ON THE UNIFORMIZATION OF AN ALGEBRAIC FUNCTION OF GENUS $p \ge 2$

MASATSUGU TSUJI

(Received July 2, 1951)

1.

Picard¹⁾ proved the following theorem.

THEOREM 1. Let F be a closed Riemann surface of genus $p \ge 2$ spread over the x-plane Then we can not uniformize F by x = x(t), which is onevalued and meromorphic in $0 < |t| \le R$ and has an essential singularity at t = 0.

PROOF. Suppose that there exists a function x = x(t), which satisfies the condition of the theorem. Since F is of hyperbolic type, we can map the universal covering surface $F^{(\infty)}$ of F on |z| < 1 by $x = \varphi(z)$ and put z = z(t). Then z(t) is not one-valued in $0 < |t| \leq R$. For, if it is one-valued, then, since |z(t)| < 1 in 0 < |t| < R, z(t) is regular at t = 0, so that x = x(t)is meromorphic at t = 0, which contradicts the hypothesis. Hence z(t) is many valued, so that to a circle $C : |t| = \rho(< R)$, there corresponds a curve L on F, which is not homotop null, hence the image of C in |z| < 1 is either (i) a Jordan curve, which has a common point γ with |z| = 1 or (ii) a Jordan arc, whose end points α , $\beta(\alpha \neq \beta)$ lie on |z| = 1. The case (i) does not occur. For, if it does occur, then $\lim_{t \neq 0} z(t) = \gamma$, so that $\lim_{t \to 0} x(t) = x_0$ $= \varphi(\gamma)$, which contradicts the hypothesis, that t = 0 is an essential singularity of x(t). Hence the case (ii) occurs. Let α , β be so chosen that

$$\lim_{\theta \to +\infty} z \ (\rho e^{i\theta}) = \alpha, \ \lim_{\theta \to -\infty} z \ (\rho e^{i\theta}) = \beta.$$
(1)

By $u = \log t$, we map $0 < |t| \le \rho$ on the half-plane $\Re u \le \log \rho$ and then by a linear transformation, we map this half-plane on $|\tau| \le 1$, such that $\tau = -1$ corresponds to $u = -\infty$ and put $z(t) = z(\tau)$, then $z(\tau)$ is regular and $|z(\tau)| < 1$ in $|\tau| < 1$. By (1)

$$\lim_{\varphi \to \pi = 0} z(e^{i\varphi}) = \alpha, \quad \lim_{\varphi \to -\pi = 0} z(e^{i\varphi}) = \beta \quad (\alpha \neq \beta).$$

which contradicts Lindelöf's theorem. Hence our theorem is proved.

2.

Let F be a Riemann surface and F^* be its covering surface. If F^* has no branch points relatively to F, then we call F^* a non-ramified (unverzweigt) covering surface of F.

THEOREM 2. Let F be a closed Riemann surface of genus $p \ge 2$ spread

¹⁾ E. PICARD : Démonstration d'un théorème géneral des fonctions uniformes liées par une relation algébrique. Acta. Math. 11(1887).

over the x-sphere. Then there exists no function x = x(t), which is one-valued and meromorphic in a neighbourhood U of a closed set E of logarithmic capacity zero, every point of which is an essential singularity of x(t), such that the Riemdnn surface F^* generated by x = x(t) is a non-ramified covering surface of F.

We remark that in Theorem 1, the Riemann surface F^* generated by x = x(t) is not supposed to be non-ramified relatively to F.

PROOF. Suppose that there exists a function x = x(t), which satisfieds the condition of the theorem, such that the Riemann surface F^* generated by x = x(t) is a non-ramified covering surface of F.

Since E is a closed set of logarithmic capacity zero, by Evans' theorem²), we can distribute a positive mass $d\mu(a)$ on E of total mass 1, such that

$$u(t) = \int_{E} \log \frac{1}{|t-a|} d\mu(a), \qquad \left(\int_{E} d\mu(a) = 1\right)$$
(1)

tends to $+\infty$, if t tends to any point of E. Let C_r be the niveau curve: u(t) = r, then C_r consists of a finite number of Jordan curves, which cluster to E as $r \to \infty$.

