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1. In this paper, I shall prove simply the following F. Riesz’ fundamental
theorem on subharmonic functions.

TueoreM 1. Let w(z) be a subharmonic function in a domain D on the
z-plane, then there exists a positive mass-distribution w(e) defined for Borel
sets e in D, such that for any bounded domain D, D, which is contained
in D with its boundary,

w(z) = v(z) — f log 1 du(a) (z € D,),
|z —al
D1
where v(z) is harmonic in D, and such ple) is unique.
The main idea of the proof is as follows.
Let z be any point of D and a disc A(p,2):|{ — 2] < p be contained in
D and put

27
(1) Lir,z:u) = ?17;[ w(z +re®)dg (0< 7 < p)
[

Then L(r,z:u) is an increasing convex function of logrz,® so that

rd L(r,z:u)/dr = 0 exists, except at most a countable number of values of
7. We call such a disc A(7,z)a non-exceptional disc. We define the mass p
contained in a non-exceptional disc by

(2) A7, 2)) =

Let e be any set in D. We cover e by at most a countable number of non-
exceptional discs A(7,,2,) and put

=0.

rdL(r,z:u)
dr

(3) p¥(e) = inf X u(A(7,, 2,)).

Then p*(e)is the Carathéodory’s outer measure of e, which is an additive
set function for Borel sets e. The main difficulty of the proof is prove
that for a non-exceptional disc

uA(r, 2)) = p(A(r, 2)) (Lemma 3).
D F RiESZ, Sur les fonctions subharmoniques et leur rapport & la théorie du potentiel
II, Acta Math.,54(1930). G.C.EVANS, On potentials of positive mass I, Trans. Amer.
Math. Soc.,37(1938). T.RADO, Subharmonic functions, Berlin (1937).
2) Rado’s book, p.8.
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Hence for Borel sets e, if we write u(e) instead of u*(e), then (3) becomes

(3" p(e) = inf 2 w(A(7,, 2.)).
If we put
4 u(z) = v(z) — [ log Tzliai dua) (z€ D)),

then we can prove that ©(z) is harmonic in D,.

2. First we shall prove three lemmas.
LemMA 1. Let f(x), fo(x) (n=1,2,-...) be convex functions of x in [a,b],
such that lim fu(x) = f(x). Let %, (a <%, < b) be such a point, that f'(x,),
n->c0
(%) (m=1,2,....) exist, then
Fa(%0)>f" (%0) (n->o0).
Proor. Suppose that lim f,(x)+/"(x)). We may assume that lim f,(x)
n-yoo Nyoo
= «a exists and a=%f(x,), since otherwise, we take a suitable subsequence
from n. If a > f'(x), then f, (%) > a; > f'(%) (n = n,), so that since f,(x) is
convex,
Ful%) — fu%0) = i(x — %) (m < x< D),
hence for n->o, )
1(x) — f(x0) Z (% — %),

so that f'(x,) = «;, which contradicts the hypothesis. Similarly we are lead
to the contradiction, if we suppose that a < f'(x,). Hence f7,(x)>f (x,).

LemMA 2. Let f(x) be a convex function in (a,b) and x%,x, (v =1,2,....)
be points in (a,b), such that x,>x, and f'(xy), f'(x)(v=1,2, -...) exist, then

F(x,)>f (%) (v->o0).
Proor. Suppose that x; >x, > -... > x,>x, then f’(x,) decreases with
v, so that lim /(%) = @ =1(%). If @ > (%), then /(%) > a; > (%) (v = vo),
Voo
so that
) —fln) = alx —x) (x,<x<LDb),
hence for v—>wo,
fx) — f(x) = adx —x) (%< x<b),
so that f'(x,) = «,, which contradicts the hypothesis. Similarly we can prove,
if <2< -0 < 2%.
LemMa 3. In (3), for a non-exceptional disc,
(A7, 2)) = p(A(7, 2)).

Proor. Let z be any point of D. For a sufficiently small p, we
put
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p 3x
(5) u(2) = Au(z,u) = A — f [ u(z + re®)r dr do,
.xzptJ . .
0 0
® uP(e) = Az, ), uf(@) = Az, ud).

