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Introduction
Recently many interesting results on the singularities and value-distribu-

tions of uniform meromorphic functions with the set of capacity zero0 of
essential singularities have been obtained by S. Kametani H6H, K. Noshiro
C9Ί, [10] and M. Tsuji [121], [131 But, as far as I know, the relation
between the order of such meromorphic functions and their inverse functions
is not yet obtained.

First we shall state Evans' theorem [5] without proof in § 1. We, in
§ 2, prove an extension of Noshiro's result, from which some results already

proved by Messrs. K. Noshiro and M. Tsuji are obtained as corollaries. In
§3, by the method due to M. Tsuji [14], we shall give an extension of

Ahlfors' distortion theorem [1] on theconformal mapping. By this method,
we get, in § 4, the relation between the order of functions belonging to
a certain class and their inverse functions.

§1. Preparation.
1. Let E be 3. non-empty, bounded and closed set of capacity zero in

the 2-plane. We suppose that the function w = f(z) is uniform and meromor-
phic outside the set E and has an essential singularity at every point of E.
We denote by $ the class of such functions.

Since E is a bounded and closed set of capacity zero, there exists a
positive mass distribution dμ (a) on E by Evans' theorem [5] or by Selberg's
[ l l j such that the potential

u(z) = flog — ^ dμ(a) (fdμ(a) = 1)
E E

is harmonic at every finite point except all the points belonging to E and
that u(z) tends to + o° when z tends to any points of E and tends to — oo
when z tends to infinity.

Let v(z) be its conjugate harmonic function and we put

ζ = χ(z) = eu(s)+ίv^ = r(z)eiv^ (0^v(z) < 2π).
This function is called Evans' function associated with the set E. It may
be easily seen that the niveau curve Cr r{z) = const, —r associated with

1) Throughout this paper we mean by "Capacity" the logarithmic capacity.
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the set E consists of a finite number of simple closed and analytic curves
surrounding the set E and that

-̂ — ds = 2τr,

where ^ is the inner normal of Cr and ds is the arc length of Cr.

§ 2. An extension of Noshiro's theorem.

2. Let w = /(z) be a function belonging to the class § and E be the
set of its essential singularities. Denote by z = £>(«;) the inverse function
of w. = /(z) and suppose that this inverse function 2 = <£>(w;) has at least one
transcendental singularity and ί l is such a one with the projection w = ω.

Let ΔP be the set of all the values taken by the branch z = <P?(w) corres-
ponding to the p-neighbourhood Φp ( cr. Φ) of the accessible boundary point
ί l of Φ, where Φ denotes the Riemann covering surface which has the
Riemann sphere as its basic surface and is associated with the inverse func-
tion z = <P(w). Then, obviously, ΔP is a connected domain and its boundary
consists of at most an enumerable number of analytic contours yp and the
non-empty closed subset Ep of E. It is immediate that the function w = f(z)
is meromorphic in the closed domain ΔP excluding the set Ep and satisfies
the relation: [f(z), a>2 < p inside ΔP and ΐf(z), ω] = p on yp, where

represents the spherical distance between the points w = f(z) and w = ω.
Since E? is a closed subset of a bounded set E, Ep is of capacity zero.

Hence there exists Evans' function

ζ = χ(z) = eu^+iv™ = r(z)eiv& (0 ^ v(z) < 2π)
associated to the set Ep. If Cr represents the niveau curve Cr: r(z) = const.
= r associated to EP, then we have

/•
dv{z) = 2τt.

We denote by v(r) the number of simple closed and analytic curves of the
niveau curve Cr.

Let θr be the intersection of the domain ΔP and the niveau curve Cr and
ΔP(r) be the intersection of ΔP and the domain exterior to Cr. Δp(r) consists
of a finite number of components Δ(

p

υ(r), , Δ£m)(V) (tn = m(r) ^ 1) for all
sufficiently large r. Suppose that ΦP(r) and Φ™(r) are the Riemannian images
of ΔP(r) and Δjί}(r), respectively, on Φp by w = f{z).

We put

(1 +
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and

where dσ is the area element of the z-plane. These quantities have the
geometrical meaning:

S(r,AP) is the average number of sheets of ΦP(r) and £(r.ΔP) is the
length of the boundary of Φp(r) relative to the disc (cp): \jw, ω"} < p.

3. We shall now state two important lemmas without proofs.

LEMMA 1 (Tsuji [12], Noshiro[6l).

lim S(r,Δp) = oo and lim inf W'^'l = 0.

