ON COVERING HOMOTOPY THEOREMS

HIROSHI MIYAZAKI

(Received October 10, 1951)

The first and the second covering homotopy theorems $[1; \S \ i1.3 \text{ and } \S \ 11.7]^{1}$ and the results which follow from these play important rôles in the theory of fibre bundles. In this paper we shall consider covering homotopy theorems. In $\S 1$, we deal with bundles which have totally disconnected groups. $\S 2$ is concerned with bundles whose bundle spaces are compact.

1. Let X be an arcwise connected space, and let \mathfrak{B} be a bundle over the base space X with fibre Y and totally disconnected group G. According to [1; § 13.5], an equivalence class $\chi(\mathfrak{B})$ of homomorphisms of the fundamental group $\pi_1(X)$ into G under inner automorphisms of G is defined, which is called the characteristic class of \mathfrak{B} . First, we shall recall the definition and some properties of $\chi(\mathfrak{B})$.

Choose a reference point x_0 in X. Let Y_0 be the fibre over x_0 , and choose an admissible map $\zeta: Y \to Y_0$. For each element $\alpha \in \pi_1(X, x_0)$, there exists a unique admissible map $\alpha: Y_0 \to Y_0$ (see [1; § 13. 1-3]). Therefore $\xi^{-1}\alpha\xi$ represents an element $\chi(\mathfrak{B}; x_0, \xi)(\alpha)$ of G. This correspondence

$$\mathcal{X}(\mathfrak{B}; x_0, \xi) : \pi_1(X, x_0) \to G$$

is a homomorphism. The equivalence class of $\chi(\mathfrak{B}; x_0, \xi)$ under inner automorphisms of G is $\chi(\mathfrak{B})$. Let $\zeta: Y \to Y_0$ be another admissible map. Then the homomorphisms $\chi(\mathfrak{B}; x_0, \xi)$ and $\chi(\mathfrak{B}; x_0, \zeta)$ differ by an inner automorphism of G. That is, $\chi(\mathfrak{B})$ is independent upon the choice of ξ .

Suppose x_1 is another reference point, and $\xi_1: Y \to Y_1$ is an admissible map. Since X is arcwise connected, there is a path D which binds x_0 to x_1 . If C is a closed path from x_1 , then DCD^{-1} is a closed path from x_0 . As is well known, D induces in this way an isomorphism $D_*: \pi_1(X, x_1) \to \pi_1(X, x_0)$. Then homomorphisms $\mathcal{X}(\mathfrak{B}; x_0, \xi)D$ and $\mathcal{X}(\mathfrak{B}; x_1, \xi)$ differ by an inner automorphism of G. (See [1; § 13.5]).

Suppose now X' is an arcwise connected space, and $f: X' \to X$ is a continuous map. If C is a closed path from a fixed point x'_0 of X', then fC is a closed path from the point $f(x'_0)$. In this way, f induces a natural homomorphism

$$f^{\#}:\pi_1(X', x'_0) \to \pi_1(X, f(x'_0)).$$

Let $f: \overline{f}^{-1}\mathfrak{B} \to \mathfrak{B}$ be the induced bundle map $[1; \S 10]$ and $\zeta: Y \to Y'_0$ be an admissible map, where Y'_0 denotes the fibre over $x'_0 \in X'_0$. Then we have the

¹⁾ Numbers in square brackets refer to the references at the end of the paper.

following relation.

LEMMA 1.1.
$$\chi(\overline{f}^{-1}\mathfrak{B}; \mathbf{x}'_0, \zeta) = \chi(\mathfrak{B}, \overline{f}(\mathbf{x}'_0), f\zeta)f^{\#}$$

PROOF. Let C' be a closed path from x'_0 which represents an element α' of $\pi_1(X', x'_0)$. Let h' be a homotopy of $\zeta : Y \to f^{-1} \mathfrak{B}$ such that the induced map is C'(t). For each $t \in I$, we define a map $h'_t : Y \to Y'_t$ by taking $h'_t(y) = h'(y, t) (y \in Y)$, where Y'_t denotes the fibre over the point C'(t). Then the admissible map $\alpha' : Y'_0 \to Y'_0$ associated with the element α' is $C'^{\ddagger} = h'_0$ $h'_1^{-1} : Y'_0 \to Y'_0$.

