RIEMANN-CESÀRO METHODS OF SUMMABILITY

Hiroshi Hirokawa

(Received March 3, 1955; in revised form, September 28, 1955)

1. Introduction. In the theory of trigonometrical series, Riemann introduced the well known methods $(R, 1),\left(R_{1}\right),(R, 2)$ and $\left(R_{2}\right)$ for evaluation of series. These methods have been generalized to the following forms. Throughout this paper, p denotes a positive integer. A series $\sum_{k=1}^{\infty} a_{k}$ is said to be evaluable (R, p) to s if the series in

$$
f_{p}(t)=\sum_{k=1}^{\infty}\left(\frac{\sin k t}{k t}\right)^{p} a_{k}
$$

converges in some interval $0<t<t_{b}$ and $f_{p}(t) \rightarrow s$ as $t \rightarrow 0$. A series $\sum_{k=1}^{\infty} a_{k}$ is said to be evaluable $\left(R_{p}\right)$ to s if the series in

$$
F_{p}(t)=C_{p}^{-1} t \sum_{k=1}^{\infty}\left(\frac{\sin k t}{k t}\right)^{p} s_{k},
$$

where

$$
C_{p}=\int_{0}^{\infty} u^{-p}(\sin u)^{p} d u
$$

converges in some interval $0<t<t_{0}$ and $F_{p}(t) \rightarrow s$ as $t \rightarrow 0$. It is well known that (R, p) and (R_{p}) are regular when $p \geqq 2$, while ($R, 1$) and (R_{1}) are not regular.

It is the purpose of this paper to obtain information about these Riemann methods and generalizations of them by studying transformations which involve simultaneously the Riemann and Cesàro transformations of series. In terms of standard notation used by Zygmund [8, p. 42] and others, the Cesàro transform of order α of $\sum_{k=1}^{\infty} a_{k}$ is defined by

$$
\begin{equation*}
\sigma_{n}^{\alpha}=s_{n}^{\alpha} / A_{n}^{\alpha} \tag{1.1}
\end{equation*}
$$

where s_{n}^{α} and A_{d}^{α} being given by the relations

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}^{\alpha} x^{n}=(1-x)^{-\alpha-1} \quad \text { and } \quad \sum_{n=0}^{\infty} s_{n}^{\alpha} x^{n}=\frac{\sum_{n=0}^{\infty} s_{n} x^{n}}{(1-x)^{\alpha}}=\frac{\sum_{n=0}^{\infty} a_{n} x^{n}}{(1-x)^{\alpha+1}} \tag{1.2}
\end{equation*}
$$

If we put $\alpha=-1$, for example, in (1.2), then we have $A_{0}^{-1}=1, A_{n}^{-1}$ $=0(n=1,2, \ldots)$ and $s_{n}^{-1}=a_{n}(n=0,1,2, \ldots)$: hence σ_{n}^{-1} has not meaning when $n=1,2, \ldots$, while s_{n}^{-1} has meaning. It is well known that $A_{n}^{\alpha} \sim$ $n^{\alpha} / \Gamma(\alpha+1), \alpha \neq-1,-2, \ldots$. A series is said to be evaluable (C, α) to s if $\sigma_{n}^{\alpha} \rightarrow s$ as $n \rightarrow \infty$, and to be evaluable $|C, \alpha|$ to s if $\Sigma\left|\sigma_{n}^{\alpha}-\sigma_{n+1}^{\alpha}\right|$ is
convergent and $\sigma_{n}^{\alpha} \rightarrow s$ as $n \rightarrow \infty$. In the following, let α be a real number, not necessarily an integer, for which $\alpha \geqq-1$. In formulating our defini tion, we use the Cesàro sums s_{n}^{α} instead of the Cesàro means σ_{n}^{α}, which is meaningless when $\alpha=-1$.

A series $\sum_{k=1}^{\infty} a_{k}$ will be said to be evaluable to s by the Riemann-Cesàro method of order p and index α, or, briefly evaluable (R, p, α) to s, if the series in

$$
\begin{equation*}
\sigma(p, \alpha, t)=C_{p, \alpha}^{-1} t^{\alpha+1} \sum_{k=1}^{\infty}\left(\frac{\sin k t}{k t}\right)^{p} s_{k}^{\alpha}, \tag{1.3}
\end{equation*}
$$

where

$$
C_{p, \alpha}=\left\{\begin{array}{lr}
\frac{1}{\Gamma(\alpha+\overline{1})} \int_{0}^{\infty} u^{\alpha-p}(\sin u)^{p} d u & (-1<\alpha<p-1) \tag{1.4}\\
\pi / 2 & (\alpha=0, p=1) \\
1 & (\alpha=-1),
\end{array}\right.
$$

converges in some interval $0<t<t_{0}$ and $\sigma(p, \alpha, t) \rightarrow s$ as $t \rightarrow 0$.
Under this definition, the ($R, p,-1$)-means $\sigma(p,-1, t)$ are identical with the (R, p)-means $f_{p}(t)$, by $s_{n}^{-1}=a_{n}$ and the $(R, p, 0)$-means $\sigma(p, 0, t)$ are identical with the $\left(R_{p}\right)$-means $F_{p}(t)$, by $s_{n}^{0}=s_{n}$. Therefore, the $(R, p,-1)$ method and the ($R, p, 0$) method are reduced to the (R, p) method and the (R_{p}) method, respectively. Our main results are the following.

Theorem 1. Let $0<\delta<1$, let $\sum_{k=1}^{\infty} a_{k}$ be evaluable $(C, p-\delta)$ to s and let

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\sigma_{k}^{p-\delta-1}\right|=O(n) . \tag{1.5}
\end{equation*}
$$

Then the series $\sum_{k=1}^{\infty} a_{k}$ is evaluable (R, p, α) to s when $-1 \leqq \alpha<p-\delta-1$.
This result implies that if $0<\delta<1$ and $\sum_{k=1}^{\infty} a_{k}$ is evaluable ($C, p-1-\delta$) to s, then $\sum_{k=1}^{\infty} a_{k}$ is evaluable (R, p, α) to s when $-1 \leqq \alpha<p-\delta-1$. Since convergence implies Cesàro summability of each positive order, we obtain

Corollary 1. The method (R, p, α) is regular when $p \geqq 2$ and $-1 \leqq \alpha<$ $p-1$.

If $p \geqq 2$, then we can put $\alpha=0$ in Theorem 1 and obtain
Corollary 2. Under the conditions of Theorem 1, the series $\sum_{k=1}^{\infty} a_{k}$ is evaluable $\left(R_{p}\right)$ to s when $p \geqq 2$.

This Corollary is due to Obreschkoff [4] who proved that the result holds when $p=1 . \quad(R, p)$ analogue is also due to Obreschkoff [4].

