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1. Introduction. In the theory of trigonometrical series, Riemann
introduced the well known methods (/?, 1), (RJ, (R, 2) and (R2) for evaluation
of series. These methods have been generalized to the following forms.

Throughout this paper, p denotes a positive integer. A series 2 ak is said
fc = l

to be evaluable (R,p) to s if the series in

converges in some interval 0 < t < t^ and fp(t)-+s as ί->0. A series

is said to be evaluable (Rp) to s if the series in

where

u-p(sinu)pdu,= I

converges in some interval 0 < t < tQ and FP(t) -> s as t -> 0. It is well knowa
that (R,p) and (Rp) are regular when p ̂  2, while (R,ϊ) and (Rι) are not
regular.

It is the purpose of this paper to obtain information about these Riemann
methods and generalizations of them by studying transformations which
involve simultaneously the Riemann and Cesaro transformations of series.
In terms of standard notation used by Zygmund [8, p. 42] and others, the

Cesaro transform of order α of 2 α* *

α-i) <"=«:/ A;,
where s* and A* being given by the relations

~ -
(1. 2) 2 Ay = (1 - x)-"~l and

If we put α = —1, for example, in (1. 2), then we have A^1 = 1, A^1

= 0(w = 1, 2, ) and s~l = θιι(w = 0,1, 2, ): hence σ~l has not meaning
when n = 1, 2, , while s^1 has meaning. It is well known that A* ^
nΛ/Γ(α + 1), α Φ — 1, — 2, A series is said to be evaluable (C, α) to s
if cr*-> s as n ->oo, and to be evaluable \C,α\ to s if 21 σ* — cr£+1| is
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•convergent and σ"n ->• s as n -> oo. In the following, let a be a real num-
ber, not necessarily an integer, for which a > —1. In formulating our defini
tion, we use the Cesaro sums s* instead of the Cesaro means σ", which is
meaningless when a, = —1.

A series 2 ats w^ ^e sa^ *° ^e evaluable to 5 by the Riemann-Cesaro
fc-l

method of order p and index a, or, briefly evaluable (R,psa) to s, if the
series in

where

Γ"I ua~p(sinu)p du ( — .

1 (α = -1),
converges in some interval 0 < t < tQ and σ(p, oίst)-*s as t —> 0.

Under this definition, the (R,p} — 1) -means σ(p, —1, t) are identical
with the (R,p) -means fp(t), by s"1 =• an and the (#,£, 0) -means σ(p, 0, /) are
identical with the (/?#) -means FP(t)3 bys^ = sn. Therefore, the (R,p, —1)
method and the (R}p} 0) method are reduced to the (R}p) method and the
(Rp) method, respectively. Our main results are the following.

00

THEOREM 1. Let 0 < δ < 1, let 2 β» ^e evaluable (C,p — δ) to s #we/ /eί

00

T&£# ίte sβrf^s 2ak is ^valuable (R}p,a) to s when — l < Ξ α < / > — δ — 1.

00

This result implies that if 0 < δ < 1 and 2 a* is ^valuable (C,p — l — δ)

oo *

to 5, then 2 tf" is ^valuable (R,p, a) to 5 when — l<^a < p — δ — 1. Since

convergence implies Cesaro summability of each positive order, we obtain

COROLLARY 1. The method (R, p} a) is regular when p^2 and — 1 < a <

If p ί> 2, then we can put a = 0 in Theorem 1 and obtain
00

COROLLARY 2. Under the conditions of Theorem 1, the series 2Λfc

is evaluable (RP) to s when p^2.
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This Corollary is due to Obreschkoff [4J who proved that the result holds;
when, p = 1. (R,p) analogue is also due to Obreschkoff [4].

THEOREM 2. The (R, 1, a) method is not regular when — I <Ξ a <; 0.

THEOREM 3. If the series 2 ak is evaluάble \C,p\ to s, it is eυaluable
fc = l

(R, p, a) to s when —l^a<p—l and a is an integer. Further, if the series
00

2βfc is-eυaluable |C, 1| to s, it is also evaluable (R, 1, 0) to s.
fc = l

In this Theorem, if we put a = 0, we have

COROLLARY 3. If the series is evaluable \C,p\ to s, then it is eυaluable
(RP) to s.

(R,p) case of this Corollary is due to Obreschkoff [4J.