Let $\theta(t)$ be conjugate harmonic function of u(t), then since the total mass is 1,

$$\int_{c_r} d\theta(t) = 2\pi. \tag{2}$$

We put

$$\tau = e^{u+i\theta} = r(t)e^{i\theta(t)}, \quad x = x(t) = x(\tau).$$

Let A(r) be the area on the x-sphere of the image of the domain D_r , which is bounded by C and C_r , where C is the boundary of U and L(r) the length of the image of C_r , then

$$A(r) = \int_{r_0}^{r} \int_{C_r} \left(\frac{|x'(\tau)|}{1+|x(\tau)|^2} \right)^2 r dr d\theta + \text{const.},$$

$$L(r) = \int_{C_r} \frac{|x'(\tau)|}{1+|x(\tau)|^2} r d\theta,$$

where we write r = r(t), $\theta = \theta(t)$. Then by (2),

$$(L(r))^{2} \leq 2\pi r \int_{C_{r}} \left(\frac{x'(\tau)}{1+|x(\tau)|^{2}}\right)^{2} r \, d\theta = 2\pi r \, \frac{dA(r)}{dr} \, . \tag{3}$$

Since x(t) has an essential singularities on E, x(t) takes in U any value

²⁾ G.C. EVANS: Potentials and positively infinite singularities of harmonic functions. Monatshefte f. Math. u. Phys. **43**(1936).

infinitely often, except a set of values of logarithmic capacity zero³), so that

$$\lim_{r \to \infty} A(r) = \infty. \tag{4}$$

Let $L(r) > (A(r))^{\frac{3}{4}}$ in a set of intervals $I_{\nu} = [r_{\nu}, r_{\nu}]$ ($\nu = 1, 2, \cdots$), then from (3) $\sum_{\nu} \int \frac{dr}{|r|} \leq 2\pi \int_{-\infty}^{\infty} \frac{dA(r)}{(A(r))^{\frac{3}{2}}} < \infty,$

hence there exists $r_1 < r_2 < \cdots < r_n \rightarrow \infty$, such that $L(r_n) \leq (A(r_n))^{\frac{3}{4}}$, so that

$$\frac{L(r_n)}{A(r_n)} \leq \frac{1}{(A(r_n))^{\frac{1}{4}}} \to 0 \text{ as } r_n \to \infty.$$
(5)

Hence F^* is regularly exhaustible in Ahlfors' sense⁴⁾.

Let C_r consists of n = n(r) Jordan curves $C_r = C_r^{(1)} + \dots + C_r^{(n)}$ and let $L_r^{(i)}$ be the length of the image $A_r^{(i)}$ of $C_r^{(i)}$ on the x-sphere, then $L(r) = L_r^{(1)} + \dots + L_r^{(n)}$.

Since by the hypothesis, F^* is non-ramified relatively to F and x(t) has essential singularities on E, we see easily that $\mathcal{A}_{r}^{(i)}$ is not homotop null on F, so that $\mathcal{L}_{r}^{(i)} \geq \mathcal{L}_{0} > 0$, where \mathcal{L}_{0} is a fixed constant, hence

 $L(r) \ge L_0 n(r). \tag{6}$

Let F_r^* be the image of D_r on the x-sphere, then F_r^* is a covering surface of F, so that by Ahlfors' theorem on covering surfaces⁵⁾,

$$\rho(r) \geq \rho_0 S(r) - h(L(r) + \lambda_0), \ \rho = \operatorname{Max}(\rho, 0),$$
(7)

where $S(r) = A(r)/n\pi$, *n* being the number of sheets of *F*, $\rho(r)$ is the Euler's characteristic of F_r^* , $\rho_0 = 2(p-1) > 0$ is that of *F* and λ_0 is the length of the image of *C* and *h* is a constant.