Theorem 2. The $(R, 1, \alpha)$ method is not regular when $-1 \leqq \alpha \leqq 0$.
Theorem 3. If the series $\sum_{k=1}^{\infty} a_{k}$ is evaluable $|C, p|$ to s, it is evaluable (R, p, α) to s when $-1 \leqq \alpha<p-1$ and α is an integer. Further, if the series $\sum_{k=1}^{\infty} a_{k}$ is evaluable $|C, 1|$ to s, it is also evaluable $(R, 1,0)$ to s.

In this Theorem, if we put $\alpha=0$, we have
Corollary 3. If the series is evaluable $|C, p|$ to s, then it is evaluable $\left(R_{p}\right)$ to s.
(R, p) case of this Corollary is due to Obreschkoff [4].
Theorem 4. Suppose that

$$
\begin{equation*}
\sum_{k=n}^{2 n}\left(\left|a_{k}\right|-a_{k}\right)=O(1) \tag{1.6}
\end{equation*}
$$

and the series $\sum_{k=1}^{\infty} a_{i}$ is evaluable to s by the Abel method. Then the series: $\sum_{k=1}^{\infty} a_{i k}$ is evaluable $(R, 1, \alpha)$ to s when $-1 \leqq \alpha \leqq 0$.
($R, 1$) and (\boldsymbol{R}_{1}) cases are due to Szász [6, 7].

Theorem 5. Suppose that

$$
\begin{equation*}
\sum_{k=n}^{2 n}\left(\left|a_{k}\right|-a_{k}\right)=O\left(n^{1-r}\right), \quad 0<r<1, \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n}\left|s_{n}-s\right|=o(n / \log n) \tag{1.8}
\end{equation*}
$$

Then the series $\sum_{k=1}^{\infty} a_{k}$ is evaluable $(R, 1, \alpha)$ to s when $-1 \leqq \alpha \leqq 0$.
In this Theorem we can put $\alpha=0$ and obtain
Corollary 4. Under the conditions of Theorem 5, the series $\sum_{k=1}^{\infty} a_{i v}$ is evaluable (R_{I}) to s .
($R, 1$)-analogue of this Corollary is due to Szász [5].
I take this opportunity of expressing my heartfelt thanks to Professor G. Sunouchi for his kind encouragement and valuable suggestions during the
preparation of this paper. I must express my heartfelt thanks to Professor R.P. Agnew who read the original manuscript and named our summability Riemann-Cesàro summability instead of generalized Riemann summability in the original paper. I must also express my heartfelt thanks to Professor S. Izumi who suggested to me the idea of the proof of Lemma 3 below.
2. Preliminary Lemmas.

Lemma 1. Let $\Delta^{m} \varphi(n t)$ denote the m-th difference of $\varphi(n t)$ with respect to n. Then we have

$$
\begin{equation*}
\Delta^{m} \varphi(n t)=O\left(t^{m-p} / n^{p}\right), \tag{2.1}
\end{equation*}
$$

when m is a non-negative integer and $\varphi(t)=(\sin t / t)^{x}$.
Lemma 2. Let $0<\delta<1$ and let $\boldsymbol{q}_{n} \geqq 0$. Then

$$
\begin{equation*}
\sum_{k=1}^{m} q_{n}=O(m) \tag{2.2}
\end{equation*}
$$

implies

$$
\begin{equation*}
\sum_{n=m}^{\infty} q_{n} / n^{\delta+1}=O\left(m^{-\delta}\right) \tag{2.3}
\end{equation*}
$$

and conversely.
These Lemmas are due to Obreschkoff [4].
Lemma 3. Let $A_{n}^{\alpha}=\binom{n+\alpha}{n}$ and let $-1<\alpha<p-1$. Then

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{n=1}^{\infty} A_{n-1}^{\alpha}\left(\frac{\sin n t}{n t}\right)^{p}=\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} u^{\alpha-p}(\sin u)^{p} d u=C_{p, \alpha} . \tag{2.4}
\end{equation*}
$$

In particular, if $p=1, \alpha=0$, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \sum_{n=1}^{\infty} \frac{\sin n t}{n}=\frac{\pi}{2}=C_{1,0} . \tag{2.5}
\end{equation*}
$$

This Lemma when $p \geqq 2, \alpha=0$ is due to Obreschkoff [4].
Proof. (2.5) is well known. For the proof of (2.4), firstly, we prove

$$
\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{n=1}^{\infty} n^{\alpha}\left(\frac{\sin n t}{n t}\right)^{p}=\Gamma(\alpha+1) C_{p, \alpha}
$$

Let a be an arbitrary positive number and let $m=[a / t]$. Then, we have, by the definition of definite integral,

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{n=1}^{m} n^{\alpha}\left(\frac{\sin n t}{n t}\right)^{p}=\int_{0}^{a} u^{\alpha-p}(\sin u)^{p} d u . \tag{2.6}
\end{equation*}
$$

Since $\alpha<p-1$, we have

$$
\begin{aligned}
\left|t^{\alpha+1} \sum_{n=m+1}^{\infty} n^{\alpha}\left(\frac{\sin n t}{n t}\right)^{p}\right| & \leqq t^{\alpha-p+1} \sum_{n=m}^{\infty} n^{\alpha-p} \\
& =O\left(t^{\alpha-p+1} m^{\alpha-p+1}\right) \\
& =O\left(a^{\alpha-p+1}\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{n=1}^{\infty} n^{\alpha}\left(\frac{\sin n t}{n t}\right)^{p}=\int_{0}^{\tau} u^{\alpha-p}(\sin u)^{p} d u+O\left(a^{\alpha-p+1}\right) \tag{2.7}
\end{equation*}
$$

Since a is arbitrary, if a tends to infinity, we have (2.6).
Next, we shall prove (2.4). Since $A_{n}^{\alpha} \sim n^{\alpha} / \Gamma(\alpha+1)$, we may write

$$
\begin{equation*}
A_{n-1}^{\alpha}=n^{\alpha} / \Gamma(\alpha+1)+\varepsilon_{n} n^{\alpha} \tag{2.8}
\end{equation*}
$$

where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then, we shall prove

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{n=1}^{\infty} \varepsilon_{n} n^{\alpha}\binom{\sin n t}{n t}^{p}=0 \tag{2.9}
\end{equation*}
$$

For each positive number ε, there exists an N such that $\left|\varepsilon_{n}\right|<\varepsilon$ when $n \geqq N$. Since $\alpha>-1$, we have, for fixed N,

$$
\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{n=1}^{N-1} \varepsilon_{n} n^{\alpha}\left(\frac{\sin n t}{n t}\right)^{p}=0
$$

Using the method analogous to the one which we obtained (2.6),

$$
\begin{aligned}
& \limsup _{t \rightarrow 0}\left|t^{\alpha+1} \sum_{n=N}^{\infty} \varepsilon_{n} n^{\alpha}\left(\frac{\sin n t}{n t}\right)^{p}\right| \\
& \quad \leqq \varepsilon \limsup _{t \rightarrow 0} t^{\alpha+1} \sum_{n=N}^{\infty} n^{\alpha}\left|\frac{\sin n t}{n t}\right|^{p} \\
& \quad \leqq \varepsilon \lim _{t \rightarrow 0} \sup t^{\alpha+1} \sum_{n=1}^{\infty} n^{\alpha}\left|\frac{\sin n t}{n t}\right|^{p} \\
& \quad=\varepsilon \int_{0}^{\infty} u^{\alpha-p}|\sin u|^{p} d u=\varepsilon K
\end{aligned}
$$

say. Since ε is arbitrary, we obtain (2.9) and, using (2.6), (2.8) and (2.9), we obtain (2.4).