LEMMA 2. Let Fbe a finite covering surface having Fo as its basic surface
and Du D2, ••••, Dq(q^>2) be q closed discs such that each lies entirely
inside Fo and no two of them have any point in common and let Fo be the
domain obtained by excluding all the discs DΪ7 DΔ, , Dq from Fo. For each
DJU = 1, 2, • , a) we denote by n(Dj) the number of sheets of all the islands
above Dj and by n^Dj) the number of orders of all branch points of all the
islands above Dj. Finally we denote by S(F0) the average number of sheets
of F and by L{FQ) the length of the boundary of F relative to Fo. Then

2 <D^ - Σ wi(A, ) > v(Ά)S(F0) - v(F) ~ hUFo),

-f

where η(F0) is Euler's characteristic of FQ, η = Max (η, 0) and h is a constant
depending only upon DΊ, D2, , Dq and Fo.

This lemma was proved by J. Dufresnoy [4] and Y. Tumura [15D indepen-
dently and was used by K. Kunugui [_7~] and K. Noshiro [9], [101 This is
also an extension of Ahlfors' fundamental theorem [2Γ\ on a finite covering
surface.

L K. Noshiro [9] proved the following theorem.
If Φp is simply connected, then Φp covers every point infinitely often inside

the disc (cp): \jw, ω~] < p except at most one point.
We can now generalize this theorem in the following form:

THEOREM 1. ΦP covers every point infinitely often inside (cp): [_w, ω~] < p
except at most 2 + ξx -f ξ2 points, where

, = lim sup s^η- , ξt = KP) lim sup ^0^-

and k(p) = (4/τrp2) sin~1(p/2) is the constant depending only on p.
In this theorem we assume nothing about the connectivity of ΦP.
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In order to prove this, it is sufficient to show the following theorem:

THEOREM 2. Denote by Dλ3 D>, , Dq(q > 2) q closed discs lying entirely
inside (cp): [_w, ω] < p. Let n^ (Dj) be the number of sheets of all islands
{Dψ} contained in Φ{

p

l)(r) and lying above Dj and nψ (Dj) be the number of
orders of all branch points of all islands {D{p}. If we put

m m

2 ff'KDj) = n(r, D3 Δp), 2 n^\D3) = *&> DJ >' Δp)

and

h(Dj ΔP) = lim inf (l - n{r'f*j I f p ) ) , Θ(D) ΔP) = lim inf
/•->oo V M 7 % Άp) J ' r->oo

then
q q

~ I AP) + 2 0(Dj ΔP) =S 2 + ξx 4- f2.

PROOF. We can find a positive number r0 such that for all r > r0,
Ap(r) consists of a finite number of components Δ(1^(r), , A{

p

m)(r) (m = m(r)
> 1). Since Φp

ι\r) is a finite covering surface having the disc (cp): \w, ω~\
< p as its basic surface, we have by lemma 2

2 n^iDj) — 2 wί':)(Όj) ^ (̂  ~~ l)Sco(r, ΔP) — ?7(Φ(;)(^)) — hLi0(r, Δo),

where Sω (r, AP) is the average number of sheets of Φ^fr) and Z(/)(r, Δp)
is the length of boundary of Φ^ } (r) relative to (cp): \iw, ω] < p and /̂  is a
constant depending only on DΛ, D?, DQ, and (cp): \jw, &>H < p. Since we
can easily see then

S(r, Δp) = 2 S{0(r, Δp) and L(r, Δp) =• 2 L^ir, ΔP)?

we have

Σ (S(r, Δp) - w(r, Dj ΔP)) + 2 »>(»-> β j ΔP)

S S(r, ΔP) + 2 ίίΦp'W) + Λ̂ (̂ » ΔP).

On the other hand we have easily
•+• +

where μi0(r) denotes the number of component of boundary of Δ£°(*0 Hence
there are two classes of such components, namely:

i) Components consisting of only one component of niveau curve Cr,
whose number will be denoted by z/(;)(r). Obviously

m

2 *w(r) S v(r).
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ii) Components consisting of at least one part of contours yp. We
denote by κ^\r) the number of such components.

