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1. Whittaker? proved the theorem.

THEOREM. Let f(z) be a meromorphic function for |zl < oo, which is of
order p ( < ), then f'(z) is of order p.

Whittaker remarked in the addendum inserted in the end of the same
journal that the theorem was proved previously by Valiron®, but in Valiron’s
paper cited, we find no detail proof, so that we will give a simple proof
of it in the following lines. ’

If f(z) is an integral function, then the theorem follows from relation:

L ey - 170D s M) = - M),
where M(7) = IIVIax. 1f(2)], M, (r) = Max.|f'(z)].
z[=r |z|=7r

For the proof, of the case, when f(z) has poles, we use the following
lemma.

LEMMA. Let F(z) be an integral function of finite order p and P(z) be
a canonical product formed with {a.} and of order p’ < p. Then

F(2)P(z) — F(2)P'(2) = G(2) (1)

is of order p.

Proor. Since F'(z) is of order p and P(z) of order p’ < p, G(z) is of order
= p. Hence it suffices to prove that G(z) is of order = p.

We consider (1) as a differential equation for F(z) and solving it, we have

F(z) = const. P(2) + P(2) f ?—g((zi))); dz. (2)

0

Suppose that G(z) is of order < p, then

|G| < e (|z]l =7 =7), (p1< p). (3)
Since for the canonical product, its order coincides with the convergence
exponent of {a,},

1 , .
ZWP'“ <o (P +ELP). (4)

We draw circles C,: |2 — ay| = 1/|a,|?*¢, then outside C, #=1,2, ----),
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|P(2)| >e™ (r=ry), p < p.< p. (5)
Let E be the set of intervals 7:|x— |a.]|] <1/a.]**¢ on the positive real
n
axis, then by 5), if R lies outside E,

|P(z)] >e®* on 2| =R (R=71,). (6)
Since the sum of radii of C, is convergent, there exists §,, such that the
half-line L: z = re'd (max (7, 7,) <7y < r < ) lies outside C,, (n =1, 2, ----),
so that
| P(ret®)| > e "™ (ry <7 < ). (7)

Let R lie outside E and z = Re® be any point on [z} = R (R=7y). In (2),
we first integrate on the segment z = 7e'% (r, < 7 < R) and then on the circular
arc on |z| = R, which is bounded by Re'% and Re’, then by (3), (6), (7), we
have

G| [1Gwen) |G(Rei#)| o
]f 1203 f [Pire®) ¥ +f | P(Ree)|2 RIP <™ (R=73). (p<p)
where 2, = 7rye'. Hence from (2),

|Fz)] < e onlz| = R (R=74), (ps< p). (8)
If R lies in E, then since the sum of radii of C, is convergent, we can
choose R, outside E, such that R< R, <R+ 1, then

| F(z)] §Ma§c. |F(z)| < e®”* < e on |z] = R (R=7y), (ps< p). (9)
|z|=R1

Hence from (8), (9), we see that F{(z) is of order < p, which contradicts
the hypothesis, so that G(z) is of order = p. q.e.d.

2. Now we will prove the theorem, when f(z) has poles {a,} and first
we suppose that p < co.

Let P(z) be the canonical product formed with {a,}, then since the
convergence exponent of @, is <p, P(z) is of order < p and

flz) = ffég , (10)
v F(2)Pz)— Fz)P'(z) _ Gz)
f(z) - (P(z))_r - (P(Z))A 7 (11)

where F(z) is an integral function of order =< p.

Let p’ be the order of f'(z), then since G(z), (P(z))* are of order = p,
we have p’ < p. Hence it suffices to prove that p’ = p.

Let p: (< p) be the convergence exponent of {a.}, then since @, are
poles of f'(z), we have from Nevanlinna’s relation 7(7, f’) = m(r, oo, f’) +
N(r, o, '),

P =pr (12)
Hence if p, = p, then p’ = p.
If p, < p, then P(z) is of order p, < p, so that Fz) is of order p, hence
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by the lemma, G(2) is of order p. so that from G(z) = (P(2))*f'(z), we have
p’=p. Hence

P =p if p< oo, 13
Next we suppose that p = co and we will prove p’ = o. Suppose that p’ < oco.
Let a, be the poles of f{z), then since a, are poles of f’(z), in the Nevanlinna’s
relation,

T(r, f) = m(r, o, f) + N(r, o, f), (14)
we have
N(r, o, )= O(r71) (p' < p; < ). (15)
Let P(z) be the canonical product formed with poles an of f’(z), then
(z) = G)
1@ =P
where G(z), P(z) are integral functions of order =< p’ and
_ [ G -
Rz) = Pl) dz + const. (16)

Let E be the set defined in the proof of the lemma, then if R lies outside
E, we can prove similarly as before,
[f(Re®)| = O™, on |z| = R (p1 < )
so that m(R, oo, f) = O(R”). Hence by (14), (15),
T(R, ) = O(RM).
If R lies in E, then we choose R, outside E, such that R< R, < R + 1, then
T(R, /) < T(R,, ) = O(R) = O(R™).

Hence for any R, T(R, /) = O(R™), which contradicts the hypothesis, p = oo,
so that p’ = oco.
Hence our theorem is proved.
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