Then #{X(z) is subharmonic and has continuous partial derivatives of the
second order and

7) u(2) <uf(2), limud (z) = u(2),
P>0

(8) uP(2) = ulXz) (py < p)®.

We put

Lir,z:u)= —Lf u(z + re'®)de,
27
0
9)
Lr,z:u) = 217 f u® (z + re®)do.
T
0

Then L(r,z:u), L(r,z:u{) are increasing convex functions of log7 and by
(7), (8), )
L(r,z:u®)>L(r,z:u) (p—>0)

by decreasing, so that by Lemma 1, for a non-exceptional 7,

rdL(r,z: u®) rdL(r,z2:u)

0).
(10) ) STEETER (p50)
Since uff)(z) is subharmonic, its Laplacian A# =0, so that for any domain
A < D, whose boundary I' consists of a finite number of analytic curves,
we define the mass w, contained in A by

_ 1 _ 1 [oup

(11) po(A) = Z;ffAudxdy = 9. 15, ds,
A T .

where v is the outer normal of I". Then

(12) He(A) = M = M(A),

where M is a constant independent of p.®

1e(A) is a finitely additive function of a domain. Let e be any set 1n 1.
We cover ¢ by at most a countable number of non-exceptional discs
A(7,, 2,) and put

(13) ui(e) = inf ) uy(A(., 2.)),

then u(e) is the Carathéodory’s outer measure of e, which is an additive set

3) Rado’s book, p. 1.
4> Rado’s book, p.!12.
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functions for Borel sets e. We can prove easily ui(A(7,2)) = p(A(7,2)) for a
non-exceptional disc.

For Borel sets e, we write u,(e) instead of pi(e). In virtue of (12), we
can find p,~>0, such that u, converges to an additive set function p, in the
sense that if the boundary of a Borel set ¢ does not contain p-mass, then
Lo (€)>ple). )

We shall prove that if A(z, z) is a non-exceptional disc, then its boundary
does not contain p-mass.

Now by (10), for a non-exceptional 7,

3)
o (A7, 2)) = EL g& ds
(14) i A
_ rdLl(r,z:u®) v dL(r,z:u)
o e PO

By Lemma 2, for any & >0, we can choose non-exceptional 7,7, (r, < r
< 7;), such that
7. dL(rs,2:u)  rdL(r,z:u)

dr, dr; <é

0=

Hence by (14),
0 é /I’P(A(r% z)) - :uP(A(rI: Z)) < 287

if p< py (). From this we see that the boundary of A(7,z) does not contain
p-mass, so that p(A(7, 2))>u(A(7, 2)), hence by (14),

\ _ rdL(r,z:u)
(15) WA, ) = TEEREL

Let e be any set in D. We cover e by at most a countable number of non-
exceptional discs A(7.,2,) and put

wi(e) = inf X w7, 2,)).
Then for Borel sets ¢, u'(e) = p(e),® so that
(16) ple) = inf 2 w(A(7, 2,)),
especially for a non-exceptional disc,
wA(7, 2)) = inf > w(A(7, 2,)).

Hence the lemma is proved.
REMARK. Since u(e) is defined by (15),(16), we see that u(e) is indepen-
dent of the choice of p,>0, so that uye)>u(e) (p—>0).

5) O.FROSTMAN, Potential d’équlibre et capacité des ensembles, Lund (1935).
6) E.HopF, Ergodentheorie, Berlin (1935),p.3.
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3. Now we shall prove the theoreri.Let u(e) be defined -by:(2),(3'): Let
D, < D be any, bounded domain, which is contained in D with its boundary.
Since D, is covered by a finite number of non-exceptional discs, w(D;) < oo,
We: put for z € D,

_ =01
an w(z) = — Df tog 1 —dula),
(18) u(2) = v(z) + w(z).

