ON THE UNIFORM MEROMORPHIC FUNCTIONS WITH THE SET OF CAPACITY ZERO OF ESSENTIAL SINGULARITIES

Tadashi Kuroda

(Receievd 14, November 1950)

Introduction

Recently many interesting results on the singularities and value-distributions of uniform meromorphic functions with the set of capacity zero ${ }^{1)}$ of essential singularities have been obtained by S. Kametani [6], K. Noshiro [9], [10] and M. Tsuji [12], [13]. But, as far as I know, the relation between the order of such meromorphic functions and their inverse functions is not yet obtained.

First we shall state Evans' theorem [5] without proof in § 1. We, in $\S 2$, prove an extension of Noshiro's result, from which some results already proved by Messrs. K. Noshiro and M. Tsuji are obtained as corollaries. In §3, by the method due to M. Tsuji [14], we shall give an extension of Ahlfors' distortion theorem [1] on the conformal mapping. By this method, we get, in $\S 4$, the relation between the order of functions belonging to a certain class and their inverse functions.

§1. Preparation.

1. Let E be a non-empty, bounded and closed set of capacity zero in the z-plane. We suppose that the function $w=f(z)$ is uniform and meromorphic outside the set E and has an essential singularity at every point of E. We denote by if the class of such functions.

Since E is a bounded and closed set of capacity zero, there exists a positive mass distribution $d \mu(a)$ on E by Evans' theorem [5] or by Selberg's [11] such that the potential

$$
u(z)=\int_{E} \log \frac{1}{|z-a|} d \mu(a) \quad\left(\int_{E} d \mu(a)=1\right)
$$

is harmonic at every finite point except all the points belonging to E and that $u(z)$ tends to $+\infty$ when z tends to any points of E and tends to $-\infty$ when z tends to infinity.

Let $v(z)$ be its conjugate harmonic function and we put

$$
\zeta=\chi(z)=e^{u(z)+i v(z)}=r(z) e^{i v(z)} \quad(0 \leqq v(z)<2 \pi)
$$

This function is called Evans' function associated with the set E. It may be easily seen that the niveau curve $C_{r}: r(z)=$ const. $=r$ associated with

[^0]the set E consists of a finite number of simple closed and analytic curves surrounding the set E and that
$$
\int_{C_{r}} d v(z)=\int_{C_{r}} \frac{\partial u}{\partial n} d s=2 \pi
$$
where n is the inner normal of C_{r} and $d s$ is the arc length of C_{r}.

§2. An extension of Noshiro's theorem.

2. Let $w=f(z)$ be a function belonging to the class \mathfrak{F} and E be the set of its essential singularities. Denote by $z=\boldsymbol{\varphi}(\boldsymbol{w})$ the inverse function of $w=f(z)$ and suppose that this inverse function $z=\varphi(w)$ has at least one transcendental singularity and Ω is such a one with the projection $w=\omega$.

Let Δ_{ρ} be the set of all the values taken by the branch $z=\varphi_{\rho}(w)$ corresponding to the ρ-neighbourhood $\Phi_{\rho}(\subset \Phi)$ of the accessible boundary point Ω of Φ, where Φ denotes the Riemann covering surface which has the Riemann sphere as its basic surface and is associated with the inverse function $z=\varphi(w)$. Then, obviously, Δ_{ρ} is a connected domain and its boundary consists of at most an enumerable number of analytic contours γ_{ρ} and the non-empty closed subset E_{ρ} of E. It is immediate that the function $w=f(z)$ is meromorphic in the closed domain Δ_{ρ} excluding the set E_{ρ} and satisfies the relation: $[f(z), \omega]<\rho$ inside Δ_{ρ} and $[f(z), \omega]=\rho$ on γ_{ρ}, where

$$
[f(z), \omega]=\frac{|f(z)-\omega|}{\sqrt{1+|f(z)|^{2}} \sqrt{ } 1+|\omega|^{2}}
$$

represents the spherical distance between the points $w=f(z)$ and $w=\omega$.
Since E_{ρ} is a closed subset of a bounded set E, E_{ρ} is of capacity zero. Hence there exists Evans' function

$$
\zeta=\chi(z)=e^{u(z)+i v(z)}=r(z) e^{i v(z)} \quad(0 \leqq v(z)<2 \pi)
$$

associated to the set E_{ρ}. If C_{r} represents the niveau curve $C_{r}: r(z)=$ const. $=r$ associated to E_{ρ}, then we have

$$
\int_{C_{r}} d v(z)=2 \pi
$$

We denote by $\nu(r)$ the number of simple closed and analytic curves of the niveau curve C_{r}.

Let θ_{r} be the intersection of the domain Δ_{ρ} and the niveau curve C_{r} and $\Delta_{\rho}(r)$ be the intersection of Δ_{ρ} and the domain exterior to $C_{r} . \Delta_{\rho}(r)$ consists of a finite number of components $\Delta_{\rho}^{(1)}(r), \cdots, \Delta_{\rho}^{(m)}(r)(m=m(r) \geqq 1)$ for all sufficiently large r. Suppose that $\Phi_{\rho}(r)$ and $\Phi_{\rho}^{(i)}(r)$ are the Riemannian images of $\Delta_{\rho}(r)$ and $\Delta_{\rho}^{(i)}(r)$, respectively, on Φ_{ρ} by $w=f(z)$.