Lemma 4. If $-1 \leqq \alpha<p-\delta-1,0<\delta<1$, then we have

$$
\begin{equation*}
G_{k}(t)=t^{\alpha+1} \sum_{n=k}^{\infty} A_{n-k}^{\alpha+\delta-p}\left(\frac{\sin n t}{n t}\right)^{p}=O\left(k^{-p} t^{-\delta}\right) \tag{2.10}
\end{equation*}
$$

Proof. Let us write

$$
G_{k i}(t)=t^{\alpha+1}\left(\sum_{n=k}^{k+\rho}+\sum_{n=k+\rho+1}^{\infty}\right) A_{n-k}^{\alpha+\delta-p}\left(\frac{\sin n t}{n t}\right)^{p}=U(t)+V(t)
$$

where $\rho=\left[t^{-1}\right]$. Since $p-\alpha-\delta>1$, using $(\sin n t / n t)^{p}=O(n t)^{-p}$, we have

$$
\begin{align*}
V(t) & =t^{\alpha+1} \sum_{n=k+\rho+1}^{\infty} A_{n-k}^{\alpha+\delta-p}\left(\frac{\sin n t}{n t}\right)^{p} \\
& =O\left((k+\rho+1)^{-p} t^{\alpha-p+1} \sum_{n=k+\rho+1}^{\infty}(n-k)^{\alpha+\delta-p}\right) \tag{2.11}\\
& =O\left(k^{-p} t^{\alpha-p+1} \rho^{\alpha+\delta-p+1}\right) \\
& =O\left(k^{-p} t^{-\delta}\right)
\end{align*}
$$

Putting $\varphi(t)=(\sin t / t)^{p}$, by the repeated use of Abel's transformation p-times, we have

$$
\begin{aligned}
U(t) & \left.=t^{\alpha+1} \sum_{n=0}^{\rho-p} A_{n}^{\alpha+\delta} \Delta^{p} \varphi \overline{(n+k} t\right)+t^{\alpha+1} \sum_{i=0}^{p-1} A_{\rho-i}^{\alpha+\delta+i-p+1} \Delta^{i} \varphi(\overline{\rho+k-i} t) \\
& =W(t)+\sum_{i=0}^{p-1} W_{i}(t),
\end{aligned}
$$

say. Then, using Lemma 1 , we have

$$
\left.\begin{array}{rl}
W_{i}(t) & =t^{\alpha+1} A_{\rho}^{\alpha+i}+i-p+1 \\
\alpha \tag{2.12}\\
i
\end{array}\right)(\overline{\rho+k-i})
$$

when $i=0,1,2, \ldots, p-1$. Again, using Lemma 1, we have

$$
\begin{align*}
W(t) & \left.=t^{\alpha+1} \sum_{n=0}^{\rho-p} A_{n}^{\alpha+\delta} \Delta^{p} \varphi \overline{(n+k} t\right) \\
& =O\left(t^{\alpha+1} \sum_{n=0}^{\rho-p} n^{\alpha+\delta}(n+k)^{-p}\right) \tag{2.13}\\
& =O\left(k^{-p} t^{+1} \rho^{\alpha+\delta+1}\right) \\
& =O\left(k^{-p} t^{-\delta}\right) .
\end{align*}
$$

Summing up (2.11), (2.12) and (2.13), we have (2.10).
Lemma 5. Under the conditions of Theorem 4, the series $\sum_{k=1}^{\infty} a_{k}$ is evaluable $(C, 1)$ to s and $s_{n}=O(1)$ and further

$$
\begin{equation*}
\sum_{k=n}^{\infty}\left|a_{k}\right| / k=O\left(n^{-1}\right) . \tag{2.14}
\end{equation*}
$$

Lemma 6. If (1.7) and (1.8) hold, then we have

$$
\begin{equation*}
s_{n}=O\left(n^{1-r}\right) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=n}^{\infty}\left|a_{k}\right| / k=O\left(n^{-r}\right) \tag{2.16}
\end{equation*}
$$

Lemmas 5 and 6 are due to Szász [5].
Lemma 7. Let $0 \leqq \delta \leqq 1$. Then, we have

$$
\begin{equation*}
H_{k}(t)=t^{-\delta} \sum_{n=k}^{\infty} A_{n-k}^{-\delta} \frac{\sin n t}{n}=O\left(k^{-1}\right) \tag{2.17}
\end{equation*}
$$

Proof. Since (2.17) when $\delta=0,1$ are obvious, we shall consider the case $0<\delta<1$. Let us write

$$
t^{-\delta} \sum_{n=k}^{\infty} A_{n-k}^{-\delta-1} \frac{\sin n t}{n}=t^{-\delta}\left(\sum_{n=k}^{\rho+k}+\sum_{n=p+k+1}^{\infty}\right) A_{n-k}^{-\delta-1} \frac{\sin n t}{n}=U(t)+V(t),
$$

where $\rho=\left[t^{-1}\right]$. Then, we have, by the Abel transformation,

$$
\begin{aligned}
U(t) & =t^{-\delta} \sum_{n=k}^{k+\rho-1} A_{n-k}^{-\delta}\left(\frac{\sin n t}{n}-\frac{\sin (n+1) t}{n+1}\right)+t^{-\delta} A_{\rho}^{-\delta} \frac{\sin (k+\rho) t}{k+\rho} \\
& =O\left(t^{-\delta} \cdot k^{-1} t \cdot \sum_{n=k}^{k+\rho-1} A_{n-k}^{-\delta}\right)+O\left(t^{-\delta} \rho^{-\delta}(k+\rho)^{-1}\right) \\
& =O\left(k^{-1} t^{-\delta+1} \rho^{-\delta+1}\right)+O\left(k^{-1}\right) \\
& =O\left(k^{-1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
V(t) & =t^{-\delta} \sum_{n=k+\rho+1}^{\infty} A_{n-k}^{-\delta-1} \frac{\sin n t}{n} \\
& =O\left(t^{-\delta}(k+\rho)^{-1}(\rho+1)^{-\delta}\right) \\
& =O\left(k^{-1}\right) .
\end{aligned}
$$

Thus we have (2.17).
Lemma 8. Let $0 \leqq \delta \leqq 1$. Then we have

$$
\begin{equation*}
\Delta^{\gamma} H_{k i}(t)=O\left(k^{-1} t^{\gamma}\right), \tag{2.18}
\end{equation*}
$$

where γ is a nonnegative integer and $\Delta^{\gamma} H_{k}(t)$ is γ-th difference of $H_{k}(t)$ with respect to k.

