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1. In this paper, I shall prove simply the following F. Riesz' fundamental
theorem on subharmonic functions. x>

THEOREM 1. Let u(z) be a subharmonic function in a domain D on the
z-plane, then there exists a positive mass-distribution μ{e) defined for Bore!
sets e in D, such that for any bounded domain Όx c D, which is contained
in D with its boundary,

u(z) = v(z) - [log . X . dμia) (z 6 A),
J \z—a\

where v(z) is harmonic in DL and such μie) is unique.
The main idea of the proof is as follows.
Let z be any point of D and a disc Δ(p, z): | ζ — z \ < p be contained in

D and put

(1) L(r, z:u)= ~ [ u(z + re»)dθ (0 < r < p).
o

Then L(r, z-.u) is an increasing convex function of log r, 2> so that
rdL(r,z:u)/dr>0 exists, except at most a countable number of values of
r. We call such a disc Δ(r, z) a non-exceptional disc. We define the mass μ
contained in a non-exceptional disc by

(2) MΔ(r)2))='-^^;>0.

Let e be any set in D. We cover e by at most a countable number of non-
exceptional discs Δ(n, zv) and put

(3) /*•(*)= i n f 2 ^ Δ ( r w ^ ) ) .
V

Then μ*(e) is the Caratheodory's outer measure of e, which is an additive
set function for Borel sets e. The main difficulty of the proof is prove
that for a non-exceptional disc

, z)) = μ(Δ(r, z)) (Lemma 3).

1) F. RIESZ, Sur les functions subharmoniques et leur rapport a la theorie du potentiel
II, Acta Math. ,54( 1930). G.C. EVANS, On potentials of positive mass I, Trans. Amer.
Math. Soc. ,37(1938). T. RADO, Subharmonic functions, Berlin (1937).

2) Rado's book, p. 8.
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Hence for Borel sets e, if we write μ(e) instead of μ*(e), then (3) becomes

(3') M*)=inf2/<Δ(n,2v)).
V

If we put

(4) u(z) = v{z) - flog — — - dμ(a) (z e Dι),

then we can prove that v(z) is harmonic in DΊ.

2. First we shall prove three lemmas.

LEMMA 1. Let f(x), fn(x) (n = 1,2, ) be convex functions of x in [_a, bjy

such that lim fn{x) = f(x). Let x0 (a <.x0 < b) be such a point, that f'(x0),

fn(xQ) (n = 1.2, ) exist, then

/n(*θ)->/'(*θ) (W->OO).

PROOF. Suppose that lim fήζxoi^f'ixo)- We may assume that lim fn(x0)

= α exists and cc^f(xo)} since otherwise, we take a suitable subsequence
from n. If a >f'(xo\ then /Λ(Λ:0) > aλ > f'(x0) (n ̂  «b), so that since /„(#) is
convex,

ΛW - A(ΛTO) ̂  aΎ(x - ΛΓO) (̂ o < x < b\

hence for w->oo,

f(x) - f(Xo) ^ OLι(X - Xo),

so that /YΛTO) ̂  Qd, which contradicts the hypothesis. Similarly we are lead
to the contradiction, if we suppose that a < f'{x0). Hence /ή(#o)->/'(#o)

LEMMA 2. Let f(x) be a convex function hi (a, b) and x0, xv {v = 1, 2, )
&£ points in (a,b), such that xv-^xQ and f'(x0), f\xv){v~ 1,2, ) ^Λ:/sί3 then

f'(xv)->f'(Xo) (v->oo).

PROOF. Suppose that #! > #2 > . . > ̂ ->AT0, then /'(Λμ) decreases with

v, so that \ϊmf(xv) = α >f\xQ). If ̂  >//(ΛΓ0), then /'(x) > α τ >/r(Λ;o) (i/ ̂  p0),

so that

/(Λ:) - f{xv) > Λ3(Λ: - ΛΓ̂) {xv<x< b),

hence for z>->oo,

f{x) -f(x0) > ατ(Λr - Xo) (Xo < x < b\

so that f'(x0) ^ 0Llt which contradicts the hypothesis. Similarly we can prove,
if xτ < x2 < < xv->x0.