Now let the variable z vary on the part of γp which belongs to a compo-
nent of the second class such that the corresponding point w —fiz) varies on
the circle cp: [w, ω] = p at most once. Thus we obtain function elements
lying on the circle cp: \jv, ω~] = p. We prolonge every function element along
a radius of the circle cp: \jv, ω] = p to its centre w = ω. These prolongations
are continued until they meet a branch point or the boundary of Φp

l)(r)
relative to (cp): [_w} &>] < p. Let A! be the area of the schlicht domain e
just obtained above and L be the length of the boundary of this domain e9

which are contained in the relative boundary of Φ(p\r). Then, by using
Ahlfors' first covering theorem [2], we get

< 3) πp*-Af< ΉL + k{p),

where W is a constant depending only on (cp): \jv, ω] < p and k(ρ) = (4/τr/o2)
sin-Kp/2).

The term k(ρ) in (3) appeared in virtue of the components consisting of
the parts of yp and Cr.

Hence, if for every component of the second class belonging to Δj^ (r)
we carry out the process just stated and add the inequalities (3), it is easily
seen that

( 4 ) πpWHr) < 2 A' + h' 2 L + k(P)v^)'
β e

Since each domain e has no common part with each other, it follows that

2 A ' S πp'S^ (r, ΔP) and 2
e e

whence we obtain, from (4),

2 Λ(/)fr) S S(r, ΔP) + Λ"L(r, ΔP) H- k(p)m(r)v(r),
t = l

where ^'r = hrjπp2. Consequently it follows that
ra

2 μ(°W ^ S(r, ΔP) + Λ"L(r, ΔP) + v{r) + ^(p) m(r) v{r).
i = l

From this and (1), (2) we get

2 r, ΔP) - n(r, Dj A?)) + 2 ^(r> ^ 5 Δ P )

^ 2S(r, ΔP) + hf"L(r, ΔP) + i/(r) + k(p)tn(r)v(r),

where H" = hΛ- h" depends only on Dι,\D2i , Dq and (cp): \jw, ω] < p.
Byjusing lemma 1, we obtain

Q Ί

2 δ(Dj Δp) + 2 # <Άί Δf.) ^ 2 + f, + f, ,
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where ft - Urn sup J ^ r , f, = lim sup *(p) ^§^~ and

sin-1(p/2).

δ. From Theorem 2 Noshiro's theorem stated in the preceding section
is deduced and moreover the following theorems are deduced:

COROLLARY 1 (Noshiro [10]). If the set E? lies on one component of <γp,
then Φp covers every point inside (cp): [w, &>H < p infinitely often except at
most two points.

COROLLARY 2 (Tsuji[13]). // ΔP, consequently Φ p j is finitely connected,

Φp covers every point inside (cp): [w, ω] < p infinitely often except at most

one point. Moreover we denote by ΔP tJie domain ΔP with addition of the

inner parts of closed componens yp of boundary of the domain ΔP. We call

ΔP the associated domain of Δp. If the associatetd domain ΔP of ΔP is finitely
connected, Φ p covers every point inside (cp): [w, ω~] < p except at most two
points.

COROLLARY 3. If the number of contours yp extended to certain points
belonging to the set Ep is finite, then Φ p covers infinitely often every point
inside (cp): [_w, ω] < p except at most 2 + ξx points.

6. By the similar way as the proof of theorem 2 we can show the
following

THEOREM 3. Suppose that the branch z-= ^PC^.) has a transcendental
singularity ί l 0 with projection w = ω0 such that [_ω, ωQ~} < p. And we denote
by Φo the ρQ-neighbourhood (on Φp.) of the accessible boundary point Ωo of Φ p

such that Φ o lies above the disc \_w, ω 0] < pOi which lies entirely inside the
disc (Cp): [_w, a>]< p. If Δp, namely Φp, is finitely connected, then Φ o covers
infinitely often every point inside its basic surface (c0): [jυ, ωo~] < p0 except at
most two points.

§ S. An extension of Ahlfors' distortion theorem.

7. M. Tsuji [142 extended the famous Ahlfors' distortion theorem [ I ] .
We shall extend it a little more.

Let D be a simply connected domain in the z-plane. Suppose that the
bounded and closed set E of capacity zero lies on the boundary Γ of the
domain D.