Proof. Lemma when $\delta=0,1$ is due to Hirokawa and Sunouchi [3]. Hence, we shall restrict the case $0<\delta<1$. Let us write

$$
\begin{aligned}
\Delta^{\gamma} H_{k}(t) & =\Delta^{\gamma}\left\{t^{-\delta} \sum_{n=0}^{\infty} A_{n}^{-\delta-1} \frac{\sin (n+k) t}{n+k}\right\} \\
& =t^{-\delta} \sum_{n=0}^{\infty} A_{n}^{-\delta-1} \Delta^{\gamma}\left(\frac{\sin (n+k) t}{n+k}\right) \\
& =t^{-\delta}\left(\sum_{n=0}^{\rho}+\sum_{n=p+1}^{\infty}\right) A_{n}^{-\delta-1} \Delta^{\gamma}\left(\frac{\sin (n+k) t}{n+k}\right) \\
& =U(t)+V(t),
\end{aligned}
$$

where $\rho=\left[t^{-1}\right]$. Since $\Delta^{\gamma}(\sin n t / n)=O\left(n^{-1} t^{\gamma}\right)$, we have

$$
\begin{aligned}
U(t) & =t^{-\delta} \sum_{n=0}^{\rho-1} A_{i}^{-\delta} \Delta^{\gamma+1}\left(\frac{\sin (n+k) t}{n+k}\right)+t^{-\delta} A_{\rho}^{-\delta} \Delta^{\gamma}\left(\frac{\sin (\rho+k) t}{\rho+k}\right) \\
& =O\left(t^{-\delta} \cdot k^{-1} t^{\gamma+1} \sum_{n=0}^{\rho-1} A_{n}^{-\delta}\right)+O\left(t \cdot^{-\delta} \rho \cdot \cdot^{-\delta}(\rho+k)^{-1} t^{\gamma}\right) \\
& =O\left(k^{-1} t^{\gamma-\delta+1} \rho^{1-\delta}\right)+O\left(k^{-1} t^{\gamma}\right) \\
& =O\left(k^{-1} t^{\gamma}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
V(t) & =O\left(t^{-\delta} \cdot k^{-1} t^{\gamma} \cdot \sum_{n=\rho+1}^{\infty}\left|A_{n}^{-\delta-1}\right|\right) \\
& =O\left(k^{-1} t^{\gamma-\delta} \rho^{-\delta}\right) \\
& =O\left(k^{-1} t^{\gamma}\right) .
\end{aligned}
$$

Thus, we have the required.
Lemma 9. Let $0 \leqq \delta \leqq 1$. Then, we have

$$
\begin{equation*}
\eta_{m}(t)=\sum_{k=m}^{\infty} H_{k}(t)=O\left(m^{-1} t^{-1}\right) \tag{2.19}
\end{equation*}
$$

Proof. It is known that

$$
\boldsymbol{r}_{m}=\sum_{n=m}^{\infty} \frac{\sin n t}{n}=O\left(m^{-1} t^{-1}\right) .
$$

See, for example, Hardy and Rogosinski [2, p. 29]. This proves Lemma when $\delta=0$. When $\delta=1$, Lemma is obvious. For the case $0<\delta<1$, we shall write

$$
\begin{aligned}
\sum_{k=m}^{\infty} H_{l i}(t) & =t^{-\delta} \sum_{n=0}^{\infty} A_{n}^{-\delta-1} \sum_{n=m}^{\infty} \frac{\sin (n+k) t}{n+k} \\
& =t^{-\delta}\left(\sum_{n=0}^{\rho}+\sum_{n=\rho+1}^{\infty}\right) A_{n}^{-\delta-1} r_{m+k} \\
& =U(t)+V(t),
\end{aligned}
$$

say, where $\rho=\left[t^{-1}\right]$. Here, we may easily see that this rearrangement is permissable. We have, by the Abel transformation

$$
\begin{aligned}
U(t) & =t^{-\delta} \sum_{n=0}^{\rho-1} A_{n}^{-\delta} \frac{\sin (m+n) t}{m+n}+t^{-\delta} A_{\rho}^{-\delta} r_{m+\rho} \\
& =O\left(t^{-\delta} \cdot \rho^{1-\delta} \cdot m^{-1}\right)+O\left(t^{-\delta} \cdot \rho^{-\delta} \cdot(m+\rho)^{-1} t^{-1}\right) \\
& =O\left(m^{-1} t^{-1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
V(t) & =t^{-\delta} \sum_{n=\rho+1}^{\infty} A_{n}^{-\delta-1} r_{m+n} \\
& =O\left(t^{-\delta}(m+\rho)^{-1} t^{-1} \cdot \rho^{-\delta}\right) \\
& =O\left(m^{-1} t^{-1}\right) .
\end{aligned}
$$

Thus, we have (2.19).
3. Proof of Theorem 1. We may suppose, without loss of generality by Lemma 3, that $s=0$. It is known, from (1.2), that

$$
s_{n}^{\alpha}=\sum_{k=0}^{n} A_{n-k}^{\alpha+\delta-p} s_{k}^{p-\delta-1},
$$

where A_{n}^{α} is Andersen's notation and $s_{0}=0$. Hence we have, putting $\varphi(t)=$ $(\sin t / t)^{p}$,

$$
\begin{align*}
t^{\alpha+1} \sum_{n=1}^{\infty} s_{n}^{\alpha} \varphi(n t) & =t^{\alpha+1} \sum_{n=1}^{\infty} \varphi(n t) \sum_{k=0}^{n} A_{n-k}^{\alpha+\delta-p} s_{k}^{p-\delta-1} \\
& =\sum_{k=0}^{\infty} s_{k}^{p-\delta-1} t^{\alpha+1} \sum_{n=k}^{\infty} A_{n-k}^{\alpha+\delta-p} \varphi(n t) \\
& =\sum_{k=0}^{\infty} s_{k}^{p-\delta-1} G_{k}(t), \tag{3.1}
\end{align*}
$$

say. Here, we shall prove that this rearrangement is permissible. For this purpose, it is sufficient to show that, for fixed $t>0$,

$$
\begin{equation*}
t^{\alpha+1} \sum_{k=0}^{N} s_{k}^{\nu-\delta-1} \sum_{n=N+1}^{\infty} A_{n-k}^{\alpha+\delta-p} \varphi(n t)=o(1) \quad \text { as } N \rightarrow \infty . \tag{3.2}
\end{equation*}
$$