LEMMA 3. In (3), for a non-exceptional disc,

μ(A(r,z))^ μ(A(r,z)).

PROOF. Let z be any point of D, For a sufficiently small p, we
put
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(5) «J»(β) = Af(z, u) = -*- / / u(z + reΛ)r dr dθ,

0 0

Then «p

3)(2) is subharmonic and has continuous partial derivatives of the

second order and

(7) uiz) ^uf{z\ Km ««>(*)=«(*),

We put

L(r, z:u)~ y- ί u(z + rew)dθ,

o
(9)

L{r, z :««') = ~ ί uf> (z + rem)dθ.
o

Then L(r, z: u), L(r, z : u^) are increasing convex functions of log r and by

(7), (8),

by decreasing, so that by Lemma 1, for a non-exceptional rt

(10) rdUr^.u^ ^rdL{r,z:u)
dr dr

Since u^\z) is subharmonic, its Laplacian Δu ̂ > 0, so that for any domain

Δ cz D, whose boundary Γ consists of a finite number of analytic curves,

we define the mass μ? contained in Δ by

(11) M Δ ) = ^ / / Δ i , dxdy =

where v is the outer normal of Γ. Then

(12) /χp(Δ)^M= M(Δ),

where M i s a constant independent of p. 4 )

μP(Δ) is a finitely additive function of a domain. Let e be any set m u.
We cover e by at most a countable number of non-exceptional discs
Δ(rv, zv) and put

(13) ^e) *

then μp(e) is the Caratheodory's outer measure of e, which is an additive set

3) Rado's book, p. 11.
4) Rado's book, p. 12.
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functions for Borel sets e. We can prove easily μ*p(Δ(r,z)) = μP(Δ{r,z)) for a

non-exceptional disc.

For Borel sets e, we write μp(e) instead of μ*p(e). In virtue of (12), we

can find ρv->0, such that μ?v converges to an additive set function μ, in the

sense that if the boundary of a Borel set e does not contain μ-mass, then

We shall prove that if Δ(r, z) is a non-exceptional disc, then its boundary
does not contain yn-mass.

Now by (10), for a non-exceptional r,

= :uf) rdL(r,z:u)
dr dr

By Lemma 2, for any 8 > 0, we can choose non-exceptional rτ, r2 {rλ < r
< r2), such that

U ^ dr; dϊl ~ < 6'

Hence by (14),

0 ^ μP(Δ(r2, z)) - μμ(Δ(rlt z)) < 28,

if p < po (8). From this we see that the boundary of Δ(r, z) does not contain
//.-mass, so that μP(Δ(r, z))-ϊμ(Δ(r, z)), hence by (14),

/ 1 Γ , / A / xx r dL(r,z :
(15) KΔ(r,z))= ^

Let e be any set in D. We cover e by at most a countable number of non-
exceptional discs Δ(rv,zv) and put

Then for Borel sets e, μ*(e) ~ μ{e),6) so that

(16) ιAfi) = inf 2 MΔ(τv, zv)\
v

especially for a non-exceptional disc,

μ{A(r, z)) = inf 2/»(Δ(n, 2,)).

Hence the lemma is proved.
REMARK. Since μ(e) is defined by (15), (16), we see that μ{e) is indepen-

dent of the choice of ρv->0, so that μp(e)->μ(e) (ρ->0).

5) O.FROSTMAN, Potential d'equlibre et capacite des ensembles, Lund (1935>
6̂  E.HOPF, Ergodentheorie, Berlin C1935),p.3.
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3. Now we shall prove the theorem. Let' μίβ) be- defined by (2), (3')/ Let
A ci D be any, bounded domain, which is contained in D with its boundary.
Since Dx is covered by a finite number of non-exceptional discs, μ{Dλ)< oo.

We put for z ζ Dh

(17) w(z) = - Jlog ^ ~

(18) u(z) = v{z) + w(z).