We construct Evans' function ζ = £*<«>+<*(*) = r (z) eίv( z^0 ^v(z)< 2π)
associated to E and describe the niveau curve Cr r(z) = const. = r surround-
ing the set E. We put βr = D Π Cr We shall show the following

THEOREM 4. If we map the domain D conformally on the unite circle
\w\ < 1 by a function w = f(z), then, for all sufficiently large r, the image
Xr of θr in \w\ < 1 can be enclosed in a finite number of circles tyP (i = 1, ,
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-n = n{r)\ which cut \w\ = 1 orthogonally, such that the sum of their radii
is less than

const, exp ((-arj

where ro< kr < r, r0 a certain positive number and θ (r) = I dv{z).=1°
PROOF. There exists a positive number r0 such that, for all r ΐ> r0, θr

is not empty. We denote by Θ{P (* = 1» , m = τn(r)) the components of

.&.. We map D conformally into the unit circle \w\ < 1, then we can
suppose without loss of generality that a certain point on the boundary of
D not belonging to E corresponds to the point w = 1. Then the set E corres-
ponds to a set E* of measure zero on \w\ = 1 and the point w = 1 does
not belong to this set E/K

Let λί ° be the image of # ° (/= 1, • - • -, m) and χ r = ΰλί V Then
obviously λr converges to the set E* when r tends to oo. Denote by fyP
{i = 1, , w = »(r) <ί m) the system of circles enclosing the Jordan arcs
χ;.°(f = 1, , m) and cutting | w \ = 1 orthogonally.

We map again the disc |zί;| < 1 conformally on the upper semi-plane
3<r > 0 of the cr-ρlane by the linear transformation σ = σ(w) = i{l-\-w)!(l — w)
and we denote by ylr, Aψ and K^P the image of λr, λ£° and k\P in S<r > 0,
respectively. Then we get the domains elf , eΊ(m>q= q(r) => 1), each
of which is bounded by some sl^P and the segments lying on the real axis
Scr — 0 and which correspond to the common parts of the domain D and
the interior of Cr. We represent by LaXr) the length of the boundary
•{Apy of ej and by Au>) (r) the area of βj. Moreover let

L{r) = 2L L°\r) and A(r) = J£ ^-(/)^)

Then we can see without difficulty that

< 5 ) Aa\r) <̂  (La\r))-J2π.

Let 2 = ^"H?) be the inverse function of Evans' function ζ =
associated to the set E and put σ = F(f) = cr(/(%-i(f))). Then it is also
clear that

= ί\Ff(ζ)[rdθ and A(r) = f f\F{ζ)\*rdθdr,

®r r ®r

where Θr is the image of ft. by f = %(a) (0 g «;(«) < 2τr) on the f-plane and
ζ = reίθ. Using the Schwarz inequality and

/
Γ Γ

dθ = / dv{z) <* I dv(z) = 2τr,
J ^ J
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it follows that

from which we get, by (5),

Q. \ dr, then we have

r

- LHr) S rθ(r)v'(r).
Hence; from (6),

whence it follows that
r

v(r) ^2 const, exp ί — 2π I —?j?-~c)

Since t h e s u m l{r) of radi i of circles KξP (i = 1, ••••, n) is not g r e a t e r

t h a n -g- L(r), we can see

ί ^Pv dr ^ c o n s t e χ P ( - 2π f ~4ΓΛ )J rθ(r) — F V J rθir) J

If we notice that l(r) is a monotone decreasing function of r, it follows

where r0 < kr < r. However, we can easily see that
**

rfr . 1 , 1
/
fcr

from which we obtain

<; const, expf — π I —^T-T- )/ rfy\r) /Kr)

The radius of fyP is less than constant multiple pof the radius of
Consequently the sum of radii of k(

r

l) 0* = 1, , n) is less than constant
multiple of l(r). Therefore, from the above inequality, the sum of radii
of k{

r

l) (i = 1, , n) is less than
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Jcr

dr~^τsτ) , ro<kr<r,
rθ{r)

which proves %he theorem.

8. By applying Theorem 4, we can prove the following theorem of
Phragmen-Lindelof type.

THEOREM 5. Let w ~f(z) be regular in the simply connected domain D
and suppose that lim sup \f(z)\ <Ξ 1, where ζ denotes an arbitrary point

on the boundary Γ of D not belonging to the bounded and closed set E of
capacity zero lying on Γ. We put θr~Df\Cr (where Cr is the niveau curve
associated to the set E). If lim inf r~*19 log M(r) = 0, then \f{z)\ <; 1 at

every point of D, where M(r) = Max \f(z)\ and θ( ^2τr) is the upper bound
zeθr

of θ{r) = \dv{z) for all sufficiently large r.