We put

$$
S\left(r, \Delta_{\rho}\right)=\frac{1}{\pi \rho^{2}} \iint_{\Delta_{\rho}(r)} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} d \sigma
$$

and

$$
L\left(r, \Delta_{p}\right)=\int_{\theta_{r}} \frac{|f(z)|}{1+|f(z)|^{2}}|d z|
$$

where $d \sigma$ is the area element of the z-plane. These quantities have the geometrical meaning :
$S\left(r, \Delta_{\rho}\right)$ is the average number of sheets of $\Phi_{\rho}(r)$ and $L\left(r, \Delta_{\rho}\right)$ is the length of the boundary of $\Phi_{\rho}(r)$ relative to the disc $\left(c_{\rho}\right):[w, \omega]<\rho$.
3. We shall now state two important lemmas without proofs.

Lemma 1 (Tsuji [12], Noshiro[6]).

$$
\lim _{r \rightarrow \infty} S\left(r, \Delta_{\rho}\right)=\infty \text { and } \lim _{r \rightarrow \infty} \frac{L\left(r, \Delta_{\rho}\right)}{S\left(r, \Delta_{\rho}\right)}=0
$$

Lemma 2. Let F be a finite covering surface having F_{0} as its basic surface and $D_{1}, D_{2}, \cdots, D_{q}(q \geqq 2)$ be q closed discs such that each lies entirely inside F_{0} and no two of them have any point in common and let F_{0} be the domain obtained by excluding all the discs $D_{1}, D_{2}, \cdots, D_{q}$ from F_{9}. For each $D_{j}(j=1,2, \cdots, q)$ we denote by $n\left(D_{j}\right)$ the number of sheets of all the islands above D_{j} and by $n_{1}\left(D_{j}\right)$ the number of orders of all branch points of all the islands above D_{j}. Finally we denote by $S\left(F_{0}\right)$ the average number of sheets of F and by $L\left(F_{0}\right)$ the length of the boundary of F relative to F_{0}. Then

$$
\sum_{j=1}^{\eta} n\left(D_{j}\right)-\sum_{j=1}^{\eta} n_{1}\left(D_{j}\right) \geqq \eta\left(\bar{F}_{0}\right) S\left(F_{0}\right)-\stackrel{+}{\eta}(F)-h L\left(F_{0}\right),
$$

where $\eta\left(\overline{F_{0}}\right)$ is Euler's characteristic of $\overline{F_{0}}, \stackrel{+}{\eta}=\operatorname{Max}(\eta, 0)$ and h is a constant depending only upon $D_{1}, D_{2}, \cdots, D_{q}$ and F_{0}.

This lemma was proved by J. Dufresnoy [4] and Y. Tumura [15] independently and was used by K. Kunugui [7] and K. Noshiro [9], [10]. This is also an extension of Ahlfors' fundamental theorem [2] on a finite covering surface.
4. K. Noshiro [9] proved the following theorem.

If Φ_{ρ} is simply connected, then Φ_{ρ} covers every point infinitely often inside the disc $\left(c_{\rho}\right):[\omega, \omega]<\rho$ except at most one point.

We can now generalize this theorem in the following form:
Theorem 1. Φ_{ρ} covers every point infinitely often inside $\left(c_{\rho}\right):[\omega, \omega]<\rho$ except at most $2+\xi_{1}+\xi_{2}$ points, where

$$
\xi_{1}=\lim _{r \rightarrow \infty} \sup \frac{\nu(r)}{S\left(r, \Delta_{\rho}\right)}, \quad \xi_{2}=k(\rho) \lim _{r \rightarrow \infty} \sup \frac{m(r) \nu(r)}{S\left(r, \Delta_{\rho}\right)}
$$

and $k(\rho)=\left(4 / \pi \rho^{2}\right) \sin ^{-1}(\rho / 2)$ is the constant depending only on ρ.
In this theorem we assume nothing about the connectivity of Φ_{ρ}.

In order to prove this, it is sufficient to show the following theorem :
Theorem 2. Denote by $D_{1}, D_{2}, \cdots, D_{q}(q \geqq 2) q$ closed discs lyingentirely inside $\left(c_{\rho}\right):[w, \omega]<\rho$. Let $n^{(i)}\left(D_{j}\right)$ be the number of sheets of all islands $\left\{D_{j}^{(i)}\right\}$ contained in $\Phi_{\rho}^{(i)}(r)$ and lying above D_{j} and $n_{1}^{(i)}\left(D_{j}\right)$ be the number of orders of all branch points of all islands $\left\{D_{j}^{(i)}\right\}$. If we put

$$
\sum_{i=1}^{m} n^{(i)}\left(D_{j}\right)=n\left(r, D_{j} ; \Delta_{\rho}\right), \quad \sum_{i=1}^{m} n_{1}^{(i)}\left(D_{j}\right)=n_{1}\left(r, D_{j} ; \Delta_{\rho}\right)
$$

and

$$
\delta\left(D_{j} ; \Delta_{\rho}\right)=\lim _{r \rightarrow \infty} \inf \left(1-\frac{n\left(\boldsymbol{r}, \boldsymbol{D}_{j} ; \Delta_{\rho}\right)}{S\left(\boldsymbol{r}, \Delta_{\rho}\right)}\right), \quad \theta\left(\boldsymbol{D}_{j} ; \Delta_{\rho}\right)=\lim _{r \rightarrow \infty} \inf \frac{n_{1}\left(\boldsymbol{r}, D_{;} ; \Delta_{\rho}\right)}{S\left(\boldsymbol{r}, \Delta_{\rho}\right)},
$$

then

$$
\sum_{i=1}^{q} \delta\left(D_{j} ; \Delta_{\rho}\right)+\sum_{j=1}^{q} \theta\left(D_{j} ; \Delta_{\rho}\right) \leqq 2+\xi_{1}+\xi_{2} .
$$