Since $\dot{\rho}(r) = n(r) - 2 \leq n(r)$, we have from (6),

$$egin{array}{ll} rac{L(r)}{L_0} & \geq
ho_0 S(r) - h(L(r) + \lambda_0), & ext{or} \ S(r) & \leq rac{1}{
ho_0} \Big(rac{1}{L_0} + h \Big) \; (L(r) + \lambda_0), \end{array}$$

which contradicts (5). Hence our theorem is proved.

3

Let G be a group of linear transformations: $S_{\nu} = \frac{a_{\nu}z + b_{\nu}}{c_{\nu}z + d_{\nu}}$ ($\nu = 0, 1, 2, \cdots$)

³⁾ S. KAMETANI: The exceptional values of functions with the set of capacity zero of essential singularities. Proc. Imp. Acad. 17 (1941). M. TSUJI: Theory of meromorphic functions in a neighbourhood of a closed set of capacity zero. Jap. Journ. Math. 19 (1944-1948).

⁴⁾ K. NOSHIRO: Contribution to the theory of the singularities of analytic functions Jap. Journ. Math. **19** (1944-1948).

⁵⁾ L. AHLFORS: Zur Theorie der Überlagerungsflächen. Acta Math. 65 (1935)

of Schottky type, which contains at lest two generators. We call such a group a general linear group of Schottky type. Let D_0 be the fundamental domain of G, which is bounded by p ($2 \leq p \leq \infty$) pairs of Jordan curves C_i , C'_i ($i = 1, 2, \dots, p$), where C_i , C'_i are equivalent by G. If we apply all transformations of G to D_0 , then its equivalents D_{ν} cluster to a nondense perfect set E, which we call the singular set of G. Then Myrberg³) proved the following theorem.

RHEOREM 3. The singular set E of a general linear group of Schottky type is of positive logarithmic capacity.

PROOF. Let D'_0 be the domain bounded by C_1 , C'_1 , C_2 , C'_2 and T_1 , T_2 be the transformations of G, such that $C'_1 = T_1(C_1)$, $C'_2 = T_2(C_2)$ and let G'be the group generated by $\{T_1, T_2\}$. If we apply all transformations of G'to D'_0 , then its equivalents D'_{ν} cluster i to a non-dense perfect set $E' \subset E$. Now we consider D'_0 as a closed Riemann surface F of genus p = 2, where equivalent point on C_i , C'_i , (i = 1, 2) are considered as the same point of F. Then we have a non-ramified covering surface F^* of F, where an equivalent point z_{ν} of $z_0 \in D'_0$ corresponds to the point z_0 of F. Hence by Theprem 2, E' and hence E is of positive logarithmic capacity.

Similarly we can prove the following theorem⁷⁾.

THEOREM 4. Let C_1, \dots, C_v $(3 \le p \le \infty)$ be p circles on the z-plane, which lie outside each other. We invert C_i inot C_j and we perform inversions indefinitely, then we obtain infinitely many circles clustering to a non-dense perfect set E. Then E is of positive logarithmic capacity.

PROOF. We take three circles C_1 , C_2 , C_3 and D_0 be the domain bounded by these circles. We perform indefinitely inversions starting from C_1 , C_2 , C_3 , then we have infinitely many circles clustering to a non-dense perfect set $E' \subset E$. We take two same samples D_0 , D_0 as D_0 and conncet them along C_i (i = 1, 2, 3), then we have a closed surface F of genus p = 2. Any point outside E' is equivalent to a point of F by inversion, so that we have a nonramified covering surface F^* of F, hence by Theorem 2, E' and hence Eis of positive logarithmic capacity.

Remark by A. Mori.

The idea of the proof of Theorem 2 can be formulated in the following form, which is an analogue of Ahlfors's theorem for simply connected covering surfaces⁸⁾.