THEOREM 4. Suppose that

(1.6)
k=n

oo

and the series 2^" 2S eυaluable to s by the Abel method. Then the series
fc = l

00

2 dfc is eυaluable (R, 1, α) to s when — 1 g a <: 0.
fc = l

(/?, 1) and (̂ 0 cases are due to Szasz [6, 7J.

THEOREM 5. Suppose that
2n

(1.7) 2(1*1- ft) = OCM1-), 0 < r < 1,.

(1. 8) 2 ls» ~ sl =
fc = l

00

T^w /Λ^ series 2 * zs eυaluable (R} l,"ϊαj ^o s wfew — 1 < Λ ̂  0.
*-l

In this Theorem we can put a = 0 and obtain
oo

COROLLARY 4. Under the conditions of Theorem 5, f &g series 2 aίΰ *s

Λ = l

eυaluable (Rτ) to s.

(R, l)-analogue of this Corollary is due to Szasz [5].

I take this opportunity of expressing my heartfelt thanks to Professor
G. Sunouchi for his kind encouragement and valuable suggestions during the
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preparation of this paper. I must express my heartfelt thanks to Professor
R. P. Agnew who read the original manuscript and named our summability
Riemann-Cesaro summability instead of generalized Riemann summability in
the original paper. I must also express my heartfelt thanks to Professor
S. Izumi who suggested to me the idea of the proof of Lemma 3 below.

2. Preliminary Lemmas.

LEMMA 1. Let Δmφ(nt) denote the m-th difference of φ(nt) with respect to
n. Then we have

(2. 1) Δmφ(nt) - Oφt-'/n*),

when m is a non-negative integer and φ(t) = (sint/t)*.

LEMMA 2. Let 0 < δ < 1 and let qn ;> 0. Then
m

(2. 2) 2 0» = OM
fc = l

implies
00

(2. 3) 2 W»8+1 = O(m-*}
n—Wi

and conversely.

These Lemmas are due to Obreschkoff [4J.

LEMMA 3. Let A«n = (n + a} an d let -Ka<p- 1. Then
\ n J

(2.4)
/l = l

In particular, if p = 1, α = 0,

This Lemma when £ > 2, a = 0 is due to Obreschkoff [4].
PROOF. (2. 5) is well known. For the proof of (2. 4), firstly, we prove

Km f*+ι >Λ

Let « be an arbitrary positive number and let m = f«/fl. Then, we have,
by the definition of definite integral,

m . _ Λ

(2.6) lim ί"+ι V w* ( ?!5^ ) = / ^-'(si
w ^ \ nt J J

Since α < ί — 1, we have
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Thus, we have

<"> 5»<"'ix(e-^

283

f-f du
"~* 0

Since a is arbitrary, if a tends to infinity, we have (2.6).
Next, we shall prove (2. 4). Since A* ~~ n"/Γ(a + 1), we may write

(2.8) A;.! = n"/Γ(a + 1) + £Λw",
where <SW->0 as ?z->oo. Then, we shall prove

ί"^° n = ι ^ '

For each positive number £, there exists an N such that |£n| < 6 when
n>N. Since Λ > — 1, we have, for fixed N,

N-l

lim fΛ + 1 2 £»n* \^J = °

Using the method analogous to the one which we obtained (2.6),

lim sup
t-M) W = ̂ Γ

8 lim sup ί**1

w \ nt

^ θ lim sup t"+1 2 wQJ

sin/z^
nt

sinnt
nt

..{*.
o

say. Since θ is arbitrary, we obtain (2. 9) and, using (2. 6), (2. 8) and (2.9),
we obtain (2. 4).

2.10)

LEMMA 4. #" —1<S#<£ — δ — 1, 0 < 8 < 1, £/&£# w β fcαz β

Σ ^θ5+δ-ί
•'•'•Λ-fc

)ί=fc

PROOF. Let us write
fc + p co

r m- ^*+ιί V -̂  VCτfc(ί; - r 1 ̂  -h ^
».* H.fc+p+i

where p = [ί"1]. Since p — a — B > 1, using (sin ntjnty = O(nt)-p, we have

. 11) = θ(

^

(k
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Putting φ(t) = (smt/f)p, by the repeated use of Abel's transformatioa
β-times, we have

p-p j>-ι

U(f) = t«+1 2 -A»+aΔV (̂ +^ *) + *α+1 2 A^+'-'
ί=0

ίJ-1

- w(t) + 2 wwλ
i-O

say. Then, using Lemma 1, we have

Wdt) = £Λ+1 A^-1-'-1"1

(2. 12)

when i = 0,1, 2, , p — 1. Again, using Lemma 1, we have

W(t) = £Λ+1 2 A*+δΔV(^ + # *)

(2.13) = θ(V+ι 2 n"+δ(n + *)'*)\ "̂̂  /

= O(k-pt«+l p*+δ+ι)

Summing up (2.11), (2.12) and (2.13X we have (2.10)..