Proof. We can find a positive number \boldsymbol{r}_{0} such that for all $r \geqq \boldsymbol{r}_{0}$, $\Delta_{\rho}(\boldsymbol{r})$ consists of a finite number of components $\Delta^{(1)}(\boldsymbol{r}), \cdots, \Delta_{\rho}^{(m)}(\boldsymbol{r})(\boldsymbol{m}=m(\boldsymbol{r})$ $\geqq 1$). Since $\Phi_{\rho}^{(i)}(r)$ is a finite covering surface having the disc $\left(c_{\rho}\right):[w, \omega]$ $<\rho$ as its basic surface, we have by lemma 2

$$
\sum_{j=1}^{\eta} n^{(i)}\left(D_{j}\right)-\sum_{j=1}^{\eta} n_{1}^{(i)}\left(D_{j}\right) \geqq(q-1) S^{(i)}\left(r, \Delta_{\rho}\right)-\stackrel{+}{\eta}\left(\Phi^{(i)}(r)\right)-h L^{(i)}\left(r, \Delta_{\rho}\right),
$$

where $S^{(i)}\left(r, \Delta_{\rho}\right)$ is the average number of sheets of $\Phi_{\rho}^{(i)}(\boldsymbol{r})$ and $L^{(i)}\left(r, \Delta_{\rho}\right)$ is the length of boundary of $\Phi_{\rho}^{(i)}(r)$ relative to $\left(c_{\rho}\right):[w, \omega]<\rho$ and h is a constant depending only on $D_{1}, D_{2}, \cdots D_{q}$, and $\left(c_{\rho}\right):[w, \omega]<\rho$. Since we can easily see then

$$
S\left(r, \Delta_{\rho}\right)=\sum_{i=1}^{m} S^{(i)}\left(r, \Delta_{\rho}\right) \text { and } L\left(r, \Delta_{\rho}\right)=\sum_{i=1}^{m} \boldsymbol{L}^{(i)}\left(r, \Delta_{\rho}\right),
$$

we have

$$
\begin{gather*}
\sum_{j=1}^{\eta}\left(S\left(r, \Delta_{\rho}\right)-n\left(r, D_{j} ; \Delta_{\rho}\right)\right)+\sum_{j=1}^{q} n_{i}\left(r, D_{j} ; \Delta_{\rho}\right) \tag{1}\\
\leqq S\left(r, \Delta_{\rho}\right)+\sum_{i=1}^{m}{ }_{\eta}^{+}\left(\Phi_{\rho}^{(i)}(r)\right)+h L\left(r, \Delta_{\rho}\right) .
\end{gather*}
$$

On the other hand we have easily

$$
\begin{equation*}
\stackrel{+}{\eta}\left(\Phi_{\rho}^{(i)}(r)\right)=\stackrel{+}{\eta}\left(\Delta_{\rho}^{(i)}(r)\right) \leqq \eta\left(\Delta_{\rho}^{(i)}(r)\right)+1 \leqq \mu^{(i)}(r), \tag{2}
\end{equation*}
$$

where $\mu^{(i)}(r)$ denotes the number of component of boundary of $\Delta_{\rho}^{(i)}(r)$. Hence there are two classes of such components, namely:
i) Components consisting of only one component of niveau curve C_{r}, whose number will be denoted by $\nu^{(i)}(r)$. Obviously

$$
\sum_{i=1}^{m} \nu^{(i)}(\boldsymbol{r}) \leqq \nu(\boldsymbol{r})
$$

ii) Components consisting of at least one part of contours γ_{ρ}. We denote by $\kappa^{(i)}(\gamma)$ the number of such components.

Now let the variable z vary on the part of γ_{ρ} which belongs to a component of the second class such that the corresponding point $w=f(z)$ varies on the circle $c_{\rho}:[w, \omega]=\rho$ at most once. Thus we obtain function elements lying on the circle $c_{\rho}:[w, \omega]=\rho$. We prolonge every function element along a radius of the circle $c_{\rho}:[w, \omega]=\rho$ to its centre $w=\omega$. These prolongations are continued until they meet a branch point or the boundary of $\Phi_{\rho}^{(i)}(r)$ relative to $\left(c_{\rho}\right):[w, \omega]<\rho$. Let A^{\prime} be the area of the schlicht domain e just obtained above and L^{\prime} be the length of the boundary of this domain e, which are contained in the relative boundary of $\Phi_{\rho}^{(i)}(r)$. Then, by using Ahlfors' first covering theorem [2], we get

$$
\begin{equation*}
\pi \rho^{2}-A^{\prime}<h^{\prime} L^{\prime}+k(\rho) \tag{3}
\end{equation*}
$$

where h^{\prime} is a constant depending only on $\left(c_{\rho}\right):[w, \omega]<\rho$ and $k(\rho)=\left(4 / \pi \rho^{2}\right)$ $\sin ^{-1}(\rho / 2)$.

The term $k(\rho)$ in (3) appeared in virtue of the components consisting of the parts of γ_{ρ} and C_{r}.

