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1. On the absolute convergence of the Fourier expansion of a function
f(x) with period 2π, the Wiener theorem reads as follows:

If, for every x0 <Ξ[0. 2π], there CDrresponds a neighbourhood lxo of XQ in
which f(x) coincides with a function having the absolute convergent Fourier
expansion, then the Fourier expansion of f(x) itself converges absolutely.

The main object of this paper is to show that the Itheorem does not
always remain true if there is an exceptional point in the hypothesis.

2. THEOREM 1. Let f(x) be a function with period π and vanish at x = 0
and x = 7Γ. Suppose that the sine expansion of f(x) converges absolutely:

(1) f(x) = 2 a» sin nx>
n=ι

(2) 2 i β » ι < oo.
n-l

Under these conditions the cosine expansion of f(x) is not always absolutely
convergent.

From this theorem we can show that the existence of an exceptional
point is not permissible in the hypothesis of the Wiener theorem. In fact,
from Theorem 1 we may find a function f(x) of period π such that

(3) f(χ) = 2 *»s innχ> 2 ι*»ι < °° ( o s χ ^ π )
n = l n = l

and that
00 00

(4) f(x) — 2 *» cos nx> 2 16» I = °° (° S x S π).
n=0 w=0

Let g(x) be the even function of period 2τr which coincides with/(Λτ) in the
interval [Q,τr], then its Fourier series coincides with the expression (4) for
0 < x <Ξ 2π, and so does not converge absolutely meanwhile g(x} coincides
with/(Λ;) or —f(x) in every neighbourhood IXQ, x0 Φθ(mod. π). The Fourier
series of the function f(x) and —f(x)} regarding as functions of period 2π,
are both absolutely convergent. The function g(x) forms a required negative
example with exceptional point x = 0.

3. To prove Theorem 1 we shall make some preliminary consideration.
Let aτ, a >, and bl} b2, be the coefficients of sine and cosine expansions
of f(χ) respectively. Then
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2 Γ 2 Γ^
&« = — / f(x) cos nx dx = — / >] dk si

^ j 7r •/ ΓϋΊ

2 4ι

sin kx cos WΛΓ dx

cosw*

Since

/ sisin &*; cos WΛΓ Λ =

we have

if k — n is even,

if k — n is odd,

where 2' means the summation in which k — n is odd. Therefore
oo ex

/g\ **w1 j t j _ _ "S

k-n

--ί Σιs.1
say. Let us divide the inner sum Sn into several partial sums and the rest:

[n/2 n-l i3n/21

,

3fc-[n/2]+l
-4-

^
= Sn(l) + SΛ(2) + Sn(3) + S»(4) + S»(5) + SΛ(6)

say. If 2 l^fcl < °°, then, denoting by A a positive constant not necessarily

the same in every occurrence, we get
00 00

2 is*(4)i = 2

W = l fc = [3W/2]+l Λ Λί

oo

A 2 1*1 < »,

similarly

= Σ Σ'
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Oritthe other hand
oo [n/2]

ς / c \ ι -9 V VJn\p) [ — <S f̂ ^̂ j <

Hence the convergence of 2 l*»l wiίl be> ^n^er the assumption 2
< oo, equivalent to the convergence of the series

which will be reduced easily to the convergence of:

(6)

L»/2]

Σ' n 7ΰ <2/»-Hfc

&

4. We are now in a position to prove Theorem 1. From the above

consideration it is sufficient to construct a sequence {an} such that ^ \an\

converges and the series (6) diverges.
Put

a,n -
n*

and am = 0 if m is not of the form 4n.

Obviously

for 72 = 1,2,33 ....

and

«/2]

Σ>Π' βw-fc "~ βw+fc

2: /,
Λ-l fc-1 ^

co 4« + l-ι

Σ"V
2*,,

1=0 n=4 l

^5! S^ Mf <C wf

[n/2]

S'
[ίl/2]

2'

Λ n_ f c _ Λw+fc

Λ

Λ

= Σ Σ î i "̂ r-,
2.4* _,

- 'Ŝ  /y I ^ -1

- 2i a* 2* n-#
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00 CO

= "V — V — > - l o 4 ' >iυ *

Thus the theorem was proved.

5. Now we shall consider the problem: Under what condition does the
absolute convergence of sine expansion imply that of cosine expansion?

THEOREM 2. Let f(x) be of period π and vanish at x = 0 and x = π.
Suppose that the sine expansion off(x) converges absolutely, that is, the expres-
sions (1) and (2) hold. If one of the series

(i) 2 \an\logn,

(ϋ) where — at>> — an+2,

is convergent, then the cosine expansion off(x) converges absolutely.

PROOF. It is also sufficient to show the convergence of the series (6). In
case (i) we have

ΣΣ'^ k

[3/1/21 +

-n

1 — n
c +1)

ι Σ'

In case (ii) we have

2'- Σ' 1 *S~ι A
k 2* Δ«n+j

fc = l R , =-fc

[»/2] [n/2] -

Σ Δ«Λ+, 2 -J
J=l fc=J+l K

[3W/2] [n/2]

Σ iΔβ^i 2
J=n+ι fc=j_w+

k.

[n/21- -

2 ΔβnH-J 2 T

W - l [W/2]

4- 2 ι^./ι 2
^=[n/2] k = n- ,

Hence
Ln/21

r — n 4- n — j

Σ ' <2/ϊ_fr ^«+fc

b
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2 7̂ ; +Λ2|Δ»,I 2 ^7
W = [2j,'3] y j = l w = J+l y

Thus the convergent majorants of the series (6) were obtained in both
cases, and the theorem was proved.