We shall prove that #(z) is harmonic in D,.
We choose p, so small that for any z€ D), a disc [{ —2]<p,is
contained in D and put

27 .
(19) Lir,z:w) = 517;‘[ w(z + re®)dg (0< 7 < py,z€D).
0
Suppose that z = 0 belongs to D;, so that
(20) L(r,0 :w) = 51; f w(re®)dd (0< r < py).
0

Let R = sup |z]| and put
zeDy

(21) Qr) = fd;m(a) 0< 7 < R),
lal<r
then
Qr) = p(A7,0)) (0< 7 < py).
Since )
27

f log |7e® — a| df = 22 Max (logr, log |a]),

0
we have

27
L(r,0:w) = Z—;Idy(a)f log |7€® — a|df = fMa.x (log 7, log| a | )dw(a)
Dy 0 Dy

E R
= f Max (log 7, log £) d(t) = Q(R) log R — f _Li(t)dt,
0 r
or

22) L(r,0:w) = w(Dy)log R — f (Att)—dt.

Since Q(r) is continuous, except at most a countable number of values of
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7, we have for a non-exceptional 7,

1114(5;’0:_@0) = Q(r) = p(A®F,0) (0< 7< py.

Hence except at most a countable number of values of 7, we have from (2),

rdL(r,0:w) _ 7dL(r,0:u)
dr ' dr

(23) = W(A(7, 0)).

Since being convex functions of log7, L(r,0:w), L(r,0:u) are absolutely
continuous functions of 7 in any closed interval contained in (0, p,) and their
derivatives coincide almost everywhere,

L(r,0:v) = L(r,0: u) — L(r,0: w) = const. (0< 7 < py).
Similarly for any z € D,,
(24) L(r,z:v)= L(r,z:u) — L(r,2:w) = const. = a(z) (0< 7 < py).
Let

1

zp*

P 27
Ay(z:u) = f f uz+ re®)rdrdd (0< 7 < py),
0 0

then
2 P
Alz:u)= Ff L(r,z:u)rdr,
0

so that by (24),

(25) Az,v)= Ap(z:u) — Ax(z:w) = a(z) (0< p < py).

Since #(z), w(z) are subharmonic, lir{)l Ay(z:u) = u(z), ling Az:w) = w(z),
p= P>

so that
lirr‘} Ay(z:v) = u(z) — w(z) = v(2),
P>

hence by (25),
(26) v(z)= Axz:v) (0< p< py).

Since Ay(z:v) and hence #(z) is a continuous function of z, we see from
(26), that »(z) is harmonic in D,.
Next we shall prove the uniqueness of w. Suppose that -

1
lz— al

1
— a|

@7 w(z) = vy(z) — f log du,(a).

Dy

du(a) = vyz) — f log A
Dy

If we put v,(2) — v(2) = v(2), ws — w1 = p, then

> wD= - f log l?i—al dya)

Dy

is harmonic in D,. We put
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Qr) = fdm(a) (z=1,2),

laj<r

Qr) = fdw(a) = QA7) = Q(r) 0<7< ppy).
l2] <»
Suppose that z = 0 belongs to D;, then from (28), we have as before

2%

R
@) w0= L [ orevydo= pD)log R - f U g 0<r<po.
0 e

Since Q(r) is continuous, except at most a countable number of values of
7, we have for a non-exceptional r, by differentiating the both sides of (29),
Qr) =0, () = Q7), or

MI(A(77 0)) = F’Z(A(rﬁ 0))-
Similarly

(30) M](A(?’, Z)) = /-bz(A(ry Z)) (2.' S Dl)
except at most a countable number of values of 7.

Let ¢ be any set in D,.. We cover e by at most a countable number of
non-exceptional discs A(7,, 2z,) and put

wile) = inf > piA (7, 2,)) (5= 1,2).

Then for Borel sets ¢, u(e) = ui(e) (i = 1,2), so that by (30), m(e) = ue)
for Borel sets e, which proves the uniqueness of .

ReMArRk. From (22),(23), we see that »dL(r,0: u)/dr exists, when and
only when there is no mass on |z| = 7 and »dL(r,0:u)/dr is equal to the
mass contained in |z] < 7 and (»dL(7, 0:u)/dr) — (r dL(r,0:u)/dr) is equal
to the mass contained on |z| = 7. ’

4. In the above, we assumed that D is a schlicht domain, but if D
is a domain on a Riemann surface, we can prove similarly the following
theorem.