Hence, if for every component of the second class belonging to $\Delta_{\rho}^{(i)}(r)$ we carry out the process just stated and add the inequalities (3), it is easily seen that

$$
\begin{equation*}
\pi \rho^{2} \kappa^{(i)}(r)<\sum_{e} A^{\prime}+h^{\prime} \sum_{e} L^{\prime}+k(\rho) \nu(r) \tag{4}
\end{equation*}
$$

Since each domain e has no common part with each other, it follows that

$$
\sum_{e} A^{\prime} \leqq \pi \rho^{2} S^{(i)}\left(r, \Delta_{\rho}\right) \quad \text { and } \quad \sum_{e} L^{\prime} \leqq L^{(i)}\left(r, \Delta_{p}\right)
$$

whence we obtain, from (4),

$$
\sum_{i=1}^{m} \kappa^{(i)}(r) \leqq S\left(r, \Delta_{\rho}\right)+h^{\prime \prime} L\left(r, \Delta_{\rho}\right)+k(\rho) m(r) \boldsymbol{\nu}(r)
$$

where $h^{\prime \prime}=h^{\prime} / \pi \rho^{2}$. Consequently it follows that

$$
\sum_{i=1}^{m} \mu^{(i)}(r) \leqq S\left(r, \Delta_{\rho}\right)+h^{\prime \prime} L\left(r, \Delta_{\rho}\right)+\nu(r)+k(\rho) m(r) \nu(r)
$$

From this and (1), (2) we get

$$
\begin{aligned}
\sum_{j=1}^{n}\left(S\left(r, \Delta_{\rho}\right)\right. & \left.-n\left(\dot{r}, D_{j} ; \Delta_{j}\right)\right)+\sum_{j=1}^{n} n_{i}\left(r, D_{j} ; \Delta_{\rho}\right) \\
& \leqq 2 S\left(r, \Delta_{\rho}\right)+h^{\prime \prime \prime} L\left(r, \Delta_{\rho}\right)+\nu(r)+k(\rho) m(r) \nu(r)
\end{aligned}
$$

where $h^{\prime \prime \prime}=h+h^{\prime \prime}$ depends only on $D_{1}, D_{2}, \cdots, D_{q}$ and $\left(c_{\rho}\right):[w, \omega]<\rho$.
By using lemma 1 , we obtain

$$
\sum_{j=1}^{q} \delta\left(D_{j} ; \Delta_{\rho}\right)+\sum_{j=1}^{q} \theta\left(D_{j} ; \Delta_{p}\right) \leqq 2+\xi_{1}+\xi_{2}
$$

where $\quad \xi_{1}=\lim _{r \rightarrow \infty} \sup \frac{\nu(r)}{S\left(r, \Delta_{\rho}\right)}, \xi_{z}=\lim _{r \rightarrow \infty} \sup k(\rho) \frac{m(\boldsymbol{r}) \nu(\boldsymbol{r})}{S\left(r, \Delta_{\rho}\right)}$ and $k(\rho)=\left(4 / \pi \rho^{2}\right)$ $\sin ^{-1}(\rho / 2)$.
5. From Theorem 2 Noshiro's theorem stated in the preceding section is deduced and moreover the following theorems are deduced:

Corollary 1 (Noshiro [10]). If the set E_{ρ} lies on one component of γ_{ρ}, then Φ_{ρ} covers every point inside $\left(c_{\rho}\right):[\omega, \omega]<\rho$ infinitely often except at most two points.

Corollary 2 (Tsuji[13]). If Δ_{ρ}, consequently Φ_{ρ}, is finitely connected, Φ_{ρ} covers every point inside $\left(c_{\rho}\right):[\omega, \omega]<\rho$ infinitely often except at most one point. Moreover we denote by Δ_{ρ} the domain Δ_{ρ} with addition of the inner parts of closed componens γ_{ρ} of boundary of the domain Δ_{ρ}. We call Δ_{ρ} the associated domain of Δ_{ρ}. If the associatetd domain Δ_{ρ} of Δ_{ρ} is finitely connected, Φ_{ρ} covers every point inside $\left(c_{\rho}\right):[w, \omega]<\rho$ except at most two points.

Corollary 3. If the number of contours γ_{ρ} extended to certain points belonging to the set E_{ρ} is finite, then Φ_{ρ} covers infinitely often every point inside $\left(c_{\rho}\right):[w, \omega]<\rho$ except at most $2+\xi_{1}$ points.
6. By the similar way as the proof of theorem 2 we can show the following

Theorem 3. Suppose that the branch $z=\varphi_{\rho}(w)$ has a transcendental singularity Ω_{0} with projection $w=\omega_{0}$ such that $\left[\omega, \omega_{0}\right]<\rho$. And we denote by Φ_{0} the ρ_{0}-neighbourhood (on Φ_{ρ}) of the accessible boundary point Ω_{0} of Φ_{ρ} such that Φ_{0} lies above the disc $\left[w, \omega_{0}\right]<\rho_{0}$, which lies entirely inside the disc $\left(c_{\rho}\right):[w, \omega]<\rho$. If Δ_{ρ}, namely Φ_{ρ}, is finitely connected, then Φ_{0} covers infinitely often every point inside its basic surface $\left(c_{0}\right):\left[w, \omega_{0}\right]<\rho_{0}$ except at most two points.

§3. An extension of Ahlfors' distortion theorem.

7. M. Tsuji $[14]$ extended the famous Ahlfors' distortion theorem [1]. We shall extend it a little more.

Let D be a simply connected domain in the z-plane. Suppose that the bounded and closed set E of capacity zero lies on the boundary Γ of the domain D.

We construct Evans' function $\zeta=e^{u(z)+i v(z)}=r(z) e^{i v(z)}(0 \leqq v(z)<2 \pi)$ associated to E and describe the niveau curve $C_{r}: r(z)=$ const. $=r$ surrounding the set E. We put $\theta_{r}=D \cap C_{r}$. We shall show the following

Theorem 4. If we map the domain D conformally on the unite circle $|w|<1$ by a function $w=f(z)$, then, for all sufficiently large r, the image λ_{r} of θ_{r} in $|w|<1$ can be enclosed in a finite number of circles $k_{r}^{(i)}(i=1, \cdots$,
$n=n(r))$, which cut $|w|=1$ orthogonally, such that the sum of their radii is less than

$$
\text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right)
$$

where $r_{0}<k r<r, r_{0}$ a certain positive number and $\theta(r)=\int_{\theta_{r}} d v(z)$.
Proof. There exists a positive number r_{0} such that, for all $r \geqq r_{0}, \theta_{r}$ is not empty. We denote by $\theta_{r}^{(i)}(i=1, \cdots, m=m(r))$ the components of θ_{r}. We map D conformally into the unit circle $|w|<1$, then we can suppose without loss of generality that a certain point on the boundary of D not belonging to E corresponds to the point $w=1$. Then the set E corresponds to a set E^{*} of measure zero on $|w|=1$ and the point $w=1$ does not belong to this set E^{*}.