00

LEMMA 5. Under the conditions of Theorem 4, the series 2 ^ ίs

(C, 1) to s and sn = O(l) α#d further
CO

(2.14) 2 !*!/*= CX"'1)-

LEMMA 6. //* (1. 7) Λwt/ (1. 8) /&0/J, ί/iβw t«;̂  have

(2. 15) si = O(n^r)

and
00

(2.16) 2 l*l/*=0(»-').
fc = W

Lemmas 5 and 6 are due to Szasz [5].

LEMMA 7. £eί 0 < S ̂  1. T/^w, we have

(2. 17) 0(f ) = t-* 2 A-iϊ

PROOF. Since (2. 17) when δ = 0, 1 are obvious, we shall consider the case
ϋ < 8<l. Let us write

n=k = = '

where p = [ί"1]. Then, we have, by the Abel transformation,
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£/(/)=/- δ *ΣAΛ (~ - -^Vi1^)+ '-8A;* πί+^
= off-*-*-1/ 2 Au-fc) + O (t-8p-8(k -+- p)'1)

v «=* /

and

(̂  + p)-Kp -I-
- 0(*-i).

Thus we have (2. 17).

LEMMA 8. Z ί̂ 0 <Ξ δ g 1.
(2. 18)
where j is a nonnegative integer and &?Hk(t) is j-th difference of Hk(f)
with respect to k.

PROOF. Lemma when δ = 0, 1 is due to Hirokawa and Sunouchi [3].
Hence, we shall restrict the case 0 < δ < 1. Let us write

r —if Λ = p+l' *

= C7(ί) + V(ί),
where p - [/-1]. Since Δγ(sinwί/w) = O(n~lt^), we have

= O

and

n=p+ι

Thus, we have the required.

LEMMA 9. Z ί̂ 0 <; δ ̂  1. T^w, we have
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00

(2.19) 17»(0 = 2 W^t) = 0(m-ιt-i).

PROOF. It is known that

•̂  siΐint _

See, for example, Hardy and Rogosinski [2, p. 29]. This proves Lemma when
S = 0. When 8=1, Lemma is obvious. For the case 0 < 8 < 1, we shall
write

4-

say, where p = [ί-1]. Here, we may easily see that this rearrangement is
permissable. We have, by the Abel transformation

and

= O(t~s (m

Thus, we have (2. 19).

3. Proof of Theorem 1. We may suppose, without loss of generality
by Lemma 3, that s = 0. It is known, from (1. 2), that

where A£ is Andersen's notation and s0 = 0. Hence we have, putting φ(f) =

= 2

say. Here, we shall prove that this rearrangement is permissible. For
this purpose, it is sufficient to show that, for fixed t > 0,

n-i fc=o
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JV CO

<3. 2) t«+l 2 s^-1 2 AZ-i'* <P(nt) = °W as JV-> oo.
fc-O n-iV+i

Since

we have, using the Abel transformation,
N CO

/* + ! "V oP-δ-1 ^V Λ r t + S-
Γ -̂  Sk 2* ^n-Tc

N-l co

— frt + 1 Ŝ̂  fl-δ ^V* Δoύ + 8
' ^M| fc ^M •"'n-Ίύ

- 0(1),
when Λ < ί — δ — 1. Thus (3. 2) is proved.