Any non-ramified and unbounded (unberandet) open covering surface F^* of planar character (or, more generally, of finite genus) of a closed basic surface F of genus ≥ 2 is not regularly exhaustible in Ahlfors's sense.

PROOF. Let $F_1 \subset F_2 \subset \cdots$ be an exhaustion of F^* . We assume that

⁶⁾ P. J. MYRBERG: Die Kapazität der singulären Menge der linearen Gruppen. Annales Acad. Fenn. Series A. Math- Phys. **10** (1941).

⁷⁾ Myrberg. 1. c. 6).

⁸⁾ Ahlfors. 1. c 5).

the boundary of F_{ν} consists of n_{ν} rectifiable closed Jordan curves $A_{\nu}^{(i)}$ $(i = 1, 2, \dots, n_{\nu})$ on F^* . Let A_0 , A_{ν} be the area of F and F_{ν} , and $L_{\nu}^{(i)}$ be the length of $A_{\nu}^{(i)}$ (both measured in a metric defined on F). We put $S_{\nu} = A_{\nu}/A_0$, $L_{\nu} = \sum_{i=1}^{n_{\nu}} L_{\nu}^{(i)}$. Since F^* is open and unbounded, we see easily that $S_{\nu} \to \infty$, and we have to prove that L_{ν}/S_{ν} is bounded from zero.

If one of $\mathcal{A}_{\nu}^{(i)}$ is null-homotop on F^* , it bounds a compact simply connected domain $\Delta(\mathcal{A}_{\nu}^{(i)})$ on F^* . We add to F_{ν} all such domains and put $\overline{F}_{\nu} = F_{\nu} + \sum \Delta(\mathcal{A}_{\nu}^{(i)})$. Then, $\overline{F_1} \subset \overline{F_2} \subset \cdots$ is also an exhaustion of F^* , and if $\overline{\mathcal{A}}_{\nu}^{(i)}$ $(j = 1, 2, \cdots, n_{\nu})$, $\mathcal{L}_{\nu}^{(i)}$, \mathcal{L}_{ν} and S_{ν} denote the corresponding curves and quantities, we have $S_{\nu} \leq S_{\nu}$, $\mathcal{L}_{\nu} \geq \overline{\mathcal{L}}_{\nu}$. Further, let $\overline{\rho}_{\nu}$ denote the Euler's characteristic of F_{ν} .

Suppose that one of $\overline{A}_{\nu}^{(j)}$ is null-homotop on F^* . Then we see easily that \overline{F}_{ν} coincides with $\Delta(A_{\nu}^{(j')})$ so that $\delta_{\nu}^{+} = 0$.

If none of $\mathcal{A}_{\nu}^{(j')}$ is null-homotop on F^* , their projections on F are not null-homotop on F, so that $L_{\nu}^{(j)} \geq \text{const.} = L_0 > 0$. Then, we have $L_{\nu} \geq n_{\nu}L_0$ and, since F^* is of finite genus,

$$\overline{\rho_{\nu}}^{*} \leq \overline{n_{\nu}} + \text{const.} \leq \frac{\overline{L}_{\nu}}{L_{0}} + \text{const.}$$

Hence, in any case, Ahlfors' fundamental theorem gives ($\rho_0 > 0$ being the characteristic of F)

$$\frac{L_{\nu}}{L_{0}} + \text{const.} \geq \rho_{\nu}^{+} \geq \rho_{0} S_{\nu} - h L_{\nu},$$

so that

$$rac{L_{
m r}}{S_{
m r}} \geqq rac{\overline{L}}{S} \geqq rac{
ho_0 L_0}{1+hL_0} - O\!\!\left(rac{1}{\overline{S}_{
m r}}
ight) \,.$$

Since $S_{\nu} \ge S_{\nu} \to \infty$, we have $\underline{\lim} \frac{L_{\nu}}{S_{\nu}} > 0$, q. e. d.

MATHEMATICAL INSTITUTE, TOKYO UNIVERSITY.