Let $\lambda_{r}^{(i)}$ be the image of $\theta_{r}^{(i)}(i=1, \cdots, m)$ and $\lambda_{r}=\bigcup_{i=1}^{m} \lambda_{r}^{(i)}$. Then obviously λ_{r} converges to the set E^{*} when r tends to ∞. Denote by $k_{r}^{(i)}$ $\notin i=1, \cdots, n=n(r) \leqq m)$ the system of circles enclosing the Jordan arcs $\lambda_{,}^{(i)}(i=1, \cdots, m)$ and cutting $|w|=1$ orthogonally.

We map again the disc $|w|<1$ conformally on the upper semi-plane $\mathcal{J} \sigma>0$ of the σ-plane by the linear transformation $\sigma=\sigma(w)=i(1+w) /(1-w)$ and we denote by $A_{r}, \Lambda_{r}^{(i)}$ and $K_{r}^{(i)}$ the image of $\lambda_{r}, \lambda_{r}^{(i)}$ and $k_{r}^{(i)}$ in $\mathfrak{j} \sigma>0$, respectively. Then we get the domains $e_{1}, \cdots, \boldsymbol{e}_{1}(m \geqq \boldsymbol{q}=q(r) \geqq 1)$, each of which is bounded by some $\Lambda_{i}^{(i)}$ and the segments lying on the real axis $\Im \sigma=0$ and which correspond to the common parts of the domain D and the interior of C_{r}. We represent by $L^{(j)}(r)$ the length of the boundary $\left\{\Lambda_{\cdot}^{(i)}\right\}$ of e_{j} and by $A^{(j)}(r)$ the area of e_{j}. Moreover let

$$
L(r)=\sum_{j=1}^{4} L^{(j)}(r) \quad \text { and } \quad A(r)=\sum_{j=1}^{q} A^{(j)}(r)
$$

Then we can see without difficulty that

$$
\begin{equation*}
A^{(j)}(r) \leqq\left(L^{(j)}(r)\right)^{2} / 2 \pi \tag{5}
\end{equation*}
$$

Let $z=\chi^{-1}(\zeta)$ be the inverse function of Evans' function $\zeta=\chi(z)$ associated to the set E and put $\sigma=F(\zeta)=\sigma\left(f\left(\chi^{-1}(\zeta)\right)\right)$. Then it is also clear that

$$
L(r)=\int_{\Theta_{r}}\left|F^{\prime}(\zeta)\right| r d \theta \text { and } A(r)=\int_{r}^{\infty} \int_{\Theta_{r}}\left|F^{\prime}(\zeta)\right|^{2} r d \theta d r
$$

where Θ_{r} is the image of θ_{r} by $\zeta=\chi(z)(0 \leqq v(z)<2 \pi)$ on the ζ-plane and $\zeta=r e^{i \theta}$. Using the Schwarz inequality and

$$
\vartheta(r)=\int_{\Theta_{r}} d \theta=\int_{\Theta_{r}} d v(z) \leqq \int_{C_{r}} d v(z)=2 \pi
$$

it follows that

$$
L^{2}(r) \leqq r \theta(r) \int_{\Theta_{r}}\left|F^{\prime}(\zeta)\right|^{3} r d \theta
$$

from which we get, by (5),

$$
\begin{equation*}
\int_{r}^{\infty} \frac{L^{2}(r)}{r \theta(r)} d r \leqq A(r)=\sum_{j=1}^{q} A^{(j)}(r) \leqq \frac{1}{2 \pi} \sum_{j=1}^{b}\left(L^{(j)}(r)^{2} \leqq \frac{1}{2 \pi} L^{2}(r) .\right. \tag{6}
\end{equation*}
$$

If we put $\eta(r)=\int_{r}^{\infty} \frac{L^{2}(r)}{r \theta(r)} d r$, then we have

$$
-L^{2}(r) \leqq r \theta(r) \eta^{\prime}(r)
$$

Hence, from (6),

$$
2 \pi \int_{r_{0}}^{r} \frac{d r}{r \theta^{\prime}(x)} \leqq \log \frac{\eta\left(r_{0}\right)}{\eta(r)}
$$

whence it follows that

$$
\eta(r) \leqq \text { const. } \exp \left(-2 \pi \int_{r_{0}}^{r} \frac{d r}{r \theta(r)}\right)
$$

Since the sum $l(r)$ of radii of circles $K_{r}^{(i)}(i=1, \cdots, n)$ is not greater than $\frac{1}{2} L(r)$, we can see

$$
\int_{r}^{\infty} \frac{l^{2}(r)}{r \theta(r)} d r \leqq \text { const. } \exp \left(-2 \pi \int_{r_{0}}^{r} \frac{d r}{r \theta(r)}\right)
$$

If we notice that $l(r)$ is a monotone decreasing function of r, it follows

$$
l^{2}(r) \int_{k \cdot r}^{r} \frac{d r}{r \theta(r)} \leqq \int_{k r}^{\infty} \frac{l^{2}(r)}{r \theta(r)} d r \leqq \text { const. } \exp \left(-2 \pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right)
$$

where $r_{0}<k r<r$. However, we can easily see that

$$
\int_{k r}^{r} \frac{d r}{r \theta(r)} \geqq \frac{1}{2 \pi} \log \frac{1}{k}
$$

from which we obtain

$$
l(r) \leqq \text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right)
$$

The radius of $k_{r}^{(i)}$ is less than constant multiple of the radius of $K_{r}^{(i)}$. Consequently the sum of radii of $k_{r}^{(i)}(i=1, \cdots, n)$ is less than constant multiple of $l(r)$. Therefore, from the above linequality, the sum of radis of $k_{r}^{(i)}(i=1, \cdots, n)$ is less than

$$
\text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right), r_{0}<k r<r
$$

which proves the theorem.
8. By applying Theorem 4, we can prove the following theorem of Phragmén-Lindelöf type.