We shall prove that v(z) is harmonic in D±.
We choose ρ0 so small that for any z 6 Dh a disc \ζ — z\ < ρQ is

contained in D and put

1
(19) L(r,z;zv)= jπ

0

Suppose t h a t 2 = 0 belongs t o Dλ, so t h a t

(20) L(r, 0 :w;) = -^- f w(reίθ) dθ (0 < r < P o ) .
o

Let R- sup 1̂1 and put
ZeΏi

(21) ίl(r) = Jdμ(a) (0 < r < R),

\a\<r

then

ίl(r)-^(Δ(r,0)) (0 < r < P o).

Since

I log \reiθ — a\ dθ = 2τr Max (logr, log |# |),
o

we have

/

2iC r

dμ{ά) \ log \reίθ — a\dθ = / Max (log r, log| « \)dμ{a)
J J

D\ 0 2>i

/

B R

Max (log r, log t) dΩ{t) = Ω(l?) log /? - j -^^rff,
0 r

or

/
R

MfLdt
r

Since ίl(r) is continuous, except at most a countable number of values of
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r, we have for a non-exceptional r,

r< P o ) .

Hence except at most a countable number of values of r, we have from (2),

( 2 3 ) r<g(r,0:«>) = r<g(r,0:«) =

Since being convex functions of log r, L(r, 0: w), L(r, 0 : u) are absolutely
continuous functions of r in any closed interval contained in (0, ρ0) and their
derivatives coincide almost everywhere,

L(r, 0 : v) = £(r, 0 : «) - £(r, 0 : M;) = const. (0 < r < p0).

Similarly for any z € D1}

(24) L(r, z:v)= L(r, z : u ) ~ L(r, z:w)= c o n s t . - α(z) (0 < r < P o ) .

L e t

4 ( 2 ^ ) = Λ ί ί u(z + reίθ)rdrdθ (0<r<p0),
7ΓP J Jπp

0 0
then

2 ΓP

p(«:«)= — J L{r,z:u)rdr,P o
so that by (24),

(25) Ap(z, v) = Ap(z: u) — Ap(z : w) — #(£) (0 < p < p0).

Since #(2), w(z) are subharmonic, lim Ap(2 : u) = «(2), lim Λp(2: zι;) = ^(2),
P-7O " p->0

so that

lim Ap(z : v) = u{z) ~ w{z) = f (2),

hence by (25),

(26) v{z) = AP(2 ϋ) (0 < p < p0).
Since AP(z: v) and hence υ(z) is a continuous function of z, we see from
(26), that v(z) is harmonic in D^

Next we shall prove the uniqueness of μ. Suppose that

(27) u(z) = ^(2) - I log -—-—- dμλ{a) = f;a(2) - (log -—-—-
J \z — a\ J \z — a\

If we put Vι(z) — v2(z) = v(z), μ> — μι^ μ, then

(28) υ(z) = - Γ log p - 1 — τ dμ{ά)
J \Z Q, I

is harmonic in Dλ. We put
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= Jdμi(a) (ι.= 1,2),
||α|<r

n(r) = Jrf/*(β) « ila(r) - Ωx(r) (0 < r < p0).

Suppose that 2 = 0 belongs to Dlt then from (28), we have as before

r2* / R

(29) ι<0) = ~ I v(re") dθ = /* (A) log Λ - J ^ Λ (0 < r < p0).

Since Π(r) is continuous, except at most a countable number of values of
r, we have for a non-exceptional r, by differentiating the both sides of (29),
Ω(r) = 0, ίl^r) = Ω2(r), or

Similarly

(30) /^(Δίr, z)) =

except at most a countable number of values of r.
Let ^ be any set in Dj. We cover e by at most a countable number of

non-exceptional discs Δ(rv, zv) and put

μ\(e) - inf 2 /*ι(Δ (rv, zv)) (ι = 1,2).

Then for Borel sets e, /*j(β) = μι{e) (i- 1,2), so that by (30),
for Borel sets e, which proves the uniqueness of μ.