Since

$$
\begin{aligned}
t^{\alpha+1} \sum_{n=N+1}^{\infty} A_{n-k}^{\alpha+\delta-p-1} \varphi(n t) & =O\left(\sum_{n=N+1}^{\infty}(n-k)^{\alpha+\delta-p-1} \cdot n^{-p}\right) \\
& =O\left(N^{-p}(N-k+1)^{\alpha+\delta-p}\right),
\end{aligned}
$$

we have, using the Abel transformation,

$$
\begin{aligned}
& t^{\alpha+1} \sum_{k=0}^{N} s_{k}^{p-\delta-1} \sum_{n=N+1}^{\infty} A_{n-k}^{\alpha+\delta-p} \varphi(n t) \\
& =t^{\alpha+1} \sum_{k=0}^{N-1} s_{k}^{p-\delta} \sum_{n=N+1}^{\infty} A_{n-k-1}^{\alpha+\delta-p-1} \varphi(n t)+t^{\alpha+1} s_{N}^{p-\delta} \sum_{n=N+1}^{\infty} A_{n-N-1}^{\alpha+\delta-p} \varphi(n t) \\
& =o\left(\sum_{k=0}^{N-1} k^{p-\delta} \cdot N^{-p}(N-k+1)^{\alpha+\delta-p}\right)+o\left(N^{p-\delta} N^{-p}\right) \\
& =o\left(N^{\alpha-p-1}\right)+o\left(N^{-\delta}\right) \\
& =o(1),
\end{aligned}
$$

when $\alpha<p-\delta-1$. Thus (3.2) is proved.
Therefore, for the proof, it is sufficient to prove that the series (3.1) converges in $0<t<t_{0}$ and its sum tends to zero as t tends to zero. Let us write

$$
\sum_{k=0}^{\infty} s_{k}^{p-\delta-1} G_{k}(t)=\left(\sum_{k=0}^{m}+\sum_{k=m+1}^{\infty}\right)=U_{1}(t)+U_{2}(t)
$$

where $m=[N / t]$ and N is an arbitrary fixed positive number. Using Lemma 2 , we have, by (1.5),

$$
\begin{equation*}
\sum_{k=m+1}^{\infty}\left|\sigma_{k}^{p-\delta-1}\right| k^{-1-\delta}=O\left(m^{-\delta}\right) \tag{3.3}
\end{equation*}
$$

and hence, using (1.1) and Lemma 4,

$$
\begin{align*}
U_{2}(t) & =\sum_{k=m+1}^{\infty} \sigma_{k}^{p-\delta-1} A_{k}^{p-\delta-1} G_{k}(t) \\
& =O\left(\sum_{k=m+1}^{\infty}\left|\sigma_{k}^{p-\delta-1}\right| k^{-1-\delta} t^{-\delta}\right) \tag{3.4}\\
& =O\left(t^{-\delta} m^{-\delta}\right) \\
& =O\left(N^{-\delta}\right) .
\end{align*}
$$

Thus, the series (3.1) converges for all t. By Abel's transformation, we have

$$
\begin{aligned}
U_{1}(t) & =\sum_{k=0}^{m} s_{k}^{p-\delta-1} G_{k}(t) \\
& =\sum_{k=0}^{m-1} s_{k}^{n-\delta}\left(G_{k}(t)-G_{k+1}(t)\right)+s_{m}^{p-\delta} G_{m}(t),
\end{aligned}
$$

where

$$
\begin{aligned}
G_{k}(t)-G_{k+1}(t) & =t^{\alpha+1} \sum_{n=0}^{\infty} A_{n}^{\alpha+\delta-p} \Delta \varphi(\overline{n+k} t) \\
& =O\left(k^{-p} t^{1-\delta}\right)
\end{aligned}
$$

by the method analogous to the proof of Lemma 4. Hence we have, from Lemma 4 and summability $(C, p-\delta)$ of the series $\sum_{k=1}^{\infty} a_{k}$,

$$
\begin{aligned}
U_{1}(t) & =o\left(\sum_{k=0}^{m-1} k^{p-\delta} k^{-p} t^{1-\delta}\right)+o\left(m^{p-\delta} m^{-p} t^{-\delta}\right) \\
& =o\left(m^{1-\delta} t^{1-\delta}\right)+o\left(m^{-\delta} t^{-\delta}\right) \\
& =o\left(N^{1-\delta}\right)+o\left(N^{-\delta}\right) \\
& =o(1)
\end{aligned}
$$

for each arbitrary fixed N. Therefore, by (3.3), (3.4) and (3.5), we have

$$
\begin{aligned}
\sum_{k=0}^{\infty} s_{k}^{p-\delta-1} G_{k}(t) & =U_{1}(t)+U_{2}(t) \\
& =\boldsymbol{o}(1)+O\left(N^{-\delta}\right)
\end{aligned}
$$

as t tends to zero, Since N is arbitrary, we have

$$
\lim _{t \rightarrow 0} \sum_{k=0}^{\infty} s_{k}^{n-\delta-1} G_{k i}(t)=0,
$$

and the proof is complete.
4. Proof of Theorem 2. For the proof, we need the following:

Lemma 10. For each $\delta, 0<\delta<1$, there existsa series $\sum_{n=1}^{\infty} a_{n}$ such that (i) the series $\sum_{n=1}^{\infty} a_{n}$ converges to zero and (ii) the limit

$$
\lim _{t \rightarrow 0} t^{-\delta} \sum_{n=1}^{\infty} a_{n} \frac{\sin n t}{n}
$$

does not exist.
This Lemma is due to Hardy and Littlewood [1] when $\delta=1$.
Proof. We shall prove Lemma by Hardy and Littlewood's method. If we put $\boldsymbol{q}_{\nu+1}=\exp \left(\nu q_{\nu}^{\delta}\right)$ and $\boldsymbol{q}_{0}=1$, then we can see easily that

$$
\boldsymbol{q}_{\nu} \uparrow, \boldsymbol{q}_{\nu+1} / \boldsymbol{q}_{\nu} \rightarrow \infty \quad \text { and } \log \left(\boldsymbol{q}_{\nu+1} / \boldsymbol{q}_{\nu}\right) / \boldsymbol{q}_{\nu}^{\delta} \rightarrow \infty
$$

From this sequence $\left\{\boldsymbol{q}_{\nu}\right\}$, we may construct a sequence of positive integers. $\left\{n_{\nu}\right\}$ such that

$$
n_{\nu} \uparrow, m_{\nu}=n_{\nu+1} / n_{\nu} \rightarrow \infty \quad \text { and } \quad\left(\log m_{\nu}\right) / n_{\nu}^{\delta} \xrightarrow{\rightarrow} \infty,
$$

where m 's are integers. Further, we may find a sequence of positive integers. $\left\{k_{\nu}\right\}$ such that

$$
k_{\nu} \uparrow, k_{\nu+1} / k_{\nu} \rightarrow 1 \text { and }\left(\log m_{\nu}\right) / k_{\nu}^{1-\delta} n_{\nu}^{\delta} \rightarrow \infty
$$

Then, if we put $t_{\nu}=2 \pi k_{\nu} / n_{\nu}$, we have $\lim _{\nu \rightarrow \infty} t_{\nu}=0$. Now, we shall define our
series $\sum_{\nu=1}^{\infty} a_{\nu}$ by

$$
a_{n}=\frac{1}{n_{\nu}} \sin n t_{\nu}=\frac{1}{n_{\nu}} \sin \frac{2 n k_{\nu} \pi}{n_{\nu}}
$$

for $n_{\nu} \leqq n<n_{\nu+1}$. Then, we may prove Lemma by the method analogous to the proof of the Hardy and Littlewood lemma, so that we omit the proof in detail.