We remark: that if in Theorem 2 the coefficients {an} forms a decreasing
sequence, then the series (ii) converges and so we get the same conclusion.
In fact

00 00

2 n\Δθn\ = 2 n(a™ ~ <*»+*)
n=ι n-\

= 22 an — «ι — Hm (N — 1) aN+ι — lim N aN+<ι
n^l ^^ N^™

00

= 2 2 ΛΛ ~ βί
W = l

since β.Λ = 0(72) as w -> fb by Abel's lemma.

6. We discussed hitherto the absolute convergence of the cosine expansion
of function which has an absolute convergent sine expansion. Let us now
consider the case where the situations of "sine" and "cosine" are exchanged
with each other. The analogues of Theorem 1 and Theorem 2 (i) are valid
but Theorem 2(ii) is not the case. We shall prove the following theorems.

THEOREM 3. Let /(#) be a function of period π and vanish at x = 0 and
x = π. Suppose that the cosine expansion of f(x) converges absolutely, that is,

CO

(7) f(x) = 2 ^ cos nx>
n = ΰ

CO

(8) 2 iβ»ι < °°
n = 0

Under these conditions the sine expansion of f(x) is not always absolutely
convergent.

THEOREM 4. Letf(x) be of period π and vanish at x = 0 and x = π. Suppose
that the cosine expansion of f(x) converges absolutely, that is, the expressions
(7) and (8) hold, and that

(9) I,
n=0

Then the sine expansion of f(x) converges absolutely.

If f(x) does not vanish at x = 0 or at x = π, its odd extension of period
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2π is not continuous and so its sine expansion is evidently not absolutely
convergent. Hence the condition /(O) = f(π) = 0 is indispensable, and then
we get easily

00 00

do) 2«" = 2(-i>"β» = 0

w=0 n=0

or equivalently

If we consider the analogue of Theorem 2 (ii), with stronger condition
an I 0, the monotonity of the sequence of coefficients {an} needs therefore
some modification. For this it will be natural to suppose that the sequence
{any is monotone except the first two terms a0 and a\3 that is,

<?3 ̂  #4 2^ # 5 2^ ---- >

and

But even under this condition of the sequence {an} the analogue of
Theorem 2(ii) does not valid, this fact will be shown later in the proof of
Theorem 3.

7. Let the expression (7) and (8) hold, and let
CO

f(χ) — 2 bn sin nχ-
n=l

By easy calculation we get

2 Γ*
(12) bn = — / f(x) sin WΛ:

π J

f
a* I

o

2
cos &t sin WΛ;

where ^>t has the same meaning as in §3. Hence if n is odd, putting n
2m -f 1, we have

1 . 1

fc=0

Substituting the first of (11) into this formula we get

(13) fc^ = ± {2* U + L+ 1

 + 2m-2k+l) ~ 2 «• fcϊTΪ
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32 4, Pa*

249

~ π(2m -t- 1) ίΓί (2m + 2& + 1) (2m - 2£ + 1) '

Further we shall divide the sum into several parts :

OΛ / 'ίm °°

(14) ft^+i = ^2^+1) (2 +

 fc2_

8 ^i,
-2k+l

32
π(2m +1 (2m

τr(2m + 1) £•{ 2m - :
2m ,

8 Σ2 m 2^+1

8 ^ 1

2m

32 K-
π(2m + 1) ̂ +1 (2m + 2k + 1) (2m - 2k + 1)

2fc - (2m - * + 1) *<*,-*+»}

8 k a* 32
+ 1) 2m +

8

+ 1 ) J f c 1

32

2m - 2m - 1)

τr(2m H- 1) *Vm

say. For the proof of Theorem 3 it is sufficent to show the divergence of
the series

(15)

Put

(16)

and

(17)

j

+ ι l - 2 2m+1
8 32

We shall now construct a counter example of the coefficients {an}

1

Obviously 21 a» I < °° and the condition of Theorem 3 is satisfied.

Now we shall estimate the series (15), substituting (16) into Pm we have

1 1

2m - 2(]og2£)a 2(log(2m-&

By elementary estimation, if 1 <Ξ k < m, we get

1 1
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log (2k (2m - k +

log

(log 2k? (log (2m - k -f I))2

20ι — ft + 1

(log£)alog;

(log
(log ft)2

 log m'

if I g f t :

.fir — K

since

log 2ιw — ft
2ft

if 1 < ft <

if

2m + 1.

Theorefore we have

(18) ^ 2m -2k+l (log k)3

. ^ 1
2* + 1 (log *)a log m

And easily

(19)

(20)

- (logm

2m

IQ»IS2

+
(log nίf (log mf

-,

1

fc=- 2 (log 2ft)2 (2m + 2ft + 1) ̂  (log mj '

^ ft^ l 2 (log 2ft)2 (2ft + 2m + 1) (2ft - 2m - 1)

!, *
C

— logτw

where C is a positive constant independent of m.
From (15), (18), (19) and (20) we obtain

"s^ i j . i ^ ̂  x? J_^»J_ Ax? _J.^L A >ζ? IQwi

ar ^ (2ι» + 1) log m (2ι» + 1) (log mf

and this proves Theorem 3.
We shall now prove Theorem 4. By the formula (12)
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2' k)

s Ξ ΣΣ;

say. We have then
oo oo

^̂  ^ ^̂  .J\/T — ^̂  J?^ I SΊ I ^̂iLvj. —— ^jj^j •* 1 ̂ Λ; 1 ^^^

+

sA2!«*l log k.
fc = 2

Hence we get immediately the conclusion:

(by (10))
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