ $\left.k^{2},|v| \leqq k^{2}\right\}-A(k)$. By Lemma 7, we have

$$
\left\{\begin{array}{l}
\iint_{A(k)}\left|\frac{\hat{f}(u, v)}{u v}\right| d u d v \leqq C k^{6}(\log k)^{2} l^{-8} \\
\iint_{B(k)}\left|\frac{\mid \hat{f}(u, v)}{u v}\right| d u d v \leqq 8 k^{-2}
\end{array}\right.
$$

In the same way we can obtain

$$
\int_{-T}^{T}\left|\frac{f(u, 0)-g(u, 0)}{u}\right| d u \leqq C k^{-2} \log k
$$

and

$$
\int_{-T}^{T}\left|\frac{f(0, v)-g(0, v)}{v}\right| d v<C k^{6} l^{-8} \log k
$$

Thus, we can complete the proof.
5. Proof of (3.8). The following lemma is an extension of the BorelCantelli lemma.

Lemma 10. [1] If $\left\{E_{k}\right\}$ is a sequence of arbitrary events, fulfilling the conditions

$$
\sum P\left(E_{k}\right)=+\infty \text { and } \frac{\lim }{n} \sum_{k=1}^{n} \sum_{l=1}^{n} P\left(E_{k} E_{l}\right) /\left\{\sum_{1}^{n} P\left(E_{k}\right)\right\}^{2}=1
$$

then we have $P\left\{E_{k}\right.$ i.o. $\}=1$.
Lemma 11. Let ε be a positive number satisfying the condition (4.1). Then we have

$$
\mid\left\{t ; X_{k}(t) \geqq\{(2-\varepsilon) \log k\}^{1 / 2} V_{k} \quad \text { i.o. }\right\} \mid=1
$$

Proof. Let us put $C_{r}=\left[t ; X_{r}(t) \geqq\{(2-\varepsilon) \log r\}^{1 / 2} V_{r}\right]$ and

$$
\begin{equation*}
\gamma=\varepsilon / 7, \quad u_{r}=\sqrt{\left(2-\varepsilon^{\prime}\right) \log r}, \quad y_{r}=u_{r} / 2 \tag{5.1}
\end{equation*}
$$

where ε^{\prime} is a positive number satisfying

$$
\begin{equation*}
\varepsilon<\varepsilon^{\prime}<2 \varepsilon\left\{1+(1+\gamma)^{-1}\right\}^{-1} \tag{5.2}
\end{equation*}
$$

Further, let \sum_{1}, \sum_{2} and \sum_{3} denote the summation over the (k, l)-sets $\left\{1 \leqq k \leqq n, \quad k^{1 /(1+r)} \leqq l<k\right\}, \quad\left\{1 \leqq k \leqq n, \quad 1 \leqq l \leqq n^{\varepsilon / 4}\right\} \quad$ and $\quad\left\{n^{6 / 4} \leqq k \leqq n\right.$, $\left.n^{\varepsilon / 4}<l<k^{1 /(1+\gamma)}\right\}$ respectively. On the other hand by Lemma 9 , we have

$$
\begin{align*}
& P\left(C_{k}\right)=(2 \pi)^{-1 / 2} \int_{\sqrt{(2-\varepsilon) \log k}} e^{-z^{2} / 2} d z+O\left(k^{-2}(\log k)^{2}\right) \tag{5.3}\\
& \left.\quad \sim(2 \pi)^{-1 / 2} k^{-1+\varepsilon / 2}((2-\varepsilon) \log k)^{-1 / 2}, *\right) \quad \text { as } k \rightarrow+\infty
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\sum_{2} P\left(C_{k} C_{l}\right) \leqq n^{\varepsilon / 4} \sum_{k=1}^{n} P\left(C_{k}\right)=o\left\{\left(\sum_{k=1}^{n} P\left(C_{k}\right)\right)^{2}\right\}, \quad \text { as } n \rightarrow+\infty \tag{5.4}
\end{equation*}
$$

By Lemma 9 we have, for $k^{1 /(1+\varepsilon)}<k^{1 /(1+\gamma)} \leqq l<k$,

$$
\left|P\left(C_{k} C_{l}\right)-P\left(C_{k}\right) P\left(C_{l}\right)\right|=o\left(P\left(C_{k}\right) P\left(C_{l}\right)\right), \quad \text { as } k \rightarrow+\infty
$$

and by (5.3), it is seen that

[^2]\[

$$
\begin{equation*}
\left\{\sum_{k=1}^{n} P\left(C_{k}\right)\right\}^{2} \sim 2 \sum_{1} P\left(C_{k}\right) P\left(C_{l}\right) \sim 2 \sum_{1} P\left(C_{k} C_{l}\right), \quad \text { as } n \rightarrow+\infty \tag{5.5}
\end{equation*}
$$

\]

Using the inequality $e^{x} \leqq(1+x) \exp \left\{2^{-1}\left(x^{2}+|x|^{3}\right)\right\}$ for $|x|<1 / 3$ and the multiplicative orthogonality of $\left\{Q_{m}(t)\right\}$, we have

$$
\begin{aligned}
& \int_{0}^{1} \exp \left\{\frac{u_{k} X_{k}}{V_{k}}-\frac{u_{k}^{2} P_{k}^{\prime}(t)}{2}\left(1+u_{k} \eta_{k}\right)+\frac{u_{l} X_{l}}{V_{l}}-\frac{u_{l}^{2} P_{l}^{\prime}(t)}{2}\left(1+u_{l} \eta_{l}\right)\right\} d t \\
& \quad \leqq \int_{0 m=N(k)+1}^{1}\left(1+u_{k} Q_{m} V_{k}^{-1}\right) \prod_{s=N(l)+1}^{N(l+1)}\left(1+u_{l} Q_{s} V_{l}^{-1}\right) d t=1
\end{aligned}
$$