Proof of Theorem 2. When $\alpha=-1,0$, Theorem is well known. Hence we shall restict to the case $-1<\alpha<0$. When the series $\sum_{\nu=1}^{\infty} a_{\nu}$ is defined as in Lemma 10 for $\delta=-\alpha$, we find a series $\sum_{\nu=1}^{\infty} b_{\nu}$ such that $B_{n}^{\alpha}=a_{n}$, where B_{n}^{α} is (C, α) sums of the series $\sum_{\nu=0}^{\infty} b_{\nu}$ with $b_{v}=0$. Then, putting $s_{n}=\sum_{\nu=1}^{n} a_{\nu}$, we have

$$
\begin{aligned}
\sum_{n=1}^{n} b_{n}=B_{n}^{0} & =\sum_{\nu=0}^{n} A_{n-\nu}^{-\alpha-1} B_{\nu}^{\alpha} \\
& =\sum_{\nu=0}^{n} A_{n-\nu}^{-\alpha-1} a_{\nu} \\
& =\sum_{\nu=0}^{n-1} A_{n-\nu}^{-\alpha-2} s_{\nu}+A_{0}^{-\alpha-2} a_{n} \\
& =o\left(\sum_{\nu=1}^{n} \nu^{-\alpha-2}\right)+o(1) \\
& =o(1)
\end{aligned}
$$

Hence, the series $\sum_{\nu=1}^{\infty} b_{\nu}$ converges to zero. But, by Lemma 10 , we see that

$$
\lim _{t \rightarrow 0} t^{\alpha} \sum_{n=1}^{\infty} a_{n} \frac{\sin n t}{n}=\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{n=1}^{\infty} B_{n}^{\alpha} \frac{\sin n t}{n t}
$$

does not exists. Therefore, the series $\sum_{\nu=1}^{\infty} b_{\nu}$ is not evaluable ($R, 1, \alpha$) and the proof is complete.
5. Proof of Theorem 3. Putting $\varphi(t)=(\sin t / t)^{p}$, by the repeated use of Abel's transformation $(p-\alpha)$-times, we have

$$
\begin{align*}
t^{\alpha+1} \sum_{k=1}^{n} s_{k}^{\alpha} \varphi(k t)= & t^{\alpha+1} \sum_{k=1}^{n-p+\alpha} s_{k}^{p} \Delta^{p-\alpha} \varphi(k t) \tag{5.1}\\
& +t^{\alpha-1} \sum_{i=1}^{p-\alpha} s_{n-i+1}^{\alpha+i} \Delta^{i-1} \varphi(\overline{n-i+1} t) .
\end{align*}
$$

We may suppose, without loss of generality, that $s=0$. Since summability
$|C, p|$ implies summability (C, p), we have $s_{n}^{i}=o\left(n^{p}\right)$ when $0 \leqq i \leqq p$. Then, using Lemma 1, we have

$$
\begin{aligned}
& \left.t^{\alpha+1} \sum_{i=1}^{p-\alpha} s_{n-i+1}^{\alpha+i} \Delta^{i-1} \varphi \overline{(n-i+1} t\right) \\
& =o\left(t^{\alpha+1} \sum_{i=1}^{p-\alpha}(n-i+1)^{p} \cdot(n-i+1)^{-p} t^{i-p-1}\right) \\
& =o(1)
\end{aligned}
$$

as $n \rightarrow \infty$, for fixed $t>0$. Therefore, for the proof it is sufficient to prove that the series

$$
\begin{equation*}
t^{\alpha+1} \sum_{k=1}^{\infty} s_{k}^{p} \Delta^{p-\alpha} \varphi(k t) \tag{5.2}
\end{equation*}
$$

converges in $0<t<t_{0}$, and its sum tends to zero as $t \rightarrow 0$. Using (1.1) and Abel's transformation, we have

$$
\begin{align*}
t^{\alpha+1} \sum_{k=n}^{m} s_{k}^{p} \Delta^{p-\alpha} \varphi(k t) & =t^{\alpha+1} \sum_{k=n}^{m} \sigma_{k}^{p} A_{k}^{p} \Delta^{p-\alpha} \varphi(k t) \\
& =\sum_{k=n}^{m-1} U_{k}(t)^{\prime} \Delta \sigma_{k}^{p}+U_{m}(t) \sigma_{m}^{p}-U_{n-1}(t) \sigma_{n,}^{p} \tag{5.3}
\end{align*}
$$

where $U_{n}(t)=t^{\alpha+1} \sum_{k=1}^{n} A_{k}^{p} \Delta^{p-\alpha} \varphi(k t)$ and $\Delta_{\sigma_{k}}^{p}=\sigma_{k}^{p}-\sigma_{k+1}^{p} . \quad$ Now, we shall show that $U_{n}(t)$ is uniformly bounded in $0<t<\pi$ and for all n. If $n t \leqq 1$, then, using Lemma 1, we have

$$
\begin{aligned}
U_{n}(t) & =t^{\alpha+1} \sum_{k=1}^{n} A_{k}^{p} \Delta^{p-\alpha} \varphi(k t) \\
& =O\left(t^{\alpha+1} \sum_{k=1}^{n} k^{p} \cdot k^{-p} t^{-\alpha}\right) \\
& =O(n t) \\
& =O(1)
\end{aligned}
$$

On the other hand, following Obreschkoff, we shall consider the series $1+$ $0+0+\ldots$. Concerning this series, we have

$$
s_{n}^{\beta}=A_{n}^{\beta}, \quad \sigma_{n}^{\beta}=1 \quad(n=1,2, \ldots ; \beta>-1)
$$