Therefore, for the proof, it is sufficient to prove that the series (3.1)
converges in 0 < t < t0 and its sum tends to zero as t tends to zero. Let us
write

co m oo

Σ l .̂ ι *v ι \
sl'8'1 Gk(t) = 2 + 2 ) = UiW + ί^C'λ

\ J^ r. "̂ "̂  i /

where m = [ΛΓ/ί] and AT is an arbitrary fixed positive number. Using Lemma
2, we have, by (1.5),

(3.3) 2 kjrδ~ΊJ
and hence, using (1.1) and Lemma 4,

Uz(t) — .̂ crfc Afc

<<3.4)

Thus, the series (3.1) converges for all t. By Abel's transformation, we
Jiave

m

σi(ί)= 2 sr'-'c ίo
fc = 0
m-l

= 2 sΓδ(G*(ί) - G»+1(ί)) + sfβ GJί),
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where Gk(t) - Gfc+ ,(/) = t*+ί 2 A*n+ *-pΔφ(yΓ+~k t)

by the method analogous to the proof of Lemma 4. Hence we have, from

Lemma 4 and summability (C,p — 8) of the series 2 <**,

m-1

Uι(t) =

= 00V1 -δ

for each arbitrary fixed JV. Therefore, by (3. 3), (3. 4) and (3. 5), we have
CO

2 s%-s

as ί tends to zero, Since N is arbitrary, we have

C~7U fc=Q

and the proof is complete.

4. Proof of Theorem 2. For the proof, we need the following

CO

LEMMA 10. For each 8, 0 < 8 < 1, there existsa series^ a

(i) ί/ί^ series αra converges to zero and (ii)
n-i

T ^ 8 X7lim t'8 >. «

This Lemma is due to Hardy and Littlewood [1] when '8=1.
PROOF. We shall prove Lemma by Hardy and Littlewood's method. If

we put qv+l = exp (vq8) and q0 = 1, then we can see easily that

Q» t , Qv+i/Qv -> °° and log(qv+l/qv)/ql -> oo.

From this sequence {#„}, we may construct a sequence of positive integers
{nv} such that

wv t , ™>v = nv+ι/nv -> oo and (log HiJ/wJ -̂  oo,
where /TZ'S are integers. Further, we may find a sequence of positive integers-
{kv} such that

kv t , kv+ιlkv -> 1 and (log mv)/kl

v~
8 n8 -> oo.

Then, if we put tv = 2πkvlnv, we have lim ί,, = 0. Now, we shall define our
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series

nv nv nv

for nv<^n< nv+1. Then, we may prove Lemma by the method analogous to
the proof of the Hardy and Littlewood lemma, so that we omit the proof
in detail.

PROOF OF THEOREM 2. When a = —1,0, Theorem is well known. Hence
00

we shall restict to the case —1< a < 0. When the series 2 a» is defined

oo

as in Lemma 10 for δ = — a, we find a series 2 h SUCn that B% = α», where
00 n

B* is (C,α) sums of the series 2** with *o = 0. Then, putting 5W = 2X*
v=0 v=l

we have

^̂  Λ — J5° = "̂ ^

ι/=U
n-l

v = 0

o(2 »—*) +o(D

Hence, the series 2 *" converges to zero. But, by Lemma 10, we see that

^ ̂  sinwί
hm ία >, αn -- = hm ta

does not exists. Therefore, the series 2 ^ is not evaluable (/?, 1, α) and
v = \

the proof is complete.

5. Proof of Theorem 3. Putting φ(f) = (sinί//)p, by the repeated use
of AbePs transformation (p — α)-times, we have

n n-p+a

(5. 1) t"+1 2 s% <P(kt^ = ^α+ ' 2 sl Δ*

+ t"-1 «£'+! Δ(-V(w - ί + 1 ί).
i = l

We may suppose, without loss of generality, that s = 0. Since summability



290 H.HIROKAWA

\C,pI implies summability (C,p\ we have s£ = o(np~) when 0 <Ξ i <gp. Then,
using Lemma 1, we have

p-α

, f-™

= of ίΛ+1 2 (" - *
\ ί-l

as n ->• oo, for fixed ί > 0. Therefore, for the proof it is sufficient to prove
that the series

CO

(5. 2) t*+1 2 5? Δ?~"ψ(kt)
k = l

converges in 0 < t < t0} and its sum tends to zero as / -> 0. Using (1. 1) and
Abel's transformation, we have

t«+1 2 <r$AlΔ»
1c=n Ίc = n

m-1

(5. 3) =2 ZWλ'Δσg + i7»(ί) σl - t^-itf) <

where Un(t) = ίΛ+1 2 AS Δp-"φ(kt) and Δσ-g = σ2^ -oi+1. Now, we shall
fc = l

show that Un(t) is uniformly bounded in 0 < t < π and for all n. If nt ̂  1,
then, using Lemma 1, we have

n

Un(t) = r+1 2 A l Δp

= 0(1).