Theorem 5. Let $w=f(z)$ be regular in the simply connected domain D and suppose that $\lim _{z \rightarrow \zeta}|f(z)| \leqq 1$, where ζ denotes an arbitrary point on the boundary Γ of D not belonging to the bounded and closed set E of capacity zero lying on Γ. We put $\theta_{r}=D \cap C_{r}$ (where C_{r} is the niveau curve associated to the set E). If $\lim _{r \rightarrow \infty} \inf r^{-\pi / \theta} \log M(r)=0$, then $|f(z)| \leqq 1$ at every point of D, where $M(r)=\underset{z \in \theta r}{\operatorname{Max}}|f(z)|$ and $\theta(\leqq 2 \pi)$ is the upper bound of $\theta(r)=\int_{\theta_{r}} d v(z)$ for all sufficiently large r.

Proof. Let z_{0} be a point in D. We can choose $r_{1}(>0)$ such that, for all $r \geqq r_{1}, z_{0}$ is contained in a component D_{r} of domains which are the parts of D_{r} lying outside C_{r}. The boundary of D_{r} consists of the part $\bar{\theta}_{r}$ of θ_{r} and the parts of boundary of D, and it contains no point belonging to the set E. We denote by $\omega\left(z, \theta_{r}, D_{r}\right)$ the harmonic measure of $\bar{\theta} r$ with respect to D_{r}, namely the harmonic function in D_{r} such that it equals to 1 on $\bar{\theta}_{r}$ and to zero on the other boundary of D_{r}. If we notice that \log $|f(z)|$ is harmonic in D_{r} except zero-points of $f(z)$, by using the maximum principle or Nevanlinna's "Zweikonstantensatz" [8], we have

$$
\log |f(z)| \leqq \omega\left(z, \bar{\theta}_{r}, D_{r}\right) \log M(r)
$$

whence at the point $z=z_{11}$ we have

```
(7) log |f(\mp@subsup{z}{0}{\prime})!\leqq\omega(\mp@subsup{z}{0}{},\mp@subsup{0}{r}{},\mp@subsup{D}{r}{})\operatorname{log}M(r).
```

We shall now map D conformally on the unite circle $|\tau|<1$ in the τ-plane by the function $\tau=\tau(z)\left(\tau\left(z_{0}\right)=0\right)$. Similarly as in the proof of the preceding theorem, we can enclose the image of θ_{r} by system of circles $k_{r}^{(i)}(i=1, \cdots, n)$ which cut $|\tau|=1$ orthogonally. Denote by α_{i} and β_{i} two edge points of $k_{r}^{(i)}$ on the circle $|\tau|=1$ and suppose that $\alpha_{i}<\beta_{i}$.

We can find $r_{2}(>0)$ such that, for all $r \geqq r_{2}$, the point $\tau=0$ lies outside these circles $k_{r}^{(i)}(i=1, \cdots, n)$. We denote by $\Omega_{r}^{(i)}$ the domain, which contains the image $\tau=0$ of the point $z=z_{0}$ and whose boundary consists of $k_{r}^{(i)}$ and $|\tau|=1$. If we put $\psi_{i}=\arg \left(\beta_{i} / \alpha_{i}\right)$, we can easily see from Theorem 4 that

$$
\begin{equation*}
\sum_{i=1}^{n} \psi_{i} \leqq \text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right) \tag{8}
\end{equation*}
$$

$$
r_{0}<k r<r, \quad \theta(r)=\int_{\theta_{r}} d v(z)
$$

where $r_{0}=\operatorname{Max}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)$. We put $v_{i}(\tau)=\arg \left(\tau-\beta_{i}\right) /\left(\boldsymbol{\tau}-\boldsymbol{\alpha}_{i}\right)$ and $V_{i}(\tau)=$ $2\left(v_{i}(\tau)-\psi_{i} / 2\right) / \pi$. Then $V_{i}(\tau)$ is the harmonic function in the domain $\Omega_{r}^{(i)}$ and equals to 1 on $k_{r}^{(i)}$ and to zero on the other boundary of $\Omega_{i}^{(i)}$. If we put $\Omega_{r}=\bigcap_{i=1}^{n} \Omega_{r}^{(i)}$, then Ω_{r} is contained in the image of D_{r} and the function $V(\tau)=\sum_{i=1}^{n} V_{i}(\tau)$ is harmonic in Ω_{r} and is greater than 1 on $k_{r}^{(i)}(i=1, \cdots, n)$ and equals to zero on the other boundary of Ω_{r}. Since harmonic property is invariant by a conformal mapping, we have

$$
\omega\left(z_{0}, \overline{\theta_{r}}, D_{r}\right) \leqq V(0) .
$$

Hence, from (7), it follows

$$
\log \left|f\left(z_{0}\right)\right| \leqq V(0) \log M(r)
$$

On the other hand, it is easy to see that $V(0)=\sum_{i=1}^{n} \psi_{i} / \pi$ and so from (8)

$$
\log \left|f\left(z_{0}\right)\right| \leqq \text { const. } \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right) \cdot \log M(r)
$$