Hence, by the definition of χ , $\chi(f^{-1}\mathfrak{B}; \mathbf{x}'_0, \zeta)(\alpha')$ represents a map $\zeta^{-1}C'^{\sharp}\zeta$, i. e.

$$\chi(f^{-1}\mathfrak{B}; x'_0, \zeta) (\alpha') = \zeta^{-1}C'^{\#}\zeta.$$

Since f is the bundle map, h = fh' is the bundle map of $Y \times I$ into \mathfrak{B} , and $h(y, 0) = f\zeta(y)$, and the induced map of h is fC'. Therefore the admissible map associated with the element $f^{\#}(\alpha') \in \pi_1(X, f(x'_0))$ is given by

$$C^{\#} = h_0 h_1^{-1} \colon Y_0 \to Y_0,$$

where Y_0 denotes the fibre over $f(x'_0)$, and $h_t(y) = h(y, t)$ ($y \in Y$, $t \in I$). Hence

$$\begin{aligned} \chi(\mathfrak{B} ; \bar{f}(\mathbf{x}_{0}^{\prime}), \ f\zeta)f^{\sharp}(\boldsymbol{\alpha}^{\prime}) &= (f\zeta)^{-1}C^{\sharp}(f\zeta) \\ &= (f\zeta)^{-1}h_{0}h_{1}^{-1}(f(\zeta)) \\ &= (f\zeta)^{-1}(fh_{0}^{\prime})(fh_{1}^{\prime})^{-1}(f\zeta) \\ &= \zeta^{-1}h_{0}^{\prime}h_{0}^{\prime}\zeta = \zeta^{-1}C^{\prime\sharp}\zeta. \end{aligned}$$

Thus we have

$$\chi(\overline{f}^{-1}\mathfrak{B}; \mathbf{x}'_{0}, \zeta) = \chi(\mathfrak{B}; \overline{f}(\mathbf{x}'_{0}), f\zeta)f^{\sharp} \qquad Q. E. D.$$

THEOREM 1.2. Let \mathfrak{B} be a bundle over a space X with fibre Y and totally disconnected group G. Let X' be a locally arcwise connected space and let \overline{f} , \overline{g} be homotopic maps of X' into X. Then the induced bundles \overline{f}^{-1} \mathfrak{B} and $\overline{g}^{-1}\mathfrak{B}$ are equivalent.

PROOF. Denote by X'_{α} ($\alpha \in \Omega$; Ω denotes the set of indices) component of X' in the sense of arcwise connectedness. Let ${}_{\mathcal{B}_{\alpha}}$ and ${}_{\mathcal{B}_{\beta}}$ be the portions of $\overline{f}^{-1}\mathfrak{B}$ and $\overline{g}^{-1}\mathfrak{B}$ over X'_{α} respectively. It is sufficient to prove that for each $\alpha \in \Omega$, ${}_{\mathcal{B}_{\alpha}}$ and ${}_{g}\mathfrak{B}_{\alpha}$ are equivalent. In fact, if ${}_{\mathcal{B}_{\alpha}} \sim {}_{g}\mathfrak{B}_{\alpha}$, then there exist equivalences $e_{\alpha}: {}_{\mathcal{B}_{\alpha}} \sim {}_{g}\mathfrak{B}_{\alpha}$. Denote by B'_{α} the bundle space of ${}_{\mathcal{B}_{\alpha}}$. We define a transformation e of the bundle space \mathfrak{B}_{f} of $\overline{f}^{-1}\mathfrak{B}$ onto the bundle space of $\overline{g}^{-1}\mathfrak{B}$ by taking

$$e(b) = e_{\alpha}(b)$$
 if $b \in B'_{\alpha}$.

Since X' is locally arcwise connected, each component X'_{α} is open in X', hence B'_{α} is open in B_{τ} . Therefore e is continuous. Moreover it is clear

that e is a bundle map and the induced map is identity. Hence the bundle map e defines an equivalence $f^{-1}\mathfrak{B} \sim g^{-1}\mathfrak{B}$.