On the other hand, following Obreschkoff, we shall consider the series 1
0 + 0 + ..... Concerning this series, we have

Hence, from (5. 1), we have
n n-P + cύ

*
^̂  . ~̂1^j Λ* <p(kt) = ία + l .̂

= 1

4- /α+1 2 Aw-ί+i \ί~ϊφ(n — ί + 1

that is,
w p - α

ί*+1 2 Alφ(kt) - Un.p+Λ(t) ~
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where

t"*1 2 A*ϊi+1 (n - i + 1 t)

/ *"" \
= Of t»+l 2(" -/+l)α + ί (w -* + 1)-*/'-*-1 )

^ i i '

= 2 o((«ί> +'-»)
i = ι

= 0(1)

when nt > 1. Putting p = [ί"1], we have

r+ι 2 = ία+ι ( 2

= 0(1)

when p — a > 1. And, when p = 1, α = 0, this result is well known. See,
for example, Hardy and Rogosinski [2, p. 29]. Thus, Un(t) is uniformly
bounded in 0 < t < π and for all n. Then, using above results and (5. 3),
we have

m m

(5. 4) t«+1 2 slΔp~"φ(kΐ) = Oί 2 IΔσδl ) 4- O(|<|) + O(|σ£|)

ί5 ^ /
= o(l)

as m,n-+ QQ, by our assumption. Hence the series (5.2) converges in 0 <
t.< π. Since 0(1) in (5. 4) is uniform in 0 < t < π, for an arbitrary small
£ > 0, there exists an N = ΛΓ(£) such that

,?°

jΛ+i 2 SkΔp~"φ(kt) < £•
fc-αV

Further, we have
JV-l

lim t«+1 2 tfΔp-"φ(kt) = 0,

when α > — 1, Therefore we have

lim sup
ί -»0

Since 6 is arbitrary, we have

lim t«+1

*φ(kt)

= 0,

which is the required, and the proof is complete.

6. Proof of Theorem 4. We may suppose, without loss of generality,
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oo

that s = 0. By Lemma 5, the series 2 a* is ^valuable (C, 1) to zero: hence

n

Since we have, from (1. 2),
n

fU — ^̂  A Λ — 1 QSn •" £Λ Άn-Tί *k>

we have

(6.3) = Σ
fc=0

say. Here, we shall prove that this rearrangement is permissble. For this
purpose, it is sufficient to prove that, for fixed t > 0,

(6.4) f-2* A^ =o(l)
fc=0 n-^V+l

as N-+ oo. Since

= O(N-1(N -k

we have, using Abel's transformation and (6. 1),

< i* i

/ ~ \
= oί 2 * Λ^UV - k + I)05-1) + o(ΛΓ AT"1)

\ = X

and (β. 4) is proved.
Here we remark that the rearrangement (3. 2) z's permissble when s\ =

Therefore, for the proof, it is sufficient to prove that the series (6. 3)
converges in some interval 0 < t < t0) and its sum tends to zero as t -» 0.
Convergence of the series (6. 3) follows from the estimation of V(t) below.
Let us write

= (2 + Σ ) =
^ = /
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where p - RθO"1]* £ being an arbitrary fixed positive number. By (2.17),
(2.18) and (6.1), we have

p-l

Since ηn(f) = 2ff*W = °(n~lt~l"> by (2. 19), we have
fc-w

λ. -p+1

00

= -2

by Lemma 5. Thus, we have
lim sup \U(t) + V(t)\ =

ί->0

Since 6 is arbitrary, we have

ί->0

and the proof is complete.

7. Proof of Theorem 5. We may suppose, without loss of generality,
oo

that s = 0. By (1. 8), the series 2 Λfc *s ^valuable (C, 1) to zero hence s* =
fc-l

n

2 s* - °(n) a^d, by the remark in § 6, the rearrangement (6. 2) is permi-
fc = l

ssible. Convergence of the series (6. 3) follows from the estimation of W(f)
below. Let us write

2 *aw = (2 + 2 + 2 ) = w) + (̂0 +
fc = l \ fc- l fc=/i-»-l fc=J+l ^

where h = p-i], 7 = [f-P] and r/3 > 1. Then we have, by Lemmas 7 and 8,
h

= ̂
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If we put Sn = 2 I5 f cl we have using (1. 8) and (2. 17)

£=//, + !

1\
^7 7)

= o(log/3)

Lastly, by (2. 16) and (2. 19), we have

= —2 βfc-n

and the proof of Theorem is complete.
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