Hence, from (5.1), we have

$$
\begin{aligned}
t^{\alpha+1} \sum_{k=1}^{n} A_{k}^{\alpha} \varphi(k t)=t^{\alpha+1} & \sum_{k=1}^{n-p+\alpha} A_{k}^{\alpha} \Delta^{p-\alpha} \varphi(k t) \\
& \left.+t^{\alpha+1} \sum_{i=1}^{p-\alpha} A_{n-i+1} \Delta^{i-1} \varphi \overline{(n-i+1} t\right),
\end{aligned}
$$

that is,

$$
t^{\alpha+1} \sum_{k=1}^{n} A_{k}^{\alpha} \varphi(k t)=U_{n-p+\alpha}(t)+t^{\alpha+1} \sum_{i=1}^{p-\alpha} A_{n-i+1}^{\alpha+i} \Delta^{i-1} \varphi(\overline{n-i+1} t),
$$

where

$$
\begin{aligned}
& \left.t^{\alpha+1} \sum_{i=1}^{n-\alpha} A_{n-i+1}^{\alpha+i} \Delta^{i-1} \varphi \overline{(n-i+1} t\right) \\
& =O\left(t^{\alpha+1} \sum_{i=1}^{p-\alpha}(n-i+1)^{\alpha+i} \cdot(n-i+1)^{-p} t^{i-p-1}\right) \\
& =\sum_{i=1}^{p-\alpha} O\left((n t)^{\alpha+i-p}\right) \\
& =O(1)
\end{aligned}
$$

when $n t>1$. Putting $\rho=\left[t^{-1}\right]$, we have

$$
\begin{aligned}
t^{\alpha+1} \sum_{k=1}^{n} A_{k}^{\alpha} \varphi(k t) & =t^{\alpha+1}\left(\sum_{k=1}^{\rho}+\sum_{k=\rho+1}^{n}\right) A_{k}^{\alpha} \varphi(k t) \\
& =O\left(t^{\alpha+1} \sum_{k=1}^{\rho} k^{\alpha}\right)+O\left(t^{\alpha+1} \sum_{k=\rho+1}^{\infty} t^{-p} \cdot k^{\alpha-p}\right) \\
& =O\left((\rho t)^{\alpha+1}\right)+O\left(t^{\alpha-p+1} \rho^{\alpha-p+1}\right) \\
& =O(1)
\end{aligned}
$$

when $p-\alpha>1$. And, when $p=1, \alpha=0$, this result is well known. See, for example, Hardy and Rogosinski [2, p. 29]. Thus, $U_{n}(t)$ is uniformly bounded in $0<t<\pi$ and for all n. Then, using above results and (5.3), we have

$$
\begin{align*}
t^{\alpha+1} \sum_{k=n}^{m} s_{k}^{p} \Delta^{p-\alpha} \varphi(k t) & =O\left(\sum_{k=n}^{m}\left|\Delta \sigma_{k}^{p}\right|\right)+O\left(\left|\sigma_{m}^{p}\right|\right)+O\left(\left|\sigma_{n}^{p}\right|\right) \tag{5.4}\\
& =o(1)
\end{align*}
$$

as $m, n \rightarrow \infty$, by our assumption. Hence the series (5.2) converges in $0<$ $t<\pi$. Since $o(1)$ in (5.4) is uniform in $0<t<\pi$, for an arbitrary small $\varepsilon>0$, there exists an $N=N(\varepsilon)$ such that

$$
\left|t^{\alpha+1} \sum_{k=N}^{\infty} s_{k}^{p} \Delta^{p-\alpha} \varphi(k t)\right|<\varepsilon
$$

Further, we have

$$
\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{k=1}^{N-1} s_{k}^{p} \Delta^{p-\alpha} \varphi(k t)=0
$$

when $\alpha \geqq-1$. Therefore we have

$$
\lim \sup _{t \rightarrow 0}\left|t^{\alpha+1} \sum_{k=1}^{\infty} s_{k}^{p} \Delta^{p-\alpha} \varphi(k t)\right| \leqq \varepsilon
$$

Since ε is arbitrary, we have

$$
\lim _{t \rightarrow 0} t^{\alpha+1} \sum_{k=1}^{\infty} s_{k}^{p} \Delta^{p-\alpha} \boldsymbol{\rho}(k t)=0
$$

which is the required, and the proof is complete.
6. Proof of Theorem 4. We may suppose, without loss of generality,
that $s=0$. By Lemma 5, the series $\sum_{k=1}^{\infty} a_{k}$ is evaluable ($C, 1$) to zero : hence

$$
\begin{equation*}
s_{n}^{1}=\sum_{k=1}^{n} s_{n}=o(n) \tag{6.1}
\end{equation*}
$$

Since we have, from (1.2),

$$
s_{n}^{\alpha}=\sum_{k=0}^{n} A_{n-k}^{\alpha-1} s_{k}
$$

we have

$$
\begin{align*}
t^{\alpha} \sum_{n=1}^{\infty} s_{n}^{\alpha} \frac{\sin n t}{n} & =t^{\alpha} \sum_{n=1}^{\infty}\left(\sum_{k=0}^{n} A_{n-k}^{\alpha-1} s_{k}\right) \frac{\sin n t}{n} \\
& =\sum_{k=0}^{\infty} s_{k}\left(t^{-\delta} \sum_{n=k}^{\infty} A_{n-k}^{\alpha-1} \frac{\sin n t}{n}\right) \tag{6.2}\\
& =\sum_{k=0}^{\infty} s_{k} H_{k}(t) \tag{6.3}
\end{align*}
$$

say. Here, we shall prove that this rearrangement is permissble. For this purpose, it is sufficient to prove that, for fixed $t>0$,

$$
\begin{equation*}
t^{\alpha} \sum_{k=0}^{N} s_{k} \sum_{n=N+1}^{\infty} A_{n-k}^{\alpha-1} \frac{\sin n t}{n}=o(1) \tag{6.4}
\end{equation*}
$$

as $N \rightarrow \infty$. Since

$$
\begin{aligned}
\sum_{n=N+1}^{\infty} A_{n-k}^{\alpha-2} \frac{\sin n t}{n} & =O\left(\sum_{n=N+1}^{\infty}(n-k)^{\alpha-2} \cdot n^{-1}\right) \\
& =O\left(N^{-1}(N-k+1)^{\alpha-1}\right)
\end{aligned}
$$

we have, using Abel's transformation and (6.1),

$$
\begin{aligned}
t^{\alpha} \sum_{k=0}^{N} s_{k} & \sum_{k=N+1}^{\infty} A_{n-k}^{\alpha-1} \frac{\sin n t}{n} \\
& =t^{\alpha} \sum_{k=0}^{N-1} s_{k}^{1} \sum_{n=N+1}^{\infty} A_{n-k-1}^{\alpha-2} \frac{\sin n t}{n}+t^{\alpha} s_{N}^{1} \sum_{n=N+1}^{\infty} A_{n-N-1}^{\alpha-1} \frac{\sin n t}{n} \\
& =o\left(\sum_{k=0}^{N-1} k \cdot N^{-1}(N-k+1)^{\alpha-1}\right)+o\left(N \cdot N^{-1}\right) \\
& =o(1),
\end{aligned}
$$

and (6.4) is proved.
Here we remark that the rearrangement (3.2) is permissble when $\mathrm{s}_{n}^{1}=$ $o(n)$.