Therefore we may assume that X' is arcwise connected. Then, since $\overline{f} \sim \overline{g}$, $\overline{f}(X')$ and $\overline{g}(X')$ belong to the same component X_0 of X, in the sense of arcwise connectedness. Let \mathfrak{B}_0 be the portion of \mathfrak{B} over X_0 . Then it is obvious that

$$\overline{f}^{-1}\mathfrak{B} = \overline{f}^{-1}\mathfrak{B}_0, \quad \overline{g}^{-1}\mathfrak{B} = \overline{g}^{-1}\mathfrak{B}_0.$$

Hence we can assume furthermore without any loss of generality that X is arcwise connected.

Choose a base point $x'_0 \in X'$ and set $f(x'_0) = x_0$, $g(x'_0) = x_1$. Let Y'_f and Y'_g be the fibres of $\overline{f}^{-1}\mathfrak{B}$ and $\overline{g}^{-1}\mathfrak{B}$ over x'_0 respectively. Let $\xi \colon Y \to Y'_f$ and $\eta \colon Y \to Y'_g$ be admissible maps. Then, by Lemma 1.1 we have

$$\begin{aligned} \chi(\bar{f}^{-1}\mathfrak{B}; x'_0, \xi) &= \chi(\mathfrak{B}; x_0, f\xi)\bar{f}^{\#}, \\ \chi(\bar{g}^{-1}\mathfrak{B}; x'_0, \eta) &= \chi(\mathfrak{B}; x_1, g\eta)\bar{g}^{\#}. \end{aligned}$$

Since $\overline{f} \sim \overline{g}$, there exists a homotopy $h: X' \times I \to X$ between \overline{f} and \overline{g} . Define a path D from x_0 to x_1 by taking $D(t) = h(x_0, t)$ ($t \in I$). Then, for $\alpha' \in \pi_1(X', x_0)$, $\overline{f}^{\#}(\alpha') \in \pi_1(X, x_0)$ and $\overline{g}^{\#}(\alpha') \in \pi_1(x, x_1)$ are homotopic along the path D. Hence, as is well known, we have the relation

$$\overline{f}^{\#}(\alpha') = D_* \overline{g}^{\#}(\alpha').$$

On the other hand, $\chi(\mathfrak{B}; x_0, f\xi)D_*$ and $\chi(\mathfrak{B}; x_1, g\eta)$ differ by an inner automorphism of G, hence there exists an element g_0 of G such that

$$\begin{split} \chi(\mathfrak{B}; \mathbf{x}_{0}, f\xi) D_{\ast}(\alpha) &= g_{0}^{-1} [\chi(\mathfrak{B}; \mathbf{x}_{1}, g\eta) (\alpha)] g \quad (\alpha \in \pi_{1}(\mathbf{x}, \mathbf{x}_{1})). \\ \chi(f^{-1}\mathfrak{B}; \mathbf{x}_{0}', \xi) (\alpha') &= \chi(\mathfrak{B}; \mathbf{x}_{0}, f\xi) f^{\sharp}(\alpha') \\ &= \chi(\mathfrak{B}; \mathbf{x}_{0}, f\xi) D_{\ast} g^{\sharp}(\alpha') \\ &= g_{0}^{-1} [\alpha(\mathfrak{B}; \mathbf{x}_{1}, g\eta) g^{\sharp}(\alpha')] g_{0} \\ &= g_{0}^{-1} [\chi(g^{-1}\mathfrak{B}; \mathbf{x}_{0}', \eta)(\alpha')] g_{0}. \end{split}$$

Therefore, homomorphisms $\chi(\bar{f}^{-1}\mathfrak{B}; x'_{0}, \xi)$ and $\chi(\bar{g}^{-1}\mathfrak{B}; x'_{0}, \eta)$ differ by an inner automorphism of G and so we have $\chi(\bar{f}^{-1}\mathfrak{B}) = \chi(\bar{g}^{-1}\mathfrak{B})$. By virtue of [1; § 13.7 and 8.2], $\chi(\bar{f}^{-1}\mathfrak{B}) = \chi(\bar{g}^{-1}\mathfrak{B})$ implies $\bar{f}^{-1}\mathfrak{B} \sim g^{-1}\mathfrak{B}$. Thus our theorem is proved.

As an immediate result from Theorem 1.2, we have

COROLLARY 1. 3. If X is locally arcwise connected and contractible on itself to a point, then any bundle over X with totally disconnected group is equivalent to a product bundle.