PROOF. Let z0 be a point in Zλ We can choose rλ{ > 0) such that,
for all r > rlf z0 is contained in a component Dr of domains which are
the parts of Dr lying outside Cr. The boundary of Dr consists of the part
θr of θr and the parts of boundary of D, and it contains no point belonging
to the set E. We denote by ω(z, θr, Dr) the harmonic measure of θr with
respect to Dr, namely the harmonic function in Dr such that it equals to
1 on ^r and to zero on the other boundary of Dr. If we notice that log
\f(z)\ is harmonic in Όr except zero-points of f(z), by using the maximum
principle or Nevaniinna's £ίZweikonstantensatz' £8], we have

log I/"CO I ̂ ω(2, θr, Dr) log M(r):

whence at the point z = z{) we have

(7 ) log I f(zo)\ ^ ω(z0, θr, Dr) log M(r).

We shall now map D conformally on the unite circle \τ\ < 1 in the
τ-plane by the function T = τ(z) (τ(z0) = 0). Similarly as in the proof of the
preceding theorem, we can enclose the image of θr by system of circles

kψ{i = l, f n) which cut \τ\ = 1 orthogonally. Denote by at and β( two

edge points of Λ?J.° on the circle \τ\ = 1 and suppose that α t < βt.

We can find r-,( > 0) such that, for all r i> r& the point T = 0 lies outside
these circles kW(i=l, ••••, n). We denote by Ω(*} the domain, which
contains the image r = 0 of the point z = z0 and whose boundary consists
of k\P and | τ | = 1. If we put ψt = arg (βi/aCι), we can easily see from
Theorem 4 that

n Jcr

( 8) 2 Ϋ* ^ c o n s t e χ P ( ~ n f "iθir)/
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ro< kr < r, θ{r) = I dv(z),

where r0 = Max (ri, r2). We put #<(T) = arg (r — /3*)/(τ — otή and V£(τ) =
2(Vi(τ) — ψi/2)/π. Then F£(T) is the harmonic function in the domain fl<°
and equals to 1 on Wp and to zero on the other boundary of Ωί°. If we

n

put Or = Π Ωr°> t n e n Ωr * s contained in the image of Dr and the function
n

V(τ) = 2 ^ « ( τ ) i s h a r m o n i c i n ί l , . a n d i s g r e a t e r t h a n 1 o n k(

r

l) ( / = ! , • • • , ^ )
l

and equals to zero on the other boundary of ίl r. Since harmonic property
is invariant by a conformal mapping, we have

Hence, from (7), it follows

log I/*(2o)| ^ F(0) log M(r).

On the other hand, it is easy t o see that F(0) = 2 ^ / ^ a n ^ s o f r o m ( 8 )
1 = 1

Tcr

log |/(2o)l ΞS const, exp ( - π j ^ ~ y ) . log M(r).

Since θ(r)^2τr, there exists θ(>0) such that θ(r)^θ^2τr for all
r > r0. Hence it is easily seen that

log I/fa,) I ^ const. r-*iθ. log Mir).

Accordingly, if lim inf r"nie log M{r) = 0, then we have

Since 20 is an arbitrary point in D, we obtain the theorem.
Especially we have

COROLLARY. If lim inf r~112. logM(r) = 0, then we have \f{z)\ <; 1 at every

point in D.

REMARK. Theorem 5 can be proved by the Beurling's distortion theo-
rem [3j.

From the proof of the preceding theorem, the following theorem is
obtained without difficulties.

THEOREM 6. If the point z lies in the domain Dr, then
7cr

ω(2o, Wr, D,) S h {/) exp ( - πj -~^), W < r),

where h(r') is a constant depending only on rf.
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5 L The relation between the order of functions belonging
to the class δ and their inverse function.

9. Let w = f(z) be the function belonging to the class S and fi be the
transcendental singularity of its inverse function. Denote by ω the pro-
jection of ίl. M. Tsuji C12] proved the following theorem:

The set of projections of the direct transcendental singularities of the
inverse function on the w-plane is of capacity zero.

We denote by ΔP the set of all values taken by the branch z = <PP(w)
of the inverse function z = φ(w) of w = f(z), where z = <Pp(w) corresponds
to the p-neighbourhood φ p of an accessible boundary point Ώ of Φ which is
the Riemann covering surface having w -plane as its basic surface2).