By Tschebyschev's inequality, it is seen that

$$
\begin{aligned}
& P\left\{X_{r} V_{r}^{-1}-2^{-1} P_{r}^{\prime}(t)\left(1+u_{r} \eta_{r}\right) u_{r} \geqq y_{r}, r=k, l\right\} \\
& \quad \leqq \exp \left(-y_{k} u_{k}-y_{l} u_{l}\right)
\end{aligned}
$$

Putting $\lambda_{N}=r^{2}$ in Lemma 5, it is seen that

$$
P\left\{P_{r}^{\prime}(t)>1+r^{-1}\right\} \leqq C e^{-r}, \quad \text { for some constant } C>0
$$

Since (5.1), (5.2) and (3.7) imply that $C_{r} \subset\left\{X_{r} V_{r}^{-1}>y_{r}+2^{-1}\left(1+r^{-1}\right)\left(1+u_{r} \eta_{r}\right) u_{r}\right\}$ for $r>r_{0}$, we have, for $n>n_{0}$ and $k>l \geqq n^{e / 4}$

$$
\begin{aligned}
& P\left(C_{k} C_{l}\right) \leqq P\left[C_{k} C_{l} \text { and } \bigcup_{r=k, l}\left\{P_{r}^{\prime}(t)>1+r^{-1}\right\}\right] \\
& \quad+P\left\{X_{r} V_{r}^{-1}>y_{r}+2^{-1} P_{r}^{\prime}(t)\left(1+u_{r} \eta_{r}\right) u_{r}, P_{r}^{\prime}(t) \leqq 1+r^{-1}, r=k, l\right\} \\
& \quad \leqq 2 C \exp \left(-n^{\varepsilon / 4}\right)+\exp \left\{-\left(1-\varepsilon^{\prime} / 2\right) \log k-\left(1-\varepsilon^{\prime} / 2\right) \log l\right\} \\
& \quad \leqq C^{\prime} k^{-1+\varepsilon^{\prime / 2}} l^{-1+\varepsilon^{\prime \prime / 2}}, \quad \text { for some } C^{\prime}>0
\end{aligned}
$$

Therefore, by (5.2) and (5.3)

$$
\begin{align*}
\sum_{2} P\left(C_{k} C_{l}\right) & =O\left(n^{e^{\prime}\left(1+(1+r)^{-1 / 2}\right)}\right) \tag{5.6}\\
& =o\left\{\left(\sum_{k=1}^{n} P\left(C_{k}\right)\right)^{2}\right\}, \quad \text { as } n \rightarrow+\infty
\end{align*}
$$

By (5.4), (5.5) and (5.6) we can prove the lemma.
Since ε in Lemma 11 is small as we please, we have

$$
\begin{equation*}
\varlimsup_{k}\left(2 V_{k}^{2} \log k\right)^{-1 / 2} X_{k}(t) \geqq 1 \quad \text { a.e. . } \tag{5.1}
\end{equation*}
$$

Let $\delta, 0<\delta<1 / 2$, be an arbitrary number. Then by (3.7) we can take the constant θ which is used to define $\{N(k)\}$ in § 4 so large that

$$
D_{N(k)}^{2} \leqq \delta^{2} D_{N(k+1)}^{2},
$$

then

$$
V_{k}^{2}=D_{N(k+1)}^{2}-D_{N(k)}^{2} \geqq\left(1-\delta^{2}\right) D_{N(k+1)}^{2} \geqq(1-\delta)^{2} \theta^{2(k+1)} .
$$

By Lemma 5 and (5.1), we have

$$
\begin{aligned}
& \overline{\lim _{k}}\left(2 D_{N(k+1)}^{2} \log \log D_{N(k+1)}\right)^{-1 / 2} \sum_{1}^{k} X_{m}(t) \\
& \quad \geqq \varlimsup_{k}\left(2 \theta^{2(k+1)} \log k\right)^{-1 / 2} \sum_{1}^{k} X_{m}(t) \\
& \quad \geqq \varlimsup_{k}\left(2 \theta^{2(k+1)} \log k\right)^{-1 / 2} X_{k}(t)-\varlimsup_{k}\left(2 \theta^{2(k+1)} \log k\right)^{-1 / 2} \sum_{1}^{k-1} X_{m}(t) \\
& \quad \geqq(1-\delta)-\delta=1-2 \delta . \quad \text { a.e. }
\end{aligned}
$$

Since δ is arbitrary we can prove (3.8).

References

[1] A. Rényi, Probability Theory, Akad. Kiado, Budapest (1970).
[2] P. Révész, The law of the iterated logarithm for multiplicative systems, Indiana Univ. Math. J., 21 (1972), 557-564.
[3] S. M. Sadikova, On two dimensional analogue of an inequality of Essen with applications to the central limit theorem, Theory of Prob. and its Appl. 11 (1966), 325335.
[4] S. Takahashi, On the law of the iterated logarithm for lacunary trigonometric series, Tôhoku Math. J., 24 (1972), 319-329.
[5] M. Weiss, The law of the iterated logarithm for lacunary trigonometric series, Trans. Amer. Math. Soc., 91 (1959), 448-469.
Department of Mathematics
Kanazawa University
Kanazawa, Japan

[^0]: *) Clearly, $n_{q}+n_{r}=n_{h} \pm n_{i}$ has no solutions.

[^1]: *) $\|f\|$ denotes L^{2}-norm unless otherwise stated.

[^2]: *) P denotes the Lebesgue measure on $[0,1]$.