THEOREM 1.4. Let X be a locally arcwise connected space. Then any bundle \mathfrak{B} over the product space $X \times I$ with a totally disconnected group is equivalent to a bundle of the form $\mathfrak{B}' \times I$.

Hence

PROOF. Define a map $\overline{f}_0: X \to X \times I$ by taking $\overline{f}_0(x) = (x, 0)$ and put $\mathfrak{B}' = \overline{f}_0^{-1}\mathfrak{B}$. We shall prove that $\mathfrak{B} \sim \mathfrak{B}' \times I$.

Let $\pi: X \times I \rightarrow X$ be the projection. Then by [1, § 11.1], $\mathfrak{B}' \times I$ is equivalent to the induced bundle $\pi^{-1}\mathfrak{B}'$. Hence

$$\mathfrak{B}' \times I \sim \pi^{-1}\mathfrak{B}' = \pi^{-1}\overline{f_0}^{-1}\mathfrak{B} \sim (\overline{f_0}\pi)^{-1}\mathfrak{B}.$$

It is easily seen that the map $f_0 \pi : X \times I \to X \times I$ is homotopic to the identity map $e: X \times I \to X \times I$. Therefore by Theorem 1.2 $(\bar{f}\pi)^{-1}\mathfrak{B} \sim e^{-1}\mathfrak{B}$. Since $\mathfrak{B} \sim e^{-1}\mathfrak{B}$, we have $\mathfrak{B} \sim \mathfrak{B}' \times I$. Q. E. D.

LEMMA 1.5. Let \mathfrak{B} be a bundle over the space $X \times I$. If \mathfrak{B} is equivalent to a bundle of the form $\mathfrak{B}' \times I$, and if there is given an arbitrary equivalence $\mu_0: \mathfrak{B}_0 \to \mathfrak{B}' \times 0$, then there exists an equivalence $\mu: \mathfrak{B} \to \mathfrak{B}' \times I$ such that $\mu|\mathfrak{B}_0 = \mu_0$, where \mathfrak{B}_0 is the portion of \mathfrak{B} over $X \times 0$.

PROOF. By the assumption, there exists an equivalence $\lambda: \mathfrak{B} \to \mathfrak{B}' \times I$. Set $\lambda_0 = \lambda | \mathfrak{B}_0$, then $\nu = \mu_0 \lambda_0^{-1} \colon \mathfrak{B}' \times 0 \to \mathfrak{B}' \times 0$ is an equivalence. If we put $\nu(b', t) = (\nu(b'), t)$ (b' is a point of the bundle space of \mathfrak{B}), then, as is easily seen $\nu: \mathfrak{B}' \times I \to \mathfrak{B}' \times I$ is an equivalence. If we put $\mu = \nu \lambda$, then μ give an equivalence $\mathfrak{B} \sim \mathfrak{B}' \times I$ and $\mu | \mathfrak{B}_0 = \nu \lambda | \mathfrak{B}_0 = \nu_0 \lambda_0 = \mu_0$, hence $\mu = \nu \lambda$ is the desired equivalence. Q. E. D.

THEOREM 1.6. Let \mathfrak{B} , \mathfrak{B}' be two bundles with the same fibre Y and the same totally disconnected group G and with the base spaces X and X' respectively. We assume that X' is locally arcwise connected. Let $h_0: \mathfrak{B}' \to \mathfrak{B}$ be a bundle map, and let $\overline{h}: X' \times I \to X$ be a homotopy of the induced map $\overline{h_0}: X' \to X$. Then there exists a homotopy $h: \mathfrak{B}' \times I \to \mathfrak{B}$ of h_0 whose induced homotopy is \overline{h} .

PROOF. Set $\dot{\mathfrak{B}} = h^{-1}\mathfrak{B}$, and let $\dot{h}: \dot{\mathfrak{B}} \to \mathfrak{B}$ be the induced bundle map. Let $\dot{h_0}: h_0^{-1} \mathfrak{B} \to \mathfrak{B}$ be the induced map. By [1; § 10.3] there exists an equivalence $g_0: \mathfrak{B}' \to h_0^{-1}\mathfrak{B}$ such that $h_0 = \tilde{h_0}g_0$.