REMARK. From (22), (23), we see that rdL(r, 0: u)/dr exists, when and
only when there is no mass on \z\ = r and rdL(r,Q:u)/dr is equal to the
mass contained in ]z\ < r and (r dL(r, 0:u)/dr) — (rdL(r,0 :u)/dr) is equal

+ -

to the mass contained on \z\ = r.
4. In the above, we assumed that D is a schlicht domain, but if D

is a domain on a Riemann surface, we can prove similarly the following
theorem.

THEOREM 2. Let u(z) be a subharmonic function in a domain D, then
there exists a positive mass-distribution μ(e) in D, such that for any compact
domain DΊ a D, which is contained in D with its boundary,

(31) u{z) = υ(z) - jg(z, a) dμ(a) (z e A)

where viz) is harmonic in D{ and g(z, a) is the Green's function of D with a
as its pole, and such μ(e) is unique.

If I g(z, a) dμ(a)φcχ>, then — I g(z, a) dμ(a) is subharmonic in D andwe
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can take Dx = D in (31), such that

u(z) = v{z) - \g{z, a) dμ(a) (z € D\
D

where v(z) is harmonic in D.
Since ^(0,#) > 0, u(z) < v(z) in D. Hence there exists a harmonic majorant

of &(z) in D. Conversely, if there exists a harmonic function h(z) in D, such
that
(32) u{z)^.h{z) in D,

then we shall prove that I g(z, a) dμ(a) φ 00.
D

Let u(z0) Φ — 00. We approximate D by a sequence of compact domains
DLCZDZCZ — c: Dfe -> A such that 20 € A, 5fc cz Dfc+1 and the boundary Γfc

of Dfc consists of a finite number of analytic Jordan curves and let gjc(z,zoy
be the Green's function of Dk, with z0 as its pole. By (31),

u(z) = z;w(2) - jg(z, a) dμ(a) (z(33)

where vk{z) is harmonic in Dfc.
Let Γ^ be the niveau curve: g^z, z0) = δ > 0. Since Γĵ  consists of a finite

number of analytic Jordan curves, u(z) is integrable on iγ>, hence

where z/ is the outer normal of Γ£. Since u(z) ^ h(z) on Γ̂ ,

(34)

Let Dk be the domain bounded by Γ'k, then if a € Dk — D*,

(35) ^ J ^ <7(z, a) <"***>**> ds = flτ(«0,«).

Since the right hand side of (35) is a continuous function of α, (35) holds if

7) Rado's book, p. 5.
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a lies on Γ'k.
If a € D'k, then since gk(z, a) = δ on Γ^ and g(z, a) — g^z, a) + 8 is harmonic

in D;,

(36) 2π

h- I 9(z, a) 3g^z>z°) ds = -£- I (g(z,a) - gk(z,a) + 8) Bg^z>Zo) ds

Since D& = Dk + (Dfc — D^)y we have by (34), (35),

/

r
g(z0, a) dμ{a) -f / gk(z0, a) dμ{a) <; h(z0) + 0(8),

so that for 8 -> 0,

(37) #fc(2o) — i (̂̂ o? ά) dμ(a) + j gjc(ZQ, a)

J J
Since

u{zQ) = z;fc(20) - I g(z0, a) dμ{a),

we have from (37),

Γ
J = o

so that for v = 1,2,

Γ Γ
/ #A +V (20,«) dμ(a) S I gk+v{Zo, a) dμiμ) <; h(z0) — «(

J J

hence for z/ -> oo,

Γ

J o, = o

and for k -> oo,

I #(2, #)£?//, («) ^ /^(20) — £ί(2o) ^ °°- Q e. d.
D

Hence we have proved :
THEOREM 3.8) Let u(z) be subharmonic in a domain D, then the necessary

and sufficient condition that u(z) can be expressed in the form:

u(z) = v{z) - jg{z, a) dμ{a) (z € D)

8) F.RIESZ, I.e. I). Rado's book,p. 45.
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is that there exists a harmonic majorant of u{z) in D, where v{z) is harmonic,
in D and gfaa) ts the Green's function of D.

It can be proved easily that v{z) is the least harmonic majorant of u(z)m
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