Since $\theta(r) \leqq 2 \pi$, there exists $\theta(>0)$ such that $\theta(r) \leqq \theta \leqq 2 \pi$ for all $r \geqq r_{0}$. Hence it is easily seen that

$$
\log \left|f\left(z_{0}\right)\right| \leqq \text { const. } r^{-\pi \mid \theta} \cdot \log M(r) .
$$

Accordingly, if $\lim _{r \rightarrow \infty} \inf r^{-\pi / \theta} \log M(r)=0$, then we have

$$
\left|f\left(z_{0}\right)\right| \leqq 1
$$

Since z_{0} is an arbitrary point in D, we obtain the theorem.
Especially we have
Corollary. If $\liminf _{r \rightarrow \infty} r^{-1 / 2} \cdot \log M(r)=0$, then we have $|f(z)| \leqq 1$ at every point in D.

Remark. Theorem 5 can be proved by the Beurling's distortion theorem [3].

From the proof of the preceding theorem, the following theorem is obtained without difficulties.

Theorem 6. If the point z lies in the domain D_{r}, then

$$
\omega\left(z_{0}, \bar{\theta}_{r}, D_{r}\right) \leqq h\left(r^{\prime}\right) \exp \left(-\pi \int_{r_{0}}^{k r} \frac{d r}{r \theta(r)}\right), \quad\left(r^{\prime}<r\right),
$$

where $h\left(r^{\prime}\right)$ is a constant depending only on r^{\prime}.

§ 4. The relation between the order of functions belonging to the class \mathfrak{F} and their inverse function.

9. Let $w=f(z)$ be the function belonging to the class if and Ω be the transcendental singularity of its inverse function. Denote by ω the projection of Ω. M. Tsuji [12] proved the following theorem:

The set of projections of the direct transcendental singularities of the inverse function on the w-plane is of capacity zero.

We denote by Δ_{ρ} the set of all values taken by the branch $z=\varphi_{\rho}(w)$ of the inverse function $z=\varphi(w)$ of $w=f(z)$, where $z=\varphi_{\rho}(w)$ corresponds to the ρ-neighbourhood Φ_{ρ} of an accessible boundary point Ω of Φ which is the Riemann covering surface having w-plane as its basic surface ${ }^{2}$).

Let Ω_{0} be any transcendental singularity of $z=\varphi_{\rho}(w)$ and $w=\omega_{0}$ be its projection on the w-plane such that ω_{0} lies inside the disc (c_{ρ}): $|w|>1 / \rho$ $(\omega=\infty)$ or $|w-\omega|<\rho(\omega \neq \infty)$. We call Ω_{0} the direct transcendental singularity of the branch $z=\varphi_{\rho}(w)$, when the point $w=\omega_{0}$ is lacunary with respect to the ρ_{0}-neighbourhood $\Phi_{0}\left(\subset \Phi_{\rho}\right)$ of Ω_{0}. Then, by similary as the argument of Tsuji [12], we can easily show the following theorem:

Theorem 7. The set of projections of the direct transcendental singularities of the branch $z=\varphi_{\rho}(w)$ on the disc $\left(c_{\rho}\right)$ is of capacity zero.
10. We describe the niveau curve C_{r} associated with the set E_{ρ} by constructing Evans' function associated with the set E_{ρ}, where E_{ρ} is the closed subset of E which is the bounded closed set of essential singularities of the function $w=f(z)$ and E_{ρ} belongs to the boundary of Δ_{ρ}. We put $C_{r} \cap \Delta_{\rho}=\theta_{r}$ and

$$
M_{\rho}(\gamma)=\left\{\begin{array}{lll}
\operatorname{Max}_{z \in \theta_{r}} & |f(z)| & \text { for } \quad \omega=\infty, \\
\operatorname{Max}_{z \in \theta_{r}} & 1 /|f(z)-\omega| & \text { for }
\end{array} \quad \omega \neq \infty,\right.
$$

and

$$
\underset{r \rightarrow \infty}{ } \lim _{r \rightarrow \infty} \sup \frac{\log \log M_{\rho}(r)}{\log r}=p(\rho)
$$

We call $p(\rho)$ the M-order of $w=f(z)$ with respect to Δ_{ρ}. Then we shall prove

Theorem 8. Suppose that the M-order $p(\rho)$ of $w=f(z)$ with respect to Δ_{ρ} is finite. If Δ_{ρ} is simply connected, then the number of direct transcendental singularities of the branch $z=\varphi(w)$ lying above $w=\omega$ is not greater than $2 p(\rho)$.

Proof. Without loss of generality we can suppose $\omega=\infty$. Let Ω_{0} be a certain direct transcendental singularity of $z=\varphi_{\rho}(w)$ lying above the point $w=\omega$. We denote by Φ_{10} the ρ_{0}-neighbourhood of Ω_{0} lying entirely inside Φ_{ρ} and by Δ_{0} the set of values taken by the branch $z=\varphi_{0}(w)$ corres-

[^1]ponding to Φ_{0}. The boundary of Δ_{0} consists of an enumerable number of analytic curves γ_{0} and the closed subset E_{0} of E_{ρ}. The function $w=f(z)$ is meromorphic in the closed domain $\overline{\Delta_{0}}$ excluding the set E_{0} and satisfies the relation: $|f(z)|>1 / \rho_{0}$ inside Δ_{0} and $|f(z)|=1 / \rho_{0}$ on γ_{0}.