Define a map $\overline{f_0}: X' \to X' \times 0$ by taking $\overline{f_0}(x') = (x', 0) (x' \in X')$, then we have $(\overline{f_0}^{-1} \mathfrak{B}_0) \times I \sim \mathfrak{B}$ from Theorem 1.4. As is easily shown, \mathfrak{B}' and $\overline{f_0}^{-1} \mathfrak{B}_0$ are equivalent. Therefore we get

$$\mathfrak{B}' \times I \sim \mathfrak{B}.$$

Set $\check{\mathfrak{B}}_0 = \check{\mathfrak{B}}[X' \times 0, \quad \check{h}_0 = \check{h}]\check{\mathfrak{B}}_0, \ h_0 = \check{h}[X' \times 0, \quad \text{then } \check{\mathfrak{B}}_0 \text{ is the induced}$ bundle $'h_0^{-1}B$ and the induced bundle map is \check{h}_0 .

Let $f_0: f_0^{-1} \mathfrak{B} = f_0^{-1} \mathfrak{B}_0 \to \mathfrak{B}_0$ be the induced map, then the induced map of $h_0 f_0: \overline{f_0}^{-1} \mathfrak{B}_0 \to \mathfrak{B}_0$ is $h_0 \overline{f} = h_0$. Hence by [1; 10.3] there exists an equivalence $k_0: \overline{f_0}^{-1} \mathfrak{B}_0 \to \overline{h_0}^{-1} \mathfrak{B}$ such that $h_0 f_0 = \overline{h_0} k_0$. Since $f_0 k_0^{-1} g_0: \mathfrak{B}' \to \mathfrak{B}_0$ is an equivalence, we can define an equivalence $\mu_0: \mathfrak{B}' \times 0 \to \mathfrak{B}_0$ by taking

 $\mu_0(b' \times 0) = f_0 k_0^{-1} g_0(b')$ (b' is a point in the bundle space of \mathfrak{B}').

Then by Lemma 1.5, there exists an equivalence $\mu : \mathfrak{B}' \times I \rightarrow \mathfrak{B}$ such that $\mu | \mathfrak{B}' \times 0 = \mu_0$. We put

$$h = \dot{h}\mu$$

Then it is obvious that h is the bundle map of $\mathfrak{B}' \times I$ into \mathfrak{B} and its induced map is \overline{h} . On the other hand

$$h(b'\times 0) = \dot{h}\mu(b'\times 0) = \dot{h}_0\mu_0(b'\times 0)$$

 $=\check{h}_0f_0\,k_0^{-1}g_0(b')=(\check{h}_0k_0)\,(k_0^{-1}g_0(b'))=\check{h}_0g_0(b')=\,h_0(b').$

Hence h is the homotopy of h_0 , thus h is the desired homotopy. Q.E.D.

THEOREM 1.7. Let \mathfrak{B} be a bundle over X with the totally disconnected group, and let X' be a locally arcwise connected space. Given a map $f_0: X' \rightarrow \mathfrak{B}$, and a homotopy $\overline{f}: X' \times I \rightarrow X$ of $pf_0 = \overline{f}_0$, then there exists a homotopy $f: X' \times I \rightarrow \mathfrak{B}$ of f_0 which covers f(i.e. pf = f), where p is the projection of \mathfrak{B} .

PROOF. Let $\mathfrak{B}' = \overline{f_0}^{-1}\mathfrak{B}$, and let $h_0: \mathfrak{B}' \to \mathfrak{B}$ be the induced map. By Theorem 1.6, there exists a homotopy $h: \mathfrak{B}' \times I \to \mathfrak{B}$ of h_0 which covers f. Define a cross-section ϕ of \mathfrak{B}' , using the second definition of induced bundle $[1; \S 10.2]$, as follows: $\phi(x') = (x', f_0(x'))$. Then $h_0\phi = f_0$. Define $f(x', t) = h(\phi(x'), t)$, It follows immediately that f is the desired homotopy.

REMARK. In Theorem 1.5 and 1.6 stationality of h is not satisfied. Theorems 1.2, 1.4 and 1.6 are equivalent.