Let Ωo be any transcendental singularity of 2 = ΦP(w) and w = ω0 be
its projection on the w -plane such that ω0 lies inside the disc (cp): \w\ > 1/p
(ω = oo; or \w — ω\ < p (ω Φ oo). We call ί2u the direct transcendental
singularity of the branch z = <PP(w), when the point w = ω0 is lacunary with
respect to the /^-neighbourhood Φo (cφ p j of ίl o Then, by similary as the
argument of Tsuji tl2j, we can easily show the following theorem:

THEOREM 7. The set of projections of the direct transcendental singulari-
ties of the branch z = Φ9(w) on the disc (cp) is of capacity zero.

10. We describe the niveau curve Cr associated with the set E? by
constructing Evans7 function associated with the set EP, where EP is the
closed subset of E which is the bounded closed set of essential singularities
of the function w = f(z) and EP belongs to the boundary of ΔP. We put
Cr Π Δp = θr and

ί Max \f(z)\ for ω = oo,
1 zeθr

Max l/\f(z)-ω\ for ω * oo,
θ

Ma(r) =

and

dim sup l θ g;o°gf^ = P(P).
r -> oo log r

We call p(p) the M-order of w =/O) with respect to ΔP. Then we shall
prove

THEOREM 8. Suppose that the M-order p(ρ) of w=f(z) with respect to
ΔP is finite. If ΔP is simply connected, then the number of direct transcendental
singularities of the branch z = Φ{w) lying above w = ω is not greater than 2p(p).

PROOF. Without loss of generality we can suppose ω — oo. Let ί l 0 be
a certain direct transcendental singularity of z = ΦP(w) lying above the
point w = ω. We denote by φ ( ) the p0-neighbourhood of ί l 0 lying entirely
inside Φ p and by Δo the set of values taken by the branch z = <P0(w) corres-

2) If ω = oo, then we take a certain connected piece Φp lying above the disc \w\ >l/p.
If co Φ oo, we take a disc \w — ω\ <p instead of \w\ > I/p. In the following we consider
Φ n this sense. And we denote by (cP} the basic disc of Φ p.
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ponding to Φo. The boundary of Δo consists of an enumerable number of
analytic curves 70 and the closed subset Eo of E?. The function w = f(z)
is meromorphic in the closed domain Δo excluding the set Eo and satisfies
the relation: \f(z)\ > 1/po inside Δo and \f(z)\ = l/p0 on 70.

We can choose p0 ( > 0) such that f{z) =*= ω = 00 in Δo, or /(z) is regular
in Δo Since ΔP is simply connected by the assumption, the associated
domain Δ0(See Theorem 2, Corollary 2) is also simply connnected. The
function log \f(z)\ p0 is subharmonic and is equal to 0 on yo We shall
extend the definition of this subharmonic function in the domain Δo by

+ +

putting log |/(2)| p0 = 0 inside holes of Δo, then log \f(z) \ p0 is subharmonic
in Δo We put

M(r) = Max |/(z)|,
zeθr

where θr = Cr Π Δo (c:θr) We can use the argument used in §3 for 0r and,
deforming the proof of Theorem 5, we can see that there exists a certain
number 8 > 0 such that for all sufficiently large r

r-πΐθ log M(r) ;> 6 > 0,

where # is the upper bound of | dv(z).

On the other hand it is immediate that ~M{r) <: Λf(r). Accordingly,
for all sufficiently large r, we see

r—tf log M(r) ^ 6

or log log M(r) ^ (πfθ) log r + const.

If we suppose that there exist n direct transcendental singularities of ΦP

lying above w = ω, then we get similar n inequalities as above. We can,
however, choose n p0-neighbourhoods disjoint with each other. Hence there
exists at least one such that θ^θ/n S2πjn. Then we have for such θ

log log M{r) ;> ~ log r + const.,
2

or

p(ρ) = l im sup , — c_ -7Γ ,
^ V ί ^ r.»oo F log r — 2 '

which proves the theorem.

1L Now let w = /(«) be a regular function belonging to the class
For the niveau curve Cr associated with the set E, we put

M{r) = Max \f(z)\
zeC

and



ON THE UNIFORM MEROMORPHIC FUNCTIONS ETC. 269

logr

We call p the order of a regular function w = /(z) belonging to the class 3
Then, by the similar way as the proof of Theorem 8, we can show

the following

THEOREM 9. Suppose that w = f(z) is a regular function outside the
bounded closed set E of capacity 0 and it has an essential singularity at every
point of E. We suppose moreover that its order p is finite. If its inverse
function has n distinct asymptotic values on a point w = ω and all their p-
neighbourhoods are simply connected, then n <; 2p.

We can state easily the analogues of other theorem of the above type.
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