THEOREM 2. Let u(z) be a subharmonic function in a domain D, then
there exists a positive mass-distrvibution u(e) in D, such thal for any compact
domain D, < D, which is contairied in D with its boundary,

31 w2 =02~ [oz,0)dua@) €Dy

where v(z) is harmonic in D7 and ¢(2,a) is the Green’s function of D with a
as its pole, and such p(e) is unique.

If f 9(2, a) du(a)==o, then — f 9(2, @) du(a) is subharmonic in D and we
D

D
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can take D; = D in (31), such that

ua) = o)~ [oe.@)dua) (€ D)
D
where #(z) is harmonic in D.
Since g(z,a) >0, u(z) < v(2) in D, Hence there exists a harmonic majorant
of u(z) in D. Conversely, if there exists a harmonic function A(z) in D, such
that :

(32)  w(z) < h(z) in D,

then we shall prove that f 9(2, @) du(a) == .
D
Let u(z,) = — . We approximate D by a sequence of compact domains
D,cD,<....< Dy> D, such that z, € D, D, < D,, and the boundary I%
of D, consists of a finite number of analytic Jordan curves and let gi(z, 2y
be the Green’s function of D,, with 2, as its pole. By (31),

(33) u(2) = v(2) — f 9(z,a)dp(a) (z € Dy),

Dy

where 2,(2) is harmonic in D,.
Let I'; be the niveau curve: gx(2, 2,) = 8 > 0. Since I'; consists of a finite
number of analytic Jordan curves, #(z) is integrable on I\, hence

L f uz) 22822 g (),
27 J, ov
k

1 9 9x(2, 2) _ _ i[ 2 g:(2, 20) f
5 f u(2) o ds = vy(2)) o) oy 2 ( 9(2, a)d/w(a))ds,

T Ty Dy
where v is the outer normal of I';. Since u(z) < k(z) on TIY,

v(26) — %flzl’é%ﬂ(fg(z, a) du(a) )ds
Tk

Dy

o 1 (2, %)
2912, 2 -
= g./;lh(Z) —a—y— ds = h(ZO).

Let D be the domain bounded by I;, then if @ € D, — Dy,

(35) zi f o(z, @) 2IE2). s - 4z, a).
7 ov

Since the right hand side of (35) is a continuous function of a, (35) holds if

7> Rado’s book, p.5.
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alies on I - _
If a € D;, then since gi(z, @) = & on I'; and ¢(z, @) — g(2, @) + & is harmonic
in D;,

27

L[ oaa) 2utn g L f(g(z, a) — gu(z, @) + 8) 29L& g
ov 2 Y, v
(36) - "

= g(2e, @) — gx(20, @) + 0.
Since D, = D, + (D, — D;), we have by (34), (35),

e = [oeo @)dui@) + [ azo. o) duta) < iz + 03,

Dy Dy,

so that for & > 0,

(37) wz = [ ota @) diia) + f 020, @) disa) S Tzy).
Dy, Dy

Since

w(20) = vi(ze) — f o2 @) du(a),

Dy
we have from (37),

f IR0, a)du(a) < h(zy) — u(zy) (B=1,2,....),
Dy
so that for »= 1,2, ....

fyk-w (20, @) du(a) = f Jr+20, @) dp(a) < B(2)) — u(2,),

Dy, Dk 4y
hence for » - oo,

ot s na - wa,
Dy
and for &> oo,

fg(z, a)dp (@) < h(zy) — u(zp) < oo. q.e.d.

Hence we have proved :

THEOREM 3.8 Let u(z) be subharmonic in a domain D, then the necessary
and sufficient condition that u(z) can be expressed in the form:

u(z) = v(z) — f oz, a)dp(a) (z € D)

D

8) F.RIEsz, l.c. 1). Rado’s book, p. 45.
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is that there exists a harmonic majorant of u(z) in D, where v(z) is- harmonic.
tn D and 9(z,a) 1s the Green’s function of D.

It can be proved easily that »(z) is the least harmonic majorant of #(2).
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