2. In this section we assume that all spaces are T_1 -spaces. If X is a compact space, then it has one and only one uniformity agreeing with its topology, and this uniformity is made up of all open coverings (see [4;4.4, p. 60]). Let $\{\mathfrak{M}_{\alpha}\}$ ($\alpha \in \Omega$) be the system of all coverings of X. For a covering \mathfrak{M} of X and subset U of X, we shall denote by $S(U, \mathfrak{M})$ the uniform of all the sets of \mathfrak{M} meeting U. Let \mathfrak{M} be a covering of X, then we denote by \mathfrak{M}^* a covering wich consists of the sets $S(U, \mathfrak{M})$, where $U \in \mathfrak{M}$. The symbol $\mathfrak{M}_{\alpha} < \mathfrak{M}_{\beta}$ means that the covering \mathfrak{M}_{α} is a refinement of \mathfrak{M}_{β} , i.e. each set of \mathfrak{M}_{α} is contained in some element of \mathfrak{M}_{β} .

Two maps f_0 and f_1 of a space X' into compact space X are said to be uniformly homotopic, if there is a homotopy h of f_0 and f_1 which satisfies the following condition:

For any index $\alpha \in \Omega$ there is a positive number δ such that if $x' \in X'$ and $|t - t'| < \delta$, then

$$h(x', t) \in S(h(x', t'), \mathfrak{M}_{\alpha})$$

holds.

Cech [2] has shown that if X' is a completely regular space there exist a comact Hausdorff space $\beta(X')$ and a topological map ϕ of X' into $\beta(X')$ such that:

1) $\phi(X')$ is dense in $\beta(X')$.

2) Any bounded continuous real function f on X' has the form $f(x') = F\phi(x')$, where F is a similar function on $\beta(X')$.

By 1) the function F is determined uniquely.

Hence it follows from 2) that any map $f: X' \to X$ determines a map $F: \beta(X') \to X$ uniquely such that $f(x') = F\phi(x')$.

LEMMA 2.1. Two map f_0 and f_1 of a countably compact space X' into a compact space X are uniformly homotopic if and only if they are homotopic.

PROOF. It follows immediately from the definitions that if f_0 and f_1 are uniformly homotopic they are homopic.

Let f_0 and f_1 be homotopic. Then there is a homotopy $h: X' \times I \to X$ such that $h(x', 0) = f_0(x')$, $h(x', 1) = f_1(x')$. For a given index α , \mathfrak{M}_{α} is a covering of the compact space X, hence it has a finite subcovering \mathfrak{U} . Hence, by [3; Lemma 9.1] there exist finite coverings \mathfrak{V} and \mathfrak{W} of X' and I respectively such that $\mathfrak{V} \times \mathfrak{W}$ is a refinement of $h^{-1}(\mathfrak{U})$, where $h^{-1}(\mathfrak{U})$ is a covering made up of all inverse images of elements of \mathfrak{U} under the map h. Hence if $V \in \mathfrak{V}$, $W \in \mathfrak{W}$, there is an element $U \in \mathfrak{U}$ such that $h(V \times W) \subset U$.

Since I is a compact metric space there exists a positive number δ such that if $|t - t'| < \delta$ then t and t' are contained in the same element of \mathfrak{B} . Hence, if $|t - t'| < \delta$, h(x', t) and h(x', t') are two points in the same element of \mathfrak{M}_{α} . Thus, if $x' \in X'$, $|t - t'| < \delta$ then $h(x', t) \in S(h(x', t'), \mathfrak{M}_{\alpha})$ holds good. Therefore f_0 and f_1 are uniformly homotopic. Q.E.D.

LEMMA 2.2. Let f_0 , f_1 be two maps of a completely regular space X' into a compact space X, and let F_0 , F_1 be maps of $\beta(X')$ into X such that $f_i = F_i \phi$ (i = 0, 1). Then f_0 and f_1 are uniformly homotopic if and only if F_0 and F_1 are homotopic.

PROOF. Let F_0 and F_1 be homotopic. Since $\beta(X')$ is compact, by Lemma 2.1, F_0 and F_1 are uniformly homotopic, hence the same is true of f_0 and f_1 .