We can choose $\rho_{0}(>0)$ such that $f(z) \neq \omega=\infty$ in Δ_{0}, or $f(z)$ is regular in Δ_{0}. Since Δ_{ρ} is simply connected by the assumption, the associated domain $\bar{\Delta}_{0}$ (See Theorem 2, Corollary 2) is also simply connnected. The function ${ }^{+} \mathrm{log}|f(z)| \cdot \rho_{0}$ is subharmonic and is equal to 0 on γ_{0}. We shall extend the definition of this subharmonic function in the domain Δ_{0} by putting ${ }^{+} \mathrm{log}|f(z)| \cdot \rho_{0}=0$ inside holes of Δ_{0}, then $\log ^{+}|f(z)| \cdot \rho_{0}$ is subharmonic in $\overline{\bar{\Delta}}_{0}$. We put

$$
M(r)=\operatorname{Max}_{z \in \bar{\theta}_{r}}|f(z)|
$$

where $\theta_{r}=C_{r} \cap \Delta_{0}\left(\subset \theta_{r}\right)$. We can use the argument used in $\S .3$ for θ_{r} and, deforming the proof of Theorem 5, we can see that there exists a certain number $\varepsilon>0$ such that for all sufficiently large r

$$
r-\pi i \theta \quad \log M(r) \geqq \varepsilon>0,
$$

where $\bar{\theta}$ is the upper bound of $\int_{\theta_{r}} d v(z)$.
On the other hand it is immediate that $\bar{M}(r) \leqq M(r)$. Accordingly, for all sufficiently large r, we see

$$
r^{-\pi \bar{\theta}} \log M(r) \geqq \varepsilon
$$

or $\quad \log \log M(r) \geqq(\pi / \theta) \log r+$ const.
If we suppose that there exist n direct transcendental singularities of Φ_{ρ} lying above $w=\omega$, then we get similar n inequalities as above. We can, however, choose $n \rho_{0}$-neighbourhoods disjoint with each other. Hence there exists at least one such that $\theta \leqq \theta / n \leqq 2 \pi / n$. Then we have for such θ

$$
\log \log M(r) \geqq \frac{n}{2} \log r+\text { const. }
$$

or

$$
p(\rho)=\lim _{r \rightarrow \infty} \sup \frac{\log \log M(r)}{\log r} \geqq \frac{n}{2},
$$

which proves the theorem.
11. Now let $w=f(z)$ be a regular function belonging to the class \mathfrak{F}. For the niveau curve C_{r} associated with the set E, we put

$$
M(r)=\operatorname{Max}_{z \in \epsilon_{r}}|f(z)|
$$

and

$$
p=\limsup _{r \rightarrow \infty} \frac{\log \log M(r)}{\log r}
$$

We call p the order of a regular function $w=f(z)$ belonging to the class \mathfrak{F}. Then, by the similar way as the proof of Theorem 8, we can show the following

Theorem 9. Suppose that $w=f(z)$ is a regular function outside the bounded closed set E of capacity 0 and it has an essential singularity at every point of E. We suppose moreover that its order p is finite. If its inverse function has n distinct asymptotic values on a point $w=\omega$ and all their ρ neighbourhoods are simply connected, then $n \leqq 2 p$.

We can state easily the analogues of other theorem of the above type.

References

[1] L. Aht.fors, Untersuchungen zur Theorie der konformer Abbildung und der ganzen Funktion, Acta. Soc. Sci. Fenn., N. S. 1 (1930).
[2] L. Ahlfors, Zur Theorie der Überlagerungsfläche, Acta. Math., 65 (1935).
[3] A. Beurling, Étude sur un problème de majoration, Thèse de Uppsala (1933).
[4] J. Dufresnoy, Sur les domaines couvertes par les valeurs d'une fonction meromorphe ou algébroide, Ann. Ecole Norm. Sup., (3). 58 (1941).
[5] G. C. EvANs, Potentials and positively infinite singularities of logarithmic functions, Monatsh. Math. -Phys., 43 (1936).
[6] S. Kametani, The exceptional values of functions with the set of capacity zero of essential singularities, Proc. Imp. Acal. Jap., 17 (1941).
[7] K. Kunugui, Sur J'allure d'une fonction analytique uniforme au voisinage d'un point frontière de son domaine de definition, Jap. Journ. Math., 17 (1940).
[8] R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Berlin, 1936.
[9] K. Noshiro, Contributions to the theory of the singularities of analytic functions, Jap. Journ. Math., 19 (1948).
[10] K. Noshiro, Note on the cluster sets of analytic functions, Journ. Math. Soc. Japan., 1 (1950).
[11] H. L. Selberg, Über die Punktmengen von der Kapazität Null, Abhanlinger utgitt av det Norske Videnskaps-Akademi, Oslo I, Math. -Natur., (1937).
[12] M. TsuII, Theory of meromorphic functions in a neighbourhood of a closed set of capacity zero, Jap. Journ. Math., 19 (1944).
[13] M. TsujI, On meromorphic functions with essential singularities of logarithmic capacity zero, Tôhoku Math. Journ., 3 (1951).
[14] M. TsujI, A deformation theorem on conformal mapping and its application to a theorem of harmonic measure, Tôhoku Math. Journ., 3 (1951).
[15] Y. Tumura, Recherches sur la distribution des valeurs des fonctions analytiques, Jap. Journ. Math., 18(1943)

[^0]: 1) Throughout this paper we mean by "Capacity" the logarithmic capacity.
[^1]: 2) If $\omega=\infty$, then we take a certain connected piece Φ_{ρ} lying above the disc $|w|>1 / \rho$. If $\omega \neq \infty$, we take a disc $|w-\omega|<\rho$ instead of $|w|>1 / \rho$. In the following we consider $\Phi \mathrm{n}$ this sense. And we denote by (c_{ρ}) the basic disc of Φ_{ρ}.