Therefore, for the proof, it is sufficient to prove that the series (6.3) converges in some interval $0<t<t_{0}$, and its sum tends to zero as $t \rightarrow 0$. Convergence of the series (6.3) follows from the estimation of $V(t)$ below. Let us write

$$
\sum_{k=1}^{\infty} s_{k} H_{k}(t)=\left(\sum_{k=1}^{\rho}+\sum_{k=\rho+1}^{\infty}\right)=U(t)+V(t),
$$

where $\rho=\left[(\varepsilon t)^{-1}\right], \varepsilon$ being an arbitrary fixed positive number. By (2.17), (2.18) and (6.1), we have

$$
\begin{aligned}
U(t) & =\sum_{k=1}^{\rho-1} s_{k}^{1} \Delta H_{k}(t)+s_{\rho}^{1} H_{\rho}(t) \\
& =o\left(\sum_{k=1}^{\rho-1} k \cdot k^{-1} t\right)+o\left(\rho \cdot \rho^{-1}\right) \\
& =o(\rho t)+o(1) \\
& =o(1) .
\end{aligned}
$$

Since $\eta_{n}(t)=\sum_{k=n}^{\infty} H_{k}(t)=O\left(n^{-1} t^{-1}\right)$ by (2.19), we have

$$
\begin{aligned}
V(t) & =\sum_{k=\rho+1}^{\infty} s_{k} H_{k}(t) \\
& =-\sum_{k=\rho+1}^{\infty} a_{k+1} \eta_{k+1}(t)+s_{\rho+1} \eta_{\rho+1}(t) \\
& =O\left(\sum_{k=\rho+1}^{\infty} \frac{\left|a_{k+1}\right|}{k+1} t^{-1}\right)+O\binom{1}{\rho t} \\
& =O\left(\rho^{-1} t^{-1}\right) \\
& =O(\varepsilon)
\end{aligned}
$$

by Lemma 5. Thus, we have

$$
\lim _{t \rightarrow 0} \sup |U(t)+V(t)|=O(\varepsilon)
$$

Since ε is arbitrary, we have

$$
\lim _{t \rightarrow 0}(U(t) \div V(t))=0,
$$

and the proof is complete.
7. Proof of Theorem 5. We may suppose, without loss of generality, that $s=0$. By (1.8), the series $\sum_{k=1}^{\infty} a_{k i}$ is evaluable ($C, 1$) to zero ; hence $s_{n}^{1}=$ $\sum_{k=1}^{n} s_{k}=o(n)$ and, by the remark in $\S 6$, the rearrangement (6.2) is permissible. Convergence of the series (6.3) follows from the estimation of $W(t)$ below. Let us write

$$
\sum_{k=1}^{\infty} s_{k} H_{k k}(t)=\left(\sum_{k=1}^{n}+\sum_{k=l+1}^{j}+\sum_{k=j+1}^{\infty}\right)=U(t)+V(t)+W(t)
$$

where $h=\left[t^{-1}\right], j=\left[t^{-\beta}\right]$ and $r \beta>1$. Then we have, by Lemmas 7 and 8 ,

$$
\begin{aligned}
U(t) & =\sum_{k=1}^{l} s_{k} H_{k}(t) \\
& =\sum_{k=1}^{h-1} s_{k}^{1} \Delta H_{k i}(t)+s_{l}^{1} H_{l}(t)
\end{aligned}
$$

$$
\begin{aligned}
& =o\left(\sum_{k=1}^{h-1} \frac{k}{\log (k+1)} \cdot \frac{t}{k}\right)+o\left(\frac{h}{\left.\log h \cdot \frac{1}{h}\right)}\right. \\
& =o(h t / \log h)+o(1) \\
& =o(1)
\end{aligned}
$$

If we put $S_{n}=\sum_{k=1}^{n}\left|s_{k}\right|$ we have using (1.8) and (2.17)

$$
\begin{aligned}
|V(t)| & \leqq \sum_{k=h+1}^{j}\left|s_{k}\right|\left|H_{k}(t)\right| \\
& =O\left(\sum_{k=h+1}^{j}\left|s_{k}\right| k^{-1}\right) \\
& =O\left(\sum_{k=h+1}^{j-1} S_{k}\left(\frac{1}{k}-\frac{1}{k+1}\right)+S_{j} \frac{1}{j}-S_{h} \frac{1}{h+1}\right) \\
& =o\left(\sum_{k=h+1}^{j-1} \frac{k}{\log k} \cdot \frac{1}{k^{2}}\right)+o\left(\frac{j}{\log j} \cdot \frac{1}{j}\right)+o\left(\frac{h}{\log h} \cdot \frac{1}{h+1}\right) \\
& =o(\log \beta)+o(1) \\
& =o(1) .
\end{aligned}
$$

Lastly, by (2.16) and (2.19), we have

$$
\begin{aligned}
W(t) & =\sum_{k=j+1}^{\infty} s_{k} \cdot H_{k}(t) \\
& =-\sum_{k=j+1}^{\infty} a_{k+1} \eta_{k+1}(t)+s_{j+1} \eta_{j+1}(t) \\
& =O\left(t^{-1} \sum_{k=j}^{\infty} \frac{\left|a_{k}\right|}{k}\right)+O\left(j^{1-r} \cdot \frac{1}{j t}\right) \\
& =O\left(t^{-1} j^{-r}\right) \\
& =O\left(t^{\beta r-1}\right) \\
& =\boldsymbol{o}(1)
\end{aligned}
$$

and the proof of Theorem is complete.

References

[1] G. H. Hardy and J. E. Littlewood, Abel's theorem and its converse (II), Proc. London Math. Soc., 22(1924), 254-269.
[2] G. H. HARDY and W.W.ROGOSINSKI, Fourier series, Cambridge tracts, No. 38, (1949).
[3] H. Hirokawa and G. Sunouchi, Two theorems on the Riemann summability, Tôhoku Math. Jour. (2), 5(1954), 261-267.
[4] N. Obreschkoff, Über das Riemannsche Summierungsverfahren, Math. Zeits., 48(1942-3), 441-454.
[5] O. SzÀsz, On convergence and summability of trigonometric series, Amer. Jour. Math., 64(1942), 575-591.
[6] S. S.Àsz, On Abel and Lebesgue summability, Bull. Amer. Math. Soc., 49(1943), 885-893.
[7] O. SzÀsz, Tauberian theorems for summability (R_{1}), Amer. Jour. Math.. 73(1951),

779-791.
[8] A. Zygmund, Trigonometrical Series, Warsaw-Lwow, (1935).

Chiba Institute of Technology.