Next, let f_0 and f_1 be uniformly homotopic. Let g(x', t) be the map of $X' \times I$ into X which gives the uniform homotopy between f_0 and f_1 . For a fixed, t, g(x', t) is a map of X' into X which we call $g_t(x')$ and there is a corresponding map G_t of $\beta(X')$ into X such that $G_t\phi(x') = g_t(x')(x' \in X')$. Defining G(y, t) to be $G_t(y)$ for $y \in \beta(X')$ we have a transformation of $\beta(X') \times I$ into X with $G(y, 0) = F_0(y)$, $G(y, 1) = F_1(y)$. Hence, if we can show that G(y, t) is continuous, F_0 and F_1 are homotopic.

Let (y_0, t_0) be a fixed point of $\beta(X) \times I$, and let M be an arbitrary open set in X which contains the point $G(y_0, t_0)$. Since the uniformity $\{\mathfrak{M}_{\alpha}; \alpha \in \Omega\}$ agrees with the topology of X, there is an index α such that $S(G(y_0, t_0), \mathfrak{M}_{\alpha}) \subset M$ (see [4; § 3. p. 57]).

Now, since every compact space is fully normal [4; Theorem 4. 5, p. 60] there is an index $\beta \in \Omega$ such that $\mathfrak{M}_{\beta}^{**} < \mathfrak{M}_{\sigma}$. Hence we have inclusion relations

H. MIYAZAKI

$$S(G(y_0, t_0), \mathfrak{M}^{**}_{\mathfrak{g}}) \subset S(G(y_0, t_0), \mathfrak{M}_{\mathfrak{g}}) \subset M.$$

Since G_{t_0} is continuous, there is a neighborhood U of y_0 in $\beta(X')$ such that for $y \in U$

$$G_{t_0}(y) \in S(G_{t_0}(y_0), \mathfrak{M}_{\beta}).$$

Since g(x', t) is a uniform homotopy there is a δ -neighborhood W of t_0 such that if $x' \in X'$ and $t \in W$,

 $g_t(x') \in \mathcal{S}(g_{t_0}(x'), \mathfrak{M}_{\beta})$ i. e. $G_t \phi(x') \in \mathcal{S}(G_{t_0} \phi(x'), \mathfrak{M}_{\beta})$.

Now let (y, t) be any point of the neighborhood $U \times W$ of (y_0, t_0) in $\beta(X') \times I$. Since G_t is continuous there is a neighborhood $U_1 \subset U$ of y such that if $y' \in U_1, G_t(y') \in S(G_t(y), \mathfrak{M}_{\theta})$.

But, since $\phi(X')$ is dense in $\beta(X')$, there is a point $x' \in X'$ such that $\phi(x') \in U_1$. Therefore if $y \in U$ and $t \in W$, then, there is a point $y' \in \phi(X')$ such that simultaneously

$$G_{t_0}(y') \in S(G_{t_0}(y_0), \mathfrak{M}_{\beta}), \\ G_t(y') \in S(G_{t_0}(y'), \mathfrak{M}_{\beta}),$$

and

$$G_t(y') \in S(G_o(y), \mathfrak{M}_{\beta})$$

hold good. Hence we get

$$G(y, t) \in S(G(y_0, t_0), \mathfrak{M}^{**}_{\mathcal{B}}) \subset M.$$

Thus it is proved that G is a continuous map.

Q. E. D.

THEOREM 2.3. Let $\mathfrak{B}, \mathfrak{B}'$ be two bundles having the same fibre and group. We assume that the bundle space of \mathfrak{B} is compact and the base space X' of \mathfrak{B}' is completely regular. Let $h_0: \mathfrak{B}' \to \mathfrak{B}$ be a bundle map, and $l, t, h: X' \times I \to X$ be a uniform homotopy of the induced map $h_0: X' \to X$. Then there exists a uniform homotopy $h: \mathfrak{B}' \times I \to \mathfrak{B}$ of the map h_0 whose induced map is \overline{h} , and which is stationary with h.

PROOF. Let $H_0: \beta(X') \to X$ and $\bar{H}: \beta(X') \times I \to X$ be corresponding maps of $\bar{h_0}$ and \bar{h} respectively such that $h_0 = \bar{H_0}\phi$, $\bar{h(x', t)} = H(\phi(x'), t)$. Then \bar{H} is a homotopy of $\bar{H_0}$, i. e. $\bar{H}(y, 0) = \bar{H_0}(y)$ $(y \in \beta(X'))$. Put $\mathfrak{B}'' = \bar{H_0}^{-1}\mathfrak{B}$, and let $H_0: \mathfrak{B}'' \to \mathfrak{B}$ be the induced map.

Let $\widetilde{\phi}: \phi^{-1}\mathfrak{B}'' \to \mathfrak{B}''$ be the induced map. Then $H_0\widetilde{\phi}$ is a bundle map of $\mathfrak{B}'' \to \mathfrak{B}$ and its induced map is $\overline{H}_0\phi = \overline{h}_0$. Therefore, by [1; 10.3], there exists an equivalence $g_0: \phi^{-1}\mathfrak{B}'' \to \overline{h}_0^{-1}\mathfrak{B}$ such that $H_0\widetilde{\phi} = \widetilde{h}_0g_0$, where $\widetilde{h}_0: \overline{h}_0^{-1}\mathfrak{B} \to \mathfrak{B}$ is the induced map. On the other hand, by [1; 10.3], there exists an equivalence $\check{h}_0: \mathfrak{B}' \to \overline{h}_0^{-1}\mathfrak{B}$ such that $h_0 = \widetilde{h}_0\check{h}_0$. A bundle map $\lambda_0: \mathfrak{B}' \to \mathfrak{B}''$ is defined to be $\lambda_0 = \widetilde{\phi}g_0^{-1}\check{h}_0$, and put $\lambda(b', t) = \lambda_0(b') \times t$, then λ is a bundle map of $\mathfrak{B}' \times I$ into $\mathfrak{B}'' \times I$.

Now since the base space $\beta(X')$ of the bundle \mathfrak{B}'' is compact, by the

first covering theorem [1; §11.3], there exists a homotopy $H: \mathfrak{B}'' \times I \to \mathfrak{B}$ of H_0 whese induced homotopy is \overline{H} and H is stationary with \overline{H} .

We put $h = H_{\lambda} : \mathfrak{B}' \times I \rightarrow \mathfrak{B}$. Then h is the desired homotopy. In fact, we obtain

 $h(b', 0) = H_{\lambda}(b', 0) = H(\lambda_0(b'), 0) = H_0\lambda_0(b') = H_0\widetilde{\phi}_{g_0}^{-1}\check{h}_0(b') = \check{h}_0\check{h}_0(b') = h_0(b').$ Hence *h* is a homotopy of h_0 , and since *H* is uniform homotopy by Lemma 2.1, it is easily seen from λ that *h* is a uniform homotopy. The induced map of λ is $\overline{\lambda}(b', t) = (\phi(b'), t)$, and the induced map of *H* is \overline{H} and so the induced map of *H* is $\overline{H\lambda} = \overline{h}$. Thus the proof is completed. Q. E. D.

Using Theorem 2. 3 we can prove the following theorems. But these proof are similar to that of $[1; \S 11.4, \S 11.7]$, and so we shall omit here.

THEOREM 2.4. Let \mathfrak{B} be a bundle with a compact bundle space, and let X' be a completely regular space. If two maps $f, g: X' \to X$ are uniformly homotopic, then induced bundles $f^{-1}\mathfrak{B}$ and $g^{-1}\mathfrak{B}$ are equivalent.

THEOREM 2.5. Let \mathfrak{B} be a bundle with a compact space X as its bundle space, and let X' be a completely regular space. For a given map $f_0: X' \rightarrow \mathfrak{B}$ and given uniform homotopy $\overline{f}: X' \times I \rightarrow X$ of the map $pf_0 = \overline{f}_0$ there exists a uniform homotopy $f: X' \times I \rightarrow B$ of f_0 which covers \overline{f} and f is stationary with \overline{f} .

References

[1] N.E. STEENROD, The topology of fibre bundles. Princeton (1951).

- [2] F. ČECH, On bibompact spaces, Ann. of Math., 38 (1937), 823-844.
- [3] C. H. DOWKER, Mapping theorems for non-compact spaces, Amer. Journ. of Math., 69 (1947), 200-242.

[4] J.W.TUKEY, Convergence and uniformity in topology, Princeton (1940).

TÔHOKU UNIVERSITY.